
Computationally Efficient
Learning under Noisy Data

Christos Tzamos
University of Athens & Archimedes AI

Classification

Classification with Noise

Why noise?
• Human Mistakes (crowdsourcing)
• Measurement error
• Model error
• …

Imperfect Data

Hidden Biases

Data are TruncatedDog

Wrong Labels Coarse Labels

Animal

ML datasets in practice are huge and imperfect

⟹ we need provably efficient and robust algorithms

X X

Current Status: Fragile with Noise
• Data cleaning
• Models fragile to Various Attacks: Adversarial Examples / Data Poisoning
• High noise applications, e.g. Signal Processing

How to obtain robust classifiers?

The need for theory
Noise can come in many different shapes from many different sources

Techniques for one setting may not be applicable in others

• Must understand which settings are solvable and how to approach them
• Theory can also guide the development for novel more robust techniques

Theoretical Setup
• Data generating distribution

• Examples (x, y) are drawn from a distribution D
• Focus on binary classification where y = +1 or -1

• Train classifier h: X→{+1,-1} on a random set of N samples (x1,y1),…, (xN,yN)

• Goal: Minimize the probability of error on a fresh sample (x, y) from D

• Noiseless: Pr[h(x) ≠ y] ≤ ε
• Agnostic: Pr[h(x) ≠ y] ≤ OPT + ε

• where OPT is the best model c from a class C in that minimizes Pr[c(x) ≠ y]

Statistically
For a class C with VC dimension d (≃ d parameters) we can learn with error ε
as long as we have sufficiently many samples

• Noiseless, where the best model gets 0 error
• N = Θ(d/ε)

• Agnostic, where the best model gets OPT > 0 error
• N = Θ(d/ε2)

Statistically, the agnostic case is not much harder than
the noisless case!

Computational Challenges

• Optimization: find good parameters via local search methods
• Gradient Descent, Second order methods, …
• Do they converge to good parameters?
• Proper learning

• Learning theory: train any classifier that performs at least as good
• Improper learning
• Overparameterization

Finding a good set of parameters computationally
efficiently is highly non-trivial!

+
+

+

+

+
+

+ --
--

-

-
--

-

𝑓(𝑥) = sgn(𝑤∗ ⋅ 𝑥)
Linear Classification

Why Linear Classification?
• More complex classifiers can be seen as linear classification over more

complex features

Frozen Encoder

Trainable
Classifica3on Head

Features (𝑥1, 𝑥2) Features (1, 𝑥1, 𝑥!, 𝑥"𝑥!, 𝑥"!, 𝑥!!)

𝑥1− 5 ! + 𝑥2− 3 ! ≤ 1 𝑥"! − 10𝑥" + 𝑥!! − 6𝑥! ≤ −33

Perceptron for Linear Classification
• Perceptron [Rosenblatt ’58]
• An iterative method for updating the weights

of a linear function
• For every misclassified example (x,y) set:

• w’ ← w + y⋅x

• Can be seen as gradient descent on the
objective
• g(w) = E[ReLU(-y ⋅ w⋅x)]

• This is a convex proxy for E[step(-y ⋅ w⋅x)]

ReLU(u)

step(u)

Algorithms for Linear Classification
• Linear Classification with margin γ

• the Perceptron algorithm [Rosenblatt’58] finds a perfect
linear separator in O(1/γ2) iterations.

• Linear Programming via Ellipsoid finds a perfect linear
separator in O(log(1/γ)) iterations.

• Major Open Problem in CS:
• Is there an algorithm that doesn’t depend on γ?
• I.e. strongly polynomial time

+
+

++
+

-
--

-
-

-
-

[DiakonikolasKaneT STOC’23]
Can improperly learn linear classifiers in strongly polynomial time

(with a decision list of d log n linear classifiers)

+
+

+

+

+
+

+ --
--

-

-
--

-

𝑓(𝑥) = sgn(𝑤∗ ⋅ 𝑥)
Linear Classification with Noise

-
-

+

Linear Classification with Noise
• Strong Negative Result

Too Pessimistic: Applies for some adversarially chosen setting
Hopefully can do something better in practice

[Guruswami-Raghevendra’06, Feldman et al.’06, Daniely’16]
Even if only 1% of the data are corrupted, it is even computationally

intractable to compute a classifier with 49% error.

even improper

<

Milder Cases: Escaping Impossibility
• Non-adversarial settings, more structure

• Structure on x:
• Data are gaussian / Large margin

• Structure on y:
• Separable but random noise was added

Today’s Menu

• Structure on x: Gaussian Data

• Structure on y: Noise Model

• Structure on both x and y

• Main techniques:
o From Classification to Polynomial

Regression
o Debiasing Statistical Queries
o Iterative Peeling
o Localization
o Certificate Framework

Structure on x

Structure on x
• A generic approach:
• Treat classification as regression
• i.e. minimize E[(f(x) – y)2] and then look at sign(f(x))

• If f(x) is flexible enough it can fit the +1,-1 labels

• This does not work in general but does so when the data are structured

Structure on x: Gaussian Data
• When the data are drawn from a Gaussian

• Polynomial Regression works as polynomials can
approximate the step function arbitrarily well!
• [Kalai, Klivans, Mansour, Servedio ’05]

• However, we need high polynomial degree (1/ε2)
• [Diakonikolas, Kane, Pittas, Zarifis ’21]

• Runtime is dpoly(1/ε) but also the sample complexity is
similarly high

Polynomial Regression for Other Classes
• A classifier class is approximable by polynomial regression if it has low

complexity
• [Kalai, Klivans, Mansour, Servedio ’08] measure the complexity in

terms of a concept called Gaussian Surface Area

Still runtime is dpoly(1/ε) and the sample complexity is similarly high

Today’s Menu

• Structure on x: Gaussian Data

• Structure on y: Noise Model

• Structure on both x and y

• Main techniques:
o From Classification to Polynomial

Regression
o Debiasing Statistical Queries
o Iterative Peeling
o Localization
o Certificate Framework

✔
✔

Structure on y

Structure on y: The Generative Process
• Ground Truth: 𝑓(𝑥) = sgn(𝑤∗ ⋅ 𝑥)
• Sample 𝑥 ∼ 𝐷
• Generate Noisy label of x

𝑦 = {
−𝑓(𝑥) w.p. 𝜂(𝑥)
𝑓(𝑥) o/w

Goal: Find hypothesis ℎ(𝑥)

Pr[ℎ(𝑥) ≠ 𝑦]	≤ Pr[𝑓(𝑥) ≠ 𝑦]	+ 𝜖
OPT

Random Classification Noise
• Introduced by [Angluin-Laird’88]
• The simplest noise model: equal probability of flips 𝜂 (say 1%)

𝑦 = {
−𝑓(𝑥) w.p. 𝜂
𝑓(𝑥) o/w

• Common baseline in practice

• [Blum-Frieze-Kannan-Vempala’96] gave a computationally efficient
algorithm for this problem

How to learn under RCN?
• While individual examples can be noisy, aggregate statistics over the data

can be denoised

• Statistical Queries [Kearns ’98]: For a given function 𝑞 compute
• 𝐄[𝑞(𝑥, 𝑦)] over the distribution of data

• Nearly all existing algorithms can be implemented using statistical queries

• They can thus directly work for Random Classification Noise

Perceptron Using Statistical Queries
• Noiseless case:
• The perceptron updates weights using a misclassified example (x,y) set:

• w’ ← w + y⋅x
• One can replace the single example with E[(1-y) x | wx > 0]
• The 1-y term ignores all examples with y=1 and averages over all the misclassified

examples with y = -1 in the region wx > 0
• RCN case with noise 1%:
• Compute instead E[(0.98-y) x | wx > 0]
• For examples that are positive E[y] = 0.98 and thus are ignored in expectation.
• For the remaining examples E[y] = -0.98 and thus this expectation still averages

over misclassified examples.

Denoising RCN
• The same principle can be applied for pretty much any problem
• There is a generic way of denoising Statistical Queries

• Yet this idea can be unrealistic in practice because it assumes that the
amount of noise is known for every example a priori.

• Even if it is unknown, since this is only a single parameter one could try all
possible values (up to some discretization)

Semi-Random noise models
• The uniform noise assumption is often unrealistic
• The error rate varies depending on the example

Bee
𝜂(𝑥) =30%

Fly Bee “Noisier”

Semi-Random noise models
• Ground Truth: 𝑓(𝑥) = sgn(𝑤∗ ⋅ 𝑥)
• Sample 𝑥 ∼ 𝐷
• Generate Noisy label of x

𝑦 = {
−𝑓(𝑥) w.p. 𝜂(𝑥)
𝑓(𝑥) o/w

Massart Noise, also known as Malicious misclassification noise
[Sloan’88, Rivest-Sloan’94]:

Every label is randomly flipped with probability at most 1% but the exact
probabilities are adversarially chosen

𝜂 𝑥 ≤ 𝜂 ≤ 1/2

Summary of Noise Models

RCN
Noise Rate exactly 1%

Massart
Noise Rate at most 1%

Agnos4c
Arbitrary 1% frac=on

Results for Massart Noise

First efficient algorithm for linear separators with Massart noise.

[DiakonikolasKaneT NeurIPS’19 Best Paper]
With a d-dimensional dataset corrupted with Massart noise at most η, we can compute

a hypothesis with misclassification error η+ε in time poly(d, 1/ε)

Approach

34

• Realizable Case:
(Perceptron =) SGD on convex surrogate

• Random Classifica2on Noise:
SGD on convex surrogate

for

In both cases:

+
+

++
+

-
-- --

-
-Target Vector

Approach for Massart Noise

35

Lemma 1: No convex surrogate works.

But…

Lemma 2: Let be the minimizer of

for

+
+

--
+

-
-+

+
-

-
-+

Then, must get error-rate
less than
for points far from

IDEA: Use as a classifier for
those points and recurse on the rest
Itera.ve Peeling

Results for Massart Noise

First efficient algorithm for linear separators with Massart noise.

[DiakonikolasKaneT NeurIPS’19 Best Paper]
With a d-dimensional dataset corrupted with Massart noise at most η, we can compute

a hypothesis with misclassification error η+ε in time poly(d, 1/ε)

Is this the same as ge+ng error OPT + 𝜖 ?

No, OPT = 𝐄[𝜂(𝑥)] which can be smaller than 𝜂

Results for Massart Noise

First efficient algorithm for linear separators with Massart noise.

[DiakonikolasKaneT NeurIPS’19 Best Paper]
With a d-dimensional dataset corrupted with Massart noise at most η, we can compute

a hypothesis with misclassification error η+ε in time poly(d, 1/ε)

ComputaJonally Challenging:
Super-polynomial SQ Lower Bounds
[Chen Koehler Moitra Yau ’20]
[Diakonikolas Kane ’20]
[Nasser Tiegel ’22]

Distribu=on Free
Can we get OPT + 𝜖 efficiently?

No without assump=ons on the
distribu=on D that generates x

Today’s Menu

• Structure on x: Gaussian Data

• Structure on y: Noise Model

• Structure on both x and y

• Main techniques:
o From Classification to Polynomial

Regression
o Debiasing Statistical Queries
o Iterative Peeling
o Localization
o Certificate Framework

✔
✔

✔ ✔
✔

Structure on both x and y

Massart Noise + Gaussian Data

poly
!

(#$%&)(
samples and runJme

Gaussian x-Marginal
Extends to other well-behaved
distribu=ons like log-concave

Long line of work
[Awasthi Balcan Haghtalab Urner ’15]
[Awasthi Balcan Haghtalab Zhang ’16]
[Balcan Zhang ’17]
[Yang Zhang ’17]
[Zhang Liang Charikar ’17]
[Diakonikolas Kontonis Zarifis Tzamos ’20]
[Zhang Shen Awasthi ’20]
[Zhang Li ’21]

Key Technique: Localization
• Given any w, need to update the weight to move closer to w*
• Consider setting w’ = w + E[y x]

Key Technique: Localization
• Given any w, need to update the weight to move closer to w*
• Consider setting w’ = w + E[y x]
The blue region

seems larger
but there is

noise

Might not turn
in the correct
direction

Key Technique: Localization
• Given any w, need to update the weight to move closer to w*
• Consider setting w’ = w + E[y x | such that |w.x| < ρ]

Τurns in the
correct direction!

Massart Noise + Gaussian Data

poly
!

(#$%&)(
samples and runJme

Gaussian x-Marginal
Extends to other well-behaved
distribu=ons like log-concave

Long line of work
[Awasthi Balcan Haghtalab Urner ’15]
[Awasthi Balcan Haghtalab Zhang ’16]
[Balcan Zhang ’17]
[Yang Zhang ’17]
[Zhang Liang Charikar ’17]
[Diakonikolas Kontonis Zarifis Tzamos ’20]
[Zhang Shen Awasthi ’20]
[Zhang Li ’21]

Assump=ons
• Noise Rate 𝜂 < 1/2 for all x
• Homogeneous Halfspaces

𝑓(𝑥) = sgn(𝑤∗ ⋅ 𝑥)

𝑓(𝑥) = sgn(𝑤∗ ⋅ 𝑥 + 𝑡∗)
vs

What about random labels?

Bee Bee “Noisier”

𝜂(𝑥) = 0 𝜂(𝑥) =30%
Fly

𝜂(𝑥) = 0

Massart Noise
[Massart, Nedelec ’06]

𝜂(𝑥) ≤ 𝜂 ≤ 1/2
Fly or Bee?

𝜂(𝑥) ≈ 50%

Actual Imagenet example
[Vasudevan, et al.’22]

Non-expert human annotators o>en
flip (almost) random coins for harder
examples [Klebanov, Beigman ’09]

Want to find a halfspace with error
𝑃𝑟[ℎ(𝑥) ≠ 𝑦] ≤ 𝑃𝑟[𝑆]/2 + 𝜖

𝑃𝑟[𝑆] small!

𝑃𝑟[𝑓(𝑥) ≠ 𝑦] = 𝑃𝑟[𝑆]/2

For all 𝑥 ∈ 𝑆: 𝜂(𝑥) = 1/2

General Massart Noise

Homogeneous vs General

Adding a threshold shouldn’t be a problem…

• Homogeneous: sgn(𝑤∗ ⋅ 𝑥) vs General: sgn(𝑤∗ ⋅ 𝑥 + 𝑡∗)

Homogeneous vs General

• Homogeneous: sgn(𝑤∗ ⋅ 𝑥) vs General: sgn(𝑤∗ ⋅ 𝑥 + 𝑡∗)

• Adapt a Homogeneous learner to General:
𝑥 → (𝑥, 1)

• OK if the learner works in the Distribu=on-Free se+ng.

• Does not work in Distribu=on Specific!
The 𝑥-marginal of the transformed instance is not Gaussian N(0,I)

The Full Picture

poly(𝑑/𝜖)

𝑑-(./0!)

Agnos=c with Polynomial Regression
[Kalai, Klivans, Mansour, Servedio ’05]
[Diakonikolas, Kane, Pibas, Zarifis ’21]

Localiza=on
[Awasthi Balcan

Haghtalab Zhang ’16]

The Full Picture

poly(𝑑/𝜖)

𝑑-(./0!)

𝑑0(123(4/6)) 𝑑0(123(4/6))
𝑑7(123(4/6))

𝑑7(123(4/6))

𝑑7(123(4/6))

𝑑0(123(4/6))

Agnos=c with Polynomial Regression
[Kalai, Klivans, Mansour, Servedio ’05]
[Diakonikolas, Kane, Pibas, Zarifis ’21]

Cer=ficate Framework
[DiakonikolasKaneKontonisTZarifis ‘22]

Localiza=on
[Awasthi Balcan

Haghtalab Zhang ’16]

The certificate framework

The Certificate Framework

For Ground Truth 𝑤∗

for every 𝑇(𝑥) ≥ 0 : 𝐄[𝑤∗ ⋅ 𝑥𝑦 𝑇(𝑥)]≥ 0

𝐄[𝑦|𝑥] = 𝑓(𝑥)(1 − 𝜂(𝑥)) − 𝑓(𝑥)𝜂(𝑥) = (1-2𝜂(𝑥)) 𝑓(𝑥)

Ground Truth: 𝑓(𝑥) = sgn(𝑤∗ ⋅ 𝑥)

𝑦 = {
−𝑓(𝑥) w. p. 𝜂(𝑥)
𝑓 𝑥 w. p. 1 − 𝜂(𝑥)

𝐄[𝑤∗ ⋅ 𝑥𝑦 𝑇(𝑥)] = 𝐄[𝑤∗ ⋅ 𝑥𝑓(𝑥)(1 − 2𝜂(𝑥)) 𝑇(𝑥)]

Proof

𝐄[𝑤∗ ⋅ 𝑥𝑦 𝑇(𝑥)] = 𝐄[|𝑤∗ ⋅ 𝑥|(1 − 2𝜂(𝑥)) 𝑇(𝑥)] ≥ 0

The Certificate Framework

For 𝑤 ≠ 𝑤∗

exists 𝑇(𝑥) ≥ 0 : 𝐄[𝑤 ⋅ 𝑥𝑦𝑇(𝑥)] < 0

Pick 𝑇(𝑥) = 1{(𝑤 ⋅ 𝑥)𝑓(𝑥) < 0}

𝐄[𝑤 ⋅ 𝑥𝑦𝑇(𝑥)] = 𝐄[𝑤 ⋅ 𝑥𝑓(𝑥)(1 − 2𝜂(𝑥)) 1{𝑤 ⋅ 𝑥𝑓(𝑥) < 0}] < 0

Proof

Ground Truth: 𝑓(𝑥) = sgn(𝑤∗ ⋅ 𝑥)

𝑦 = {
−𝑓(𝑥) w. p. 𝜂(𝑥)
𝑓 𝑥 w. p. 1 − 𝜂(𝑥)

Certificate Framework

Ground Truth: ℓ∗(𝑥) = 𝑤∗ ⋅ 𝑥 + 𝑡∗

[Diakonikolas Kontonis Tzamos Zarifis ‘20]

For ℓ(⋅) ≠ ℓ∗(⋅) :
there exists 𝑇(𝑥) ≥ 0 : 𝐄[ℓ(𝑥)𝑦 𝑇(𝑥)] < 0

for every 𝑇(𝑥) ≥ 0 : 𝐄[ℓ∗(𝑥)𝑦 𝑇(𝑥)]≥ 0

The Certificate Framework

Ground Truth: 𝑤∗

(LP) : Find 𝑤 (with ∥ 𝑤 ∥== 1)

for every 𝑇(𝑥) ≥ 0 : 𝐄[𝑤 ⋅ 𝑥𝑦𝑇(𝑥)] ≥ 0

Separa=on Oracle

Given 𝑤 ≠ 𝑤∗

Efficiently Compute 𝑇(𝑥) ≥ 0 : 𝐄[𝑤 ⋅ 𝑥𝑦𝑇(𝑥)] < 0

[Diakonikolas K. Tzamos Zarifis ‘20]
[Diakonikolas Kane K. Tzamos Zarifis ’21]
[Diakonikolas Kane K. Tzamos Zarifis ’22]

The Certificate Framework
Separa=on Oracle

Given 𝑤 ≠ 𝑤∗

Efficiently Compute 𝑇(𝑥) ≥ 0 : 𝐄[𝑤 ⋅ 𝑥𝑦𝑇(𝑥)] < 0

[Diakonikolas K. Tzamos Zarifis ‘20]

T(x) = Low-Degree O(log(1/𝜖)) SoS Polynomial

[Diakonikolas Kane K. Tzamos Zarifis ’21]

T(x) = IntersecQon of 4-Halfspaces
For the special case of Tsybakov noise
obtain poly(d/eps)

Computationally Efficient Methods: Summary
• Debiasing Statistical Queries
• From Classification to Polynomial Regression
• Localization
• Iterative Peeling (for Massart Noise)
• Certificate Framework

- Good understanding of binary classification.
- The case of 3 or more classes is widely under-explored.

