
ESSAI July 2024

Dr. Timothy Wiley
School of Computing Technologies
RMIT University

Practical AI for Autonomous Robots

Day 3: Localisation, Mapping and
Navigation

Acknowledgement of Country
RMIT University acknowledges the people of the Woi wurrung and
Boon wurrung language groups of the eastern Kulin Nation on whose
unceded lands we conduct the business of the University.

RMIT University respectfully acknowledges their Ancestors and Elders,
past and present.

RMIT also acknowledges the Traditional Custodians and their Ancestors
of the lands and waters across Australia where we conduct our business.

ESSAI July 2024

Exercises for today

Miro

Miro Board link
https://miro.com/app/board/uXjVKwf3r6g=/?share_link_id=914778480856

ESSAI July 2024

Navigation

ESSAI July 2024

… before Navigation

Map

—
Occupancy Grid
The most common representation of a Map in robotics is a 2D
occupancy grid. As the game suggests:
• A 2D grid of cells
• Discretises the environment in the x/y-plane, at a fixed height
• General 5mm (0.005m) resolution (in ROS)
• Each cell has one of two values

• Unknown
• Probability of occupied from 100 (occupied) to 0.0

(unoccupied)
Question: Why have probabilities?

Occupancy Grid
ROS: http://docs.ros.org/en/noetic/api/nav_msgs/html/msg/OccupancyGrid.html

http://docs.ros.org/en/noetic/api/nav_msgs/html/msg/OccupancyGrid.html

Occupancy Grid

—
Occupancy Grid
Generally we refer to this OG interchangeably as the “map”.

Maps can be saved & loaded from file with the map server
package:
• http://wiki.ros.org/map_server
• Save

• rosrun map_server map_saver -f room map:=/map
• Load

• rosrun map_server map_server mymap.yaml

—
3D Occupancy Grid
Occupancy grids can be expanded to 3D where each cell becomes
a 3D voxel (cube).
• 3D maps are, obviously, more computationally expensive
• Generally 2D is used for navigation, and only local 3D

information is used when required

—
Generating Maps
The “live” construction of a Map as the robot moves about an
environment is known as:
 Simultaneous Localisation and Mapping (SLAM)
This will be covered at the end of this class.

ESSAI July 2024

… in a map

Navigation

Motivation
Given a Map, devise an algorithm navigate between a starting and goal point

—
A* Navigation
Generally, the obvious answer is A*:
• The Map (Occupancy Grid) is interpreted as a graph
• Cell cost equation: 𝑓 𝑥 = 𝑔 𝑥 + ℎ 𝑥

• 𝑔 𝑥 : shortest path to 𝑥
• ℎ(𝑥): Heuristics are typically:
• Euclidian
• Manhattan

• The “cost” of an individual step is 1

A* Navigation
function A_Star(start, goal, h):

 openSet := {start}

 cameFrom := an empty map

 gScore := map with default value of Infinity

 gScore[start] := 0

 fScore := map with default value of Infinity

 fScore[start] := h(start)

 while openSet is not empty:

 current := the node in openSet having the lowest fScore[] value

 if current = goal:

 return reconstruct_path(cameFrom, current) // or Done

 openSet.Remove(current)

 for each neighbor of current:

 tentative_gScore := gScore[current] + d(current, neighbor)

 … →

… ←

 if tentative_gScore < gScore[neighbor]

 cameFrom[neighbor] := current

 gScore[neighbor] := tentative_gScore

 fScore[neighbor] := tentative_gScore + h(neighbor)

 if neighbor not in openSet

 openSet.add(neighbor)

 return failure

A* Navigation Example
What does A* do?

—
Issues with basic A* Navigation
A* will “do the job”, but has a number of issues:
• Path does not account for the robot body
• Computed path is not directly traversable
• Path Planning assumes full-observable information
• Not responsive to:

• Dynamic Obstacles
• Noise/Error and divergence in execution

• Computationally Expensive, especially for re-planning

ESSAI July 2024

CostMaps

Navigation

—
Occupancy Grids are under-described
In an occupancy grid, a cell being unoccupied doesn't mean the
robot can actually position itself at that cell.

—
Costmap
A Costmap is a form of occupancy grid, where a cell may be:
• Occupied / Lethal – there is an world-obstacle at the cell, and

the robot will hit it
• Inscribed – If the robot is here, it will hit an obstacle
• Dangerous – If the robot is here, it is close to an obstacle and

care should be taken
• Free – the robot should be safe here
• Unknown – same as the occupancy grid

Costmap

—
Costmap Navigation
Navigation (Path Planning) with the CostMap adjusts the weights
of the cell cost
• Cell cost equation: 𝑓 𝑥 = 𝑔 𝑥 + ℎ 𝑥

• 𝑔 𝑥 : number of cells traversed to arrive at the current cell
• + weighted ‘cost’ from the costmap, where free is:
• Free is 0
• Dangerous has a positive weight, the larger, the more the

dangerous cells will be avoided
• Unknown space also has a positive weight, so the robot can

be allowed to explore unknown space!
• Lethal/Inscribed cells become non-traversable

ESSAI July 2024

Multi-Map planning &
Re-Planning

Navigation

—
Multiple Map resolutions
Planning in the global map is inefficient, especially for re-planning.
Instead, practical path planning uses multiple maps with :
• Different levels of resolution

• Global map: course map
• Local map: fine grained

• Different dimensions
• Different recalculation time frames
CostMaps can also be generated at both local and global views.

—
Re-Planning
A simple solution to both…
• Dynamic obstacles
• Unobserved spaces
… is replanning, that is, re-calculating the path periodically
However, this can lead to inefficiencies.

Mapping Calculation and Re-Planning Hierarchy
For practical efficiency, at each level, both mapping and re-planning are computed
periodically at different frequencies

Image: Arkin, 2011, Introduction to Autonomous Mobile Robots

—
Map Generation at different levels
As noted earlier, the live generation of a “global map” is done
through SLAM. However this is also computationally intense.
“Maps” at other levels are generally taken from direct sensor input.
For a typical robot with a laser, this is converting the laser scan
directly into an occupancy grid

Worked example with ROSBot on TheConstruct

—
Obstacle Avoidance
With relatively quick re-planning at the local-map level, dynamic
obstacles can be avoided as:
• The local occupancy map (and costmap) are quick to compute
• The dynamic obstacles are generally “small”
• Avoidance can be computed by re-planning in the local map

Worked example with ROSBot

ESSAI July 2024

D*/D*-Lite
RRT

More Complex
Navigation

Wall Following
As silly as it may sound, one of the most effective navigation techniques in a
environment is wall-following. Method:
1. Stick you “hand” on a left/right wall
2. Only move around the space following the wall
To overcome “islands” fake walls are added
using the path taken in exploration.

—
D* Lite
To overcome issues of replanning, the D*/D*-lite family of
algorithms by Anthony Stentz, Sven Koenig, and Maxim Likhachev
perform incremental replanning (via A*) in a local space around the
affected area where new obstacles are detected.

D*-Lite (Koenig & Likhachev 2002) is designed for dynamic re-
updates as a robot moves and detects obstacles or updates to the
map that affect it’s pre-computed path

D* Lite: Concept

Image: Koenig, Sven, and Maxim Likhatchev. "D* lite." Eighteenth
national conference on Artificial intelligence. 2002.

—
D* Lite: Comparison to A*
The broad differences of D*-Lite to A* are:
• Costs (and heuristics) are computed “in reverse” from the goal

to the robot position. That is 𝑔 𝑠!"#$ = ℎ 𝑠!"#$ = 0

• Costs of edges in the traversable graph are tracked for changes
• A non-traversable edge has cost of ∞

• Maintains a secondary “1-step look ahead” value for each state

• This is “more accurate” than 𝑔(𝑠) for changing edge costs
• Track 𝑘% - an optimistic estimate of the cost to the goal

—
D* Lite: Overview
The general overview of D* Lite is:
1. Initialise with computing the shortest path (A*) to the start
2. If a change in the cost of a link is detected:

1. Use a priority queue open list, 𝑈, for node evaluation order
2. Modify the cost of the node 𝑠&"'"(
1. Recalculate 𝑟ℎ𝑠(𝑠)
2. If 𝑔 𝑠 ≠ 𝑟ℎ𝑠 𝑠 add 𝑠	to 𝑈 using 𝑘% to modify the priority of

the nodes
3. Recompute the shortest path for all nodes in 𝑈, always

updating the cost of the node by (2)

D* Lite: Algorithm

Image: Koenig, Sven, and Maxim Likhachev. "D* lite." Eighteenth
national conference on Artificial intelligence. 2002.

—
Rapidly-exploring Random Tree (RRT)
Both A* and D* have problems:
• Level of discretisation of an environment
• Computational overheads for large spaces
• Computation overhead for replanning
• Execution of navigation at the level of resolution suitable for the

robot control

Rapidly-exploring Random Tree (RRT)
RRT is a sampling method for constructing global path plans. It builds a tree of points
from the robot location to the goal. Algorithm:
1. Randomly choose a point in the map
2. Find the closest point in the tree to the chosen point
3. Add the chosen point to the tree iff:

1. The point is within a configurable radius, and
2. There is no obstacle between the chosen point and tree point

4. Repeat until the space is explored as desired

Rapidly-exploring Random Tree (RRT)

Image: Correll, 2022, introduction to Autonomous Robots

ESSAI July 2024

Map Generation

SLAM

ESSAI July 2024

… First this

Localisation

—
Probabilistic Localisation
Localisation estimating the robot position in known map given:
• The estimate of the robots previous position
• How the robot moved
• What the robot has observed
This is computing the probability:

• At time: 𝑡
• Pose: 𝑥(
• Motion (odometry): 𝑢(
• Measurement: 𝑧(

Bayes Rule

evidence
prior likelihood

)(
)()|()(

)()|()()|(),(

×
==

Þ

==

yP
xPxyPyxP

xPxyPyPyxPyxP

Slide: Burgard, Fox & Thrun, 2006, Probabilistic Robotics

Markov Assumption

Underlying Assumptions
• Static world
• Independent noise
• Perfect model, no approximation errors

44

),|(),,|(1:1:11:1 ttttttt uxxpuzxxp -- =
)|(),,|(:1:1:0 tttttt xzpuzxzp =

Slide: Burgard, Fox & Thrun, 2006, Probabilistic Robotics

Bayes Filters

45

111)(),|()|(---ò= ttttttt dxxBelxuxPxzPh

),,,|(),,,,|(1111 ttttt uzuxPuzuxzP h=Bayes

),,,|()(11 tttt zuzuxPxBel =

Markov),,,|()|(11 tttt uzuxPxzP h=

Markov 11111),,,|(),|()|(---ò= tttttttt dxuzuxPxuxPxzP h
1111

111

),,,|(

),,,,|()|(

--

-ò=

ttt

ttttt

dxuzuxP

xuzuxPxzP



hTotal prob.

Markov 111111),,,|(),|()|(----ò= tttttttt dxzzuxPxuxPxzP h

Slide: Burgard, Fox & Thrun, 2006, Probabilistic Robotics

Bayes Rule
Markov Assumption and Conditional Independence allows the calculation of the
“belief” in the robot’s pose: 𝐵𝑒𝑙(𝑥()
to a two-part method:
• Prediction:
• Correction:

• Where: 𝜂 is a normalisation term
• Note, the term belief is used as a synonym for the state probability

—
Bayes Rule: Decomposition
Why does it breakdown?
• Conditional independence gives that with complete information,

two different probabilities are sufficient to give the full state
• State Transition Probability:

𝑝(𝑥(|𝑥()*, 𝑢(, 𝑧() = 𝑝(𝑥(|𝑥()*, 𝑢()
• Measurement Probability: 𝑝(𝑥(|𝑥()*, 𝑢(, 𝑧() = 𝑝(𝑧(|𝑥()

• With incomplete information, we can combine these in the
prediction and correction steps

The prediction and correction (measurement) steps are a core part
of all localisation and mapping algorithms

Bayes Rule: Example

Image: Correll, 2022, introduction to Autonomous Robots

ESSAI July 2024

Odometry &
ICP Matching

Diversions

—
Odometry
Odometry is the estimation of the robot’s pose based only on the
actuators of the robot.
For example, on the ROSBot, odometery is computed using the
encoder to estimate the "joint" position.
• Measures the rate at which the wheel turns

• Estimate position of the robot from starting position
• Accurate, only if:

• Encoder reliable
• Time reliable
• No slip

• Still drifts over time

—
Odometry
In ROS:
• If a robot supports Odometry, then the frame typically is /odom
• The ROSBot software launches with an odometry measurement

—
ICP: Iterative Closet Point Matching
For localisation (using laser scans and occupancy grids) a way to
“match up” a laser scan to an occupancy grid is required.
ICP (Iterative Closest Point) laser scan matching is a technique to
align two or more scans. The goal is to estimate the transformation
(i.e., rotation and translation) that relates the scans to each other.

—
ICP: Iterative Closet Point Matching
ICP laser scan matching works by:
1. Identifying corresponding points between two scans, which are

typically found by searching for the nearest point in one scan to
each point in the other scan.

2. Iteratively updates the transformation estimate to minimize the
distance between the corresponding points. There are many
ways to transform the pose:

1. Gradient descent
2. Nonlinear optimization technique, such as the Gauss-

Newton method, which adjusts the transformation estimate
to reduce the overall distance between the points.

ICP: Iterative Closet Point Matching

Image: Burgard, Fox & Thrun, 2006, Probabilistic Robotics

ESSAI July 2024

Particle Filter

Localisation

—
Particle Filter Localisation
The Particle Filter approach does away with trying to measure and
calculate the probabilities.
Instead it uses a random sampling approach via “particles”. The
assumption is that with enough sampling the estimate of the
robot’s pose can be found to within an acceptable error margin.
The particle filter follows the same two step process:
1. Predict where the robot has gone creating new particles
2. Correct and Update the most likely particles

Particle Filter Localisation: Algorithm

Image: Burgard, Fox & Thrun, 2006, Probabilistic Robotics

Particle Filter Localisation: Algorithm

Image: Burgard, Fox & Thrun, 2006, Probabilistic Robotics

Particle Filter Localisation: Algorithm
An interesting property is that the particle filter maps to the bayes estimation:

Image: Burgard, Fox & Thrun, 2006, Probabilistic Robotics

ESSAI July 2024

Map Generation

SLAM

—
Simultaneous Localisation and Mapping
It is as the name suggests SLAM creates a map of the
environment, at the same time as determining the robot's position
within the map
The two cannot be separated, since generating the map from the
robot's sensor observations requires knowledge of where the robot
is within said map!

—
Simultaneous Localisation and Mapping
Thus SLAM estimates what the map should look like. SLAM is an
extension to the localisation equation:

• where 𝑚 is the map

—
FastSLAM
FastSLAM is a particle filter-based SLAM approach. In FastSLAM:
• Each particle represents a possible location and map of the

environment.
• As the robot moves, each particle is updated to refine its

estimates of the location and map
• Particles are resampled based on an error measurement of both

the location and map step

—
FastSLAM
FastSLAM uses "landmarks" in the environment. Landmarks are
stored in a tree structure
• Each node in the tree represents a cluster of landmarks that are

close together
• The root node represents the entire environment
• Each level of the tree represents a smaller region of space
• When a new landmark is detected, it is assigned to the node

that corresponds to its location.
• If the node does not yet, a new node is created.
• As the robot moves and observes more landmarks, the

nodes in the tree are updated.

—
FastSLAM
The key advantages of the landmark tree is that only a small part
of the map needs to be updated without having to recompute the
entire map every time new laser data is received. Only the affected
nodes need to be updated.

FastSLAM

Images: Montemerlo, Michael, et al. "FastSLAM: A factored solution to the simultaneous
localization and mapping problem." AAAI (2002)

FastSLAM

Images: Montemerlo, Michael, et al. "FastSLAM: A factored solution to the simultaneous
localization and mapping problem." AAAI (2002)

—
Loop Closure
Loop closure occurs when the robot revisits the same part of the
environment twice, and the map should "close the loop" of map,
that is, ensure the walls (or features) of the map align at the
location where the robot revisited.
Loop closure is challenging because:
• Odometry errors from robot motor encoders
• Estimation errors in map computation
• Mapping algorithms that perform partial map updates

—
Loop Closure
Generally, most SLAM methods fail at proper loop closure unless it
is explicitly handled by the algorithm:
The landmark tree in FastSLAM allows errors in landmarks when
loop closure is detected to be "distributed" among the landmark
tree.

FastSLAM: Loop Closure

Images: Milstein, A., McGill, M., Wiley, T., Salleh, R. & Sammut, C. A Method for Fast Encoder-Free
Mapping in Unstructured Environments. Journal of Fields Robotics, 28, 817–831 (2011)

—
GraphSLAM
GraphSLAM is a graph-based approach to SLAM that uses a
graph representation of the map, which is then optimised as loops
are detected. In GraphSLAM:
• Nodes of the graph are small localmaps that include a pose of

the map, and map landmarks
• Edges represent kinematic displacements between the

localmaps.
• In each localmap, ICP can be used to align new laser scans,

and build-up the local map
• A new localmap (and node) is created if:

• the robot moves too far to be outside a localmap
• The ICP alignment error is too great

—
GraphSLAM
Loop closure is specifically detected by comparing the current
localmaps to all other localmaps in the graph

—
GraphSLAM
Loop closure is specifically detected by comparing the current
localmaps to all other localmaps in the graph:
• When a loop is detected, a loop constraint is added to the graph
• A pose error is computed between the localmaps (for both

displacement and rotation)
• This error is then "smoothed-out" or distributed between all

edges of the graph to refine the kinematic transform between
each localmap

• This results in a more accurate map
However, GraphSLAM is reliant on loop-closure to correct for
mapping errors.

GraphSLAM

Images: Ratter, A. & Sammut, C. Local Map Based Graph SLAM with Hierarchical
Loop Closure and Optimisation. in (2015).

GraphSLAM

Images: Ratter, A. & Sammut, C. Local Map Based Graph SLAM with Hierarchical
Loop Closure and Optimisation. in (2015).

ESSAI July 2024

Day 4: Robotic Vision

Noon Gudgin
Thank you

