
Can LLMs Reason & Plan?

Subbarao Kambhampati

1

Tutorial Slides

https://bit.ly/4dbkkY2

Tutorial Overview
• Part 1

Introduction; Aims; Perspective on LLMs, Planning, Tutorial Big
Picture

• Part 2
• Evaluating LLM Planning capabilities in Autonomous mode,

including effect of
• Prompting strategies (including Chain-of-thought)
• Fine Tuning
• Self Verification

• Understanding the contradictory claims in the literature
• Part 3

• Sane roles of LLMs in Planning (with LLM-Modulo
frameworks)

• LLMs as heuristics, LLMs as candidate generators
• Back prompting from external verifiers
• LLMs as sources of domain models (with humans in the loop)
• LLMs as format changers/specification elaborators1

• Part 4
• Summary/Lessons

Aim of the Tutorial

• Of late, there has been a significant rise in interest in using Large
Language Models in planning tasks

• In the last ~3 years, many papers have been published
• It started with training sequence learning models (specifically transformers)

tabula rasa on plans
• ..and has currently mostly become a sort of ersatz natural science of using huge

pre-trained models to see (and exploit) what planning abilities they may already
possess

• Much of the literature is in NLP and ML conferences.
• There is bidirectional ignorance.

• The authors of the papers often don’t have background in Planning/Reasoning
• and the Planning/Reasoning community is largely unaware of the work on LLMs and

Planning

• This tutorial is an attempt to rectify this ignorance, and to take a critical
look at the role of LLMs in Planning
• (..and should thus be of interest to both populations..)

9

Underlying System Dynamics

Clas
sic

al

Te
mpo

ral

Metr
ic

Metr
ic-

Te
mpo

ral
Non

-de
t

PO
Stoc

ha
sti

c

Traditional Planning

PSP Planning

O
pt

im
iz

at
io

n
M

et
ric

s

Any (feasible) Plan

Shortest plan

Cheapest plan

Highest net-benefit

Multi-objective

[AAAI 2004; ICAPS 2005
 IJCAI 2005; IJCAI 2007]

Model
Complet

en
es

s Full

Approx

Shallow

Model-lite Planning

[AIJ 2017, AIJ 2014, IJCAI 2009,
 IJCAI 2007, AAAI 2007]

FF-HOP [2008]

SAPA [2003] POND [2006]

RL with Simulator is Planning..
Information Gathering;
Information Integration

Research Background..
• We have focused on explainable human-AI

interaction.
• Our setting involves collaborative problem

solving, where the AI agents provide decision
support to the human users in the context of
explicit knowledge sequential decision-
making tasks (such as mission planning)
• In contrast, much work in social robotics and HRI

has focused on tacit knowledge tasks (thus
making explanations mostly moot)

• We assume that the AI agent either learns the
human model or has prior access to it.

• We have developed frameworks for proactive
explanations based on model reconciliation
as well as on-demand foil-based explanations

• We have demonstrated the effectiveness of
our techniques with systematic (IRB
approved) human subject studies

11

ICML 2024 Spotlight
Tuesday 1:30pm

14
Tuesday, 1:30pm;
Hall C4-9, #710

LLM’s Can’t Plan; But they can help planning
in LLM-Modulo Frameworks

LLMs can’t plan in Autonomous Modes
(and many claims to the contrary are
questionable)
• LLMs can’t do planning in

autonomous mode
• CoT, ReACT, Fine Tuning etc. don’t

help that much (as they don’t
generalize enough)

• They can’t improve by self-
verification (since they can’t self-
verify!)

• Having humans iteratively prompt
is an invitation for Clever Hans
effect..

LLMs can support planning (and expand the
range of planning tasks) in LLM-Modulo
Frameworks
• LLMs can be used in conjunction

with external verifiers and solvers
in an LLM-Modulo framework
(with the verifiers doing back
prompting)

• In the LLM-Modulo framework, LLMs
can play multiple roles

• Guess plans
• Guess domain models
• Help elaborate the problem

specification
• Translate formats

LLM

I come to leverage LLMs, not to lament them..

18

.. O judgment! thou art
fled to brutish beasts,

And men (& LLMs) have lost their reason.

A few caveats about the tutorial..
• This is not a dry chronological survey

with a laundry list of papers and their
blurbs

• It is an opinionated perspective on the
state of LLMs and Planning intersection

• Informed by our own work in the area
• Caution: The authors of the papers

brought up in the tutorial may well
bristle at the particular
perspective/pigeonholing of their work

• The aim is not to make up your mind, but to
equip you with a perspective that you may
find useful when you read the literature
yourself (..or do work in the area yourself..)

• This tutorial has largely been tweeted..
• “twittorial?”

21

Perspective on LLMs

23

24

LLMs are N-gram models on STEROIDS
• Text is a long sequence of words (including spaces,

punctuations)
• An n-gram model of language learns to predict n-th word given

the preceding n-1 words
• Probabilistically speaking it learns Pr(Wn |W1...Wn-1)

• Unigram predicts each word independently (no preceding context)
• Bigram predicts each word given the previous word
• A 3001-gram model learns to predict the next word given the previous

3000 words
• ChatGPT is just a 3001-gram model

• The power of an n-gram model depends on
• How much text it trains on
• How big is the n (context) and
• How high-capacity is the function learning Pr(Wn |W1...Wn-1)

• ChatGPT trains on ~600 gigabytes of text on the Web
• It learns a very high capacity function that has 175 billion parameters

• Learns Pr(Wn |W1...Wn-1) for all possible nth words Wn (Vocabulary of the
language, ~50K in English)

..but the count table is Ginormous! (and is VERY
sparse)
• With an n-gram model, you need to keep track of the

conditional distributions for (n-1)-sized prefixes.
• With a vocabulary size |V| (~ 50000), there are |V|n-1

different prefixes!!
• Easy for unigram (1 prefix), bigram (|V| prefixes) and trigram (|V|2

prefixes)
• For ChatGPT’s 3001-gram model, with a 50,000 word vocabulary, we

are looking at a whopping (50000)3000 conditional distributions
• (and most entries will be zero—as the chance of seeing the same 3000-word

sequence again is vanishingly small!)

• What LLMs do is to essentially compress/approximate this
ginormous count table with a function
• That is while high capacity (176 billion weights!) is still vanishingly

small compared to the ginormous count ((50000)3000 >> 176 billion or
a trillion!)

• ..and oh by the way, the compressed function winds up having fewer
zeros
• It approximates both the non-zero counts and zero counts, so..
• GENERALIZATION!!!

• In essence the function learns to “abstract” and “cluster” over
“similar” sequences

Transformers are a
(not particularly principled)
parallelization of the
recurrent neural networks

(graphic by James Campbell)

Hallucination and
“Approximate Retrieval”

• LLMs are n-gram models, and thus do
not index and retrieve

• All they ever do is hallucinate
completions to the prompt

• Such that the completion is in the same
distribution as the text they have been
trained on

• Prompt engineering doesn’t change
this!

• Whether or not changing the prompt
gives the ”factual completion” depends
on the prompter knowing enough to tell
whether the given answer is the accurate
one.

LLMs and Approximate Retrieval

• Retrieval in Databases: Given a query (key),
retrieve the records that exactly match the
query

• Retrieval in IR systems (e.g. Google): Given a
(textual) query, retrieve all the records that are
similar to the query

• The records themselves are not modified in any way
• Approximate retrieval in LLMs: Given a (textual)

query (prompt), generate the most likely
completion

• Note that the completion is NOT guaranteed to be
one of the stored records

• This generative creativity is the boon/bane of LLMs

LLM’s Approximate Retrieval upends our
intuitions re: their guesses

Computational Complexity of the underlying
task has no bearing on LLM guesses
• The underlying complexity of the problem has

no impact on the LLM’s ability to guess the
answer
• They are just as fast in guessing answers to

undecidable questions as they are in guessing
answers to constant time questions

• ..and in neither case do they have any guarantees
about their guess

• Corollary: The usual problem characteristic—
Stochasticity, Partial Observability etc. — that
make it computationally harder don’t matter
in LLM’s ability to guess

• After all, they take constant time per token
• ..and no, asking LLMs to “pause” doesn’t change

any of this!

Background Knowledge is easier for LLMs
(approximately..)
• Much has been made in traditional AI of the

difficulty of getting relevant knowledge.
• Having been trained on web-scale collective

knowledge of humanity, LLMs are remarkably
better at this

• They are pretty good (with no guarantees—
and some brittleness) at
• Commonsense
• Domain knowledge
• Theory of Mind
• Analogies

• (In addition, of course, to linguistic abilities
such as summarization, elaboration, format
change etc.)

30

Perspective on Planning

Planning, Scheduling, Reinforcement Learning

• Planning/Sequential Decision Making: Given a set of objectives, come up with a
course of actions (policy) to achieve them (optimally)
• Standard planning (and RL) assume the possible actions that the agent can take (and their

“models”) are given up front
• MacGyver Planning involves coming up with the actions AND sequencing them

• Scheduling: Given a set of tasks/jobs, and a choice of actions for accomplishing
each of the tasks, assign actions to tasks so there are no undesired interactions
• Planning is more general than scheduling (One difference is precondition cascading – adding

an action to achieve something makes you subgoal on the the preconditions of that action..).
• Planning is P-Space Complete (even for STRIPS) and Scheduling is NP-Hard

• (Model-Based) Reinforcement Learning: The agent acts in a (hopefully ergodic)
environment and slowly learns the “action models”—and plans with that model.

Ergodicity, Robustness & Quality/Optimality
• An environment is ergodic if the agent can reach any state of an environment from any

other state (with positive probability). As a corollary, in non-ergodic environments, an
agent can “get stuck” in some (group of) states

• Planning is most critical in non-ergodic environments!
• Also, if the agent is interacting with a resettable simulator rather than the real world, it can

effectively mask the non-ergodicity of the real world.
• Robustness of a plan is (informally) the probability that it achieves its objectives (without

failing/getting stuck)
• In deterministic environments, “correctness” is a binary measure of robustness
• In non-ergodic environments, a high degree of robustness is critical. Conversely in ergodic ones

(or when you are working with simulators), you can “blunder on” so to say..
• Top-k correctness is not sufficient in non-ergodic environments..

• While robustness is a measure of correctness, Quality of a plan is more about its style (as
desired by the agent or the problem specifier)

• Quality captures intangibles such as implicit (unstated) preferences
• For example, a travel plan to go from Phoenix to Vienna by going part way by walk, part way by bike, part way

by car etc. etc. can be correct, but may not conform to the implicit preferences
• Interestingly, LLMs, trained as they are on web-scale corpora of our collective output, tend to capture these

style preferences better (at least as compared to any other alternate GOFAI approaches!)

World Models, Verifiers & Simulators

• The way a planning agent verifies the robustness of the course of actions it
synthesizes—without having to execute it in the world and incur costly
failures–is to verify the plan with respect to some model of the world

• This model can be something externally supplied
• PDDL Models; SMT Models etc.
• Domain Simulators

• (Note that simulators don’t fall from the sky; they are written by someone!)
• Or learned directly from the agent by trial and error over the real world!

• As is the case in Reinforcement Learning

• The big unresolved question with LLMs is to what extent they have a robust
internal model of the world

• Since if they do, they can guess a plan, self-verify/critique, and loop..

So can LLMs do Planning?

Little a priori reason to believe that LLMs can reason/plan

42

On the other hand, the literature seems rife
with claims of LLM planning abilities..

43

If block C is on top of block A, and block B is separately
on the table, can you tell me how I can make a
stack of blocks with block A on top of block B
and block B on top of block C, but without moving block C?

Hallucinating the Spec Hallucinating Physics

Hallucinating Goal

GPT4-o

46

[All these are on instances that are solvable;
things will be much worse if we include unsolvable instances!]

Why are LLMs claimed to do
Reasoning/Planning?
Approximate omniscience of LLMs
allows them to fake reasoning by
retrieval
• Memory reduces the need to reason from

first principles.
• “Why are manhole covers round?”

• The training corpus is the entire web, and
it is hard for anyone to know what it
already contained

• The web corpus contains both base facts
and deductive closure facts
• Retrieval of the later can be mistaken for

reasoning

• Fine tuning and training from synthetic
data further muddy waters by deliberately
converting reasoning into approximate
retrieval
• Think compiling someone’s system 2 to your

system 1

LLMs may approximate
reasoning with pattern finding
• Think of trying to predict the

satisfiability of a random 3-SAT
instance

• Suppose you train a learner with
a gazillion random 3-SAT
instances

• Will it discover Davis-Putnam
procedure or is it more likely to
discover the sharp phase
transition?
• Easier to find latent variables

corresponding to
#clauses/#variables, and learn a
rule to classify instances that way

• See also [Zhang et. al. IJCAI
2023]

Style vs. Content
Form vs. Factuality
• LLMs (and Generative AI in general) capture

the distribution of the data they are trained
on

• Style is a distributional property
• ..and LLMs are able to learn this (they have been

called the vibe machines..)
• Correctness/factuality is an instance level

property
• ..LLMs can’t guarantee this

• Civilizationally, we had always thought style is
harder than content

• And even assumed that good style implies good
content!

• LLMs (and GenAI in general) turn this intuition on
its head!

LLM’s Can’t Plan; But they can help planning
in LLM-Modulo Frameworks

LLMs can’t plan in Autonomous Modes
(and many claims to the contrary are
questionable)
• LLMs can’t do planning in

autonomous mode
• CoT, ReACT, Fine Tuning etc. don’t

help that much (as they don’t
generalize enough)

• They can’t improve by self-
verification (since they can’t self-
verify!)

• Having humans iteratively prompt
is an invitation for Clever Hans
effect..

LLMs can support planning (and expand the
range of planning tasks) in LLM-Modulo
Frameworks
• LLMs can be used in conjunction

with external verifiers and solvers
in an LLM-Modulo framework
(with the verifiers doing back
prompting)

• In the LLM-Modulo framework, LLMs
can play multiple roles

• Guess plans
• Guess domain models
• Help elaborate the problem

specification
• Translate formats

LLM’s Can’t Plan; But they can help planning
in LLM-Modulo Frameworks

LLMs can’t plan in Autonomous Modes
(and many claims to the contrary are
questionable)
• LLMs can’t do planning in

autonomous mode
• CoT, ReACT, Fine Tuning etc. don’t

help that much (as they don’t
generalize enough)

• They can’t improve by self-
verification (since they can’t self-
verify!)

• Having humans iteratively prompt
is an invitation for Clever Hans
effect..

LLMs can support planning (and expand the
range of planning tasks) in LLM-Modulo
Frameworks
• LLMs can be used in conjunction

with external verifiers and solvers
in an LLM-Modulo framework
(with the verifiers doing back
prompting)

• In the LLM-Modulo framework, LLMs
can play multiple roles

• Guess plans
• Guess domain models
• Help elaborate the problem

specification
• Translate formats

ICML 2024 Spotlight
Tuesday 1:30pm

Tuesday, 1:30pm;
Hall C4-9, #710

Tutorial Overview
• Part 1

Introduction; Aims; Perspective on LLMs, Planning, Tutorial Big
Picture

• Part 2
• Evaluating LLM Planning capabilities in Autonomous mode,

including effect of
• Prompting strategies (including Chain-of-thought)
• Fine Tuning
• Self Verification

• Understanding the contradictory claims in the literature
• Part 3

• Sane roles of LLMs in Planning (with LLM-Modulo
frameworks)

• LLMs as heuristics, LLMs as candidate generators
• Back prompting from external verifiers
• LLMs as sources of domain models (with humans in the loop)
• LLMs as format changers/specification elaborators1

• Part 4
• Summary/Lessons

LLM’s Can’t Plan; But they can help planning
in LLM-Modulo Frameworks

LLMs can’t plan in Autonomous Modes
(and many claims to the contrary are
questionable)
• LLMs can’t do planning in

autonomous mode
• CoT, ReACT, Fine Tuning etc. don’t

help that much (as they don’t
generalize enough)

• They can’t improve by self-
verification (since they can’t self-
verify!)

• Having humans iteratively prompt
is an invitation for Clever Hans
effect..

LLMs can support planning (and expand the
range of planning tasks) in LLM-Modulo
Frameworks
• LLMs can be used in conjunction

with external verifiers and solvers
in an LLM-Modulo framework
(with the verifiers doing back
prompting)

• In the LLM-Modulo framework, LLMs
can play multiple roles

• Guess plans
• Guess domain models
• Help elaborate the problem

specification
• Translate formats

69

70

NeurIPS 22 FMDM Workshop

71

Will GPT4’s AGI Sparks help?

72

Using LLM’s to Generate Plans
Autonomously

73

Evaluated a variety of prompting strategies
 including zero shot and one shot
 natural language and PDDL prompting

Plan Generation Results

[All these are on instances that are solvable;
things will be much worse if we include unsolvable instances!]

Are LLMs retrieving based on
names or are they reasoning?

What if GPT4 is basically bringing to bear its background knowledge
about blocks world instead of just depending on the domain model?

77

I am playing with a set of blocks where I need to arrange the blocks into stacks. Here are the
actions I can do

 Pick up a block
 Unstack a block from on top of another block
 Put down a block
 Stack a block on top of another block

 I have the following restrictions on my actions:
 I can only pick up or unstack one block at a time.
 I can only pick up or unstack a block if my hand is empty.
 I can only pick up a block if the block is on the table and the block is clear. A block is clear if the
block has no other blocks on top of it and if the block is not picked up.
 I can only unstack a block from on top of another block if the block I am unstacking was really on
top of the other block.
 I can only unstack a block from on top of another block if the block I am unstacking is clear.
 Once I pick up or unstack a block, I am holding the block.
 I can only put down a block that I am holding.
 I can only stack a block on top of another block if I am holding the block being stacked.
 I can only stack a block on top of another block if the block onto which I am stacking the block is
clear.
 Once I put down or stack a block, my hand becomes empty.

I am playing with a set of objects. Here are the actions I can do

 Attack object
 Feast object from another object
 Succumb object
 Overcome object from another object

I have the following restrictions on my actions:
 To perform Attack action, the following facts need to be true: Province object, Planet object, Harmony
 Once Attack action is performed the following facts will be true: Pain object
 Once Attack action is performed the following facts will be false: Province object, Planet object, Harmony
 To perform Succumb action, the following facts need to be true: Pain object
 Once Succumb action is performed the following facts will be true: Province object, Planet object, Harmony
 Once Succumb action is performed the following facts will be false: Pain object.
 To perform Overcome action, the following needs to be true: Province other object, Pain object
 Once Overcome action is performed the following will be true: Harmony, Province object, Object Craves other object
 Once Overcome action is performed the following will be false: Province other object, Pain object
 To perform Feast action, the following needs to be true: Object Craves other object, Province object, Harmony.
 Once Feast action is performed the following will be true: Pain object, Province other object
 Once Feast action is performed the following will be false:, Object Craves other object, Province object, Harmony

Original Blocksworld Mystery Blocksworld

Mystery blocksworld domain
A block by any other name
 would stack as strong
 --The Bard

Plan Generation Results on Mystery BW

Plan Generation Results on Mystery BW

81

82

I am playing with a set of objects. Here are the actions I can do

 Attack object
 Feast object from another object
 Succumb object
 Overcome object from another object

I have the following restrictions on my actions:
 To perform Attack action, the following facts need to be true: Province object, Planet object,
Harmony
 Once Attack action is performed the following facts will be true: Pain object
 Once Attack action is performed the following facts will be false: Province object, Planet
object, Harmony
 To perform Succumb action, the following facts need to be true: Pain object
 Once Succumb action is performed the following facts will be true: Province object, Planet
object, Harmony
 Once Succumb action is performed the following facts will be false: Pain object.
 To perform Overcome action, the following needs to be true: Province other object, Pain
object
 Once Overcome action is performed the following will be true: Harmony, Province object,
Object Craves other object
 Once Overcome action is performed the following will be false: Province other object, Pain
object
 To perform Feast action, the following needs to be true: Object Craves other object, Province
object, Harmony.
 Once Feast action is performed the following will be true: Pain object, Province other object
 Once Feast action is performed the following will be false:, Object Craves other object,
Province object, Harmony

Mystery Blocksworld Mystery Blocksworld with Mapping

Making Mystery Blocks world easier by providing the
mapping to Blocks world

I am playing with a set of objects. Here are the actions I can do
 Attack object

Feast object from another object
Succumb object
Overcome object from another object

I have the following restrictions on my actions:
To perform Attack action, the following facts need to be true: Province object, Planet object, Harmony.
Once Attack action is performed the following facts will be true: Pain object.
Once Attack action is performed the following facts will be false: Province object, Planet object, Harmony.
To perform Succumb action, the following facts need to be true: Pain object.
Once Succumb action is performed the following facts will be true: Province object, Planet object, Harmony.
Once Succumb action is performed the following facts will be false: Pain object.
To perform Overcome action, the following needs to be true: Province other object, Pain object.
Once Overcome action is performed the following will be true: Harmony, Province object, Object Craves other object.
Once Overcome action is performed the following will be false: Province other object, Pain object.
To perform Feast action, the following needs to be true: Object Craves other object, Province object, Harmony.
Once Feast action is performed the following will be true: Pain object, Province other object.
Once Feast action is performed the following will be false:, Object Craves other object, Province object, Harmony.

You will be given a set of initial conditions and a goal condition. To solve the problem, you will have to tell me which actions to take and in which
order in order to achieve the goal.

Please provide your answers using the above terminology. However, you may find it helpful to translate the above description into a common-
sense format while working out your solution. Just remember to translate it back later!
Instead of thinking in terms of "objects", think in terms of different alphabet blocks (block A, block B, etc.) which you are stacking (using just one
hand) in towers on a table.

Then the "facts" that are true or false at a given time are really facts about the blocks and the hand:
 "Province object a" just means that "block A is clear" or, equivalently, "nothing is on top of block A"
 "Planet object a" is another way of saying "block A is on the table"
 "Harmony" is a codeword for "my hand isn't holding anything"
 "Pain object a" = "the hand is holding block A"
 "object a Craves object b" translates to "block A is on top of block B"

And the "actions" can be seen as stacking and unstacking of blocks (where the restrictions stop us from picking up the bottom block in a tower or
holding more than one block in the hand at a time):
 "Attack object a" translates to "pick up block A directly from the table"
 "Feast object a from object b" translates to "pick up block A from directly on top of block B"
 "Succumb object a" translates to "put block A directly on the table"
 "Overcome object a from object b" translates to "put block A directly on top of block B"

If you do use this framing, make sure to remember to translate back into the original terms.

Making Mystery blocksworld easier by providing the
mapping to blocksworld: Doesn't help!

Domain Method GPT-4 Instruct-GPT3.5

Blocksworld One-shot 206/600 (34.3%) 54/600 (9%)

Zero-shot 210/600 (34.6%) -

Mystery Blocksworld
(Deceptive)

One-shot 26/600 (4.3%) 4/600 (0.6%)

Zero-shot 1/600 (0.16%) -

Mystery Blocksworld
(Deceptive) with mapping
provided

One-shot 60/600 (10%) 5/600 (0.8%)

Zero-shot - -

One would expect the
performance to be similar
to that of blocksworld but

that isn’t the case!!

Plan Writing Plan Translation

Human Baseline for Mystery Blocksworld

• Preliminary study – 5 participants
• Asked to come up with a plan for one instance

from Mystery Blocksworld (chosen from a set
of 100 instances)

• Two phases of interaction
• Plan writing phase – Participants write up

plans
• Plan translation phase – Participants

translate already written plans
• First for an example then the actual instance
• The human planners were incentivized to

solve these cognitive dissonance problems.
• If they came up with a successful plan, the

participants were rewarded with an extra bonus
of $15 on top of the $10 base reward.

All the 5 (100%) human planners
successfully came up with a (valid) plan.

Plan Writing Plan Translation

Human Baseline for Mystery Blocksworld
• Preliminary study – 5 participants
• Asked to come up with a plan for one instance

from Mystery Blocksworld (chosen from a set
of 100 instances)

• Two phases of interaction
• Plan writing phase – Participants write up

plans
• Plan translation phase – Participants

translate already written plans
• First for an example then the actual instance
• The human planners were incentivized to

solve these cognitive dissonance problems.
• If they came up with a successful plan, the

participants were rewarded with an extra bonus
of $15 on top of the $10 base reward.

All the 5 (100%) human planners
successfully came up with a (valid) plan.

Humans have a System 2.

They don’t often want to use it.

But we can incentivize them to use it

92

NeurIPS 2023
 Spotlight

NeurIPS 2023

2023 is Ancient History.
How are the latest LLMs faring?

[All these are on instances that are solvable;
things will be much worse if we include unsolvable instances!]

How about Chain of
Thought Prompting?

99

Chain of Thought Prompting

• Chain of Thought prompting (CoT) has become a bit of a religion
among LLM aficionados.

• The basic idea of CoT is to give the LLM a couple of examples
showing how to solve the problem—with the expectation that it
figures out how to solve other instances

• It is clear (and pretty non-controversial) that CoT
involves giving additional task/problem specific knowledge.
The question is how general this problem specific knowledge
needs to be.

• The more general the knowledge, the easier it is for the humans to
provide it; but higher the degree of reasoning LLM has to do
to operationalize it.

• Let’s see how/if CoT helps..

Four CoT Setups with Increasing
Specialization
• Setup 1: Domain-independent CoT

• Gives progression proof verification
• Setup 2: Blocks World Specific [Single

goal stack]
• CoT teaches the heuristic of putting all

blocks on table and construct the goal stack
• (known to be within 2x optimal length)

• Setup 3: Specializes 2 by ensuring all
blocks are on table to begin with

• Setup 4: Specialized 3 by ensuring that
the goal stack is always in lexicographic
order

Cost of giving advise for the humans increases from 1 to 4
The need for operationalization of the advice by LLM reduces from 1 to 4

CoT’s Failure to Generalize

CoT’s Failure to Generalize goes beyond planning

Confirmation from one of the original authors of CoT
107

[Dale Schuurmans @ICAPS 2024 Keynote]

ReAct Style
Prompting?

110

ReAct Exhibits Similar Inability to generalize

Base
Replace object

names to
synonyms

Example Goal
location !=
Query Goal

Location

Some examples
of different task

All Examples of
different task

Examples of
each of the

tasks

Unrolling :
Example task is

extended in
query

Subtask :
Example task
has query as

subtask

3.5-turbo 25 1.6 30 12 1.6 14 - -

3.5-instruct 54 47 42 18 5.2 Context Window
Too Short

Drops from 52%
to 9%

Drops from 18%
to 0%

Task success rate %, average across 6 tasks : pick, clean, heat, cool, examine, puttwo.
See the gradual drop in performance!

Example 1

Example
from Clean

Example 2

Example
from Heat

Your task is
to : Put
apple in the
cabinet.

+
Input to LLM

ReAct System and Perturbation to Input Examples

• Requires strong (near syntactic) similarity
of example instance to the problem seems
to be necessary for ReACT to use the
examples!

• Requiring instance-specific examples

• (Our studies also question ReAct’s claims
about the effectiveness of “Think tag”)

What if we finetuned LLMs with successful
plans in the domain?
• What if we further finetuned the next word

(action) completer with a bunch of correct plans
in the domain?

• This is basically the supervised finetuning stage LLMs
currently use to make them better at specific domains
(e.g. Bloomberg's FinGPT..)

• We prepared a dataset comprising the initial
state, goal state, and the respective plan for
1,000 distinct Blocksworld instances.

• By using the default hyperparameters provided
by OpenAI and an 80-20 train-validation data
split, we carried out the fine-tuning process.

• Finetuned-GPT3 could only solve around 20%
(122 out of 600) of the test set.

80%

20%

Instances correct by
Finetuned GPT-3

Incorrect Correct

Solving Blocksworld: GoFAI vs LLaMAI
GOFAI
• Get the domain model
• Get a combinatorial search planner
• Have the planner solve the problem

LLaMAI
• Get the domain model
• Get a combinatorial search planner
• Make a trillion Blocksworld problems
• Make the planner solve them all
• Finetune GPT4 with the problems and solutions

• (Alternately, index the trillion solutions in a vector DB
for later RAG)

• Have the finetuned/RAG’ed GPT4 guess the
solution for the given problem
• (Ensure the correctness of the guess with an external

validator/Simulator working LLM-Modulo)

• If, by luck, it guesses right, write a NeurIPS/ICLR
paper about the effectiveness of synthetic data

In vs. Out of Distribution is irrelevant
The question is whether LLMs can answer from
deductive closure
• Finetuning helps convert reasoning

into approximate retrieval for a
specific population
• By training with a part of the

deductive closure of the “knowledge”
that LLMs already may have from pre-
training

• There is no reason to believe that
this actually helps LLMs “compute”
other parts of the deductive
closure..

Finetuning with
Derivational Traces

• A new twist to fine tuning is to finetune with
both solution and the “search/derivational
trace” that lead to that solution

• Supplied of course by the traditional (symbolic)
solver

• At inference time, LLM is asked to output
both a search trace and a solution plan

• No actual causal connection between the trace
and the plan!

• The question is whether this extended fine
tuning generalizes any better or if it is still
LLaMAI..

• Little reason to believe it generalizes
• The evaluation in these papers(*) tends to be

quite questionable
• Claims about “may be optimal” (and trace

optimal!)
• Claims about extending the solving horizon of the

base solver

[Lehnert et. al., 2024; Gandhi et. al. 2024]

Can LLMs self-critique?
The idea that critiquing/verification is easier than generation holds for algorithms
that do systematic search.. But not for LLMs that are essentially doing approximate
retrieval..

124

LLMs’ self-critiquing abilities

• Three reasoning domains
• Game of 24, Graph Coloring,

Planning

• LLM+LLM System
• An LLM that generates

candidate solutions & an LLM
that verifies and critiques it

There exist formal notions of correctness for these domains that allow us
to automatically check both the (binary) verification and the critique
generated by LLMs.

Such verification is not possible in style-based/qualitative tasks (Eg:
writing a good essay, good screenplay etc)

LLMs’ self-critiquing abilities

• Standard Prompting
• A single query is sent to the LLM

and whatever it outputs is
treated as the final answer

• When this is augmented with
the self-critique setup, the
performance decreases!
• As the number of back prompts

increases, this kind of self-
correction consistently
degrades output quality.

LLMs’ self-critiquing abilities

• If the LLM were a good verifier, then it
would recognize instances which are
already right, and thus--at worst--
maintain the baseline score.

• The LLM-as-verifier ranges in accuracy
depending on the domain, but it
maintains significant false negative
rates.
• The LLM essentially labels valid solutions

to be invalid.
• Also, the solution generator LLM isn't

sensitive to varying levels of feedback.
• In fact, sampling the LLM multiple (k)

times for an instance, with a sound
verifier in the loop, provides better
performance.
• Connection to Tree of Thoughts..

Fine Tuning the Pre-trained
model to be both a generator
and verifier
• Start with GPT-2
• [Finetuned generator:] Fine tune GPT-

2 as a generator on a corpus of blocks
world plans
• [Finetuned Verifier:] Use the same

corpus to train a verifier (based off of
GPT-2)
• Do Verifier-augmented generation

• Sort of similar to the back-prompting
with VAL (except that the verifier here is
also learned from the same corpus)

128

Why the divide in self-critiquing claims?
• Several other researchers report results that seem to

indicate that some form of self-critiquing mode seems to
help solving mode. Why?

• Explicit vs tacit knowledge tasks
• It is harder to establish the (poor) quality of LLM critiques in

tacit knowledge tasks (like creative writing)
• In explicit knowledge tasks (like planning, CSP etc) both the

verification and critique can be evaluated formally.
• Approximate retrieval on corrections data informing

approximate retrieval on correct data.
• For most common use domains (e.g. mine craft, grade school

word problems), the training corpora not only contain solution
(correct) data, but also corrections data (i.e., the types of
normal errors to be found in incorrect solutions).

Style vs. Content
Form vs. Factuality
• LLMs (and Generative AI in general) capture

the distribution of the data they are trained
on

• Style is a distributional property
• ..and LLMs are able to learn this (they have been

called the vibe machines..)
• Correctness/factuality is an instance level

property
• ..LLMs can’t guarantee this

• Civilizationally, we had always thought style is
harder than content

• And even assumed that good style implies good
content!

• LLMs (and GenAI in general) turn this intuition on
its head!

LLMs as Behavior Critics to catch undesirable robot behaviors
Can LLMs capture human preferences in embodied AI tasks?

• It may be intractable to construct formal
verifiers for tasks that have a wide scope.

• LLMs or VLMs can be a proxy of common
human preferences and undesirability

• We evaluated GPT-4V with videos of
diverse suboptimal behaviors

• GPT-4V critic catches 69% of undesirable
behaviors (recall rate) while only 62% of
the critiques are valid (precision rate)

• Results confirm the broadness of GPT-4V's
knowledge & the subpar precision of its
outputs

"Task Success" is not Enough: Investigating the Use of Video-
Language Models as Behavior Critics for Catching
Undesirable Agent Behaviors
Lin Guan*, Yifan Zhou*, Yantian Zha, Heni Ben Amor,
Subbarao Kambhampati. COLM 2024. (to appear)

LLMs as Behavior Critics to catch undesirable robot behaviors
Can LLMs capture human preferences in embodied AI tasks?

• It may be intractable to construct formal
verifiers for tasks that have a wide scope.

• LLMs or VLMs can be a proxy of common
human preferences and undesirability

• We evaluated GPT-4V with videos of
diverse suboptimal behaviors

• GPT-4V critic catches 69% of undesirable
behaviors (recall rate) while only 62% of
the critiques are valid (precision rate)

• Results confirm the broadness of GPT-4V's
knowledge & the subpar precision of its
outputs

"Task Success" is not Enough: Investigating the Use of Video-
Language Models as Behavior Critics for Catching
Undesirable Agent Behaviors
Lin Guan*, Yifan Zhou*, Yantian Zha, Heni Ben Amor,
Subbarao Kambhampati. COLM 2024. (to appear)

137

On the other hand, the literature seems rife
with claims of LLM planning abilities..

138

What Planning is & What LLMs are good at..

Planning (as used in common parlance)
involves
• Planning knowledge

• Actions, preconditions and effects
• General Recipes: Task reduction schemata (e.g.

HTN planning)
• Old examples: Case libraries

• Plan generation/verification techniques
• Interaction analysis/resolution
• Plan merging techniques
• Plan modification techniques

Contrasting what AI Planning & LLMs
bring to the table
• AI Planning (aka ICAPS planning) assumes that

the planning knowledge is given up front, and
focuses generation and verification
techniques
• Emphasis on guaranteeing

completeness/correctness of the plans w.r.t. the
model

• By and large the common paradigm—although there
have been occasional mutinies

• Model-Lite Planning approaches

• LLMs, trained as they are on everything ever
put on the web, have a kind of "approximate
omniscience". This helps them spit out
actions, recipes, or cases
• But they lack the ability to stitch the recipes

together to ensure that there is no actually
interaction free!

142

LLMs accept any planning problem—even if it not
 expressible in PDDL standard—and they don’t give
any correctness guarantees.

AI Planners will give formal guarantees, but only
 accept problems expressible in their language.

Are LLMs better at planning if there are no
subgoal interactions?

143

• Relaxed assessment of GPT-4 plans
• Delete relaxation – Ignoring the delete conditions of all actions
• Precondition relaxation – Ignoring the preconditions of all actions

• Even in the most lenient assessment mode (Delete+Precondition relaxation)
there are still plans (~25%) that are not goal reaching.

Relaxations improve
Compositionality via
Retrieval..

Then how come LLMs are trumpeted as
doing planning?
• Most cases where LLMs are

claimed to generate executable
plans, on closer examination, turn
out to be cases where LLMs are
getting by with the “generate
approximate recipes” step

• Generate approximate recipes/cases
(for common sense domains)

• e.g. wedding plans
• Convert tasks into (approximate) task

reduction schemas
• Perhaps written out as "programs"

(e.g. Code as Policies..)
• (SHOP2 schemas were already pseudo

lisp code—if only written by humans)
• LLM-HTN and LLM-CBR differ from HTN and CBR

in that they generate the task-reduction schemas
or the cases on demand

• And the interaction
resolution/search part is

• either pushed under the rug
• Consider "high level" plans like

"wedding plans" for which there are
enough generic recipes available in the
training set, and are described at a
sufficiently high level of abstraction, and
the execution issues are left to the user’s
imagination

• E.g. n-stack blocks world problems with n-
1 blocks in the right configuration already!

• or has been pawed off to
human prompters who are required to
give "hints" to the LLM to come up
with plan variants that are (more)
correct

• Note that here the human is
essentially playing the role of an external
verifier & critic

• In cases where the humans are end
users not well versed with all details of
the domain, they can be faulty verifiers

144There is also the “Confusing acting with planning” issue

Approximate retrieval of Plans

Planning

ReAct, Inner Monologue, ToT Examples

145

ReAct Inner Monologue

Tree of Thoughts

Most of the ‘planning’ problems that
these works look at don’t require

interaction resolution, or they
depend on explicit external

help/programming to handle the
interactions.

146

Back-Prompting by Humans
(..and the Clever Hans peril..)

• Humans doing the verification & giving helpful
prompts to the LLM)
• Okay when the humans know the domain and can

correct the plan (with some guarantees)
• Okay for "this essay looks good enough" kind of critiquing
• But for planning, with end users not aware of the domain

physics, the plans that humans are happy with may still not
be actually executable

• When humans know the correct answer (plan) there
is also the very significant possibility of Clever Hans
effect
• Humans unwittingly/unknowingly/non-deliberately giving

important hints

149

150

“The answer is in the Top-K Plans”

• A version of the “Clever Hans”
thinking is to say that if you ask LLM
to output many plans, then the
“correct plan” is somewhere in the
top-k

• But this still leaves the question of
who is picking the winning plan
from top-k.

• Ultimately, this claim is really about
LLM being a good generator-–and
an external tester is still needed

• An interesting question is under what
conditions is an LLM not a good
enough generator

Doesn’t Co-Pilot for Code show that LLMs
can Plan?
• Co-Pilot has humans in the loop

• The incremental interpreters can direct
people’s attention to syntax errors

• Github and General Web are quite
different as training corpora
• People don’t put their non-working

code on github; general web has
4Chan!

• Most effective approaches for
automated programming with LLMs
use LLM-Modulo approaches (with
Unit Tests as critics)

Acting vs. Planning: The Agentic LLM Goldrush

• LLMs can obviously be used to invoke external
actions (“function calls”)

• Think “Webservice Orchestration Frameworks”
which allow you to write your own “agents”
• LLM as the core controller of external components

• Which in turn is controlled by human prompting
• Safety issues include both safety of the outside

components and safety of the prompt-based control of
LLMs

• LLMs can’t themselves be expected to ”plan”
this orchestration!
• The actual orchestration is done with human help

(“language” programming)
• The “planning” part is basically pipelining the right

external services – and is done with human help
• One core external service they all use is “external

memory” to write into and retrieve
• Because LLMs themselves have no memory beyond their

context window.
• Think L2/L3 rather than L5 automation..

Weng, Lilian. (Jun 2023). LLM-powered Autonomous Agents". Lil’Log. https://lilianweng.github.io/posts/2023-06-23-agent/.

Allowing LLMs to make their own “plans” to invoke
 external services would be rife with safety concerns!

 (Think having a gun lying around in a home with a toddler..)

The Agentification

Tutorial Overview
• Part 1

Introduction; Aims; Perspective on LLMs, Planning, Tutorial Big
Picture

• Part 2
• Evaluating LLM Planning capabilities in Autonomous mode,

including effect of
• Prompting strategies (including Chain-of-thought)
• Fine Tuning
• Self Verification

• Understanding the contradictory claims in the literature
• Part 3

• Sane roles of LLMs in Planning (with LLM-Modulo
frameworks)

• LLMs as heuristics, LLMs as candidate generators
• Back prompting from external verifiers
• LLMs as sources of domain models (with humans in the loop)
• LLMs as format changers/specification elaborators1

• Part 4
• Summary/Lessons

LLMs can play multiple roles in
Supporting Planning!

ICML 2024 Spotlight

LLMs as Idea Generators
(“Muses”)
• “I get many ideas, and I throw away the bad

ones”
• Linus Pauling on how he managed to get TWO Nobels

164

LLMs as Approximate Knowledge Sources

165

Avenging Polanyi’s Revenge
Everybody was all against knowledge-based systems

But now everyone is effectively doing knowledge-based systems!

Planning in the age of LLMs
For far too long, there has been a race to
bottom on the level of knowledge given to
planners
• Planning started knowledge-based

• Remember, Noah was an HTN planner, y’all!
• ..and fell to ground propositional level –because it

seemed too unseemly to depend on humans for these
knowledge-based models

• And focus on doing interaction resolution from first
principles

• RL was worse—propositional was too high-level a
knowledge to ask from humans
• They wanted to say they will learn it all

• And not have humans give any knowledge about the
domain. They just wanted “SIMULATORS”,

• ..and it took for ever to do anything—even with
simulators

• RL is way darned too inefficient, y’all

LLMs change that—rather drastically!

• LLM makes it easy to get knowledge without
making it look like we are inconveniencing any
specific human
• We are just stealing everything humans told each

other—is all.

• ..as long as you relax the requirement of the
knowledge actually being “correct”
• ..then again, do you really believe that huge human-

written models are correct?

• So the million dollar qn is: How would you do
planning if you have some doddering know-it-all
ready to give you any kind of knowledge
• “Actions and effects”
• “Task reduction schemas”
• “Cases”

• Time for LLM-HTN, LLM-CBR etc. paradigms
• Or even a resurrection of the model-lite planning

dream..

166

31%
69%

With LLM assistance

Invalid Valid

20%

80%

Without LLM assistance

Invalid Valid

LLMs Assisting
Human Planners

• Similar Study with two individual groups
• With LLM assistance – presented LLM plan as plan

suggestion
• Without LLM assistance

• With LLM assistance: 48 human planners, 33
(~69%) of them came up with valid plan.

• Without LLM assistance: 49 human planners,
39 (~80%) of them came up with valid plan.

169

Interface at plan writing phase with
assistance from the LLMNo statistical significance in the accuracy, time-taken or the

cognitive load between the two groups

LLMs as heuristics
to sound planners

Connection to Case based Planning

• Note that there is an interesting parallel
between this and case based planning
systems—which retrieve an old plan
most relevant to the current problem
and try to modify the plan

• Modification by domain-specific rules [e.g.
CHEF]

• Modification by domain-independent
planners [e.g. PRIAR]

• LLM-CBR is different in that the case is
generated (“stitched”) on demand

• ..and LPG is in charge of correcting it
• LLM + a RAG of old plans is a related

promising strategy..

171

Modifying LLM Next Action Generator
(SayCan)
• SayCan - LLMs are used as heuristics

• Given:
• A high-level instruction i
• A set of low-level skills Π
• Language description 𝑙!	for each of the skills 𝜋 ∈ Π

• LLM – provides 𝑝(𝑙! 𝑖 - probability that 𝑙! makes
progress towards i.

• LLMs score a set of pre-determined skills
• The scoring is done by accessing the inner log

probabilities generated by the LLM.

• Robot - provides 𝑝(𝑐! 𝑠, 𝑙! - probability that 𝜋
described by 𝑙!	can be completed in state s.

Ahn, M., Brohan, A., Brown, N., Chebotar, Y., Cortes, O., David, B., ... & Zeng, A. (2022). Do as i can, not as i say: Grounding language in robotic affordances. arXiv preprint
arXiv:2204.01691.

LLM-Modulo: a principled framework for Planning
wherein LLMs can play multiple constructive roles

173

LLM-Modulo Framework: Summary
• LLM-Modulo is a generate-test framework with

LLMs generating candidate plans and critics
testing/critiquing them

• LLMs play a variety of constructive roles
• Generate candidate plans
• Be an approximate source of models driving

the correctness critics
• [Guan et al, NeurIPS 2023]

• Act as style critics
• [Verma et al, HRI 2024; Guan et al, 2024]

• Help collating the criticisms from critics (and
diversify the prompts as needed)

• Help with format change—specification level,
converting to critic representations

• Preference for critics over solvers
• Correctness vs. Style
• Binary vs. Critical feedback vs. Constructive

critics

• Human intervention is minimized
• Once per domain: Teasing out domain model
• Once per problem: Specification elaboration
• Humans are not required to be in the inner

loop of the back-prompting search
Related work: FunSearch, Alpha Geometry

Also related to the “Compound AI Systems” movement

Bare Bones Generate-Test LLM-Modulo with
External Verifier

At it’s simplest, LLM-Modulo is a loop with
 LLM guessing plan candidates
 that are tested/verified by an external critic

 If the critic agrees, the solution is valid
 If not, the criticism can be sent as a back prompt
 back to the LLM

Automated Back-Prompting with External
Verifiers
• Preliminary experiments show

that back-prompting does
improve LLM’s ability to produce
plans in the Blocks World and
Logistics
• On the average over ~4 feedback

rounds
• The performance in the Mystery

BW still doesn’t improve-–
showing that the connection to
commonsense domains/terms is
critical for LLMs to fake planning

176

The fact that Mystery BW doesn’t improve with
 Backprompting is further evidence that LLMs are
 Approximate Retrievers…

Prefer Verifiers to Solvers!
 [Solver ≈ Verifier + Search]
• Although we just saw a way of

combining LLMs with external solvers,
our recommendation is that you
interface LLMs with Verifiers/Critics

• This is why the LLM-Modulo architecture
talks about a bank of critics

• You can have constructive critics and
style critics

• With solvers, you are stuck with their
expressiveness issues

• Verifiers, on the other hand, can allow
composability, and validating the plan to
the extent possible

• Similar to the “Human Blackboard”
architecture used in NASA mission
planning..

LLM-Modulo with a
Bank of critics

We can accommodate multiple critics
 e.g. one to verify causal correctness
 one to verify resource usage
 Can be constructive critics

The critics can also be “style critics”
 Is the plan in conformance with usual
 human preferences?

The meta controller can
pool criticisms from
 the critics, and also add
 prompt diversification
 before sending the
 back prompt to the LLM

Types of Critics in LLM-Modulo

• Correctness vs. Style
• LLMs can’t directly critic correctness

• But can help in obtaining the model
driving the critics

• LLMs can be directly used for critiquing
style

• Critics can be
• Binary (”try again”),
• Constructive

• Point out errors in the candidate
• Suggest local repairs

• Partial (e.g. Unit Tests)

• Meta controller combines the
criticisms from the various critics
and sends it as a back prompt
• Can also do prompt diversification as

part of the process

Soundness & Completeness of LLM-Modulo
• LLM-Modulo is a Generate-Test strategy
• Soundness depends on the soundness of the

critics/verifiers
• LLMs themselves are only used for style critiquing, or to

tease-out models for the corrects critics (in a semi-
automated fashion)

• Completeness depends on the LLM’s ability to
generate a plan candidate that passes the muster
with the verifiers

• While LLMs are “significantly above average” generators,
the completeness of their generation is a function both of
(1) training data and (2) ability to generate diverse
candidates

• Prompt Diversification Strategies help here
• And can be part of the meta-controller

Tree of Thoughts (ToT)

ToT

• People start realizing LLMs can't plan, but with that
comes the illusions that they can do systematic search
like humans

• The best way to understand the "tree" in ToT is not as a
search tree in the problemsolving agents, but as a
"prompt diversification tree" that is hand crafted in a
problem specific way!

• ToT nudges the LLM to generate hopefully more diverse
candidates -- with the hope that one of those will pass the
muster of the external verifier.

• The verifier plays a central role in ensuring soundness!

• We can come within 4% of ToT on 24 puzzle by just
sampling 150 diverse candidates direct from the LLM!

https://twitter.com/rao2z/status/
1733845752340967533?s=20

LLMs as Style Critics & Human Preference Proxies

• We investigate the potential of LLMs to serve as
effective human proxies by capturing human
preferences in human-AI collaboration settings.

• LLMs can play different roles in Human-aware AI
interaction: as a Human Proxy, Translator (common
lingua franca), and the Actor.

• Theory of Mind (ToM) requires LLMs to also be
able to capture human mental states, desires, and
beliefs for reward design/learning mechanisms.

• Human-aware AI agents can incorporate such
reward functions to account for human-in-the-
loop’s preferences.

Figure: Different roles of an LLM in Human-AI interaction.

Theory of Mind abilities of Large Language Models in Human-Robot Interaction : An Illusion?
Mudit Verma*, Siddhant Bhambri*, Subbarao Kambhampati.
HRI 2024

LLMs as Human Preference Proxies
Can LLMs capture human preferences?

Probing LLMs with explicability preferences:
• Under explicability preference, the human expects

the agent to behave in a certain way, and the
agent proactively attempts to model this
expectation and follow it.

• Here, the human takes the role of an observer.

Probing LLMs with sub-task specification
preferences:
• We consider a Human-AI teaming scenario where

the human plays an active role and can perform
actions in the world alongside the AI agent.

• Sub-task specification preferences involve the
agent to produce the same set of sub-tasks that
the human has in mind to achieve the team
objective.

Figure: Different roles of an LLM in Human-AI interaction.

LLMs as Behavior Critics to catch undesirable robot behaviors
Can LLMs capture human preferences in embodied AI tasks?

• It may be intractable to construct formal
verifiers for tasks that have a wide scope.

• LLMs or VLMs can be a proxy of common
human preferences and undesirability

• We evaluated GPT-4V with videos of
diverse suboptimal behaviors

• GPT-4V critic catches 69% of undesirable
behaviors (recall rate) while only 62% of
the critiques are valid (precision rate)

• Results confirm the broadness of GPT-4V's
knowledge & the subpar precision of its
outputs

"Task Success" is not Enough: Investigating the Use of Video-
Language Models as Behavior Critics for Catching
Undesirable Agent Behaviors
Lin Guan*, Yifan Zhou*, Denis Liu, Yantian Zha, Heni Ben Amor,
Subbarao Kambhampati.

LLMs as Behavior Critics to catch undesirable robot behaviors
Can LLMs capture human preferences in embodied AI tasks?

• It may be intractable to construct formal
verifiers for tasks that have a wide scope.

• LLMs or VLMs can be a proxy of common
human preferences and undesirability

• We evaluated GPT-4V with videos of
diverse suboptimal behaviors

• GPT-4V critic catches 69% of undesirable
behaviors (recall rate) while only 62% of
the critiques are valid (precision rate)

• Results confirm the broadness of GPT-4V's
knowledge & the subpar precision of its
outputs

"Task Success" is not Enough: Investigating the Use of Video-
Language Models as Behavior Critics for Catching
Undesirable Agent Behaviors
Lin Guan*, Yifan Zhou*, Denis Liu, Yantian Zha, Heni Ben Amor,
Subbarao Kambhampati.

LLMs for Format Change/Specification Elaboration
Given that LLMs are good at format change
 they can be used to
 Translate problem specification
 Elaborate it (with human in the loop)
 Reformat the plan guess to input to the critic

191

• We investigated how GPT-3, one of the most recent
transformer-based language models, can be used to extract
structured actions from natural language texts. We find that
these models achieve comparable, and in some cases better
scores than previous state of the art task-specific methods

• Impact: Existing knowledge in the form of textual procedures
and plans can be translated into formal representations to aid
novice Navy personnel understand and carry out complex
procedures. The translated procedures can also be leveraged
by other automated systems in-place.

Text to plan using GPT-3
q Workshop on KEPS (ICAPS’21)
q Workshop on Planning for Financial

Services (ICAPS’21)

AutoTAMP
• LLMs are being used as translators and

verifiers
• They translate from natural language to

Signal Temporal Logic representation.

• An STL planner is used to come up with
plans.

• Re-prompting technique is used on the LLM
translator and the verifier to improve
performance

Chen, Y., Arkin, J., Zhang, Y., Roy, N., & Fan, C. (2023). AutoTAMP: Autoregressive Task and Motion Planning with LLMs as Translators and Checkers. arXiv preprint arXiv:2306.06531.

LLM+P: Empowering LLMs with Optimal
Planning Proficiency
• LLM translates Natural Language Problems into Problem PDDL by in-context Learning.

(Context is crucial).
• Planner: Problem PDDL + Domain PDDL --> PDDL Plan
• LLM: PDDL Plan --> Natural Language Plan.
• LLM as a planner:

• Lacks the ability to reason about preconditions.
• Performs poorly in Domains that require an understanding of complex spatial relationships.

193Liu, B., Jiang, Y., Zhang, X., Liu, Q., Zhang, S., Biswas, J., & Stone, P. (2023). Llm+ p: Empowering large language models with optimal planning proficiency. arXiv preprint
arXiv:2304.11477.

Generating Synthetic Data
(Self-Instruct LLM-Modulo Way)

Finally, since the solutions coming
out of LLM-Modulo frameworks
are sound, they can be used to
build a corpus of synthetic data
that can be used to fine-tune the
LLM so its guesses improve..

LLMs for Extracting Planning Knowledge
Since LLMs are approximate
knowledge sources, they can also
be helpful in acquiring domain
models (with human in the loop)

LLMs for constructing domain/world
models (Model Co-Pilot)

197

LLM’s have universal high-recall (they will never shut up!),
 but questionable precision
Automated Planners are guaranteed correct
 but for planning problems that they can handle

NeurIPS 2023

LLMs for constructing world models
• We tested on three domains

1. Household domain
2. Logistics
3. Tyreworld

201

Example from Household domain Example from Logistics domain

RL Systems can Benefit Significantly with
partially correct symbolic models!
[The Kind LLMs are only Too Happy to give!]

[ICML 2022]

Code as (Hierarchical) Policies

204

Original LLM Prompt

LLM Response with Unrecognized Function

Code Parser

Prompts again for any missing functions found

Re-prompt

LLM Response

Liang, Jacky, et al. "Code as policies: Language model programs for embodied control." arXiv preprint
arXiv:2209.07753 (2022). Prompts are from that paper.

Parses new response and recursively
prompts for any missing functions if needed

Extracts task
reduction
schema from
LLM!

Travel Planning Benchmark

• New benchmark for travel planning
proposed in Feb 2024

• Three different types of constraints
• Environment constraints
• Common-sense constraints
• Hard constraints

• GPT-4-Turbo could solve only 0.6% (out of
1000 queries)

• Not surprising! We show that LLM’s can’t
even stack blocks correctly, there’s surely
no hope for travel planning that has lots of
constraints!!

Xie, J., Zhang, K., Chen, J., Zhu, T., Lou, R., Tian, Y., ... & Su, Y. (2024). TravelPlanner: A Benchmark for Real-World Planning with Language Agents. arXiv preprint arXiv:2402.01622.

Adapting LLM-Modulo Framework For Travel Planning

Results on Travel Planning Benchmark

Is LLM-Modulo just Shoe-Horning LLMs?
(Why bother with LLMs when we already have formal planning systems?)

• Formal planning systems provide
soundness and completeness guarantees

• ..but only with respect to the class of
problems they can handle

• ..for which there are hand-coded/learned
models

• It becomes the end user’s responsibility to
check if their problem falls in the class
handled by a planning system!

• In contrast, LLMs will always guess
solutions-–albeit without guarantees

• LLM-Modulo framework is an attempt to
keep the best of both worlds

• Allow end user to pose any problem;
• Ensure that the solution being sent out is

verified by the bank of critics..

Recap

• In any of the frameworks that
involve LLMs, external verifiers play
a central for ensuring soundness

• LLMs are idea generators without
guaranteed correctness

• Different prompting strategies help
increase the chance of sampling
workable solutions

• LLM-Modulo unified planning
framework that:
o Summarizes constructive roles that

LLMs can play
o Includes the minimum set of

components (e.g., set of critics) that
ensure the correctness of output
plans

Tutorial Overview
• Part 1

Introduction; Aims; Perspective on LLMs, Planning, Tutorial Big
Picture

• Part 2
• Evaluating LLM Planning capabilities in Autonomous mode,

including effect of
• Prompting strategies (including Chain-of-thought)
• Fine Tuning
• Self Verification

• Understanding the contradictory claims in the literature
• Part 3

• Sane roles of LLMs in Planning (with LLM-Modulo
frameworks)

• LLMs as heuristics, LLMs as candidate generators
• Back prompting from external verifiers
• LLMs as sources of domain models (with humans in the loop)
• LLMs as format changers/specification elaborators1

• Part 4
• Summary/Lessons

Planning, Scheduling, Reinforcement Learning

• Planning/Sequential Decision Making: Given a set of objectives, come up with a
course of actions (policy) to achieve them (optimally)
• Standard planning (and RL) assume the possible actions that the agent can take (and their

“models”) are given up front
• MacGyver Planning involves coming up with the actions AND sequencing them

• Scheduling: Given a set of tasks/jobs, and a choice of actions for accomplishing
each of the tasks, assign actions to tasks so there are no undesired interactions
• Planning is more general than scheduling (One difference is precondition cascading – adding

an action to achieve something makes you subgoal on the the preconditions of that action..).
• Planning is P-Space Complete (even for STRIPS) and Scheduling is NP-Hard

• (Model-Based) Reinforcement Learning: The agent acts in a (hopefully ergodic)
environment and slowly learns the “action models”—and plans with that model.

LLM’s Can’t Plan; But they can help planning
in LLM-Modulo Frameworks
LLMs can’t plan in Autonomous Modes
(and many claims to the contrary are
questionable)
• LLMs can’t do planning in

autonomous mode
• CoT, Fine Tuning etc. don’t help

that much (as they don’t generalize
enough)

• They can’t improve by self-
verification (since they can’t self-
verify!)

• Having humans iteratively prompt
is an invitation for Clever Hans
effect..

LLMs can support planning (and expand the
range of planning tasks) in LLM-Modulo
Frameworks
• LLMs can be used in conjunction

with external verifiers and solvers
in an LLM-Modulo framework
(with the verifiers doing back
prompting)

• In the LLM-Modulo framework, LLMs
can play multiple roles

• Guess plans
• Guess domain models
• Help elaborate the problem

specification
• Translate formats

LLM’s Can’t Plan; But they can help planning
in LLM-Modulo Frameworks

LLMs can’t plan in Autonomous Modes
(and many claims to the contrary are
questionable)
• LLMs can’t do planning in

autonomous mode
• CoT, ReACT, Fine Tuning etc. don’t

help that much (as they don’t
generalize enough)

• They can’t improve by self-
verification (since they can’t self-
verify!)

• Having humans iteratively prompt
is an invitation for Clever Hans
effect..

LLMs can support planning (and expand the
range of planning tasks) in LLM-Modulo
Frameworks
• LLMs can be used in conjunction

with external verifiers and solvers
in an LLM-Modulo framework
(with the verifiers doing back
prompting)

• In the LLM-Modulo framework, LLMs
can play multiple roles

• Guess plans
• Guess domain models
• Help elaborate the problem

specification
• Translate formats

