
Unlocking Data Insights -
Introduction to Data-Centric AI

Learning from data streams: A gentle introduction

Reference: Machine Learning for Data Streams: with Practical Examples in MOA, Albert Bifet, Ricard Gavaldà, Geoff Holmes, Bernhard Pfahringer, The MIT Press

Learning from data streams:
A gentle introduction

• Big Data

• Tools: Open-Source Revolution

• Challenges in Big Data

• Real-Time Analytics

Executive Summary

Credits: Jonny Gios - Unsplash

Gartner* summarizes this in his definition of big data in
2012 as “high volume, velocity and variety information
assets that demand cost-effective, innovative forms of

information processing for enhanced insight and decision
making.”

*Daryl C. Plummer, Kurt Potter, Richard T. Matlus, Jacqueline Heng, Rolf Jester, Ed Thompson,
Adam Sarner, Esteban Kolsky, French Caldwell, John Bace, Neil MacDonald, Brian Gammage,

Michael A. Silver, Leslie Fiering, Monica Basso, Ken Dulaney, David Mitchell Smith, Bob Hafner,
Mark Fabbi, and Michael A. Bell. Gartner’s top predictions for it orga- nizations and users,

2007 and beyond.

Big Data

Big Data

Business
Customer personalization and

churn detection (customers
moving from one company to a

rival one)

Technology
Reducing processing time

from hours to seconds

Health
people’s medical records and

genomics data, to monitor and
improve their health

Smart Cities
Cities focused on sustainable
economic development and
high quality of life, with wise

management of natural
resources.

Applications of big
data should allow

people to have better
services and better

customer experiences,
and also be healthier

Big Data: real example

Global Pulse* uses big
data to improve life in
developing countries

1. Researching innovative methods
and techniques for analyzing real-
time digital data to detect early
emerging vulnerabilities

2. Assembling a free and open-
source technology toolkit for
analyzing real-time data and
sharing hypotheses

3. Establishing an integrated, global
network of Pulse Labs, to pilot the
approach at the country level

*United Nations Global Pulse. Harnessing big data for development and humanitarian
action. http://www.unglobalpulse.org, accessed May 21st, 2017.

Big Data: real examples

Shell
Real-time machine
learning pipeline

able to detect
whether people are

smoking

Health
Real-time machine
learning pipeline

able to detect heart
rate changes

Real-time machine
learning pipeline

able to detect fake
news or bad content

Social network

Big Data: Open source tools revolution

Big Data: Challenges in Big Data

There are many challenges for the future in
big data management and analytics, arising
from the very nature of data: large, diverse,

and evolving*

*Vivekanand Gopalkrishnan, David Steier,Harvey Lewis,and James Guszcza. Big data, big business: Bridging the gap. In Proceedings of the 1st International Workshop
on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications (BigMine 2012). Beijing, China, August 12–12,

2012, pages 7–11. ACM, 2012.

Some of the
challenges that
researchers and
practitioners will

have to deal with in
the years to come

are:

Credits: dalle2.gallery

Big Data: Challenges in Big Data

Analytics architecture

It is not clear yet how an optimal architecture of an
analytics system should be built to deal with historical

data and with real-time data at the same time

Challenges in Big Data

Analytics architecture
A first proposal was the Lambda

architecture of Nathan Marz*. The Lambda
architecture solves the problem of

computing arbitrary functions on arbitrary
data in real time by decomposing the

problem into three layers: the batch layer,
the serving layer, and the speed layer.

*Nathan Marz and James Warren. BigData: Principles and best practices of scalable real-time data systems. Manning Publications, 2013.

Challenges in Big Data

Analytics architecture
1. The Batch Layer
This layer receives data through the master dataset in an append-
only format from different sources. The batch layer processes big
data sets in intervals to create batch views that will be stored by the
serving layer. The data in this layer is immutable. Immutability and
receiving data in append-only format is what makes the Lambda
architecture fault tolerant and prevents data loss.
The batch layer does not use incremental algorithms rather it uses
re-computation algorithms. This layer produces complete data
because the machine learning algorithms are able to train models
since the batch layer takes more time to process large datasets

Challenges in Big Data

Analytics architecture
2. The Speed or Streaming Layer

The speed layer processes data using
data streaming processes and tools such

as Apache Kafka; its goal is to deliver
data in real-time. It favors low-latency

over throughput. The speed layer focuses
on filling the gaps left by the batch layer.

This layer uses complex incremental
algorithms and computation.

Challenges in Big Data

Analytics architecture

3. The Serving Layer
This layer queues batch views that have been
prepared by the batch layer and then indexes them.
The serving layer’s goal is to make the data queryable
in a very short period of time. The server layer stores
the output and merges the batch layer output with
the speed layer output.

Challenges in Big Data

Evaluation

It is important to achieve significant statistical results,
and not be fooled by randomness. If the “multiple

hypothesis problem” is not properly cared for, it is easy
to go wrong with huge datasets and thousands of

questions to answer at once*

*B. Efron. Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction.
Institute of Mathematical Statistics Monographs. Cambridge University Press, 2010

Challenges in Big Data

Evaluation

Is important to avoid the trap of
focusing only on technical measures
such as error or speed instead of on

eventual real-world impact*

*Kiri Wagstaff. Machine learning that matters. In Proceedings of the 29th International Conference on Machine Learning,
ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012, 2012.

Challenges in Big Data

Distributed mining

Many data mining techniques are not trivial to
parallelize. To have distributed versions of some
methods, substantial research is needed with both
practical experiments and theoretical analysis

Challenges in Big Data

Time evolving data

Data may be evolving overtime, so it is
important that the big data mining
techniques are able to adapt to, and in
some cases explicitly detect, change*

Joa ̃o Gama. Knowledge Discovery from Data Streams. Chapman and Hall / CRC Data Mining and Knowledge Discovery Series. CRC Press, 2010.

Big Data: Challenges in Big Data

Compression

When dealing with big data, the quantity of space
needed to store it is very relevant. There are two main
approaches:
• compression, where we lose no information
• sampling, where we choose data that we deem

representative

Big Data: Challenges in Big Data

Compression
Using compression, we will use more time and less space, so
we can consider it as a transformation from time to space

Using sampling, we are losing information, but the gains in
space may be in orders of magnitude

For example Feldman et al* use coresets to reduce the
complexity of big data problems; a coreset is a small subset of
the data that provably approximates the original data for a
given problem

*Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data: Constant-size coresets for k-means, PCA and projective clustering.
In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8,

2013, pages 1434–1453, 2013

Big Data: Challenges in Big Data

Visualization

A main issue in big data analysis is how to visualize the
results. Presenting information from large amounts of
data in a way that is understandable to humans is
quite a challenge. It requires new techniques and
frameworks to tell stories, such as those covered in
the book The Human Face of Big Data*

*R.Smolanand J.Erwitt. The Human Face of BigData. Sterling Publishing Company Incorporated, 2012

Big Data: Challenges in Big Data

Hidden big data

Large quantities of useful data are in fact
useless because they are untagged, file-based,
and unstructured. The 2012 IDC study on big
data* explained that, in 2012, 23% (643
exabytes) of the digital universe would be
useful for big data if tagged and analyzed.

*John Gantz and David Reinsel. The digital universe in 2020: Big data, bigger digital shadows, and biggest growth in the far east, December 2012

Big Data: Challenges in Big Data

Hidden big data
However, at that time only 3% of the
potentially useful data was tagged,
and even less was analyzed. The
figures have probably gotten worse in
recent years. The Open Data and
Semantic Web movements have
emerged, in part, to make us aware
and improve on this situation.

Real-Time Analytics

One particular case of the big data
scenario is real-time analytics.
It is important for organizations not
only to obtain answers to queries
immediately, but to do so
according to the data that has just
arrived

Real-Time Analytics

Data streams are an algorithmic abstraction to support
real-time analytics. They are sequences of items, possibly
infinite, each item having a timestamp, and so a temporal
order. Data items arrive one by one, and we would like to

build and maintain models, such as patterns or predictors,
of these items in real time.

Data streams: Definition

Real-Time Analytics

There are two main algorithmic challenges
when dealing with streaming data:

• The stream is large and fast, and we need to
extract information in real time from it. That
means that usually we need to accept
approximate solutions in order to use less
time and memory

• The data may be evolving, so our models
have to adapt when there are changes in the
data.

Data streams

Real-Time Analytics

Accuracy, time, and memory are
the three main resource
dimensions of the stream mining
process: we are interested in
methods that obtain the maximum
accuracy with minimum time and
low total memory

Data streams: the dimensions

Real-Time Analytics

Sensor data and the Internet of Things: Every day, more sensors are
used in industry to monitor processes, and to improve their quality.
Cities are starting to implement huge networks of sensors to monitor the
mobility of people and to check the health of bridges and roads, traffic in
cities, people’s vital constants, and so on

Telecommunication data: Telecommunication companies have large
quantities of phone call data. Nowadays, mobile calls and mobile phone
locations are huge sources of data to be processed, often in real-time

Applications

Real-Time Analytics

Social media: The users of social websites such as Facebook, Twitter,
LinkedIn, and Instagram continuously produce data about their
interactions and contributions. Topic and community discovery and
sentiment analysis are but two of the real-time analysis problems that
arise

Marketing and e-commerce: Sales businesses are collecting in real time
large quantities of transactions that can be analyzed for value. Detecting
fraud in electronic transactions is essential

Applications

Real-Time Analytics

Health care: Hospitals collect large amounts of time-sensitive data when
caring for patients, for example, monitoring patient vital signs such as
blood pressure, heart rate, and temperature. Telemedicine will also
monitor patients when they are home, perhaps including data about
their daily activity with separate sensors. Also, the system could have
results of lab tests, pathology reports, X-rays, and digital imaging. Some
of this data could be used in real time to provide warnings of changes in
patient conditions

Epidemics and disasters: Data from streams originating in the Internet
can be used to detect epidemics and natural disasters, and can be
combined with official statistics from official centers for disease and
disaster control and prevention

Applications

Real-Time Analytics

Computer security: Computer systems have to be protected from theft
and damage to their hardware, software and information, as well as from
disruption or misdirection of the services they provide, in particular,
insider threat detection and intrusion detection

Electricity demand prediction: Providers need to know sometime in
advance how much power their customers will be requesting. The
figures change with time of day, time of year, geography, weather, state
of the economy, customer habits, and many other factors, making it a
complex prediction problem on massive, distributed data

Applications

Big Data Stream Mining

Machine Learning for Data Streams: with Practical Examples in MOA, Albert Bifet, Ricard Gavaldà, Geoff Holmes, Bernhard Pfahringer, The MIT Press

Unlocking Data Insights -
Introduction to Data-Centric AI

Big Data Stream Mining

• Algorithms

Executive Summary

Credits: dalle2.gallery

Algorithms

The main algorithms in data stream mining
are classification, regression, clustering,

and frequent pattern mining

Algorithms

• We are in a classification setting when we need to assign a label from a set of nominal labels to each
item, as a function of the other features of the item. A classifier can be trained as long as the correct
label for (many of) the examples is available at a later time

• Regression is a prediction task similar to classification, with the difference that the label to predict is a
numeric value instead of a nominal one. An example of regression is predicting the value of a stock in the
stock market tomorrow

• When examples are not labeled, one interesting task is to group them in homogeneous clusters.
Clustering can be used, for example, to obtain user profiles in a website. It is an example of an
unsupervised learning task.

• Frequent pattern mining looks for the most relevant patterns within the examples. For instance, in a
sales supermarket dataset, it is possible to know what items are bought together and obtain association
rules, as for example: Most times customers buy cheese, they also buy wine.

Offline setting

Algorithms

The most significant requirements for a stream mining
algorithm are the same for predictors, clusterers, and
frequent pattern miners:
• Process an instance at a time, and inspect it (at most)

once

• Use a limited amount of time to process each instance

• Use a limited amount of memory

• Be ready to give an answer (prediction, clustering,
patterns) at any time

• Adapt to temporal changes

But … in the online setting

Classification

Offline
setting

Data generating process

Collecting multiple
records as a batch

Programmed treatment Consumption by user

Classification
Online setting

In the online setting, and in
particular in streaming, this
separation between training,
evaluating, and testing is far
less clear-cut, and is
interleaved

!

Classification

Generally speaking, a stream mining
classifier is ready to do either one of the
following at any moment:

1. Receive an unlabeled example and make a
prediction for it on the basis of its current
model

2. Receive the label for an example seen in
the past, and use it for adjusting the model,
that is, for training

Online setting

Data
generating

Sending
individual
records

Real-time
treatment

Real-time
consumption

The data
streaming

process

Classification

For example, an online shop may want to predict,
for each arriving customer, whether the customer
will or will not buy a particular product
(prediction).

When the customer session ends, say, minutes
later, the system gets the “label” indicating
whether indeed the customer bought the product
or not, and this feedback can be used to tune the
predictor

Online setting: Customer purchase

Classification

In other cases, the label may never be known
If trying to detect fraudulent transactions in order
to block them, transactions predicted to be
fraudulent are not executed, so their true labels are
never known

Online setting: Fraud detection

?

Classification
Accuracy: How many of the unlabeled instances eventually receive their correct
label? Clearly, the fewer labels received, the harder the prediction task.

Memory: How long should we wait for an instance label to arrive, before we drop
the instance? Efficiently managing the buffer of instances waiting for their labels
is a very delicate implementation problem when dealing with massive, high-
speed streams.

Training strategies: Should we use all labeled instances for training? If in fact
many labels are available, perhaps there is a diminishing return in accuracy for
the increased computational cost of training on all instances.

Classification

A large part of the research in stream
classification deals with a simplified
cycle of training/prediction: we
assume that we get the true label of
every unlabeled instance, and that
furthermore we get it immediately
after making the prediction and
before the next instance arrives.

Classification

Get an unlabeled instance

Make a prediction for ’s label,

where is the current model

Get the true label for

Use the pair to update the model ,
and the pair to update the metrics

Proceed to the next instance

Classification

This model is rightly criticized by practitioners as too simple, because it ignores
the very real problem of delayed and missing label feedback. It is however quite

useful for comparing learning algorithms in a clean way, provided we have
access to, or can simulate, a stream for which we have all labels.

Classification

Given this cycle, it is reasonable to ask: How
do we evaluate the performance of a

classification algorithm?

Classifier Evaluation in Data Streams

Classification

In traditional batch learning, evaluation is
typically performed by randomly splitting the
data into training and testing sets (holdout); if
data is limited, cross-validation (creating several
models and averaging results across several
random partitions in training and test data) is
preferred.

Classifier Evaluation in Data Streams

Classification

• In the stream setting, (effectively) unlimited data tends to make cross-
validation too expensive computationally, and less necessary anyway. But it
poses new challenges

• The main one is to build an accurate picture of accuracy over time. One
solution involves taking snapshots at different times during the induction of a
model to see how the model accuracy varies

Classifier Evaluation in Data Streams

Classification

Interleaved test-then-train or prequential: Each individual example is used to
test the model before it is used for training, and from this the accuracy can be
incrementally updated.

When the evaluation is intentionally performed in this order, the model is always
being tested on instances it has not seen. This scheme has the advantage that
no holdout set is needed for testing, making maximum use of the available data

Classifier Evaluation in Data Streams

Classification

• It also ensures a smooth plot of accuracy over time, as each individual
example will become less and less significant to the overall average.

• In test-then-train evaluation, all examples seen so far are taken into account to
compute accuracy, while in prequential, only those in a sliding window of the
most recent ones are.

• As data stream classification is a relatively new field, such evaluation practices
are not nearly as well researched and established as they are in the traditional
batch setting.

Classifier Evaluation in Data Streams

Classification
Decision Tree

• Traditional decision trees scan the entire dataset
to discover the best attribute to form the initial
split of the data.

• Once this is found, the data is split by the value of
the chosen attribute, and the algorithm is applied
recursively to the resulting datasets, to build
subtrees.

• Recursion is applied until some stopping criterion
is met.

This approach cannot be adopted directly in the
stream setting, as we cannot afford the resource
cost (time and memory) of storing instances and
repeatedly scanning them.

Credits: dalle2.gallery

Classification
Decision Tree

Decision tree learners build a tree structure from
training examples to predict class labels of unseen
examples

In stream mining, the state-of-the art decision tree
classifier is the Hoeffding tree, due to Domingos and
Hulten*, and its variations

*Pedro M.Domingos and Geoff Hulten. A general method for scaling up
machine learning algorithms and its application to clustering. In

Proceedings of the Eighteenth International Conference on Machine
Learning (ICML 2001), Williams College, Williamstown, MA, USA, June 28 –

July 1, 2001, pages 106–113, 2001.

Credits: dalle2.gallery

Classification
Decision Tree

• The Hoeffding tree is based on the idea that, instead of
looking at previous (stored) instances to decide what
splits to do in the trees, we can wait to receive enough
instances and make split decisions when they can be
made confidently.

• The main advantage of this approach is that it is not
necessary to store instances. Instead, sufficient statistics
are kept in order to make splitting decisions.

• The sufficient statistics make it easy to incorporate Naive
Bayes models into the leaves of the tree.

The Hoeffding adaptive tree* is an extension of the Hoeffding
tree that is able to create and replace new branches when
the data stream is evolving and the class label distribution or
instance distribution is changing.

*Albert Bifet and Ricard Gavalda`. Adaptive learning from evolving data
streams. In Advances in Intelligent Data Analysis VIII, 8th International

Symposium on Intelligent Data Analysis, IDA 2009, Lyon, France, August 31
– September 2, 2009. Proceedings, pages 249–260, 2009Credits: dalle2.gallery

Classification
Ensambles

Ensembles are sets of classifiers that,
when combined, can predict better
than any of them individually

Bagging is an ensemble method that
(1) uses as input for each run of the

classifier builder a subset obtained
by sampling with repetition of the
original input data stream

(2) uses majority voting of the
classifiers as a prediction strategy

Credits: dalle2.galleryCredits: dalle2.gallery

Classification
Ensambles

The ADWIN bagging method [38],
implemented as OzaBagAdwin in
MOA, is an extension of bagging
that it is able to create and replace
new classifiers when the data
stream is evolving and the class
label distribution is changing

Credits: dalle2.gallery

Regression

As in classification, the goal in a regression task is to learn
a model that predicts the value of a label attribute for

instances where the label is not (yet) known.
Several classification algorithms have natural

counterparts for regression, including lazy learning and
decision trees.

Dealing with Change

Machine Learning for Data Streams: with Practical Examples in MOA, Albert Bifet, Ricard Gavaldà, Geoff Holmes, Bernhard Pfahringer, The MIT Press

Unlocking Data Insights -
Introduction to Data-Centric AI

Dealing with Change

• Notion of Change in Streams

• Estimators

• Change Detection

Executive Summary

Credits: Jonny Gios - Unsplash

Notion of Change in Stream

Let us first discuss the notion of change in
streams with respect to notions in other

paradigms, as well as some nuances that
appear when carefully defining change over

time

Notion of Change in Stream

First, nonstationary distributions of data may also appear in batch data analysis.
Data in batch datasets may also be timestamped and vary statistically over time.
Algorithms may take this possibility into account when drawing conclusions from
the data, but otherwise can perform several passes and examine data from
before and after any given recorded time

Notion of Change in Stream

In streaming, we cannot explicitly store all
past data to detect or quantify change, and

certainly we cannot use data from the future
to make decisions in the present

Notion of Change in Stream

There is some similarity to the vast field of time
series analysis, where data also consists of a
sequence of timestamped items. In time series
analysis, however, the analysis process is often
assumed to be offline, with batch data, and
without the requirements for low memory and
low processing time per item inherent to streams.

In contrast, most of the work in streaming does
not necessarily assume that change occurs in
predictable ways, or has trends. Change may be
arbitrary. The task is to build models describing
how the world behaves right now, given what we
are observing right now.

Notion of Change in Stream

What do we mean exactly when we say that
a data stream changes or evolves?

It cannot mean that the items we observe today are not exactly the same as
those that we observed yesterday. A more reasonable notion is that

statistical properties of the data change more than what can be attributed
to chance fluctuations

Notion of Change in Stream

To make this idea precise, it helps to assume that the data is in fact the result of a
random process that at each time generates an item according to a probability
distribution that is used at that exact time, and that may or may not be the same
that is used at any other given time

• There is no change when this underlying generating distribution remains
stationary

• Change occurs whenever it varies from one time step to the next

Notion of Change in Stream

Although changes in the item distribution
may be arbitrary, it helps to name a few
generic types, which are not exclusive

within a stream. The naming is
unfortunately not consistent throughout
the literature. In fact, change in general is
often called concept drift in the literature

Notion of Change in Stream

Krawczyk, Bartosz & Cano, Alberto. (2018). Online Ensemble Learning with Abstaining Classifiers for Drifting and Noisy Data Streams.
Applied Soft Computing. 68. 677-692. 10.1016/j.asoc.2017.12.008.

Notion of Change in Stream

We should also distinguish the notions of outliers and
noise from that of distribution change. Distinguishing
true change from transient outliers and from persistent
noise is one of the challenges in data stream mining and
learning.

Requirements:
• Detect change in the stream (and adapt the models, if

needed) as soon as possible
• At the same time, be robust to noise and outliers
• Operate in less than instance arrival time

Notion of Change in Stream

Ensemble
methods

Change management strategies can be roughly grouped into three families,

or a combination thereof

Adaptive
estimators

Create models that are
adapted or rebuilt

Notion of Change in Stream

The first strategy relies on the fact that many model builders work by monitoring
a set of statistics from the stream and then combining them into a model. These
statistics may be counts, absolute or conditional probabilities, correlations
between attributes, or frequencies of certain patterns, among others.

Examples of such algorithms are Naive Bayes, which keeps counts of co-
occurrences of attribute values and class values, and the perceptron algorithm,
which updates weights taking into account agreement between attributes and
the outcome to be predicted.

This strategy works by having a dynamic estimator for each relevant statistic in a
way that reflects its current value, and letting the model builder feed on those
estimators.

Notion of Change in Stream

Estimator1

Estimator2

Estimator3

Estimator4

Estimator5

Model Builderinput output

Managing
change with

adaptive
estimators

Notion of Change in Stream

In the second strategy, one or more change
detection algorithms run in parallel with the

main model-building algorithm. When
significant change in the stream is detected,

they activate a revision algorithm

Notion of Change in Stream

Model builder

Current model

input output

Change detector

Managing change with explicit
change detectors for model revision

Notion of Change in Stream

The third strategy is based on the idea of an ensemble, used to build
complex classifiers out of simpler ones. A single or several model-
building algorithms are called at different times, perhaps on different
subsets of the data stream. An ensemble manager algorithm contains
rules for creating, erasing, and revising the models in its ensemble, as
well as for combining the predictions of the models into a single
prediction.

Notion of Change in Stream

Ensamble manager

Model 1

input output

Model 2 Model n-1 Model n…

Managing change with model ensembles

Nice Tools

https://colab.research.google.com/drive/1tcFIuYKfnI1pHlkbp0-dgCmymBVrKCNE?
usp=sharing

