Computationally Efficient
Learning under Noisy Data
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Classification with Noise




Why noise?

Human Mistakes (crowdsourcing)
Measurement error
Model error




Imperfect Data
ML datasets in practice are huge and imperfect

— we heed provably efficient and robust algorithms

Wrong Labels Hidden Biases Coarse Labels

Pata are Truncated Animal



Current Status: Fragile with Noise

« Pata cleaning
 Models fragile to Various Attacks: Adversarial Examples / Data Poisoning

- High noise applications, e.g. Signal Processing

How to obtain robust classifiers?



The need for theory

Noise can come in many different shapes from many different sources
Techniques for one sefting may not be applicable in others

 Must understand which settings are solvable and how to approach them
» Theory can also guide the development for novel more robust techniques



Theoretical Setup

* Data generating distribution
- Examples (x, y) are drawn from a distribution U
» Focus on binary classification wherey = +1 or -1

* Train classifier h; X—{*1,-1} on a randowm set of N samples (x;,y;)..... (xy.yy)

« Goal: Minimize the probability of error on a fresh sample (x, y) from D

» Noiseless: Prih(x) # y1< ¢

o Agnostic: Prihi(x) = y1<0PT + ¢
* where OPT is the best model ¢ from a class C in that minimizes Pric(x) # y]



Statistically

For a class C with VC dimension d (= d parameters) we can learn with error <
as long as we have sufficiently many samples

» Noiseless, where the best wiodel gets 0 error
e N=0(d/<¢)

« Agnostic, where the best model gets OPT > 0 error
« N=0(d/<2)

Statistically, the agnostic case is not much harder than
the noisless case!




Computational Challenges

Finding a good set of parameters computationally
efficiently is highly non-trivial!

» Optimization: find good parameters via local search methods
* Gradient Descent, Second order methods, ...
« Do they converge to good parameters?
« Proper learning

- Learning theory: frain any classifier that performs at least as good
« lmproper learning
* Overparameterization



Linear Classification
f(x) = sgn(w” - x)

+ +



Why Linear Classification?

 More complex classifiers can be seen as linear classification over more

complex features
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Perceptron for Linear Classification

* Perceptron LRosenblatt "581

o An iterative method for updating the weights
of a linear function

» For every wisclassified example (x,y) sef: =7
c W «WHyX

» (an be seen as gradient descent on the
objective
« giw) = EL RelUl-y - wx) 1 \ ReLU(u)

step(u)
» This is a convex proxy for Elstep(-y - w-x)]




Algorithms for Linear Classification v

« Linear Classification with margin ¥

« the Perceptron algorithm [Rosenblatt’981] finds a perfect
linear separator in 0(1/y2) iterations.

« Linear Programwing via Ellipsoid finds a perfect linear
separator in Ollog(1/y)) iterations.
« Major Open Problewm in CS:
« Is there an algorithm that doesnt depend on §?
* Le. strongly polynowial time

[PiakonikolasKaneT STOC’ 23]
Can improperly learn linear classifiers in strongly polynomial time
(with a decision list of o /og nlinear classifiers)




Linear Classification with Noise
f(x) = sgn(w” - x)



Linear Classification with Noise

« Strong Negative Result

LGuruswami-Raghevendra’06, Feldman et al.’06, Daniely’161]

Even if only 17 of the data are corrupted, it is even computationally
infractable to compute a classifier with 497 error.
N

even improper

Too Pessimistic: Applies for some adversarially chosen sefting
Hopefully can do something better in practice



Milder Cases: Escaping lmpossibility
 Non-adversarial settings, more structure

« Structure on x:
- Pata are gavssian / Large margin

e Structure on y:
» Separable but random noise was added



Today’s Menu

» Strueture on x: Gavssian Pata  Main techniques:
o lFzrovw Classification to Polynowial
, egression
» Strueture on y: Noise Model o Debiasing Statistical Queries
o lterative Peeling
» Structure on both x and y o Localization

o Certificate Framework



Structure on x



Structure on x

« A generic approach:
* Treaf classification as regression
* i.e. minimize EL (flx) - y)2 1 and then look at sign( f(x) )

« If f{x) is flexible enough it can fit the +1,-1 labels

» This does not work in general but does so when the data are structured



Structure on x: Gaussian Data

» When the data are drawn from a Gaussian
* Polynowial Kearession works as polynowials can

approximate the step function arbitrarily well!
- [Kalai, Klivans, Mansour, Servedio ‘051

- However, we need high polynowial degree (1/¢%2) ..l
- [Diakonikolas, Kane, Pittas, Zarifis *211 os

» Runtime is drov1/<) pyt also the sample complexity is
similarly high



Polynomial Regression for Other Classes

« A classifier class is approximable by polynowial regression if it has low
complexity

measure the complexity in
terms of a concept called Gaussian Surface Area

Concept Class Gaussian Surface Area Sample Complexity
Polynomial threshold functions of degree k O(k) [Kan11] d0()
Intersections of k halfspaces O(+/log k) [KOS08] 4O (logk)
General convex sets O(d'/*) [Bal93] 4O(Vd)

Still runtime is drevi17<) and the sample complexity is similarly high



Today’s Menu

» Strueture on x: Gavssian Pata \/  Main techniques:

» Structure on y: Noise Model

» Structure on both x and y

o From Classification to Polynowial
Regression

o Debiasing Statistical Queries
o lterative Peeling

o Localization

o Gertificate Framework



Structure on'y



Structure on y: The Generative Process

o Ground Truth:  f(x) = sgn(w™ - x)
o Sample x ~ D
o Generate Noisy label of x

_ —f(x) wp.n(x)
YEU R0 o/w

Goal: Find hypothesis h(x)
OPT
Prlh(x) # y| < Pr|f(x) #y]| + €



Randowm Classification Noise

» Introduced by L Angluin-Laird’88]
* The simplest noise model: equal probability of flips n (say 1%)

C—f) won
YEU P ofw

« Common baseline in practice

» [Blum-Frieze-Kannan-Vempala’961] gave a computationally efficient
algorithm for this problem



How to learn under RCN?

 While individual examples can be noisy, aggregate statistics over the data
can be denoised

- Statistical Queries [Kearns “981: For a given function g compute
* E[q(x,y)] over the distribution of data

* Nearly all existing algorithms can be implemented using statistical queries

» They can thus directly work for Random Classification Noise



Perceptron Using Stafistical Queries

* Noiseless case:
« The perceptron updates weights using a misclassified example (x,y) set:
e W <«WH* Y:X
« One can replace the single example with EL (1-y) x Iwx > 0]

e The 1-y term ignores all examples with y=1 and averages over all the wmisclassified
examples with y = -1 in the region wx > 0

« RCN case with noise 1%:
« Compute instead EL (0.98-y) x Iwx > 01
* For examples that are positive ELy] = 0.98 and thus are ignored in expectation.

* For the remaining examples ELy] = -0.98 and thus this expectation still averages
over wisclassified examples.



Penoising RCN

» The same principle can be applied for pretty much any problem
» There is a generic way of denoising Statistical Queries

« Yet this idea can be unrealistic in practice because it assumes that the
amount of noise is known for every example a priori.

- Even if it is unknown, since this is only a single parameter one could try all
possible values (up to some discretization)



Semi-Randow noise models

* The uniform noise assumption is often vnrealistic
» The error rate varies depending on the example

Bee “Noisier”
n(x) =30%



Semi-Randow noise models

o Ground Truth:  f(x) = sgn(w” - x)
o Sample x ~ D
o Generate Noisy label of x

C—f@) wp. ()
YEU R0 o/w

Massart Noise, also known as Malicious misclassification noise nx) <n<1/2
[Sloan’8 8, Rivest-Sloan"941:
Every label is randowly flipped with probability at wost 1% but the exact
probabilities are adversarially chosen



Summary of Noise Models
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RCN Massart Agnostic

Noise Rate exactly /% Noise Rate at most /% Arbitrary /% fraction



Results for Massart Noise

First efficient algorithm for linear separators with Massart noise.

T

With a d-dimensional dataset corrupted with Massart noise at most 1, we can compute
a hypothesis with wisclassification error n+< in time poly(d, 1/¢)




Approach

Target Vector w*

* Realizable Case:
(Perceptron =) SGD on convex surrogate

Lo(w) = E(X,y)ND [Relu(—y(w,x))] A

« Random Classification Noise:
SGD on convex surrogate
Ly(w) = E(x,y)~D [LeakyRelu, (—y(w,x))]
for A=n

Relu(t) = max{0, ¢}

>
[ (1=MNt, t>0
Mt t<0

In both cases:
L(w)>0and L(w*) =0 LeakyRelu, () = <

\

34



Approach for Massart Noise

Lemma 1: No convex surrogate works.

But...

Lemma 2: Letw be the minimizer of

L)\ (W) — E(x,y)ND [LeakyReluA(—y(w, X>)]

for A\~n.

Then,w must get error-rate -.

less than 1 + ¢ TI
for points far from W

IDEA: Usew as a classifier for
those points and recurse on the rest
Iterative Peeling

35



Results for Massart Noise

First efficient algorithm for linear separators with Massart noise.

T

With a d-dimensional dataset corrupted with Massart noise at most 1, we can compute
a hypothesis with wisclassification error n+< in time poly(d, 1/¢)

Is this the same as getting error OPT + € ?

No, OPT = E[n(x)] which can be smaller than n




Results for Massart Noise

First efficient algorithm for linear separators with Massart noise.

T

With a d-dimensional dataset corrupted with Massart noise at most 1, we can compute
a hypothesis with wisclassification error n+< in time poly(d, 1/¢)

Distribution Free

Can we get OPT + € efficiently? Computationally Challenging:
Super-polynomial SQ Lower Bounds
No without assumptions on the [Chen Koehler Moitra Yau '20]
distribution D that generates x [Diakonikolas Kane "20]

[Nasser Tiegel '22]




Today’s Menu

» Strueture on x: Gavssian Pata \/  Main techniques:
o From Classification to Polynowial \/

. Regression
» Structure on y: Noise Model \/ o Pebiasing Statistical Queries \/
o lterative Peeling \/
« Structure on both x and y o Localization

o Certificate Framework



Structure on both x and y



Massart Noise + Gaussian Data

Long line of work

[Awasthi Balcan Haghtalab Urner ’15]
[Awasthi Balcan Haghtalab Zhang '16]
[Balcan Zhang "17]

[Yang Zhang '17]

[Zhang Liang Charikar '17]

[Diakonikolas Kontonis Zarifis Tzamos "20]
[Zhang Shen Awasthi "20]

[Zhang Li '21]

d
(1-2n)e

poly( ) samples and runtime

Gaussian x-Marginal
Extends to other well-behaved
distributions like log-concave



Key Technique: Localization

« Given any w, need fo update the weight to move closer to w*
» Consider settingw’ =w +ELyx ]




Key Technique: Localization

« Given any w, need fo update the weight to move closer to w*
» Consider settingw’ =w +ELyx ]
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Key Technique: Localization

« Given any w, need fo update the weight to move closer to w*
« Consider seftingw’ =w + EL y x | sueh that Iw.xl < p]

/////// W11/
/// ////// ”'//////// X4 Turnsin the

correct direction!
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Massart Noise + Gaussian Data

Long line of work

[Awasthi Balcan Haghtalab Urner ’15]
[Awasthi Balcan Haghtalab Zhang '16]
[Balcan Zhang "17]

[Yang Zhang "17]

[Zhang Liang Charikar "17]

[Diakonikolas Kontonis Zarifis Tzamos "20]
[Zhang Shen Awasthi "20]

[Zhang Li '21]

d
(1-2n)e

poly( ) samples and runtime

Gaussian x-Marginal
Extends to other well-behaved
distributions like log-concave

Assumptions

e Noise Rate 1 < 1/2 for all x
e Homogeneous Halfspaces

f(x) =sgn(w” - x)

VS

f(x) =sgn(w*-x +t)



What about randowm labels?

Massart Noise
[Massart, Nedelec '06]

nx)<n<1/2

[Klebanov, Beigman '09]




General Massart Noise

£(x)

Forall x € S:n(x) =1/2
Pr(f(x) #y] = Pr|S]/2

Want to find a halfspace with error
Prlh(x) #y| < Pr|S]/2 + €




Homogeneous vs General

e Homogeneous: sgn(w™ - x) General: sgn(w™ - x + t7)

Adding a threshold shouldn’t be a problem...



Homogeneous vs General

e Homogeneous: sgn(w™ - x) General: sgn(w™ - x + t7)
o Homogeneous General
works in the Distribution-Free

e Does not work in Distribution Specific!



The Full Picture

General
n=1/2-Q()

General, n > 1/2

d@(l/ez)

General, n = 1/2

Homogeneous
n=1/2—-QQ1)

poly(d/e)

Agnostic with Polynomial Regression

Localization

Homogeneous
n = 1/2




The Full Picture

Certificate Framework

22

n=1/2 — Q1)

General

General, n > 1/2

d@(l/ez)

eperal, n = 1/2

Homogeneous
n=1/2—-QQ1)

poly(d/e)

Agnostic with Polynomial Regression

Localization

Homogeneous
n = 1/2




The certificate framework



The Certificate Framework

For Ground Truth w™

Ground Truth:  f(x) = sgn(w™ - x)

oSO wpan
f)  wp1-n(0)

forevery T(x) =2 0: E[w"-xy T(X)] = 0

Proof

Elw* - xy T (x)

Elw* - xy T (x)

=E
=E

Elylx] = f(x)(1 = n(x)) — f(x)n(x) = (1-21n(x)) f (x)

W xf () (1 - 2n(0) T (%)]

w* - x|(1=2n(x)) T(x)] = 0



The Certificate Framework

Ground Truth:  f(x) = sgn(w™ - x)

_ S wpne)
YTl wpl-n)

For w #w"

exists T(x) = 0: Elw-xy T(X)] <0
Proof

Pick T(x) = 1{(w - x)f(x) < 0)

Elw-xyT(x)] =E[w-xf(x)(1 —2n(x)) 1{w - xf (x) < 0}1<0



Certificate Framework

[Diakonikolas Kontonis Tzamos Zarifis ‘20]

Ground Truth: £*(x) =w™ - x + t"

forevery T(x) =0: E[£*(x)yT(x)]= 0

For () =#27°("):
thereexists T(x) = 0: E|[f(x)y T(X)] <0



The Certificate Framework

[Diakonikolas K. Tzamos Zarifis ‘20]
[Diakonikolas Kane K. Tzamos Zarifis '21]
[Diakonikolas Kane K. Tzamos Zarifis '22]

Ground Truth: W™

(LP) : Find w (with || w |[,= 1)

forevery T(x) =2 0: E[w:-xy T(X)] =0

Separation Oracle

Given w # w’
Efficiently Compute T(x) = 0: E|w-xy T(X)] <0



The Certificate Framework

Separation Oracle

Given W = w”

Efficiently Compute T(x) = 0:

[Diakonikolas K. Tzamos Zarifis ‘20]

T(x) = Low-Degree O(log(1/€)) SoS Polynomial

Elw-xyT(x)1<0

[Diakonikolas Kane K. Tzamos Zarifis '21]

T(x) = Intersection of 4-Halfspaces

For the special case of Tsybakov noise
obtain poly(d/eps)



Computationally Efficient Methods: Summary

» Pebiasing Statistical Queries

* From Classification to Polynomial Regression
- Localization

« lferative Peeling (for Massart Noise)

« Certificate Framework

- Good understanding of binary classification.
- The case of 3 or more classes is widely under-explored.



