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Development of artificial intellignce
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Machine vision
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= Machine vision system
= Environment (background)
= Jllumination
= Camera and lenses
= Computational power
= (Manipulation)
= Software

an engineering discipline that
uses computer vision algorithms
to develop systems for solving
practical problems, especially in
industrial production




Surface defect detection problem
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Example: Visual inspection of pharmaceutical products
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Rule-based machine vision

= Rule-based approach
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Machine learning in computer vision

= Conventional ML approach

feature .
—_— [extraction] —> | features | — [classn‘lcatlon]—» class

© 1 V] %
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: ML
[ learning ] -=*> | model
PCA, LDA, CCA, -
HOG, SIFT,
SURF, ORB, ...

kNN, SVM, ANN,
AdaBoost, ...



Deep learning in computer vision
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= Conventional machine learning approach in computer vision

featur_e —p | features l classification class
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Machine learning
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Training samples
|

Ground truth predictions Criterium
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Deep neural .* :
network :

Training samples

Error +

‘ backpropagation

Ei' @ Loss function

Ground truth predictions Criterium




Learning regimes
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= Supervised learning

= Weakly supervised learning

Sample

L 4

= Semisupervised learning

Training samples T

= Unsupervised learning
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= Self-supervised learning

= Reinforcement learning D
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= Conventional approach: programming specific solutions
= New paradigm: data-driven learning-based sloutions
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Supervised learning

Averaged detection acuracy

Scoring loss
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Supervised learning

CBM 2023
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Learning with mixed supervision

WS - Weakly Supervised Learning Learning WS
MS - Mixed Supervision (Fl\gs) l\lg\SS

FS - Fully Supervised Learning

, , , DIVID
Segmentation Classification sub-network 2018-2021 J

sub-network

COMIND 2021']




Learning with mixed supervision
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Unsupervised learning
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= Only defect-free images required
= Negative-class-only learning

= Detection AUROC on MV Tec AD:

[ paperswithcode.com]
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= Reconstructive approach |
overlay
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Unsupervised learning - RIAD
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bottle capsule grid leather pill tile transistor zipper cable carpet hazelnut  metal nut screw toothbrush wood

----

Class GeoTrans [6] GANomaly [1]  ITAE [4] us [16] RIAD

bottle 74.4 89.2 94.1 99.0 99.9
capsule 67.0 73.2 68.1 86.1 88.4
grid 61.9 70.8 88.3 81.0 99.6
leather 84.1 84.2 86.2 88.2 100
pill 63.0 743 78.6 87.9 83.8

tile 417 79.4 73.5 99.1 98.7

transistor 86.9 79.2 843 81.8 90.9

zipper 82.0 74.5 87.6 919 98.1

cable 78.3 75.7 83.2 86.2 81.9

carpet 437 69.9 70.6 91.6 84.2

hazelnut 359 78.5 85.5 93.1 83.3

metal nut  81.3 70.0 66.7 82.0 88.5

screw 50.0 74.6 100 54.9 84.5

toothbrush ~ 97.2 65.3 100 95.3 100

wood 61.1 83.4 923 97.7 93.0

AVGrex 58.5 76.5 82.2 915 95.1 }
. 71.6 75.4 8438 8538 80.G DIVID CompVis
avg 672 76.2 83.9 877 2018-2021 2019-2024 PR 2021

29



Discriminative vs. Generative models

= Generative models

generative model

model built with machine learning that models the distribution of training
examples, thereby predicting the probability of occurrence for each individual
sample, it is also used for generating new samples similar to the training
examples. P(x),P(x,y)

= Discriminative models

discriminative model

model, typically built with supervised learning, that models the conditional
probability distribution of the target predictive value given the input instance,
for example by finding a decision boundary between different classes, it is also
used for classification or regression. P(y|x)
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= Reconstructive models

= Good approximation of data ‘/‘ ".\l
= Unsupervised learning "P(x)" ::0:0

Standard approaches

_____

Discriminative segmentation

= General, task-independent .'f.p:
= Enable reconstruction and outlier detection ‘/‘ t‘
D |
= Discriminative models Auto-encoder
= Supervised learning
= Task-dependent P()’lx)

= Compact representations
= NoO reconstruction
= Qutlier detection as classification

= Combine reconstructive model

and discriminative classifier [] Anomalous sample

(O Anomaly-free sample

I Training time input sample
[ Test time sample
[ Reconstructed sample

OF LJUBL]JANA | and Information Science
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Unsupervised learning - DRAEM

= Reconstructive and discriminative approach
= Generate synthetic anomalies

| Reconstructive sub-network ‘ Discriminative sub-network
Concat.

Local avg. pool
Global max pool
—)

DIVID
2018-2021

| 4

______________________________________

CompVis
IccV 2021'] 20195024

| 4
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(1 [26] 11 201 [11]

bottle 79.4 983 99.0 99.9 100 99.9 . A
capsule 721 687 86.1 884 923 913 DIVID CompVis ICCV 2021
orid 743 867 810 99.6 929 96.7 2018-2021 || 2019-2024
leather 80.8 944 882 100 100 100
pill 67.1 76.8 879 83.8 834 933
tile 72.0 96.1 99. 08. 97.4 98.1
transistor  80.8 79.4 81.8 909 959 974
zipper 744 78.1 91.9 98.1 97.9 903
cable 71.1  66.5 81.9 94.0 92.7
carpet 82.1 903 91.6 842 955 99.8
hazelnut  87.4 100 93. 83.3 987 92.0

metal nut 694 81.5 82.0 885 93. 98.7  Rucki LTl 99.6 999 995
screw 100 100 54.¢ 45 812 858 g rackiera [17] o o o
v

toothbrush ~ 70.0  95.0  95.2 05.8 96.1 Lin eral. [15] 220 994 99.9
wood 920 979 977 930 97.6 99.2 Bozi¢ eral.[o] (100) 100 100
avg 782 873 877 91.7 944 955

Methods AUROC TPR
RIAD [31] 78.6 79.2
Us [4] 72.5 72.6
MAD [20] 32. 78.7
PaDim [ 1] 83.3
96.5

CADN [32] - - -
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= Generate syntetic anomalies in the quantized feature space

I K
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Unsupervised learning - DSR

UNIVERSITY
OF LJUBLJANA

FRI

Faculty of Computer
and Information Science

Input

o
o
3]
3]
~
>
=
—
5)
>
o

ut
k

tp
mas

T

Ground Ou
Truth

/
3

Method bottle capsule grid leather pill tile trans. zipper cable carpet hazelnut m. nut screw toothbrush wood||average

4] 99.0 86.1 81.0 88.2 &7.9 99.1 81.8 91.9 86.2 91.6 93.1 82.0 54.9 95.3 97.7 | &7.7
22] 99.9 88.4 99.6 100 &83.8 98.7 90.9 981 81.9 &4.2 83.3 88.5 84.5 100 93.0| 91.7
17] 100 923 929 100 833974 959 979 94.0 95.5 98.7 93.1 81.2 95.8 97.6 || 944
7] 99.8  91.5 95.7 100 944 97.4 97.8 90.9 92.2 99.9 93.3 99.2 844 97.2 98.8 || 95.5
11] 98.2 98.2 100 100 949 94.6 96.1 99.9 81.2 93.9 98.3 99.9 B88.7 99.4 99.1| 96.1

:21] 99.2 98.5 999 100 98.999.6 93.1 100 91.8 97.0 100 98.7  93.9 100 99.1| 93.0
DSR 100 98.1 100 100 97.5 100 97.8 100 93.8 100 95.6 98.5 96.2 99.7 96.3 @
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= Results on KSDD2

Method US [4] MAD DRAM PaDim [7] DSR
APger  65.3 79.3 77.8 55.6  8T7.2
AP - - 42.4 45.3 61.4
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Unsupervised learning - Transfusion

5 e Anomal 3
Image—P[ReconstructlonH Localization Y Reconstruction and Anomaly
mask Image

Localization mask

Simultaneous reconstruction and

First reconstruction, then localization e
localization

Loss of detail
No loss of detail
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Unsupervised learning - Transfusion

= TRANSparent

difFUSION
= Using Diffusion
model estimate %;’1‘_‘2'824J
= Anomaly mask
= Anomaly ECCV 2024 |

= Normal image

Synthetic anomalies

Opaque =—— > Transparent

L1 — Ty — (..Bt — _.Bt—l)(iwt ® Et) + (..Bt - ..-Bt—l)(ﬂ’jt © fﬂ(t))
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Unsupervised learning - Transfusion

RD4AD

TransFusion Patchcore DR /AEM

M true

UNIVERSITY | Faculty of Computer
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VisA MVTec AD Average
Method Venue Det. Loc. |Det. Loc. |Det. Loc.
AnoDDPM [CVPRW’22[782 60.5 [83.5 50.7 [80.9 55.6
DRZEM ICCV'21 |[88.7 73.1 [98.0 928 [933 83.0
SimpleNet | CVPR’23 |87.9 689 |99.6 89.6 |93.8 79.3
DiffAD ICCV'23 [89.5 712 [98.7 848 [94.1 78.0
DSR ECCV’22 |91.6 68.1 [982 90.8 |949 795
FastFlow ArXiv’21 939 (86.9)((99.4) 925 {96.7 (89.7
Patchcore CVPR’22 (943 79.7 [99.1 927 197.0 [(86.2
AST WACV’23 |(94.9) (81.5)((99.2) 81.2 [(97.1) 81.4
RD4AD CVPR’22 709 1985 (93.9)((97.3) 824
TransFusion | - 98.5 (88.8 943|989 (91.6

and Informati ion Science
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Learning with mixed supervision
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Input Label Likelihood = Thresholded Transformed

Training approach

Unsupervised

ignores positive samples

!

Supervised

M requires labeled data

Hybrid

Testing inference time
Slow §
8.
Fast

‘N BB
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Robustness of unsupervised methods

Baseline score
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AUC

L
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Method\Dataset ~ KolektorSDD2 ~ SensumSODF DAGM  BSData ‘ mean
RIAD 0.952 0.992 0.870 0962 | 0.944
Gaussian AD 0.989 0.986 0.965 0.978 | 0.980
PaDiM 0.999 0.996 1.000 0.951 | 0.986
CutPaste 0.888 0.925 0.837 0.866 | 0.879
PatchCore 0.995 0.954 0.938 0.782 | 0917
CFLOW-AD 0.995 0.986 0.891 0.966 | 0.960
DRAEM 0.876 0.950 0.694 0.941 | 0.865
mean 0.956 0.970 0.885 0.921 ‘ /
Average
RIAD —— GaussianAD —— PaDiM  —— CutPaste = —— PatchCore = —— CFLOW-AD —— DRAEM

1.00 -

0.95 -

0.90 -

0.85 -

0.80 -
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Beyond images - 3D: 3DSR

Faculty of Computer
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= RGB + D data

= Depth-aware descrete autoencoder (DADA) b Low

| DADA |
\Encoder I} coneat & Reorder

RGB Depth Overlay Output  Ground Truth

fr
f) —
| DADA |
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g: ------ M(‘.lul
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3DSR results
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3D+RGB

Voxel AE 7]
Depth GAN [Z]
Depth AE []
PatchCore+FPFH [Y]
AST|17]
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Beyond images - audio: AudDSR
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= Unsupervised anomaly detection in audio
= Processing MEL spectrogram
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ToyCar ToyConveyor Fan Pump Slhider Valve Average

Methods AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC | AUC pAUC

Annotation-free

AE [1] 80.90 6990 7340 61.10 66.20 53.20 7290 60.30 8550 67.80 6630 51.20 | 7420 60.58
IDNN [13] 80.19  71.87 7574 61.26 69.15 5353 7406 61.26 8832 69.07 8831 65.67 | 79.30 63.78
ANP [16] 7250 6730 67.00 5450 6920 5440 7280 61.80 9070 7420 8690 70.70 | 76.52 63.82

PAE [5] 75.35 69.70 77.58 61.37 7294 5437 7427 62.01 91.92 7439 9541 81.24 | 81.25 67.18
AudDSR 91.89 8290 78.02 64.60 7382 6498 8591 74.32 90.16 T1.54 90.05 70.20 | 84.97 7145

Annotation-reliant

MobileNetV2 [11] 87.66 8592 69.71 5643 80.19 7440 8253 76.50 9527 8522 88.65 8798 | 84.00 77.74
GlowAff [6] 0220 84.10 7150 59.00 7490 6530 8340 73.80 9460 8280 91.40 75.00 | 85.20 73.90
STgram [12] 88.80  87.38 7293 63.62 91.30 86.73 91.25 81.69 99.36 96.84 9444 91.58 | 89.68 84.64

AudDSR 5ot 93.60 90.65 81.57 71.23 7746 7539 88.52 79.16 9856 93.00 9890 9476 | 90.12  84.59

GeCo [4] 96.62 8933 7469 6582 9273 8519 93.09 86.89 9861 9526 99.06 9552 | 9247 86.34

Use all data available!
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Built-in Development
VS. and
learned MEILREILEL =




% |FRI

UNIVERSITY | Faculty of Computer
OF LJUBL]JANA | and Information Science

Deep reinforcement learning

action - a;

1 Localization »  Planning

A
Environment

t observation - 04,1 (St+1) J J Perceptio am
rception

reward - rpq

!

Control

Environment / simulation

Learned policy
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Deep reinforcement learning

= Training in simulation
~ 600 epochs, 3M steps

= |earned policy transferred
to the real robot

Simulation Real world
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Learning only approach
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= Navigation as POMDP
= Sensor readings -> actions
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DRL for Adaptive DWA
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Classic approaches (DWA)

Provide safety mechanisms, smooth trajectories
Are not optimised for specific situation
Learning-based approaches

Require additional safety mechanisms

=> merry learning and DWA -> ADWA

128 range scans
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DWA

1d conv. fully conn.

neurons neurons

neurons neurons

N

filters: 32
kernel: 3
stride: 1

act: ReLU

# completed ep.

Best DWA[7]

294

ANFIS DWA[15]

340

520
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Built-in vs. learned

= (Goal-driven mapless navgation
= Constraining the problem with background knowledge
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Function approximator

= Deep model as a function approximator
= Different training possibilities:

| function | known | unknown_
fx) =y Xtr» Ytr f
f(x) Xtr f
fx) = f(x) Xers | f
f7 o) =y Yerr [ f
flgx) =y 9> Xer) Ver f
gif(x)) =y 9 Xtr» Yir f



Conventional MV vs. DL
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O: , Deep learning is just a hype and a non-
understandable and nonreliable black box™

Y: ,Deep learning is all you need"

= Use adequate HW (camera, lenses, illumination,
background) to constrain the problem

= garbage in garbage out
= Use good old MV techniques when they suffice
= for less challenging or well-defined problems
= in controlled environments
= Use MV techniques to constrain the problem
= and make DL learning easier
= requiring less training images
= Use DL where the problem is data-driven or hard
» in less-controlled environments for more general tasks
= or to speed up the development cycle
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Routine solutions Rule-based solutions Data-driven solutions General intelligence




Adequate data
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L
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Sample 3

Sufficient number _ _
of representative  All informative
training samples ~ attributes

- considered,
Tramllng samples (adequately

structured)
—

Corectly labelled

Adequate loss
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training samples Ei G function
Ground truth predictions Criterium




Development and maintainance
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= Data, data, data!

= Sufficient amount of representative data
= Correctly labelled data

Adequate design of deep architecture
= Adequate backbone, architecture, loss function,...
= Learning, parameter optimisation

Efficient implementation
= Exectution speed
= Integration

= Development and maintainance
= Incremental improvement of the learned model
= Adaptation to the changes in the environment




Real world considerations
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Good

False positives
"4 Defect
True p05|t|ves

(provides efficiency E) Manual
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(requires M/E workers)

&00
True negatives < fals atives

= Human in the loop

at least for some time

= Challenges

Robustness

Dependency on the training set
Domain shift

Non-adaptability
Non-interpretability

= QOpportunities

Learning under mixed supervision
Explainabilty

Tunable parameters

Compability with conventional MV
Agility, quick adaptability

OF LJUBL]JANA | and Information Science



Development, maintainance and redeployment
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Development Maintainance Redeployment

Conventional
engineering-based
approach

Data-driven
learning-based
approach

MV4.0 J
2021-2024
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= Data-driven deep-learning-based solutions

= AI/DL/CV/MV - key enabling technologies
= Wide applicability, interdisciplinarity

= Robustness

= Industry 4.0 and beyond

= New challenges, new opportunities

= Collaboration between academia and industrial partners
= Use all data available ;-)






