The Self-Supervised Learning Paradigm
in Computer Vision

Nikos Komodakis

Computer Science Department, University of Crete
Archimedes, Athena RC
IACM, Forth


iPad Pro 12.9" 5

iPad Pro 12.9" 5

iPad Pro 12.9" 5


Outline

Intro/motivation

What is self-supervised learning (SSL)

Different SSL paradigms

A tour of SSL approaches



Deep learning

e Multi-layered neural networks

CAT

LABELED
PHOTOS

* Revolutionized many research fields

e Software v2.0
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* Predefine the set of visual concepts to be learned
* Collect diverse and large number of examples for each of them



Massive amounts of manually annotated training data required
J Collecting raw data: (relatively) easy
J Annotating raw data: very expensive & time consuming
e thousands of hours of tedious, error-prone human labor
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(clean + annotate data)

annotated training data



O Lack of qualified human experts to annotate data




Long-tail distribution

Frequency of visual concepts

number of examples

e |

r
rare situations / concepts == few examples






Gap with how humans learn
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Exploiting unlabeled data

* Million of images uploaded (e.g. on Facebook) per day

* Hours of video uploaded on Youtube per minute

* “infinite” amount of text data available online




Two big recent breakthroughs

Transformers M Self-supervised learning

— a match made

Probabilities

in heaven

dataset (no labels)
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What is self-supervised image
representation learning?



Self-supervised learning in a nutshell

Self-supervised learning

Training signal Don't care

e Goal: Learn good representations (pretext task)
e Means: Construct a pretext task
o Don’t care about the pretext task itself

o  Only important it enables learning
Useful behaviour

emerges

Network

Often distorts/hides
parts of the signal

Processing

— Input signal



[“Extracting and composing robust features with denoising autoencoders”, Vincent et al. 08]

Self-supervised learning in a nutshell

Self-supervised learning Reconstruction  Don't care
2 loss

e Goal: Learn good representations

e Means: Construct a pretext task
o Don’t care about the pretext task itself
o  Only important it enables learning

Decoder

Useful behaviour
emerges

Representation

Encoder

Often distorts/hides

+ Noise
I parts of the signal

— Input signal




“The unusual appearance of this
egg-laying, duck-billed,
beaver-tailed, otter-footed mammal
baffled European naturalists when
they first encountered it, and the
first scientists to examine a
preserved platypus body (in 1799)
Jjudged it a fake, made of several
animals sewn together.”

Somewhere in-between unsupervised and supervised learning
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Self-supervised learning pipeline

Stage 1: Train network on pretext task (without human labels)

Z Self-supervised
z
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Self-supervised learning pipeline

Stage 1: Train network on pretext task (without human labels)

z

Self-supervised
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Fine-tuned Object Detection,
Semantic Segmentation, etc.




Karate Kid and Self-Supervised Learning

The Karate Kid (1984)



Stage 1: Train muscle memory on pretext tasks
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Stage 2: Fine-tune skills rapidly




Is this actually useful in practice?



SSL methods are often more efficient than supervised methods

COCO Instance Segmentation
/.
&

AX less computation

 ————mmmm

-@®= Supervised
SimCLR
DetCon

200 400 600 800 1,000

Cityscapes Semantic segq.

0—0—‘""/.

10x less computation

=@®= DetCon

800 1,000

Efficiency in terms of number of epochs for ImageNet
pretraining (SimCLR and DetCon do no use human
annotated labels)

Hénaff et al., Efficient Visual Pretraining with Contrastive Detection, ICCV 2021

Heénaff et al., Data-Efficient Image Recognition with Contrastive Predictive Coding, ICML 2020
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Data-efficiency of SSL and supervised

50% fewer
labels

80% fewer @
labels

-o- ResNet trained on CPC
-~ ResNet trained on pixels

5 10 20 50
Percentage of labeled data

learning methods
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SSL paradigms for computer vision



There are many flavors of SSL

Generative

VAE

GAN

Autoregressive

Self-Prediction

—[ Masked Prediction }

Denoising AE

Context AE

Flow-based

Diffusion

{ Channel Shuffling ]

Colorization

Split-brain

’ Innate Relationship

Contrastive

—[ Patch Positioning ]

Relative Position
Jigsaw
—[ Image Rotation ]

—[ Feature Counting ]

—[ Instance Discrim.

—[ Augmented Views
MoCo & SimCLR
Barlow Twins
BYOL & SimSiam

—[ Clustering-based ]

Contrastive
Predictive Coding

Taxonomy of pretext tasks (Weng & Kim, 2021)

Weng & Kim, Self-Supervised Learning: Self-Prediction and Contrastive Learning, NeurlPS Tutorials 2021

Contrastive &
Semi-Supervised




A tour of pretext tasks for Self-Supervised
Learning



Early examples of pretext tasks



Transformation
prediction

.:_ .; ",

90° rotation 270° rotation 180° rotation 0° rotation



Self-supervised representation
learning by predicting image rotations

Can you predict the 2D rotation of this image ?



Self-supervised representation
learning by predicting image rotations

.y

What about this image



["Unsupervised representation learning by predicting image rotations”, Gidaris et al. 18]

Rotation prediction

Can you guess how much rotated is applied?

12



["Unsupervised representation learning by predicting image rotations”, Gidaris et al. 18]

Rotation prediction

Can you guess how much rotated is applied? Much easier if you recognize the content!

90° rotation 270° rotation 180° rotation 0° rotation

13



["Unsupervised representation learning by predicting image rotations”, Gidaris et al. 18]

Rotation prediction

Label: 180 degrees rotation

180°
O o0e | 270°_ [Classification
Loss

Rotation prediction
(confidence scores)

Rotate by a
multiple of
90 degrees

e Very simple to implement and use, while being quite effective

Assumes training images are photographed with canonical orientations (and canonical orientations exist)
Train-eval gap: no rotated images at eval
Not fine-grained enough due to no negatives from other images
o e.g.no reason to distinguish cat from dog
Small output space - 4 cases (rotations) to distinguish [not trivial to increase; see later]

Some domains are trivial e.g. StreetView = just recognize sky
14



Transfer learned features to supervised learning

Classification  Detection Segmentation
(%omAP) (%mAP) (%mloU)
Trained layers | fc6-8  all all all Pretrained with full
ImageNet labels | 789 799 568 48.0 ImageNet supervision
Random 53.3 43.4 19.8 ..
Random rescaled Krihenbiihl et al. (2015) | 392  56.6  45.6 32,6 [+ No pretraining
Egomotion (Agrawal et al., 2015) 310 542 439
Context Encoders (Pathak et al., 2016b) 346 56.5 44.5 29.7 . .
Tracking (Wang & Gupta, 2015) 556 631 474 Self-supervised learning on
Context (Doersch et al., 2015) 55.1 65.3 51.1 . . -
Colorization (Zhang et al., 2016a) 615 656 469 35.6 ImageNet (entire training
BIGAN (Donahue et al., 2016) 523 60.1 46.9 349 Set) with AlexNet.
Jigsaw Puzzles (Noroozi & Favaro, 2016) - 67.6 53.2 37.6
NAT (Bojanowski & Joulin, 2017) 56.7 65.3 494
Split-Brain (Zhang et al., 2016b) 63.0 67.1 46.7 36.0 .
ColorProxy (Larsson et al., 2017) 65.9 384 Finetune on labeled data
Counting (Noroozi et al., 2017) - 67.7 51.4 36.6 from Pascal VOC 2007.
[ (Ours) RotNet 70.87 72.97 544 39.1 |

Self-supervised learning with rotation prediction

source: Gidaris et al. 2018



https://arxiv.org/abs/1803.07728

Visualize learned visual attentions

Convl 27 x 27 Conv313 x 13 Conv56 x 6 Convl 27 x 27 Conv313 x13 Conv56 X 6

(a) Attention maps of supervised model (b) Attention maps of our self-supervised model

(Image source: Gidaris et al. 2018)



https://arxiv.org/abs/1803.07728

Inferring structure




["Unsupervised visual representation learning by context prediction”, Doersh et al. 15]

Context prediction

Can you guess the spatial configuration for the two pairs of patches?

Question 1:




["Unsupervised visual representation learning by context prediction”, Doersh et al. 15]

Context prediction

Can you guess the spatial configuration for the two pairs of patches? Much easier if you recognize the object!

Question 1:

P
BT

Intuition

e The network should learn to
e C recognize object parts and their
‘ . .—1 spatial relations
ST R




["Unsupervised visual representation learning by context prediction”, Doersh et al. 15]

Context prediction

.
e NN

.
r ~ .
aes ann, ans,

-

.

e NN

. .

. B [
B B

Classifier

L]

Network Network




Context prediction

Classifier

Pros

Cons

[“Unsupervised visual representation learning by context prediction”, Doersh et al. 15]

(arguably) The first self-supervised method
Intuitive task that should enable learning about object parts

Assumes training images are photographed with canonical

orientations (and canonical orientations exist)

Training on patches, but trying to learn image representations

Networks can “cheat” so special care is needed [discussed later]
o  Further gap between train and eval

Not fine-grained enough due to no negatives from other images
o e.g.no reason to distinguish cat from dog eyes

Small output space - 8 cases (positions) to distinguish?



["Unsupervised learning of visual representations by solving jigsaw puzzles”, Noroozi et al. 17]

Jigsaw puzzles

Divide image into patches and permute them Predict the permutation

Network Classifier

Pros & Cons: Same as for context prediction apart from being harder
10



Pretext task: solving “jigsaw puzzles”

N

w

£

LR IR

o~

Permutation Set

index permutation Reorder patches according to
the selected permutation

~N

(¢ ]

64 9.4,68325,1,7

0

) AN V

11x11x96  5x5x256 3x3x384 3x3x384 3x3x256

(Image source: Noroozi & Favaro, 2016)



https://arxiv.org/abs/1603.09246

[“Colorful image colorization”, Zhang et al. 16]

Colorization

What is the colour of every pixel?

23



[“Colorful image colorization”, Zhang et al. 16]

Colorization

What is the colour of every pixel? Hard if you don't recognize the object!

24



Pretext task: image coloring

Grayscale image: L channel

X c ]RHXWXl

L

Concatenate (L,ab) channels

(X,Y)

ab

Source: Richard Zhang / Phillip Isola



Pretext task: video coloring
Idea: model the temporal coherence of colors in videos

reference frame how should | color these frames?

Source: Vondrick et al., 2018



https://arxiv.org/abs/1806.09594

Pretext task: video coloring
Idea: model the temporal coherence of colors in videos

reference frame how should | color these frames?

Hypothesis: learning to color video frames should allow model to
learn to track regions or objects without labels!

Source: Vondrick et al., 2018



https://arxiv.org/abs/1806.09594

Learning to color videos

Reference Frame Input Frame

‘L Learning objective:

; ‘~ Establish mappings

A between reference and
target frames in a
learned feature space.

Use the mapping as
“pointers” to copy the
correct color (LAB).

Reference Colors Target Colors

Source: Vondrick et al., 2018



https://arxiv.org/abs/1806.09594

Learning to color videos

Grayscale Video Embeddings
Reference A A Ci Reference
Frame © @ Colors

Target

Py Predicted
Frame A

Colors

attention map on the
reference frame

AP (fi])
N >, exp (fii f5)

Source: Vondrick et al., 2018



https://arxiv.org/abs/1806.09594

Learning to color videos

ACi | peference
® Colors

Py | Predicted
ij Colors

Grayscale Video Embeddings
Reference A | Afi
Frame @ Ik
\
RESEEE E
Target SEN B
Frame | @ A ® Afj
attention map on the predicted color = weighted
reference frame sum of the reference color

exp (f f;) _
A = = Ajjc;
’ Zk exp (f%’fj) & ; I

Source: Vondrick et al

., 2018



https://arxiv.org/abs/1806.09594

Learning to color videos

Grayscale Video Embeddings
Reference A A f ¢ Aci Reference
Frame O ® I o Colors

I\

,iV_A

Target i y Predicted
Frame © A ® Afj ® Ay Colors
J
attention map on the predicted color = weighted loss between predicted color
reference frame sum of the reference color and ground truth color

€Xp (fz'Tfj) o . minzu 1 Cj)
A = — Az ) Yi» €
TS exp (L F)) e ; 7 > 5

Source: Vondrick et al., 2018



https://arxiv.org/abs/1806.09594

Learning features from colorization:
Split-brain Autoencoder

Input Image X

Source: Richard Zhang / Phillip Isola



Learning features from colorization:

Split-brain Autoencoder
Idea: cross-channel predictions

><)

Split-Brain Autoencoder
Source: Richard Zhang / Phillip Isola



The contrastive-based SSL
paradigm



Instance
classification




["Discriminative unsupervised feature learning with exemplar convolutional neural networks”, Dosovitskiy et al. 14]

Exemplar ConvNets

This m is a distorted crop extracted from an image, which of these crops has the same source image?

31



["Discriminative unsupervised feature learning with exemplar convolutional neural networks”, Dosovitskiy et al. 14]

Exemplar ConvNets

This m is a distorted crop extracted from an image, which of these crops has the same source image?

Easy if robust to the desired transformations (geometry and colour)

32



["Discriminative unsupervised feature learning with exemplar convolutional neural networks”, Dosovitskiy et al. 14]

Exemplar ConvNets

Classification into K
“classes”
(source images)

Pros

e Representations are invariant to desired transformations
e Requires preservation of fine-grained information

Cons

e Choosing the augmentations is important
e Exemplar based: images of the same class or instance are negatives
o  Nothing prevents it from focusing on the background
e  Original formulation is not scalable (number of “classes” = dataset size)

Augmentation

Input image

33



Non-Parametric Classifier

CNN backbone || . 1-th image
low dim L2 norm - 2-th image
— |]_>|]_> \—b.llhlmagc
128D n 1 th image
Z&D i n-th image
— —
fo(z)

Self-supervised learning as image instance-level discrimination

eXP(quq)
'Cn n-param-softmax =—1
on-param-softma (Q) og E'EN exp(qui)

The learning objective focuses now entirely on feature representation, instead of class-specific representations

Z. Wu et al., Unsupervised Feature Learning via Non-Parametric Instance Discrimination, CVPR 2018



[“Representation Learning with Contrastive Predictive Coding”, van den Oord et al. 18]

Exemplar ConvNets via metric learning

Exemplar ConvNets are not scalable (number of “classes” = number of [oo0.] [Lo.0,.] [0.1.0,.]

training images)

Network

Reformulate in terms of metric learning Network

Traditional losses such as contrastive or triplet ["Multi-task self-supervised
visual learning”, Doersch and Zisserman 17], ["HowTolOOM: Learning a text-video embedding by
watching hundred million narrated video clips”, Miech et al. 19]

[ Recently pOpU'GI’I InfoNCE ["Representation Learning with Contrastive Predictive Coding”,
van den Oord et al. 18]

o  Used by many recent methods: CPC, AMDIM, SImCLR, MoCo, ..

Metric learning




Google Research
SImCLR

[Chen et al, A simple framework for contrastive learning of visual representations, ICML'20]

Maximizing the agreement of representations under data transformation,
using a contrastive loss in the latent/feature space.

Maximize Agreement

Zy - > Zj
9() T T (")
h; +Representation— h;

Figure 2. A framework for contrastive representation learning.
Two separate stochastic data augmentations ¢, ¢ ~ T are applied
to each example to obtain two correlated views. A base encoder
network f(-) with a projection head g(-) is trained to maximize
agreement in latent representations via a contrastive loss.
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Training linear classifier on SIMCLR features

% Supervised — #SimCLR (4x)
_. 75} e SRR ,
S .- KSIMCLR (2x) Train feature encoder on
) -0 eCPCv2-L ImageNet (entire training set)
3 *SimCLR oCMC JMOCO’(“X) using SimCLR.
S oPIRL-c2x
< AMDIM
- 65} Q oMoCo (2x) ,
g eCPCv2 PIRL-ens. Freeze feature encoder, train a
- #a oBigBIGAN linear classifier on top with
= oor YA labeled data.
S
£ s eRotation
=2 elnstDisc
25 50 100 200 400 626

Number of Parameters (Millions)
Source: Chen et al., 2020



https://arxiv.org/pdf/2002.05709.pdf

Semi-supervised learning on SIMCLR features

Label fraction

Method Architecture 1% 10%
Top 5

Supervised baseline ResNet-50 48.4 80.4
Methods using other label-propagation:

Pseudo-label ResNet-50 51.6 82.4
VAT+Entropy Min. ResNet-50 470 834
UDA (w. RandAug) ResNet-50 - 88.5
FixMatch (w. RandAug) ResNet-50 - 89.1
S4L (Rot+VAT+En. M.) ResNet-50 (4 %) - 91.2
Methods using representation learning only:

InstDisc ResNet-50 392 774
BigBiGAN RevNet-50 (4x) 55.2 78.8
PIRL ResNet-50 572 838
CPC v2 ResNet-161(x) 779 912
SimCLR (ours) ResNet-50 75.5 87.8

SimCLR (ours) ResNet-50 (2x) 83.0
SimCLR (ours) ResNet-50 (4x)

91.2

Table 7. ImageNet accuracy of models trained with few labels.

Train feature encoder on
ImageNet (entire training set)
using SimCLR.

Finetune the encoder with 1% /
10% of labeled data on ImageNet.

Source: Chen et al., 2020



https://arxiv.org/pdf/2002.05709.pdf

Google Research

A set of transformations studied in SImCLR

Systematically study a set of augmentation

(f) Rotate {90°, 180°, 270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

* Note that we only test these for ablation, the augmentation policy used to train our models only involves random crop (with flip and resize) + color distortion + Gaussian blur.

[Figures from SimCLR paper]



Google Research

Random cropping gives the major learning signal

Simply via Random Crop (with resize to standard size), we can mimic (1)
global to local view prediction, and (2) neighboring view prediction.

This simple transformation defines a family of predictive tasks.

_____

(a) Global and local views. (b) Adjacent views.

Figure 3. By randomly cropping and resizing images (solid rect-
angles) to a standard size, we sample contrastive prediction tasks
that mimic global to local view (B — A) or neighbouring view
(D — C) prediction.

[Figures from SimCLR paper]



Google Research

Composition of augmentations are crucial

Composition of crop and color stands out!

Crop
-50

Cutout

.‘_5 40
= Color
£
3
€ Sobel 30
§
= )
“ Noise 20
~

Blur

Rotate

o®

A\ o
R AR G

xe e
o P\‘e(ag

2nd transformation

(a) Without color distortion. (b) With color distortion.

Figure 5. Linear evaluation (ImageNet top-1 accuracy) under in-
dividual or composition of data augmentations, applied only to
one branch. For all columns but the last, diagonal entries corre-
spond to single transformation, and off-diagonals correspond to
composition of two transformations (applied sequentially). The
last column reflects the average over the row.

Figure 6. Histograms of pixel intensities (over all channels) for
different crops of two different images (i.e. two rows). The image
for the first row is from Figure 4. All axes have the same range.

[Figures from SimCLR paper]



SImCLR design choices: large batch size

709 Large training batch size is crucial for
67.5 SimCLR!
65.0
62.5 .
- Large batch size causes large memory
o . . .
S0 ot e footprint during backpropagation:
57.5 ﬁg requires distributed training on TPUs
L .
550 1024 (ImageNet experiments)
2048
52.5 w4096
w8192
50.0 EEEEEN EEEEa

100 200 300 400 500 600 700 800 900 1000
Training epochs

Figure 9. Linear evaluation models (ResNet-50) trained with differ-
ent batch size and epochs. Each bar is a single run from scratch.'”

Source: Chen et al., 2020



https://arxiv.org/pdf/2002.05709.pdf

Contrastive: MoCo

e Contrastive learning loss (InfoNCE)

e The momentum encoder produces a
memory bank of negatives and positives

gradient stored as a queue

Contrastive loss e The momentum encoder f. Y is slowly
| I pursuing f0 via exponential moving
I IH average (momentum) update:
Y +—miyp+ (1 —m)b

1 queue

Momentum
> @ e Elegant and effective solution for large

dictionaries

f@ f¢ : encoder (ResNet-50);

II%II

He et al., Momentum Contrast for Unsupervised Visual Representation Learning, CVPR 2020

19



The regression/self-distillation
SSL paradigm



Image

The regression/self-distillation
SSL paradigm

Views

Predict?

O



BYOL.: Bootstrap your own latent

Grill et al., 2020

Image Views Encoder Predictor

/) vy — — [ Prediction ]
R b
. *‘:_‘_4."_4 é%

&3 ‘1
:;;'»3*: i @




BYOL.: Bootstrap your own latent

Grill et al., 2020

Image Views Encoder Predictor

- - _} —

.&:_v AR iy -e'>[ Target ]

O



BYOL.: Bootstrap your own latent

Grill et al., 2020

Image Views Encoder Predictor

1 ' Random .
. S o — Prediction
» Initialization

Regress

Random
Initialization '9"[ Target ]

O



BYOL Architecture

i

Online network
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Linear Evaluation Performance on ImageNet

80 . .
Sup. (4x) Note: these supervised

L] baselines are from

e
2 '.(Z/X/BYOL (4x) SimCLR (Chen & Hinton,
°
S:/B VoL (2%) ICML 2020)

SimCLR (4%)

J
(o)

~J
N

74
SimCLR (2 X) CPCv2: van den Oord et al., Representation learning with
contrastive predictive coding. 2018
InfoMin AMDIM: Bachman et al., Learning representations by maximizing
mutual information across views. 2019
CMC: Tian et al.Contrastive multiview coding. 2019.
CMC CPCv2-L MoCo: He et al, Momentum contrast for unsupervised visual
MoCov2 representation learning. 2019
InfoMin: Tian et al, What makes for good views for contrastive
learning. 2020
MoCo MoCov2: Jain et al., Improved baselines with momentum
SimCLR AMDIM contrastive learning. 2020
SimCLR: Chen et al., A simple framework for contrastive learning
of visual representations. 2020

J
[\

ImageNet top-1 accuracy (%)
=
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<

o

=

[*))
o0

25M 50M 100M 200M 400M

Number of parameters @



Self-distillation: DINO

gradient

(—v Similarity loss ‘j

Main idea: No prediction head; post-processing
of teacher outputs to avoid feature collapse
e Centering by subtracting the mean feature:
prevents collapsing to constant 1-hot
targets
e Sharpening by using low softmax
temperature: prevents collapsing to a
uniform target vector
e Cross-entropy loss

f@ f¢ :encoder (ViT, ResNet-50); hy h¢ : projection (MLP)

Caron et al., Emerging Properties in Self-Supervised Vision Transformers, ICCV 2021 23
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Barlow Twins (Zbontar et al. 2021)

Distorted

images Net

tations

Represen-

Empirical

YBZ’\

Cross-corr.

/ feature

dimension

Images
back
~ aCKprop.
XKT~T prop
-—
backprop.

Target
Cross-cofr.

EBT -.l-...

2 2
Cor= Y (1=-Cal +4 ) Y C
i i i#
. -~ \ )
. . bl
Invariance term redundancy reduction term
B
2 zi‘,izb,j
where C;j =

\ 2 (Zg,i)z \/ 2 (zg,j )

(Zbontar et al. 2021)



[“Learning representations by predicting bags of visual words”, Gidaris et al. 20]

Predicting bag-of-words

Extract features: X
use a pre-trained self-supervised convnet ®(+) assign features to visual words

Bag-of-words reminder

feature map

image x

histogram

I

Up[]
vocabulary of I [ I
visual words Bag-of-Words (BoW)

k-means clustering

o Loses low-level details

e Encodes mid/high-level concepts
27



[“Learning representations by predicting bags of visual words”, Gidaris et al. 20]

Predicting bag-of-words
e N R

original image x perturbed image x

randomly perturb

Bag-of-Visual-Words feature
target y(x) of x predict: vector

fc + softmax pooling
IR e Ll B
= ()

\& /&
Generate BoW targets Predict BoW targets from perturbed image

Inspired by NLP: targets = discrete concepts (words)

28



Self-distillation: OBoW

gradient

Similarity loss
F ‘_] Online Bag-of-Visual-Words Generation (OBoW)
e Teacher: produce vocabulary of local
H features and BoW target vectors
n e Student: predict teacher BoW vectors,
BoW . given as input a different random view of
enerator the same image
t e Mitigates feature collapse

Focus on local feature representations
Cross-entropy loss

f@ f¢ : encoder (ResNet-50);

Gidaris et al., OBoW: Online Bag-of-Visual-Words Generation for Self-supervised Learning, CVPR 2021 22



Linear Classification

VOC Detection

Semi-supervised learning

Method Epochs | Batch | ImageNet Places205 VOCO07 | AP AP  AP" | 1% Labels 10% Labels
Supervised | 100 256 76.5 53.2 87.5 81.3 588 535 48.4 80.4
BoWNet [26] 325 256 62.1 51.1 79.3 813 61.1 558 = -
PCL [48] 200 256 67.6 50.3 85.4 - - - 75.3 85.6
MoCo v2 [35] 200 256 67.5 - - 824 636 57.0 - -
SimCLR [9] 200 | 4096 66.8 . 5 5 5 5 . <
SwAV [8] 200 256 727 56.21 872" | 81.8" 60.07 54.4F 76.71 88.71
BYOL [33] 300 | 4096 72.5 - - - - - - -
OBoW (Ours) | 200 256 73.8 56.8 89.3 829 648 579 82.9 90.7
PIRL [51] 800 | 1024 63.6 49.8 81.1 80.7 597  54.0 57.2 83.8
MoCo v2 [35] 800 256 71.1 52.9 87.1 825 640 574 . -
SimCLR [9] 1000 | 4096 69.3 53.3 86.4 - - - 75.5 7.8
BYOL [33] 1000 | 4096 74.3 . . . . 2 78.4 89.0
SWAV [8] 800 | 4096 75.3 56.5 88.9 826 627  56.1 78.5 89.9




Self-prediction/masking
SSL paradigm



The self-prediction/masking paradigm

Predict any part of the input from any
other part.

Predict the future from the past.
Predict the future from the recent past.

Predict the past from the present.

Predict the (op from the bottom.

,jljﬂ}

Predict the occluded from the visible

Pretend there is a part of the input you « Past Present Future —
don’t know and predict that. Slide: LeCun

(Famous illustration from Yann LeCun)




The success of self-supervised methods in NLP, e.g., word2vec, is inspiring

Input: The man went to the [MASK]l . He bought a [MASK]2 of milk

Labels: [MASK], = store; [MASK], = gallon

Missing word prediction task

Sentence A = The man went to the store. Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk. Sentence B = Penguins are flightless.

Label = IsNextSentence Label = NotNextSentence

Next sentence prediction task

Mikolov et al., Efficient estimation of word representations in vector space, ArXiv 2013
Mikolov et al., Distributed representations of words and phrases and their compositionality, NeurlPS 2013
Devlin, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, ArXiv 2018



» BERT: encoder-only pre-training

Y ) () )

L4
BERT ’“




BEIT: BERT Pre-Training of Image Transformers

' Unused During Reconstructed
Pre-Training Image

Visual Tokens
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Masked Image Modelling: BEIT

Main idea: pre-train ViTs by learning to predict
tokens of masked patches

gradient — e Mimicking practices from large language
(—v Similarity loss ‘j models (BERT)
e Learn to produce discrete visual tokens

OO0O000O00000000O000 H BN B N = O

1 from masked input images
e Use learnable mask-token for masked

t
iy B

5 o i o o o o 1 s o o s s o o s s e Trained with cross-entropy loss over

t masked tokens
I

Bao et al., BEiT: BERT Pre-Training of Image Transformers, ICLR 2022 24

f@ : encoder (ViT); tokenizer : pretrained autoencoder (DALL-E)



Masked Autoencoders Are Scalable Vision Learners
He et al. CVPR 2022

n
]

encoder — ﬁ decoder

_B Il i
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Masked Image Modelling: MAE

gradient Main idea: learn to reconstruct masked pixels

Reconstruction

(_' loss ‘_] o

DDDDDDDDDDDDDDDD (5 5 T e [ Y P

@ :

--D-DD-D-D--D--D

He et al., Masked Autoencoders Are Scalable Vision Learners, CVPR 2022

Simplified MIM pipeline without pre-trained
tokenizer nor data augmentation

Encoder operates only on visible patches
without mask tokens

Lightweight ViT decoder (removed after
pre-training)

Aggressive masking (up to 75% of patches)
Shines when fine-tuned on the downstream
task

f@ : encoder (ViT); h0 : decoder (ViT)

25



original

mask 75%

mask 85%

mask 95%
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—— fine-tuning 847 849 849 849
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What to Hide from Your Students:
Attention-Guided Masked Image Modeling

fo
@ Dj E' Target
Image Teacher @ @ @ features
Z Blale fy (2)
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v
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(a) Input (b) Random (¢) Random (d) Block (e) Attention (f) AttMask (g) AttMask
Image (30) (75) Wise Map High Low



(a) Input Image  (b) Attention Map (c) AttMask-High (d) AttMask-Hint



Table 2. Top-1 k-NN accuracy on
ImageNet-1k validation for iBOT pre-
training on different percentage (%) of
ImageNet-1k. 7: default iBOT masking
strategy from BEiT [2]

% IMAGENET-1K 5 10 20 100

Random Block-Wise! 15.7 31.9 46.7 71.5
AttMask-High (ours) 17.5 33.8 49.7 72.5

50 —

40 -

42% fewer
epochs

30

k-NN

20 —

Random Block-Wisel |-
AttMask-High (ours)

10 |

0 20 40 60 80 100

epoch

Fig.4. Top-1 k-NN accuracy on
ImageNet-1k validation for iBOT
training wvs. training epoch on 20%
ImageNet training set. {: default iBOT
masking strategy from BEiT [2]



The generative-based SSL
paradigm



PixelRNN, PixelCNN (Oord et al. 2016)

n

p(X) = p(x1, %2, ..., xn) = ] p(xilx1, ..., Xi-1)

Raster scan order

Softmax loss at each pixel

-

0

f

A~

255
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Generative Pretraining from Pixels
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Some final remarks



MOCA &: Self-supervised Representation Learning
by Predicting Masked Online Codebook Assignments

Student encoder

S(.)
T(. ) : Teacher encoder
D(.) : Decoder

. EMA

generate code

|| assignements [ V'K
T(.)



iPad Pro 12.9" 5

iPad Pro 12.9" 5


Shortcut
prevention




["Unsupervised visual representation learning by context prediction”, Doersh et al. 15]
[“Unsupervised learning of visual representations by solving jigsaw puzzles”, Noroozi et al. 17]

Exploiting local content

Recall: Context prediction

Edge continuity and shared boundary patterns

e Leave a gap between patches [Context prediction, Jigsaw]
e Jitter patch locations [Context prediction, Jigsaw]

Similar low level statistics

e Normalize by mean and std of each patch independently [Jigsaw]
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["Unsupervised visual representation learning by context prediction”, Doersh et al. 15]
[“Unsupervised learning of visual representations by solving jigsaw puzzles”, Noroozi et al. 17]

Exploiting the capturing process

Recall: Context prediction Networks can learn to predict the absolute patch position!

7,

£

N r

47 . .S A | i)
s G i s e A SEF AR A Image layout \ A
Initial layout, with sampled patchesinred is discarded We can recoverimage layoutautomatically

Prevent by keeping only 1 channel
° Increases the train-eval gap
Alternatives

° Spatially jitter the channels
[Jigsaw]

XT/ " Chromatic aberration

source: Wikipedia
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["Unsupervised representation learning by predicting image rotations”, Gidaris et al. 18]

Exploiting low-level artefacts: Images

Recall: Rotation prediction

90° rotation 270° rotation 180° rotation 0° rotation

For more complicated transformations (more rotation angles, scales)

e Network can detect low-level artefacts of the transformations
e Forced to do only 4 rotations as they are implemented purely with flip and transpose artefact-less operations



Implementation choices matter



Autoencoders show the importance of architecture.

J

HPNE™
4 | L=

mise =
encoder o decoder

LB I i
[ |

Masked Autoencoders Are Scalable
Vision Learners
He et al. CVPR 2022

J
)

w — w
el, .|
8 2
3 | Channel-wise | @
b Fully L
o Connected >
g J:
c @
w o

Context Encoders: Feature Learning by
Inpainting
Pathak et al. CVPR 2016

Decoder ) [* (. . )
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Other applications of self-supervision



Unsupervised Object-Centric Learning

Goal: Unsupervised decomposition of images into set-based representations where
distinct vectors represent different objects

Input Image Slots
- / ,/ ‘

Slot

—
Encoder Decoder

® Learning without supervision such as segmentation masks or text

® Provide representations and segmentations of objects
15



Slot-based Autoencoders

® Image Encoder + Slot-Attention: generate a set of slot vectors, each intended to
represent an individual object within an image

® Decoder: reconstructs the target signal from the slots

® Segmentations come from the cross-attention layers

ASL%T ApEc
Bl FHF
j ..... g j‘ ? ............ .
Yy —>» Attglr?t}on —> —>»| Decoder |—>» — v
: L
Encoder| — / iEC
&
Y : Features U : Slots Y : Reconstructed Features
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Autoregressive (AR) Transformers

Slot

—

U

7—>

Decoder

Y

Y
Lgxc

A

Y > Attention
Encoder |— @
a

Y : Features U : Slots

Y : Reconstructed tures

1 34|56 |7 9
Ar
FFN xL
T
CROSS-ATTENTION
Vv K/_/‘Q
CAUSAL SELF-ATTENTION
tv IK a
[BOS] 2134|565 6 8

Slots

® AR transformer decoders outperform MLP-based decoders
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Autoregressive (AR) Transformers

® Next token prediction

Standard order

Slots

® AR transformer decoders outperform MLP-based decoders
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Autoregressive (AR) Transformers

® Next token prediction

Standard order

Slots

® AR transformer decoders outperform MLP-based decoders
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Autoregressive (AR) Transformers

® Next token prediction

Standard order

Slots

® AR transformer decoders outperform MLP-based decoders
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Autoregressive (AR) Transformers

Standard order

r el N
S W asr

® AR transformer decoders outperform MLP-based decoders, but they have overfitting issues

Later tokens rely too much on past tokens = ignoring slot vectors

67



Autoregressive (AR) Transformers

Gradient norms for each
patch w.r.t. the slots

[ VI - T, RNV N

L T T e e e S e S S S |
1234567 8 91011121314

0.065

0.060

0.055

0.050

0.045

0.040

-0.035

-0.030

CROSS-ATTENTION

o

CAUSAL SELF-ATTENTION

‘|:V “K :‘Q

xL

[BOS]

Slots

® AR transformer decoders outperform MLP-based decoders, but they have overfitting issues

= Later tokens rely too much on past tokens = ignoring slot vectors

Left to right
Top to bottom
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Sequence Permutations on
Autoregressive Transformers

Gradient norms for each
patch w.r.t. the slots
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[ (R T I I |
1234567 891011121314

® To fix this, we introduce sequence permutations,
altering the AR transformer’s prediction order:
" Permutations can move later tokens to initial positions - force them to use slot vectors

” > e ” ;

G 5 I i - 4 (3 3 3 < = F ; ™ ;
Yy el & o il O Wl A 2 R Sf
] U - 1 A - . it ) 8 4 i i : i £~ f B I i W

U ri it il , . oo A Lpiie? o A gy o W et i
Left to right Top to bottom Top to bottom Bottom to top Right to left Left to right Spiral
Top to bottom Left to right Right to left Top to bottom Right to left Bottom to top Left to right Bottom to top




Sequence Permutations on
Autoregressive Tra nsformers

Gradient norms for each
patch w.r.t. the slots

Permute with JJ

0.065

0.060

0.055

0.050

0.045

1
2
3
4
5
6
7
8

0.040

0.035

-0.030

1234567 891011121314

Permute with o; and right-shift

® To fix this, we introduce sequence permutations - ﬁi—\ —
! . ’ 1|23 4''s |6 | 718 o
altering the AR transformer’s prediction order: i [zt e RS R[4 b

. Permutatlons can move Iater tokens to |n|t|al positions - force them to useslot vectors

Left to rlght Top to bottom Top to bottom Right to left Bottom to top nght to left Bottom to top Left to rlght
Top to bottom Left to right Right to left Top to bottom Right to left Bottom to top Left to right Bottom to top



Sequence Permutations on
Autoregressive Tra nsformers

Gradient norms for each
patch w.r.t. the slots

Permute with JJ
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Permute with o; and right-shift

® To fix this, we introduce sequence permutations - ﬁi—\ —
! . ’ 1|23 4''s |6 | 718 o
altering the AR transformer’s prediction order: i [zt e RS R[4 b

. Permutatlons can move Iater tokens to |n|t|al positions - force them to useslot vectors

Left to rlght Top to bottom Top to bottom Right to left Bottom to top nght to left Bottom to top Left to rlght
Top to bottom Left to right Right to left Top to bottom Right to left Bottom to top Left to right Bottom to top



Sequence Permutations on

Autoregressive Transformers
1] ﬁl@ﬂf SNEAKEYS

Permute with 0;1

=

1

2

Gradient norms for each patch w.r.t. the slots
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Decoder w/o permutations Decoder with permutations
grads. of default perm. grads. of random perm.
S A
Permute with o; and right-shift
® To fix this, we introduce sequence permutations, 2 ﬂ@ﬁi&—‘g—lﬁ “F@'
altering the AR transformer’s prediction order: TP S | SR A

" Permutations can move later tokens to initial positions - force them to use slot vectors
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Encoder & Decoder Slot-based Masks

Mean Best Overlap with instance

Slot-based attention masks can be generated by both segmentation masks (MBO!) on COCO

the encoder (4q; 1) and the decoder (Apgc)

Decoder’s masks demonstrate superior object MBO*? <
segmentation

Asvor Apgc
EED HH
y/ y
y —> Attglrﬂ}on _’/—> Decoder |—> —
Encoder| — / Lgrrc
. A

Y : Features U : Slots Y : Reconstructed Features
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Two-Stage Training Approach
via Self-Training

Stage-1: Train SPOT teacher using only the reconstruction loss Lyy

Encoder |—

O

Asvor Apgc
G T
s 7 v
0
Y > Attention | /_’ Decoder |—>» —
% LrErc
A

Y : Features

U : Slots

IA/ : Reconstructed Features
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Two-Stage Training Approach
via Self-Training

Stage-2: Train SPOT (student) using an additional self-training loss L,

® The L, loss distills slot-based attention masks from teacher’s decoder to student’s encoder
® This enhances the student’s slot-attention grouping = improved slot representations
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Experimental Results

Evaluating object-centric learning methods on object discovery:
SPOT achieves state-of-the-art results

COCO PASCAL MOVI-C MOVI-E

METHOD

MBO? MBO®¢ | MBO?* MBO® | MBO* wMIoU | MBO* wMIoU
SA 17.2 19.2 24.6 24.9 26.2+10 - 24.0+12 -
SLASH - - - - - 27.77 +50 - -
SLATE 29.1 33.6 359 41.5 394408 37.8+07 | 30.2+17  28.6+17
CAE - - 329109  37.4+10 - - - -
DINOSAUR 32.3:04 38.8+04 | 44.0110 512410 | 424 - - -
DINOSAUR-MLP 27.7+02  30.9+02 | 39500 40.9+01 | 39.1+02 - 35.5+02 -
Rotating Features - - 40.7+01  46.0+0. - - - -
SlotDiffusion 31.0 35.0 50.4 55.3 - - 30.2 30.2
(Stable—)LSD 30.4 - - - 45.6+08  44.2109 39.0+05  37.6+05
SPOT (OUI'S) 35.0:01 447105 | 483204 55.6+04 | 473112 467115 | 401112 393402

v Outperforms prior state-of-the-art DINOSAUR by +2.7% mBO' & +5.9% mBO¢ in real-world
object-centric learning

v/ Excels also in simpler or synthetic datasets adopted by object-centric learning community
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Experimental Results

More qualitative results on COCO

SPOT is applicable to other encoders

ENCODER METHOD MBO! FG-ARI
DINOSAUR | 31.6+07 34.1+10
DINO SPOT 35.0100 37.0+02
MoCo-v3 DINOSAUR | 31.4+02  35.2+02
v SPOT 329102 34.8+03
DINOSAUR | 30.2+18 32.8+37
MAE SPOT 334403 37.7+10

Self-training is effective even with an MLP decoder

DECODER | SEEF | MBO' MIOU FG-ARI
TRAINING
X 267 256 387
MLP v 284 270 425

Sequence permutation is superior to parallel decoding

DECODER MBO® MIOU FG-ARI
TRANSFORMER 32.0 30.0 32.3
TRANSFORMER W/ PA | 27.8 26.5 35.3
TRANSFORMER W/ SP | 327 308  35.6 ”




Summarizing Insights

SPOT:

v Outperforms the other unsupervised slot-based object-centric learning
methods in real-world images, achieving state-of-the-art results

v" Autoregressive (AR) decoding in object-centric learning with sequence
permutations is superior to default AR decoding, parallel masked decoding or
simple MLP decoding

v Sequence permutation may benefit other computer vision tasks with
autoregressive decoders
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Source code: https://github.com/gkakogeorgiou/spot

o
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