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Tutorial Overview
• Part 1

Introduction; Aims; Perspective on LLMs, Planning, Tutorial Big 
Picture

• Part 2
• Evaluating LLM Planning capabilities in Autonomous mode, 

including effect of
• Prompting strategies (including Chain-of-thought)
• Fine Tuning
• Self Verification

• Understanding the contradictory claims in the literature
• Part 3

• Sane roles of LLMs in Planning (with LLM-Modulo 
frameworks)

• LLMs as heuristics, LLMs as candidate generators
• Back prompting from external verifiers
• LLMs as sources of domain models (with humans in the loop)
• LLMs as format changers/specification elaborators1

• Part 4
• Summary/Lessons



Aim of the Tutorial

• Of late, there has been a significant rise in interest in using Large 
Language Models in planning tasks

• In the last ~3 years, many papers have been published
• It started with training sequence learning models (specifically transformers) 

tabula rasa on plans
• ..and has currently mostly become a sort of ersatz natural science of using huge 

pre-trained models to see (and exploit) what planning abilities they may already 
possess

• Much of the literature is in NLP and ML conferences. 
• There is bidirectional ignorance. 

• The authors of the papers often don’t have background in Planning/Reasoning
• and the Planning/Reasoning community is largely unaware of the work on LLMs and 

Planning 

• This tutorial is an attempt to rectify this ignorance, and to take a critical 
look at the role of LLMs in Planning
•  (..and should thus be of interest to both populations..)
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Information Integration



Research Background.. 
• We have focused on explainable human-AI 

interaction. 
• Our setting involves collaborative problem 

solving, where the AI agents provide decision 
support to the human users in the  context of 
explicit knowledge sequential decision-
making tasks (such as mission planning)
• In contrast, much work in social robotics and HRI 

has focused on tacit knowledge tasks (thus 
making explanations mostly moot)

• We assume that the AI agent either learns the 
human model or has prior access to it.

• We have developed frameworks for proactive 
explanations based on model reconciliation 
as well as on-demand foil-based explanations

• We have demonstrated the effectiveness of 
our techniques with systematic (IRB 
approved) human subject studies 
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LLM’s Can’t Plan; But they can help planning 
in LLM-Modulo Frameworks

LLMs can’t plan in Autonomous Modes 
(and many claims to the contrary are 
questionable)
• LLMs can’t do planning in 

autonomous mode
• CoT, ReACT, Fine Tuning etc. don’t 

help that much (as they don’t 
generalize enough)

• They can’t improve by self-
verification (since they can’t self-
verify!)

• Having humans iteratively prompt 
is an invitation for Clever Hans 
effect.. 

LLMs can support planning (and expand the 
range of planning tasks) in LLM-Modulo 
Frameworks
• LLMs can be used in conjunction 

with external verifiers and solvers 
in an LLM-Modulo framework 
(with the verifiers doing back 
prompting ) 

• In the LLM-Modulo framework, LLMs 
can play multiple roles

• Guess plans
• Guess domain models
• Help elaborate the problem 

specification
• Translate formats 



LLM



I come to leverage LLMs, not to lament them.. 
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.. O judgment! thou art 
fled to brutish beasts, 

And men (& LLMs) have lost their reason.





A few caveats about the tutorial.. 
• This is not a dry chronological survey 

with a laundry list of papers and their 
blurbs 

• It is an opinionated perspective on the 
state of LLMs and Planning intersection

• Informed by our own work in the area
• Caution: The authors of the papers 

brought up in the tutorial may well 
bristle at the particular 
perspective/pigeonholing of their work

• The aim is not to make up your mind, but to 
equip you with a perspective that you may 
find useful when you read the literature 
yourself (..or do work in the area yourself..)

• This tutorial has largely been tweeted.. 
• “twittorial?”
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Perspective on LLMs 
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LLMs are N-gram models on STEROIDS
• Text is a long sequence of words (including spaces, 

punctuations)
• An n-gram model of language learns to predict n-th word given 

the preceding n-1 words
• Probabilistically speaking it learns Pr(Wn |W1...Wn-1)

• Unigram predicts each word independently (no preceding context)
• Bigram predicts each word given the previous word
• A 3001-gram model learns to predict the next word given the previous 

3000 words 
• ChatGPT is just a 3001-gram model 

• The power of an n-gram model depends on
•  How much text it trains on 
•  How big is the n (context) and 
•  How high-capacity is the function learning Pr(Wn |W1...Wn-1)

• ChatGPT trains on ~600 gigabytes of text on the Web
• It learns a very high capacity function that has 175 billion parameters

• Learns Pr(Wn |W1...Wn-1)  for all possible nth words Wn (Vocabulary of the 
language, ~50K in English)



..but the count table is Ginormous! (and is VERY 
sparse)
• With an n-gram model, you need to keep track of the 

conditional distributions for (n-1)-sized prefixes. 
• With a vocabulary size |V| (~ 50000), there are |V|n-1 

different prefixes!!
• Easy for unigram (1 prefix), bigram (|V| prefixes) and trigram (|V|2 

prefixes)
• For ChatGPT’s 3001-gram model, with a 50,000 word vocabulary, we 

are looking at a whopping (50000)3000 conditional distributions 
• (and most entries will be zero—as the chance of seeing the same 3000-word 

sequence again is vanishingly small!)

• What LLMs do is to essentially compress/approximate this 
ginormous count table with a function
• That is while high capacity (176 billion weights!) is still vanishingly 

small compared to the ginormous count ((50000)3000  >> 176 billion or 
a trillion!) 

• ..and oh by the way, the compressed function winds up having fewer 
zeros
• It approximates both the non-zero counts and zero counts, so..
• GENERALIZATION!!!

• In essence the function learns to “abstract” and “cluster” over 
“similar” sequences

Transformers are a 
(not particularly principled)
parallelization of the 
recurrent neural networks



(graphic by James Campbell)



Hallucination and 
“Approximate Retrieval”

• LLMs are n-gram models, and thus do 
not index and retrieve

• All they ever do is hallucinate 
completions to the prompt 

• Such that the completion is in the same 
distribution as the text they have been 
trained on

• Prompt engineering doesn’t change 
this!

• Whether or not changing the prompt 
gives the ”factual completion” depends 
on the prompter knowing enough to tell 
whether the given answer is the accurate 
one. 



LLMs and Approximate Retrieval

• Retrieval in Databases: Given a query (key), 
retrieve the records that exactly match the 
query

• Retrieval in IR systems (e.g. Google): Given a 
(textual) query, retrieve all the records that are 
similar to the query 

• The records themselves are not modified in any way
• Approximate retrieval in LLMs: Given a (textual) 

query (prompt), generate the most likely 
completion

• Note that the completion is NOT guaranteed to be 
one of the stored records

• This generative creativity is the boon/bane of LLMs



LLM’s Approximate Retrieval upends our 
intuitions re: their guesses

Computational Complexity of the underlying 
task has no bearing on LLM guesses
• The underlying complexity of the problem has 

no impact on the LLM’s ability to guess the 
answer
• They are just as fast in guessing answers to 

undecidable questions as they are in guessing 
answers to constant time questions

• ..and in neither case do they have any guarantees 
about their guess

• Corollary: The usual problem characteristic—
Stochasticity, Partial Observability etc. — that 
make it computationally harder don’t matter 
in LLM’s ability to guess

• After all, they take constant time per token 
• ..and no, asking LLMs to “pause” doesn’t change 

any of this!

Background Knowledge is easier for LLMs 
(approximately..)
• Much has been made in traditional AI of the 

difficulty of getting relevant knowledge.
•  Having been trained on web-scale collective 

knowledge of humanity, LLMs are remarkably 
better at this

• They are pretty good (with no guarantees—
and some brittleness) at
• Commonsense
• Domain knowledge
• Theory of Mind
• Analogies

• (In addition, of course, to linguistic abilities 
such as summarization, elaboration, format 
change etc.)
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Perspective on Planning



Planning, Scheduling, Reinforcement Learning

• Planning/Sequential Decision Making: Given a set of objectives, come up with a 
course of actions (policy) to achieve them (optimally) 
• Standard planning (and RL) assume the possible actions that the agent can take (and their 

“models”) are given up front
• MacGyver Planning involves coming up with the actions AND sequencing them

• Scheduling: Given a set of tasks/jobs, and a choice of actions for accomplishing 
each of the tasks, assign actions to tasks so there are no undesired interactions 
• Planning is more general than scheduling (One difference is precondition cascading – adding 

an action to achieve something makes you subgoal on the the preconditions of that action..). 
• Planning is P-Space Complete (even for STRIPS) and Scheduling is NP-Hard

• (Model-Based) Reinforcement Learning: The agent acts in a (hopefully ergodic) 
environment and slowly learns the “action models”—and plans with that model. 





Ergodicity, Robustness & Quality/Optimality
• An environment is ergodic if the agent can reach any state of an environment from any 

other state (with positive probability). As a corollary, in non-ergodic environments, an 
agent can “get stuck” in some (group of) states 

• Planning is most critical in non-ergodic environments! 
• Also, if the agent is interacting with a resettable simulator rather than the real world, it can 

effectively mask the non-ergodicity of the real world. 
• Robustness of a plan is (informally) the probability that it achieves its objectives (without 

failing/getting stuck)
• In deterministic environments, “correctness” is a binary measure of robustness
•  In non-ergodic environments, a high degree of robustness is critical. Conversely in ergodic ones 

(or when you are working with simulators), you can “blunder on” so to say..
• Top-k correctness is not sufficient in non-ergodic environments.. 

• While robustness is a measure of correctness, Quality of a plan is more about its style (as 
desired by the agent or the problem specifier)

• Quality captures intangibles such as implicit (unstated) preferences
• For example, a travel plan to go from Phoenix to Vienna by going part way by walk, part way by bike, part way 

by car etc. etc. can be correct, but may not conform to the implicit preferences
• Interestingly, LLMs, trained as they are on web-scale corpora of our collective output, tend to capture these 

style preferences better (at least as compared to any other alternate GOFAI approaches!)



World Models, Verifiers & Simulators

• The way a planning agent verifies the robustness of the course of actions it 
synthesizes—without having to execute it in the world and incur costly 
failures–is to verify the plan with respect to some model of the world

• This model can be something externally supplied 
• PDDL Models; SMT Models etc. 
• Domain Simulators

•  (Note that simulators don’t fall from the sky; they are written by someone!)
• Or learned directly from the agent by trial and error over the real world!

• As is the case in Reinforcement Learning

• The big unresolved question with LLMs is to what extent they have a robust 
internal model of the world

• Since if they do, they can guess a plan, self-verify/critique, and loop.. 



So can LLMs do Planning? 



Little a priori reason to believe that LLMs can reason/plan
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On the other hand, the literature seems rife 
with claims of LLM planning abilities..
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If block C is on top of block A, and block B is  separately 
on the table, can you tell me how I can make a 
stack of blocks with block A on top of  block B 
and block B on top of block C, but without moving block C?

Hallucinating the Spec Hallucinating Physics

Hallucinating Goal

GPT4-o
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[All these are on instances that are solvable; 
things will be much worse if we include unsolvable instances!]



Why are LLMs claimed to do 
Reasoning/Planning? 
Approximate omniscience of LLMs 
allows them to fake reasoning by 
retrieval
• Memory reduces the need to reason from 

first principles. 
• “Why are manhole covers round?”

• The training corpus is the entire web, and 
it is hard for anyone to know what it 
already contained

• The web corpus contains both base facts 
and deductive closure facts
• Retrieval of the later can be mistaken for 

reasoning

• Fine tuning and training from synthetic 
data further muddy waters by deliberately 
converting reasoning into approximate 
retrieval
• Think compiling someone’s system 2 to your 

system 1

LLMs may approximate 
reasoning with pattern finding
• Think of trying to predict the 

satisfiability of a random 3-SAT 
instance

• Suppose you train a learner with 
a gazillion random 3-SAT 
instances

• Will it discover Davis-Putnam 
procedure or is it more likely to 
discover the sharp phase 
transition?
• Easier to find latent variables 

corresponding to 
#clauses/#variables, and learn a 
rule to classify instances that way

• See also [Zhang et. al. IJCAI 
2023]



Style vs. Content  
Form vs. Factuality
• LLMs (and Generative AI in general) capture 

the distribution of the data they are trained 
on

• Style is a distributional property
• ..and LLMs are able to learn this (they have been 

called the vibe machines..)
• Correctness/factuality is an instance level 

property
• ..LLMs can’t guarantee this

• Civilizationally, we had always thought style is 
harder than content 

• And even assumed that good style implies good 
content! 

• LLMs (and GenAI in general) turn this intuition on 
its head!



LLM’s Can’t Plan; But they can help planning 
in LLM-Modulo Frameworks

LLMs can’t plan in Autonomous Modes 
(and many claims to the contrary are 
questionable)
• LLMs can’t do planning in 

autonomous mode
• CoT, ReACT, Fine Tuning etc. don’t 

help that much (as they don’t 
generalize enough)

• They can’t improve by self-
verification (since they can’t self-
verify!)

• Having humans iteratively prompt 
is an invitation for Clever Hans 
effect.. 

LLMs can support planning (and expand the 
range of planning tasks) in LLM-Modulo 
Frameworks
• LLMs can be used in conjunction 

with external verifiers and solvers 
in an LLM-Modulo framework 
(with the verifiers doing back 
prompting ) 

• In the LLM-Modulo framework, LLMs 
can play multiple roles

• Guess plans
• Guess domain models
• Help elaborate the problem 

specification
• Translate formats 
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Will GPT4’s AGI Sparks help?
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Using LLM’s to Generate Plans 
Autonomously 

73

Evaluated a variety of prompting strategies
  including zero shot and one shot
     natural language and PDDL prompting



Plan Generation Results 

[All these are on instances that are solvable; 
things will be much worse if we include unsolvable instances!]



Are LLMs retrieving based on 
names or are they reasoning?

What if GPT4 is basically bringing to bear its background knowledge 
about blocks world instead of just depending on the domain model?
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I am playing with a set of blocks where I need to arrange the blocks into stacks. Here are the 
actions I can do

   Pick up a block
   Unstack a block from on top of another block
   Put down a block
   Stack a block on top of another block

   I have the following restrictions on my actions:
   I can only pick up or unstack one block at a time.
   I can only pick up or unstack a block if my hand is empty.
   I can only pick up a block if the block is on the table and the block is clear. A block is clear if the 
block has no other blocks on top of it and if the block is not picked up.
   I can only unstack a block from on top of another block if the block I am unstacking was really on 
top of the other block.
   I can only unstack a block from on top of another block if the block I am unstacking is clear.
   Once I pick up or unstack a block, I am holding the block.
   I can only put down a block that I am holding.
   I can only stack a block on top of another block if I am holding the block being stacked.
   I can only stack a block on top of another block if the block onto which I am stacking the block is 
clear.
   Once I put down or stack a block, my hand becomes empty.

I am playing with a set of objects. Here are the actions I can do

   Attack object
   Feast object from another object
   Succumb object
   Overcome object from another object

I have the following restrictions on my actions:
    To perform Attack action, the following facts need to be true: Province object, Planet object, Harmony
    Once Attack action is performed the following facts will be true: Pain object
    Once Attack action is performed the following facts will be false: Province object, Planet object, Harmony
    To perform Succumb action, the following facts need to be true: Pain object
    Once Succumb action is performed the following facts will be true: Province object, Planet object, Harmony    
    Once Succumb action is performed the following facts will be false: Pain object.
    To perform Overcome action, the following needs to be true: Province other object, Pain object
    Once Overcome action is performed the following will be true: Harmony, Province object, Object Craves other object
    Once Overcome action is performed the following will be false: Province other object, Pain object
    To perform Feast action, the following needs to be true: Object Craves other object, Province object, Harmony.
    Once Feast action is performed the following will be true: Pain object, Province other object
    Once Feast action is performed the following will be false:, Object Craves other object, Province object, Harmony

Original Blocksworld Mystery Blocksworld

Mystery blocksworld domain
A block by any other name
 would stack as strong
         --The Bard



Plan Generation Results on Mystery BW



Plan Generation Results on Mystery BW
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I am playing with a set of objects. Here are the actions I can do

   Attack object
   Feast object from another object
   Succumb object
   Overcome object from another object

I have the following restrictions on my actions:
    To perform Attack action, the following facts need to be true: Province object, Planet object, 
Harmony
    Once Attack action is performed the following facts will be true: Pain object
    Once Attack action is performed the following facts will be false: Province object, Planet 
object, Harmony
    To perform Succumb action, the following facts need to be true: Pain object
    Once Succumb action is performed the following facts will be true: Province object, Planet 
object, Harmony    
    Once Succumb action is performed the following facts will be false: Pain object.
    To perform Overcome action, the following needs to be true: Province other object, Pain 
object
    Once Overcome action is performed the following will be true: Harmony, Province object, 
Object Craves other object
    Once Overcome action is performed the following will be false: Province other object, Pain 
object
    To perform Feast action, the following needs to be true: Object Craves other object, Province 
object, Harmony.
    Once Feast action is performed the following will be true: Pain object, Province other object
    Once Feast action is performed the following will be false:, Object Craves other object, 
Province object, Harmony

Mystery Blocksworld Mystery Blocksworld with Mapping

Making Mystery Blocks world easier by providing the 
mapping to Blocks world

I am playing with a set of objects. Here are the actions I can do
      Attack object

Feast object from another object
Succumb object
Overcome object from another object

I have the following restrictions on my actions:
To perform Attack action, the following facts need to be true: Province object, Planet object, Harmony.
Once Attack action is performed the following facts will be true: Pain object.
Once Attack action is performed the following facts will be false: Province object, Planet object, Harmony.
To perform Succumb action, the following facts need to be true: Pain object.
Once Succumb action is performed the following facts will be true: Province object, Planet object, Harmony.
Once Succumb action is performed the following facts will be false: Pain object.
To perform Overcome action, the following needs to be true: Province other object, Pain object.
Once Overcome action is performed the following will be true: Harmony, Province object, Object Craves other object.
Once Overcome action is performed the following will be false: Province other object, Pain object.
To perform Feast action, the following needs to be true: Object Craves other object, Province object, Harmony.
Once Feast action is performed the following will be true: Pain object, Province other object.
Once Feast action is performed the following will be false:, Object Craves other object, Province object, Harmony.

You will be given a set of initial conditions and a goal condition. To solve the problem, you will have to tell me which actions to take and in which 
order in order to achieve the goal.

Please provide your answers using the above terminology. However, you may find it helpful to translate the above description into a common-
sense format while working out your solution. Just remember to translate it back later!
Instead of thinking in terms of "objects", think in terms of different alphabet blocks (block A, block B, etc.) which you are stacking (using just one 
hand) in towers on a table.

Then the "facts" that are true or false at a given time are really facts about the blocks and the hand:
      "Province object a" just means that "block A is clear" or, equivalently, "nothing is on top of block A"
      "Planet object a" is another way of saying "block A is on the table"
      "Harmony" is a codeword for "my hand isn't holding anything"
      "Pain object a" = "the hand is holding block A"
      "object a Craves object b" translates to "block A is on top of block B"

And the "actions" can be seen as stacking and unstacking of blocks (where the restrictions stop us from picking up the bottom block in a tower or 
holding more than one block in the hand at a time):
      "Attack object a" translates to "pick up block A directly from the table"
      "Feast object a from object b" translates to "pick up block A from directly on top of block B"
      "Succumb object a" translates to "put block A directly on the table"
      "Overcome object a from object b" translates to "put block A directly on top of block B"
      
If you do use this framing, make sure to remember to translate back into the original terms.



Making Mystery blocksworld easier by providing the 
mapping to blocksworld: Doesn't help!

Domain Method GPT-4 Instruct-GPT3.5

Blocksworld One-shot 206/600 (34.3%) 54/600 (9%)

Zero-shot 210/600 (34.6%) -

Mystery Blocksworld 
(Deceptive)

One-shot 26/600 (4.3%) 4/600 (0.6%)

Zero-shot 1/600 (0.16%) -

Mystery Blocksworld  
(Deceptive) with mapping 
provided

One-shot 60/600 (10%) 5/600 (0.8%)

Zero-shot - -

One would expect the 
performance to be similar 
to that of blocksworld but 

that isn’t the case!!



Plan Writing Plan Translation

Human Baseline for Mystery Blocksworld 

• Preliminary study – 5 participants
• Asked to come up with a plan for one instance 

from Mystery Blocksworld (chosen from a set 
of 100 instances)

• Two phases of interaction
• Plan writing phase – Participants write up 

plans
• Plan translation phase – Participants 

translate already written plans
• First for an example then the actual instance
• The human planners were incentivized to 

solve these cognitive dissonance problems.
• If they came up with a successful plan, the 

participants were rewarded with an extra bonus 
of $15 on top of the $10 base reward.

All the 5 (100%) human planners 
successfully came up with a (valid) plan.



Plan Writing Plan Translation

Human Baseline for Mystery Blocksworld 
• Preliminary study – 5 participants
• Asked to come up with a plan for one instance 

from Mystery Blocksworld (chosen from a set 
of 100 instances)

• Two phases of interaction
• Plan writing phase – Participants write up 

plans
• Plan translation phase – Participants 

translate already written plans
• First for an example then the actual instance
• The human planners were incentivized to 

solve these cognitive dissonance problems.
• If they came up with a successful plan, the 

participants were rewarded with an extra bonus 
of $15 on top of the $10 base reward.

All the 5 (100%) human planners 
successfully came up with a (valid) plan.

Humans have a System 2. 

They don’t often want to use it. 

But we can incentivize them to use it
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NeurIPS 2023 
   Spotlight



NeurIPS 2023



2023 is Ancient History.
How are the latest LLMs faring?



[All these are on instances that are solvable; 
things will be much worse if we include unsolvable instances!]



How about Chain of 
Thought Prompting? 
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Chain of Thought Prompting

• Chain of Thought prompting (CoT) has become a bit of a religion 
among LLM aficionados.

• The basic idea of CoT is to give the LLM a couple of examples 
showing how to solve the problem—with the expectation that it 
figures out how to solve other instances 

• It is clear (and pretty non-controversial) that CoT 
involves  giving additional task/problem specific knowledge. 
The question is how general this problem specific knowledge 
needs to be. 

• The more general the knowledge, the easier it is for the humans to 
provide it; but higher the degree of reasoning LLM has to do 
to operationalize it.

• Let’s see how/if CoT helps.. 



Four CoT Setups with Increasing 
Specialization
• Setup 1: Domain-independent CoT

• Gives progression proof verification
• Setup 2: Blocks World Specific [Single 

goal stack]
• CoT teaches the heuristic of putting all 

blocks on table and construct the goal stack 
• (known to be within 2x optimal length)

• Setup 3: Specializes 2 by ensuring all 
blocks are on table to begin with

• Setup 4: Specialized 3 by ensuring that 
the goal stack is always in lexicographic 
order

Cost of giving advise for the humans increases from 1 to 4
The need for operationalization of the advice by LLM reduces from 1 to 4



CoT’s Failure to Generalize



CoT’s Failure to Generalize goes beyond planning 



Confirmation from one of the original authors of CoT
107

[Dale Schuurmans @ICAPS 2024 Keynote]



ReAct Style 
Prompting? 
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ReAct Exhibits Similar Inability to generalize

Base
Replace object 

names to 
synonyms

Example Goal 
location != 
Query Goal 

Location

Some examples 
of different task

All Examples of 
different task

Examples of 
each of the 

tasks

Unrolling : 
Example task is 

extended in 
query

Subtask : 
Example task 
has query as 

subtask

3.5-turbo 25 1.6 30 12 1.6 14 - -

3.5-instruct 54 47 42 18 5.2 Context Window 
Too Short

Drops from 52% 
to 9%

Drops from 18% 
to 0%

Task success rate %, average across 6 tasks : pick, clean, heat, cool, examine, puttwo. 
See the gradual drop in performance!

Example 1

Example 
from Clean

Example 2

Example 
from Heat

Your task is 
to : Put
apple in the 
cabinet. 

+
Input to LLM

ReAct System and Perturbation to Input Examples

• Requires strong (near syntactic) similarity 
of example instance to the problem seems 
to be necessary for ReACT to use the 
examples!

• Requiring instance-specific examples 

• (Our studies also question ReAct’s claims 
about the effectiveness of “Think tag”)



What if we finetuned LLMs with successful 
plans in the domain?
• What if we further finetuned the next word 

(action) completer with a bunch of correct plans 
in the domain?

• This is basically the supervised finetuning stage LLMs 
currently use to make them better at specific domains 
(e.g. Bloomberg's FinGPT..)

• We prepared a dataset comprising the initial 
state, goal state, and the respective plan for 
1,000 distinct Blocksworld instances.

• By using the default hyperparameters provided 
by OpenAI and an 80-20 train-validation data 
split, we carried out the fine-tuning process.

• Finetuned-GPT3 could only solve around 20% 
(122 out of 600) of the test set.

80%

20%

Instances correct by
Finetuned GPT-3

Incorrect Correct



Solving Blocksworld: GoFAI vs LLaMAI
GOFAI
• Get the domain model
• Get a combinatorial search planner
• Have the planner solve the problem

LLaMAI
• Get the domain model
• Get a combinatorial search planner
• Make a trillion Blocksworld problems
• Make the planner solve them all
• Finetune GPT4 with the problems and solutions

• (Alternately, index the trillion solutions in a vector DB 
for later RAG)

• Have the finetuned/RAG’ed GPT4 guess the 
solution for the given problem
• (Ensure the correctness of the guess with an external 

validator/Simulator working LLM-Modulo)

• If, by luck, it guesses right, write a NeurIPS/ICLR 
paper about the effectiveness of synthetic data



In vs. Out of Distribution is irrelevant
The question is whether LLMs can answer from 
deductive closure 
• Finetuning helps convert reasoning 

into approximate retrieval for a 
specific population
• By training with a part of the 

deductive closure of the “knowledge” 
that LLMs already may have from pre-
training

• There is no reason to believe that 
this actually helps LLMs “compute” 
other parts of the deductive 
closure.. 



Finetuning with
Derivational Traces

• A new twist to fine tuning is to finetune with 
both solution and the “search/derivational 
trace” that lead to that solution

• Supplied of course by the traditional (symbolic) 
solver

• At inference time, LLM is asked to output 
both a search trace and a solution plan

• No actual causal connection between the trace 
and the plan!

• The question is whether this extended fine 
tuning generalizes any better or if it is still 
LLaMAI..

• Little reason to believe it generalizes
• The evaluation in these papers(*) tends to be 

quite questionable
• Claims about “may be optimal” (and trace 

optimal!)
• Claims about extending the solving horizon of the 

base solver

[Lehnert et. al., 2024; Gandhi et. al. 2024]



Can LLMs self-critique?
The idea that critiquing/verification is easier than generation holds for algorithms 
that do systematic search.. But not for LLMs that are essentially doing approximate 
retrieval..
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LLMs’ self-critiquing abilities

• Three reasoning domains
• Game of 24, Graph Coloring, 

Planning 

• LLM+LLM System 
• An LLM that generates 

candidate solutions & an LLM 
that verifies and critiques it

There exist formal notions of correctness for these domains that allow us 
to automatically check both the (binary) verification and the critique 
generated by LLMs.

Such verification is not possible in style-based/qualitative tasks (Eg: 
writing a good essay, good screenplay etc)



LLMs’ self-critiquing abilities

• Standard Prompting
• A single query is sent to the LLM 

and whatever it outputs is 
treated as the final answer

• When this is augmented with 
the self-critique setup, the 
performance decreases!
• As the number of back prompts 

increases, this kind of self-
correction consistently 
degrades output quality.



LLMs’ self-critiquing abilities

• If the LLM were a good verifier, then it 
would recognize instances which are 
already right, and thus--at worst--
maintain the baseline score. 

• The LLM-as-verifier ranges in accuracy 
depending on the domain, but it 
maintains significant false negative 
rates.
• The LLM essentially labels valid solutions 

to be invalid.
• Also, the solution generator LLM isn't 

sensitive to varying levels of feedback.
• In fact, sampling the LLM multiple (k) 

times for an instance, with a sound 
verifier in the loop, provides better 
performance.
•  Connection to Tree of Thoughts.. 



Fine Tuning the Pre-trained 
model to be both a generator 
and verifier
• Start with GPT-2
• [Finetuned generator:] Fine tune GPT-

2 as a generator on a corpus of blocks 
world plans
• [Finetuned Verifier:] Use the same 

corpus to train a verifier (based off of 
GPT-2)
• Do Verifier-augmented generation

• Sort of similar to the back-prompting 
with VAL (except that the verifier here is 
also learned from the same corpus)
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Why the divide in self-critiquing claims?
• Several other researchers report results that seem to 

indicate that some form of self-critiquing mode seems to 
help solving mode. Why?

• Explicit vs tacit knowledge tasks
• It is harder to establish the (poor) quality of LLM critiques in 

tacit knowledge tasks (like creative writing) 
• In explicit knowledge tasks (like planning, CSP etc) both the 

verification and critique can be evaluated formally.
• Approximate retrieval on corrections data informing 

approximate retrieval on correct data.
• For most common use domains (e.g. mine craft, grade school 

word problems), the training corpora not only contain solution 
(correct) data, but also corrections data (i.e., the types of 
normal errors to be found in incorrect solutions). 



Style vs. Content  
Form vs. Factuality
• LLMs (and Generative AI in general) capture 

the distribution of the data they are trained 
on

• Style is a distributional property
• ..and LLMs are able to learn this (they have been 

called the vibe machines..)
• Correctness/factuality is an instance level 

property
• ..LLMs can’t guarantee this

• Civilizationally, we had always thought style is 
harder than content 

• And even assumed that good style implies good 
content! 

• LLMs (and GenAI in general) turn this intuition on 
its head!



LLMs as Behavior Critics to catch undesirable robot behaviors
Can LLMs capture human preferences in embodied AI tasks?

• It may be intractable to construct formal 
verifiers for tasks that have a wide scope.

• LLMs or VLMs can be a proxy of common 
human preferences and undesirability

• We evaluated GPT-4V with videos of 
diverse suboptimal behaviors

• GPT-4V critic catches 69% of undesirable 
behaviors (recall rate) while only 62% of 
the critiques are valid (precision rate)

• Results confirm the broadness of GPT-4V's 
knowledge & the subpar precision of its 
outputs

"Task Success" is not Enough: Investigating the Use of Video-
Language Models as Behavior Critics for Catching 
Undesirable Agent Behaviors
Lin Guan*, Yifan Zhou*,  Yantian Zha, Heni Ben Amor, 
Subbarao Kambhampati. COLM 2024. (to appear)
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On the other hand, the literature seems rife 
with claims of LLM planning abilities..
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What Planning is & What LLMs are good at..

Planning (as used in common parlance) 
involves
• Planning knowledge

• Actions, preconditions and effects
• General Recipes: Task reduction schemata (e.g. 

HTN planning)
• Old examples: Case libraries

• Plan generation/verification techniques
• Interaction analysis/resolution
• Plan merging techniques
• Plan modification techniques

Contrasting what AI Planning & LLMs 
bring to the table
• AI Planning (aka ICAPS planning) assumes that 

the planning knowledge is given up front, and 
focuses generation and verification 
techniques
• Emphasis on guaranteeing 

completeness/correctness of the plans w.r.t. the 
model

• By and large the common paradigm—although there 
have been occasional mutinies

• Model-Lite Planning approaches

• LLMs, trained as they are on everything ever 
put on the web, have a kind of "approximate 
omniscience". This helps them spit out 
actions, recipes, or cases
• But they lack the ability to stitch the recipes 

together to ensure that there is no actually 
interaction free!
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LLMs accept any planning problem—even if it not
 expressible in PDDL standard—and they don’t give 
any correctness guarantees.

AI Planners will give formal guarantees, but only 
  accept problems expressible in their language. 



Are LLMs better at planning if there are no 
subgoal interactions?
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• Relaxed assessment of GPT-4 plans
• Delete relaxation – Ignoring the delete conditions of all actions
• Precondition relaxation – Ignoring the preconditions of all actions

• Even in the most lenient assessment mode (Delete+Precondition relaxation) 
there are still plans (~25%) that are not goal reaching.

Relaxations improve
Compositionality via
Retrieval.. 



Then how come LLMs are trumpeted as 
doing planning?
• Most cases where LLMs are 

claimed to generate executable 
plans, on closer examination, turn 
out to be cases where LLMs are 
getting by with the “generate 
approximate recipes” step

• Generate approximate recipes/cases 
(for common sense domains)

• e.g. wedding plans
• Convert tasks into (approximate) task 

reduction schemas
• Perhaps written out as "programs" 

(e.g. Code as Policies..)
• (SHOP2 schemas were already pseudo 

lisp code—if only written by humans)
• LLM-HTN and LLM-CBR differ from HTN and CBR 

in that they generate the task-reduction schemas 
or the cases on demand

• And the interaction 
resolution/search part is

• either pushed under the rug
• Consider "high level" plans like 

"wedding plans" for which there are 
enough generic recipes available in the 
training set, and are described at a 
sufficiently high level of abstraction, and 
the execution issues are left to the user’s 
imagination

• E.g. n-stack blocks world problems with n-
1 blocks in the right configuration already! 

• or has been pawed off to 
human prompters who are required to 
give "hints" to the LLM to come up 
with plan variants that are (more) 
correct

• Note that here the human is 
essentially playing the role of an external 
verifier & critic

• In cases where the humans are end 
users not well versed with all details of 
the domain, they can be faulty verifiers

144There is also the “Confusing acting with planning” issue

Approximate retrieval of Plans
       

Planning



ReAct, Inner Monologue, ToT Examples
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ReAct Inner Monologue

Tree of Thoughts

Most of the ‘planning’ problems that 
these works look at don’t require 

interaction resolution, or they 
depend on explicit external 

help/programming to handle the 
interactions.



146





Back-Prompting by Humans
(..and the Clever Hans peril..)

• Humans doing the verification & giving helpful 
prompts to the LLM)
• Okay when the humans know the domain and can 

correct the plan (with some guarantees)
• Okay for "this essay looks good enough" kind of critiquing
• But for planning, with end users not aware of the domain 

physics, the plans that humans are happy with may still not 
be actually executable

• When humans know the correct answer (plan) there 
is also the very significant possibility of Clever Hans 
effect
• Humans unwittingly/unknowingly/non-deliberately giving 

important hints
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“The answer is in the Top-K Plans” 

• A version of the “Clever Hans” 
thinking is to say that if you ask LLM 
to output many plans, then the 
“correct plan” is somewhere in the 
top-k

• But this still leaves the question of 
who is picking the winning plan 
from top-k.

• Ultimately, this claim is really about 
LLM being a good generator-–and 
an external tester is still needed

• An interesting question is under what 
conditions is an LLM not a good 
enough generator



Doesn’t Co-Pilot for Code show that LLMs 
can Plan? 
• Co-Pilot has humans in the loop

• The incremental interpreters can direct 
people’s attention to syntax errors

• Github and General Web are quite 
different as training corpora
• People don’t put their non-working 

code on github; general web has 
4Chan!

• Most effective approaches for 
automated programming with LLMs 
use LLM-Modulo approaches (with 
Unit Tests as critics)



Acting vs. Planning: The Agentic LLM Goldrush

• LLMs can obviously be used to invoke external 
actions (“function calls”)

• Think “Webservice Orchestration Frameworks” 
which allow you to write your own “agents”
• LLM as the core controller of external components

• Which in turn is controlled by human prompting
• Safety issues include both safety of the outside 

components and safety of the prompt-based control of 
LLMs

• LLMs can’t themselves be expected to ”plan” 
this orchestration!
• The actual orchestration is done with human help 

(“language” programming)
• The “planning” part is basically pipelining the right 

external services – and is done with human help
• One core external service they all use is “external 

memory” to write into and retrieve 
• Because LLMs themselves have no memory beyond their 

context window. 
• Think L2/L3 rather than L5 automation.. 

Weng, Lilian. (Jun 2023). LLM-powered Autonomous Agents". Lil’Log. https://lilianweng.github.io/posts/2023-06-23-agent/.

Allowing LLMs to make their own “plans” to invoke
 external services would be rife with safety concerns!

 (Think having a gun lying around in a home with a toddler..)

The Agentification



Tutorial Overview
• Part 1

Introduction; Aims; Perspective on LLMs, Planning, Tutorial Big 
Picture

• Part 2
• Evaluating LLM Planning capabilities in Autonomous mode, 

including effect of
• Prompting strategies (including Chain-of-thought)
• Fine Tuning
• Self Verification

• Understanding the contradictory claims in the literature
• Part 3

• Sane roles of LLMs in Planning (with LLM-Modulo 
frameworks)

• LLMs as heuristics, LLMs as candidate generators
• Back prompting from external verifiers
• LLMs as sources of domain models (with humans in the loop)
• LLMs as format changers/specification elaborators1

• Part 4
• Summary/Lessons



LLMs can play multiple roles in 
Supporting Planning!

ICML 2024 Spotlight



LLMs as Idea Generators 
(“Muses”)
• “I get many ideas, and I throw away the bad 

ones” 
• Linus Pauling on how he managed to get TWO Nobels
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LLMs as Approximate Knowledge Sources
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Avenging Polanyi’s Revenge
Everybody was all against knowledge-based systems

But now everyone is effectively doing knowledge-based systems!



Planning in the age of LLMs
For far too long, there has been a race to 
bottom on the level of knowledge given to 
planners
• Planning started knowledge-based 

• Remember, Noah was an HTN planner, y’all!
• ..and fell to ground propositional level –because it 

seemed too unseemly to depend on humans for these 
knowledge-based models 

• And focus on doing interaction resolution from first 
principles

• RL was worse—propositional was too high-level a 
knowledge to ask from humans
• They wanted to say they will learn it all

• And not have humans give any knowledge about the 
domain. They just wanted “SIMULATORS”,  

• ..and it took for ever to do anything—even with 
simulators

• RL is way darned too inefficient, y’all

LLMs change that—rather drastically!

• LLM makes it easy to get knowledge without  
making it look like we are inconveniencing any 
specific human
• We are just stealing everything humans told each 

other—is all.

• ..as long as you relax the requirement of the 
knowledge actually being “correct”
• ..then again, do you really believe that huge human-

written models are correct?

• So the million dollar qn is: How would you do 
planning if you have some doddering know-it-all 
ready to give you any kind of knowledge
• “Actions and effects”
• “Task reduction schemas”
• “Cases” 

• Time for LLM-HTN, LLM-CBR etc. paradigms 
• Or even a resurrection of the model-lite planning 

dream.. 
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31%
69%

With LLM assistance

Invalid Valid

20%

80%

Without LLM assistance

Invalid Valid

LLMs Assisting 
Human Planners

• Similar Study with two individual groups
• With LLM assistance – presented LLM plan as plan 

suggestion 
• Without LLM assistance 

• With LLM assistance: 48 human planners, 33 
(~69%) of them came up with valid plan.

• Without LLM assistance: 49 human planners, 
39 (~80%) of them came up with valid plan.
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Interface at plan writing phase with 
assistance from the LLMNo statistical significance in the accuracy, time-taken or the 

cognitive load between the two groups



LLMs as heuristics 
to sound planners



Connection to Case based Planning

• Note that there is an interesting parallel 
between this and case based planning 
systems—which retrieve an old plan 
most relevant to the current problem 
and try to modify the plan

• Modification by domain-specific rules [e.g. 
CHEF]

• Modification by domain-independent 
planners [e.g. PRIAR]

• LLM-CBR is different in that the case is 
generated (“stitched”) on demand

• ..and LPG is in charge of correcting it
• LLM + a RAG of old plans is a related 

promising strategy.. 
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Modifying LLM Next Action Generator 
(SayCan)
• SayCan - LLMs are used as heuristics

• Given:
• A high-level instruction i
• A set of low-level skills Π
• Language description 𝑙!	for each of the skills 𝜋 ∈ Π

• LLM – provides 𝑝(𝑙! 𝑖  - probability that 𝑙! makes 
progress towards i.

• LLMs score a set of pre-determined skills
• The scoring is done by accessing the inner log 

probabilities generated by the LLM.

• Robot - provides 𝑝(𝑐! 𝑠, 𝑙!  - probability that 𝜋 
described by 𝑙!	can be completed in state s.

Ahn, M., Brohan, A., Brown, N., Chebotar, Y., Cortes, O., David, B., ... & Zeng, A. (2022). Do as i can, not as i say: Grounding language in robotic affordances. arXiv preprint 
arXiv:2204.01691.



LLM-Modulo: a principled framework for Planning 
wherein LLMs can play multiple constructive roles
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LLM-Modulo Framework: Summary
• LLM-Modulo is a generate-test framework with 

LLMs generating candidate plans and critics 
testing/critiquing them

• LLMs play a variety of constructive roles
• Generate candidate plans
• Be an approximate source of models driving 

the correctness critics
• [Guan et al, NeurIPS 2023]

• Act as style critics
• [Verma et al, HRI 2024; Guan et al, 2024]

• Help collating the criticisms from critics (and 
diversify the prompts as needed)

• Help with format change—specification level, 
converting to critic representations

• Preference for critics over solvers
• Correctness vs. Style 
• Binary vs. Critical feedback vs. Constructive 

critics

• Human intervention is minimized
• Once per domain: Teasing out domain model 
• Once per problem: Specification elaboration
• Humans are not required to be in the inner 

loop of the back-prompting search
Related work: FunSearch, Alpha Geometry

Also related to the “Compound AI Systems” movement



Bare Bones Generate-Test LLM-Modulo with 
External Verifier

At it’s simplest, LLM-Modulo is a loop with
   LLM guessing plan candidates
    that are tested/verified by an external critic

 If the critic agrees, the solution is valid
    If not, the criticism can be sent as a back prompt 
     back to the LLM



Automated Back-Prompting with External 
Verifiers 
• Preliminary experiments show 

that back-prompting does 
improve LLM’s ability to produce 
plans in the Blocks World and 
Logistics
• On the average over ~4 feedback 

rounds 
• The performance in the Mystery 

BW still doesn’t improve-–
showing that the connection to 
commonsense domains/terms is 
critical for LLMs to fake planning
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The fact that Mystery BW doesn’t improve with
  Backprompting is further evidence that LLMs are
    Approximate Retrievers…



Prefer Verifiers to Solvers! 
   [Solver ≈ Verifier + Search]
• Although we just saw a way of 

combining LLMs with external solvers, 
our recommendation is that you 
interface LLMs with Verifiers/Critics

• This is why the LLM-Modulo architecture 
talks about a bank of critics

• You can have constructive critics and 
style critics

• With solvers, you are stuck with their 
expressiveness issues

• Verifiers, on the other hand, can allow 
composability, and validating the plan to 
the extent possible

• Similar to the “Human Blackboard” 
architecture used in NASA mission 
planning.. 



LLM-Modulo with a 
Bank of critics

We can accommodate multiple critics
   e.g. one to verify causal correctness
             one to verify resource usage 
              Can be constructive critics

The critics can also be “style critics”
    Is the plan in conformance with usual
      human preferences? 

The meta controller can 
pool criticisms from
 the critics, and also add
  prompt diversification
    before sending the 
     back prompt to the LLM



Types of Critics in LLM-Modulo

• Correctness vs. Style 
• LLMs can’t directly critic correctness

• But can help in obtaining the model 
driving the critics

• LLMs can be directly used for critiquing 
style 

• Critics can be 
• Binary (”try again”), 
• Constructive 

• Point out errors in the candidate
• Suggest local repairs 

• Partial (e.g. Unit Tests)

• Meta controller combines the 
criticisms from the various critics 
and sends it as a back prompt
• Can also do prompt diversification as 

part of the process



Soundness & Completeness of LLM-Modulo
• LLM-Modulo is a Generate-Test strategy
• Soundness depends on the soundness of the 

critics/verifiers
• LLMs themselves are only used for style critiquing, or to 

tease-out models for the corrects critics (in a semi-
automated fashion)

• Completeness depends on the LLM’s ability to 
generate a plan candidate that passes the muster 
with the verifiers

• While LLMs are “significantly above average” generators, 
the completeness of their generation is a function both of 
(1) training data and (2) ability to generate diverse 
candidates

• Prompt Diversification Strategies help here
• And can be part of the meta-controller



Tree of Thoughts (ToT)

ToT

• People start realizing LLMs can't plan, but with that 
comes the illusions that they can do systematic search 
like humans

• The best way to understand the "tree" in ToT is not as a 
search tree in the problemsolving agents, but as a 
"prompt diversification tree" that is hand crafted in a 
problem specific way!

• ToT nudges the LLM to generate hopefully more diverse 
candidates -- with the hope that one of those will pass the 
muster of the external verifier.

• The verifier plays a central role in ensuring soundness!

• We can come within 4% of ToT on 24 puzzle by just 
sampling 150 diverse candidates direct from the LLM!

https://twitter.com/rao2z/status/
1733845752340967533?s=20



LLMs as  Style Critics & Human Preference Proxies

• We investigate the potential of LLMs to serve as 
effective human proxies by capturing human 
preferences in human-AI collaboration settings.

• LLMs can play different roles in Human-aware AI 
interaction: as a Human Proxy, Translator (common 
lingua franca), and the Actor. 

• Theory of Mind (ToM) requires LLMs to also be 
able to capture human mental states, desires, and 
beliefs for reward design/learning mechanisms.

• Human-aware AI agents can incorporate such 
reward functions to account for human-in-the-
loop’s preferences.

Figure: Different roles of an LLM in Human-AI interaction.

Theory of Mind abilities of Large Language Models in Human-Robot Interaction : An Illusion?
Mudit Verma*, Siddhant Bhambri*, Subbarao Kambhampati.
HRI 2024



LLMs as Human Preference Proxies
Can LLMs capture human preferences?

Probing LLMs with explicability preferences:
• Under explicability preference, the human expects 

the agent to behave in a certain way, and the 
agent proactively attempts to model this 
expectation and follow it.

• Here, the human takes the role of an observer.

Probing LLMs with sub-task specification 
preferences:
• We consider a Human-AI teaming scenario where 

the human plays an active role and can perform 
actions in the world alongside the AI agent.

• Sub-task specification preferences involve the 
agent to produce the same set of sub-tasks that 
the human has in mind to achieve the team 
objective.

Figure: Different roles of an LLM in Human-AI interaction.



LLMs as Behavior Critics to catch undesirable robot behaviors
Can LLMs capture human preferences in embodied AI tasks?

• It may be intractable to construct formal 
verifiers for tasks that have a wide scope.

• LLMs or VLMs can be a proxy of common 
human preferences and undesirability

• We evaluated GPT-4V with videos of 
diverse suboptimal behaviors

• GPT-4V critic catches 69% of undesirable 
behaviors (recall rate) while only 62% of 
the critiques are valid (precision rate)

• Results confirm the broadness of GPT-4V's 
knowledge & the subpar precision of its 
outputs

"Task Success" is not Enough: Investigating the Use of Video-
Language Models as Behavior Critics for Catching 
Undesirable Agent Behaviors
Lin Guan*, Yifan Zhou*, Denis Liu, Yantian Zha, Heni Ben Amor, 
Subbarao Kambhampati.
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LLMs for Format Change/Specification Elaboration
Given that LLMs are good at format change
  they can be used to 
    Translate problem specification
     Elaborate it (with human in the loop)
       Reformat the plan guess to input to the critic
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• We investigated how GPT-3, one of the most recent 
transformer-based language models, can be used to extract 
structured actions from natural language texts. We find that 
these models achieve comparable, and in some cases better 
scores than previous state of the art task-specific methods

• Impact: Existing knowledge in the form of textual procedures 
and plans can be translated into formal representations to aid 
novice Navy personnel understand and carry out complex 
procedures. The translated procedures can also be leveraged 
by other automated systems in-place.

Text to plan using GPT-3
q Workshop on KEPS (ICAPS’21)
q Workshop on Planning for Financial 

Services (ICAPS’21)



AutoTAMP
• LLMs are being used as translators and 

verifiers
• They translate from natural language to 

Signal Temporal Logic representation. 

• An STL planner is used to come up with 
plans.

• Re-prompting technique is used on the LLM 
translator and the verifier to improve 
performance

Chen, Y., Arkin, J., Zhang, Y., Roy, N., & Fan, C. (2023). AutoTAMP: Autoregressive Task and Motion Planning with LLMs as Translators and Checkers. arXiv preprint arXiv:2306.06531.



LLM+P: Empowering LLMs with Optimal 
Planning Proficiency
• LLM translates Natural Language Problems into Problem PDDL by in-context Learning. 

(Context is crucial).
• Planner: Problem PDDL + Domain PDDL --> PDDL Plan
• LLM: PDDL Plan --> Natural Language Plan.
• LLM as a planner:

• Lacks the ability to reason about preconditions.
• Performs poorly in Domains that require an understanding of complex spatial relationships.

193Liu, B., Jiang, Y., Zhang, X., Liu, Q., Zhang, S., Biswas, J., & Stone, P. (2023). Llm+ p: Empowering large language models with optimal planning proficiency. arXiv preprint 
arXiv:2304.11477.



Generating Synthetic Data 
(Self-Instruct LLM-Modulo Way)

Finally, since the solutions coming 
out of LLM-Modulo frameworks 
are sound, they can be used to 
build a corpus of synthetic data 
that can be used to fine-tune the 
LLM so its guesses improve.. 



LLMs for Extracting Planning Knowledge
Since LLMs are approximate 
knowledge sources, they can also 
be helpful in acquiring domain 
models (with human in the loop)



LLMs for constructing domain/world 
models (Model Co-Pilot)
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LLM’s have universal high-recall (they will never shut up!),
         but questionable precision
Automated Planners are guaranteed correct 
         but for planning problems that they can handle

NeurIPS 2023



LLMs for constructing world models
• We tested on three domains

1. Household domain
2. Logistics
3. Tyreworld

201

Example from Household domain Example from Logistics domain



RL Systems can Benefit Significantly with 
partially correct symbolic models! 
[The Kind LLMs are only Too Happy to give!]

[ICML 2022]



Code as (Hierarchical) Policies
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Original LLM Prompt

LLM Response with Unrecognized Function

Code Parser

Prompts again for any missing functions found

Re-prompt

LLM Response

Liang, Jacky, et al. "Code as policies: Language model programs for embodied control." arXiv preprint 
arXiv:2209.07753 (2022). Prompts are from that paper.

Parses new response and recursively
prompts for any missing functions if needed

Extracts task 
reduction 
schema from 
LLM!



Travel Planning Benchmark

• New benchmark for travel planning 
proposed in  Feb 2024

• Three different types of constraints
• Environment constraints
• Common-sense constraints
• Hard constraints

• GPT-4-Turbo could solve only 0.6% (out of 
1000 queries)

• Not surprising! We show that LLM’s can’t 
even stack blocks correctly, there’s surely 
no hope for travel planning that has lots of 
constraints!!

Xie, J., Zhang, K., Chen, J., Zhu, T., Lou, R., Tian, Y., ... & Su, Y. (2024). TravelPlanner: A Benchmark for Real-World Planning with Language Agents. arXiv preprint arXiv:2402.01622.



Adapting LLM-Modulo Framework For Travel Planning



Results on Travel Planning Benchmark



Is LLM-Modulo just Shoe-Horning LLMs?
(Why bother with LLMs when we already have formal planning systems?)

• Formal planning systems provide 
soundness and completeness guarantees

• ..but only with respect to the class of 
problems they can handle

• ..for which there are hand-coded/learned 
models

• It becomes the end user’s responsibility to 
check if their problem falls in the class 
handled by a planning system!

• In contrast, LLMs will always guess 
solutions-–albeit without guarantees

• LLM-Modulo framework is an attempt to 
keep the best of both worlds

• Allow end user to pose any problem; 
• Ensure that the solution being sent out is 

verified by the bank of critics.. 



Recap

• In any of the frameworks that 
involve LLMs, external verifiers play 
a central for ensuring soundness

• LLMs are idea generators without 
guaranteed correctness

• Different prompting strategies help 
increase the chance of sampling 
workable solutions

• LLM-Modulo unified planning 
framework that:
o Summarizes constructive roles that 

LLMs can play
o Includes the minimum set of 

components (e.g., set of critics) that 
ensure the correctness of output 
plans



Tutorial Overview
• Part 1

Introduction; Aims; Perspective on LLMs, Planning, Tutorial Big 
Picture

• Part 2
• Evaluating LLM Planning capabilities in Autonomous mode, 

including effect of
• Prompting strategies (including Chain-of-thought)
• Fine Tuning
• Self Verification

• Understanding the contradictory claims in the literature
• Part 3

• Sane roles of LLMs in Planning (with LLM-Modulo 
frameworks)

• LLMs as heuristics, LLMs as candidate generators
• Back prompting from external verifiers
• LLMs as sources of domain models (with humans in the loop)
• LLMs as format changers/specification elaborators1

• Part 4
• Summary/Lessons



Planning, Scheduling, Reinforcement Learning

• Planning/Sequential Decision Making: Given a set of objectives, come up with a 
course of actions (policy) to achieve them (optimally) 
• Standard planning (and RL) assume the possible actions that the agent can take (and their 

“models”) are given up front
• MacGyver Planning involves coming up with the actions AND sequencing them

• Scheduling: Given a set of tasks/jobs, and a choice of actions for accomplishing 
each of the tasks, assign actions to tasks so there are no undesired interactions 
• Planning is more general than scheduling (One difference is precondition cascading – adding 

an action to achieve something makes you subgoal on the the preconditions of that action..). 
• Planning is P-Space Complete (even for STRIPS) and Scheduling is NP-Hard

• (Model-Based) Reinforcement Learning: The agent acts in a (hopefully ergodic) 
environment and slowly learns the “action models”—and plans with that model. 



LLM’s Can’t Plan; But they can help planning 
in LLM-Modulo Frameworks
LLMs can’t plan in Autonomous Modes 
(and many claims to the contrary are 
questionable)
• LLMs can’t do planning in 

autonomous mode
• CoT, Fine Tuning etc. don’t help 

that much (as they don’t generalize 
enough)

• They can’t improve by self-
verification (since they can’t self-
verify!)

• Having humans iteratively prompt 
is an invitation for Clever Hans 
effect.. 

LLMs can support planning (and expand the 
range of planning tasks) in LLM-Modulo 
Frameworks
• LLMs can be used in conjunction 

with external verifiers and solvers 
in an LLM-Modulo framework 
(with the verifiers doing back 
prompting ) 

• In the LLM-Modulo framework, LLMs 
can play multiple roles

• Guess plans
• Guess domain models
• Help elaborate the problem 

specification
• Translate formats 



LLM’s Can’t Plan; But they can help planning 
in LLM-Modulo Frameworks

LLMs can’t plan in Autonomous Modes 
(and many claims to the contrary are 
questionable)
• LLMs can’t do planning in 

autonomous mode
• CoT, ReACT, Fine Tuning etc. don’t 

help that much (as they don’t 
generalize enough)

• They can’t improve by self-
verification (since they can’t self-
verify!)

• Having humans iteratively prompt 
is an invitation for Clever Hans 
effect.. 

LLMs can support planning (and expand the 
range of planning tasks) in LLM-Modulo 
Frameworks
• LLMs can be used in conjunction 

with external verifiers and solvers 
in an LLM-Modulo framework 
(with the verifiers doing back 
prompting ) 

• In the LLM-Modulo framework, LLMs 
can play multiple roles

• Guess plans
• Guess domain models
• Help elaborate the problem 

specification
• Translate formats 


