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Maritime Situational Awareness
∗

http://www.marinetra�c.com

https://cer.iit.demokritos.gr (fishing vessel)

∗
Artikis and Zissis, Guide to Maritime Informatics, Springer, 2021.
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Maritime Situational Awareness
∗

https://cer.iit.demokritos.gr (tugging)

https://cer.iit.demokritos.gr (pilot boarding)

https://www.skylight.global (rendez-vous)

https://www.skylight.global (enter area)

∗
Artikis and Zissis, Guide to Maritime Informatics, Springer, 2021.
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Data Challenges

I Velocity, Volume: Millions of position signals/day at European
scale.

I Variety: Position signals need to be combined with other data
streams
I Weather forecasts, sea currents, etc.

I ... and static information
I NATURA areas, shallow waters areas, coastlines, etc.

I Lack of Veracity: GPS manipulation, vessels reporting false
identity, communication gaps.

I Distribution: Vessels operating across the globe.
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Many Other Applications

I Cardiac arrhythmia recognition.

I Financial fraud detection.

I Human activity recognition.

I Intrusion detection in computer networks.

I Tra�c congestion recognition and forecasting in smart cities.
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Requirements

I Expressive representation
I to capture complex relationships between the events that

stream into the system.

I E�cient reasoning
I to support real-time decision-making in large-scale,

(geographically) distributed applications.

I Automated knowledge construction
I to avoid the time-consuming, error-prone manual CE definition

development.

I Reasoning under uncertainty
I to deal with various types of noise.

I Complex event forecasting
I to support proactive decision-making.
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Complex Event Recognition vs

Database Management Systems
∗

Complex event recognition systems:

I Process data without storing them.

I Data are continuously updated.
I Data stream into the system in high velocity.
I Data streams are large (usually unbounded).

I No assumption can be made on data arrival order.
I Users install standing/continuous queries:

I Queries deployed once and executed continuously until
removed.

I Online reasoning.

I Latency requirements are very strict.

∗
Gugola and Margara, Processing Flows of Information: From Data Stream to Complex Event Processing.

ACM Computing Surveys, 2012.
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Complex Event Recognition vs Deep Learning

We have Deep Learning and it seems to work. Can we go home?

Complex event recognition:

I Formal semantics for trustworthy models.

I Explanation — why did we detect a complex event?
I Machine Learning is necessary. But:

I Complex events are rare.
I Supervision is scarce.

I More often than not, background knowledge is available —
let’s use it!
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Event Calculus
∗

I A logic programming language for representing and reasoning
about events and their e↵ects.

I Key components:
I event (typically instantaneous).
I fluent: a property that may have di↵erent values at di↵erent

points in time.

I Built-in representation of inertia:
I F =V holds at a particular time-point if F =V has been

initiated by an event at some earlier time-point, and not
terminated by another event in the meantime.

∗
Kowalski and Sergot, A Logic-based Calculus of Events. New Generation Computing, 1986.
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Run-Time Event Calculus (RTEC)
∗

initiatedAt(F =V , T ) terminatedAt(F =V , T ) 
happensAt(EIn1 , T ), happensAt(ET1

, T ),
[conditions] [conditions]

. . . . . .
initiatedAt(F =V , T ) terminatedAt(F =V , T ) 

happensAt(EIni , T ), happensAt(ETj , T ),
[conditions] [conditions]

where

conditions: 0�KhappensAt(Ek , T ),
0�MholdsAt(Fm =Vm, T ),
0�Natemporal-constraintn

∗
Artikis et al, An Event Calculus for Event Recognition. IEEE TKDE, 2015.

https://github.com/aartikis/RTEC
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Fleet Management
∗

https://cer.iit.demokritos.gr (refuelling opportunities)

∗
Tsilionis et al, Online Event Recognition from Moving Vehicles. Theory and Practice of Logic Programming,

2019.
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RTEC: Interval-based Reasoning

holdsFor(anchoredOrMoored(Vessel)= true, I ) 
holdsFor(stopped(Vessel)= farFromPorts, Isf ),
holdsFor(withinArea(Vessel , anchorage)= true, Iwa),
intersect all([Isf , Iwa], Isa),
holdsFor(stopped(Vessel)= nearPorts, Isn),
union all([Isa, Isn], I ).
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holdsFor(stopped(Vessel)= nearPorts, Isn),
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I
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Isa
Iwa

Isf

Time
https://cer.iit.demokritos.gr (anchored or moored)

13 / 21

file:///Users/alexander/my%20docs/my%20presentations/cer-tutorials/ACAI24/1.%20RTEC/slides/../../../ACM%20summer%20school%202024/videos/maritime/anchored_or_moored.mp4
https://cer.iit.demokritos.gr/blog/applications/maritime_surveillance/


RTEC: Interval-based Reasoning

I1
I2
I3

Time

Relation Illustration

before(i s , i t)
i
s

i
t

meets(i s , i t)
i
s

i
t

starts(i s , i t)
i
s

i
t

finishes(i s , i t)
i
s

i
t

during(i s , i t)
i
s

i
t

overlaps(i s , i t)
i
s

i
t

equal(i s , i t)
i
s
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t
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RTEC: Interval-based Reasoning
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RTEC: Interval-based Reasoning & Allen Relations
∗

I1
I2
I3
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∗
Mantenoglou et al, Complex Event Recognition with Allen Relations. Knowledge Representation and

Reasoning (KR), 2023.
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Semantics

drifting

highSpeedNC

withinArea

trawlSpeed

anchoredOrMoored

movingSpeed

tuggingSpeed

changingSpeed

trawlingMovement

loitering

gap

sarSpeed

pilotBoarding

stopped

sarMovement

underWay

rendezVous

sar

trawling

lowSpeed

tugging

Proposition

An event description in RTEC is a locally stratified logic program.
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Proposition

An event description in RTEC is a locally stratified logic program∗.

∗
Mantenoglou et al, Stream Reasoning with Cycles. Knowledge Representation and Reasoning (KR), 2022.
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Stratification & Reasoning
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RTEC: Correctness and Complexity

Correctness

RTEC computes all maximal intervals of a fluent, and no other
interval, provided that interval delays/retractions, if any, are
tolerated by the window size.

Complexity

The time to compute the maximal intervals of a fluent is linear to
the window size.
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Performance: Indicative Results
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Summary

Run-Time Event Calculus (RTEC):

I Interval-based reasoning ! avoid unintended semantics.

I Formal, declarative semantics ! robust/trustworthy CER.

I White-box model ! explainability.

I Expressive language ! n-ary constraints.

I Incremental reasoning ! handle out-of-order streams.

I Caching ! real-time performance.

I Various implementation routes.

I Direct routes to machine learning ! automated complex
event definition construction.

I Direct routes to probabilistic reasoning ! handle the lack of
veracity of data streams.
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0 .18 :: happensAt(walking(sarah), 40).

4 / 14



Instantaneous Recognition

sarah begins 

walking with 

mike
sarah walks away 

from mike
sarah is ac�ve,  mike 

con�nues walking sarah walks with 

mike again

2 21 41

M
o

v
in

g
 P

ro
b

a
b

il
it

y

1

Moving repeatedly 

ini�ated
0.8

Moving repeatedly 

terminated

Moving    

ini�ated          

once

Moving persists 

through iner�a

Video Frames

0.32

initiatedAt(moving(P1 ,P2 )= true, T ) 
happensAt(walking(P1 ), T ),
happensAt(walking(P2 ), T ),
holdsAt(close(P1 ,P2 )= true, T ),
holdsAt(orientation(P1 ,P2 )= true, T ).

terminatedAt(moving(P1 ,P2 )= true, T ) 
happensAt(walking(P1 ), T ),
holdsAt(close(P1 ,P2 )= false, T ).

0 .28 :: happensAt(walking(mike), 40).
0 .18 :: happensAt(walking(sarah), 40).

P(initiatedAt(moving(mike, sarah)= true, 40))=
P(happensAt(walking(mike), 40))⇥
P(happensAt(walking(sarah), 40))⇥
P(holdsAt(close(mike, sarah)= true, 40))⇥
P(holdsAt(orientation(mike, sarah)= true, 40))
= 0 .28⇥0 .18⇥1⇥1 = 0 .05
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P(holdsAt(close(mike, sarah)= false, 41))
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P(holdsAt(moving(mike, sarah)= true, 42))=
P(initiatedAt(moving(mike, sarah)= true, 41)_

(holdsAt(moving(mike, sarah)= true, 41)^
¬terminatedAt(moving(mike, sarah)= true, 41)))

= 0+0 .8⇥(1 � 0 .18)�0⇥0 .8⇥(1 � 0 .18)= 0 .66
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happensAt(walking(P1 ), T ),
holdsAt(close(P1 ,P2 )= false, T ).

1 .00 :: happensAt(walking(mike), 49).
0 .96 :: happensAt(inactive(sarah), 49).

P(terminatedAt(moving(mike, sarah)= true, 49))=
P(happensAt(walking(mike), 49))⇥
P(holdsAt(close(mike, sarah)= false, 49))
= 1⇥1 = 1
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¬terminatedAt(moving(mike, sarah)= true, 49)))

= 0+0 .07⇥0�0⇥0 .07⇥0 = 0
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∗
Skarlatidis et al, A Probabilistic Logic Programming Event Calculus. Theory & Practice of Logic

Programming, 2015.
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Higher accuracy than crisp
reasoning in the presence of:

• several initiations and
terminations;

• few probabilistic conjuncts.

∗
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5 / 14



Online Probabilistic Interval-Based Event Calculus

Prob-EC =
Event Calculus
+ ProbLog

Application-Specific Rules

initiatedAt(moving(P1 ,P2 ) = true,T )  
happensAt(walking(P1 ),T ),
happensAt(walking(P2 ),T ),
holdsAt(close(P1 ,P2 ) = true,T ),
holdsAt(similarOrientation(P1 ,P2 ) = true,T ).

terminatedAt(moving(P1 ,P2 ) = true,T )  
happensAt(walking(P1 ),T ),
holdsAt(close(P1 ,P2 ) = false,T ).

...

Event Calculus Axioms

holdsAt(F = V ,T )  
initially(F = V ),
not broken(F = V , 0 ,T ).

holdsAt(F = V ,T )  
initiatedAt(F = V ,Ts),Ts < T ,
not broken(F = V ,Ts ,T ).

...

Data Stream

0 .73 :: happensAt(walking(id0 ),T1 )
0 .79 :: happensAt(walking(id1 ),T1 )
0 .92 :: happensAt(active(id5 ),T1 )

...

Point-based CE Stream

0 .57 :: holdsAt(moving(id0 , id1 ),T2 )
0 .73 :: holdsAt(meeting(id1 , id5 ),T2 )
0 .67 :: holdsAt(meeting(id0 , id5 ),T2 )

...

oPIEC =
PIEC +

support set
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0 .73 :: happensAt(walking(id0 ),T1 )
0 .79 :: happensAt(walking(id1 ),T1 )
0 .92 :: happensAt(active(id5 ),T1 )

...

Point-based CE Stream

0 .57 :: holdsAt(moving(id0 , id1 ),T2 )
0 .73 :: holdsAt(meeting(id1 , id5 ),T2 )
0 .67 :: holdsAt(meeting(id0 , id5 ),T2 )

...

oPIEC =
PIEC +

support set

Interval-based CE Stream

0 .61 :: holdsFor(moving(id0 , id1 ), (T2 ,T5 ))
0 .88 :: holdsFor(meeting(id1 , id5 ), (T2 ,T4 ))
0 .66 :: holdsFor(meeting(id0 , id5 ), (T2 ,T9 ))

...
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Instantaneous vs Interval-based Recognition
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Instantaneous Recognition

Interval-based Recognition

• Interval Probability: average
probability of the
time-points it contains.

• Probabilistic Maximal
Interval:

• interval probability above
a given threshold;

• no super-interval with
probability above the
threshold.

• Probabilistic maximal
interval computation via
maximal non-negative sum
interval computation.
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Interval-based Recognition∗

Interval Computation Correctness

An interval is computed i↵ it is a probabilistic maximal interval.

Complexity

The computation of probabilistic maximal intervals is linear to the
dataset size.

∗
Artikis et al, A Probabilistic Interval-based Event Calculus for Activity Recognition. Annals of Mathematics

and Artificial Intelligence, 2021.
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Online Interval-based Recognition: Properties

Memory Minimality

A time-point is cached i↵ it may be the starting point of a future
probabilistic maximal interval.

Interval Computation Correctness

An interval is computed i↵ it is a probabilistic maximal interval
given the data seen so far.

Complexity

The computation of probabistic maximal intervals is linear to the
window and memory size.
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Bounded Online Interval-based Recognition∗
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• Complex event duration
statistics favor more recent
potential starting points.

∗
Mantenoglou et al, Online Event Recognition over Noisy Data Streams. International Journal of Approximate

Reasoning, 2023. https://github.com/Periklismant/oPIEC
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Indicative Experimental Results
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Summary

Complex event recognition over noisy streams:

• Probabilistic reasoning ! robust complex event recognition.

• Interval-based reasoning ! improved predictive accuracy.

• Optimal stream compression ! run-time performance.

• Optimal stream compression ! correct complex event
recognition.

• Direct routes to neuro-symbolic learning ! end-to-end
optimisation of simple and complex event recognition.
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Topics not covered

I Formal models of CER

I Other approaches on formal complex event recognition
∗,†

.

I Comparison in terms of expressive power, complexity and

performance.

I Probabilistic CER

I Uncertainty in the complex event definitions.

∗
Bucchi et al, CORE: a COmplex event Recognition Engine. VLDB Endowment, 2022.

https://github.com/CORE-cer/CORE

†
Alevizos et al, Complex Event Recognition with Symbolic Register Transducers. VLDB, 2024.

https://github.com/ElAlev/Wayeb
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‡
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§
Skarlatidis et al, Probabilistic Event Calculus for Event Recognition. ACM TOCL, 2015.

¶
Alevizos et al, Probabilistic Complex Event Recognition: A Survey. ACM Computing Surveys, 2017.
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Machine Learning for Complex Event Recognition∗,†

INPUT I RECOGNITION I INPUT I

Complex

Event

Recognition

System

Complex Event

Definitions

Simple Event Stream

. . .. . .

. . .. . .

happensAt(slowSpeedStart(ID0 ), t1 )
happensAt(turn(ID0 , 11 ), t2 )
happensAt(turn(ID0 , 12 ), t3 )
happensAt(slowSpeedEnd(ID0 ), t4 )
...

Complex Event Stream

. . . . . .

. . . . . .

holdsFor(trawling(ID0 )= true, [ts0 , te0 ])
holdsFor(drifting(ID1 )= true, [ts1 , te1 ])
holdsFor(loitering(ID3 )= true, [ts2 , te2 ])
...

initiatedAt(stopped(V essel)=nearPorts, T ) 
happensAt(stop start(V essel), T ),
holdsAt(withinArea(V essel, nearPorts)= true, T ).

terminatedAt(stopped(V essel)=nearPorts, T ) 
happensAt(stop end(V essel), T ).

...

holdsFor(trawling(V essel)= true, I) 
holdsFor(trawlingMovement(V essel)= true, Itc),
holdsFor(trawlingSpeed(V essel)= true, It),
intersect all([Itc, It], Ii),
threshold(vtrawl, Vtrawl),
intDurGreater(Ii, Vtrawl, I).

...

From

These

Learn

These

∗
Katzouris et al, Online Learning Probabilistic Event Calculus Theories in Answer Set Programming. Theory

and Practice of Logic Programming, 2023.

†
Michelioudakis et al, Online semi-supervised learning of composite event rules by combining structure and

mass-based predicate similarity. Machine Learning, 2024.

2 / 5



Neuro-Symbolic Complex Event Recognition∗

INPUT I RECOGNITION I OUTPUT I

Complex

Event

Recognition

System

Complex Event

Definitions

Di↵erentiable

Inference

Simple Event Stream

. . .. . .

. . .. . .

...

Gradients

Complex Event Stream

. . . . . .

. . . . . .

Symbolic model

Predictions

Complex

Event labels

Loss

∗
Marra et al, From statistical relational to neurosymbolic artificial intelligence: A survey. Artificial

Intelligence, 2024.
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Tensor-Based Complex Event Recognition∗

initiatedAt(fl(X ,Y )=v , T )  

happensAt(e(X ,Y ), T ) ,

holdsAt(d(X ,Y )=vd , T ) .
N

N
⌦

�

N

N
⌦

=

N

N
⌦

∗
Tsilionis et al, A Tensor-Based Formalization of the Event Calculus. IJCAI, 2024.

4 / 5



Tutorial Resources

Resources: http://cer.iit.demokritos.gr

I Slides: http://cer.iit.demokritos.gr/talks

I Code: http://cer.iit.demokritos.gr/software

I Data: http://cer.iit.demokritos.gr/datasets

I Opportunities for (funded) collaboration: job openings and

topics for BSc/MSc theses and internships
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