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Motivation



Where is the ball?
Worked Example
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Frames of Reference



—
Frames of Reference & Poses
To describe poses a Frame is defined by:
1. Origin Point
2. 3D axes orientation
3. Following Right-hand Rule

A Pose is the tuple:
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
𝑥, 𝑦, 𝑧, 𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ, 𝑦𝑎𝑤

Image: Correll, 2022, introduction 
to Autonomous Robots



—
ROSBot Frames & Conventions
X – Red
Y – Green
Z - Blue



—
ROSBot Frames & Conventions
Conventionally:
• The “global” frame is /map

• The x/y-axis parallel to the ground-place
• The z-axis is vertical

• The default frame of robot is /base_link with
• The x-axis is the ‘forward’ direction of the robot
• The z-axis is vertical



—
Transforming Between Frames (links)
Defined by Linear Algebra Transformation with Homography Matrices

Point:
 

Translation:

Rotations



—
Transforming Between Frames (links)
Transforming a Point, Vector (or Pose) between frames:

Transformation Matrices can be multiplied, but order matters



—
Transforming Between Frames (links)



—
Defining Links
Links (between frames) may be:
• Static – such as fixed displacements of robot geometry
• Actuator – that take dynamic values from actuator (joint) measurements 

of the robot. Typically these are rotational links.
• Mapping/Odometry – that describe the transform from the “world” frame 

to a moving robot/object position. Typically these are a combination of a 
translation and rotation
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Transform Tree



—
Defining a Complete Transform Tree



—
Defining a Complete Transform Tree
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Forward Kinematics



Definition of Forward Kinematics
Forward kinematics is the “forward” application of the TF tree where:
• All TFs are known, that is, all joint angles are known
• Transform a point, vector, pose in one frame into another frame



Single Joint Example
For a forward kinematic setup, what is the “world” position of the arm end-effector:
• The arm base is fixed at the “World” origin
• The angle ⍺ is known



Double Joint Example



—
Transforms using the ROSBot in ROS
Worked Example



Nao Kinematics
A more complex robot has more transformation frames. But, this doesn’t impact the overall 
mathematics on kinematic transforms



—
Real-time Kinematic Problems
The general issues to be aware of for any kinematics:
• Asynchronous updates of dynamic links
• Only approximate correspondence to sensor inputs, which also update 

asynchronously at a different rate to actuators
• Delays between TF update, processing, behaviour generation and final 

joint actuation
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Inverse Kinematics



Definition of Inverse Kinematics
Inverse kinematics is the computation of required joint states to achieve a end-effector position:
• Static TFs are known
• Dynamic TFs must be computed
Requires solving for the transform of the forward kinematic equation



Single Joint Example
For an inverse kinematic setup, what is required angle, ⍺, for:
• The arm end-effector to be at: P = [3, 2]
• Where, the arm base is fixed at the “World” origin



Double Joint Example
What is required angles, ⍺ and β, for:
• The arm end-effector to be at: P = [3, 2]



—
Closed Form Solvability
It is possible to solve the equation using closed form methods:
• Observe that robotics systems are highly non-linear
• Analytical solutions can be found, depending on the complexity of the 

non-linear system
• Likely to have multiple solutions
• A robotic system should have at least 6DOF

Worked example in Matlab with the Puma560 arm



—
Closed Form Solvability
Limitations:
• Computation for complex kinematic chains
• Unsolvable solutions for under-actuated systems
• Multiple solutions for over-actuated system
• Singularities, if using Euclidean Transforms



—
Alternative Transform Representation
The transforms present are Euclidean Affine Transforms.
Alternative transform representations include:
• DH-Parameters, common in Mechanical Engineering
• Quaternions (for rotations)

Image: Correll, 2022, introduction 
to Autonomous Robots



—
Approximate Solving via the Jacobian
Approximate closed-form solutions can be more efficient and “reasonable”:
• The kinematics define a multi-dimensional configuration space
• Finding the closed-form solution is the same as finding the minimum of 

this configuration space.
• This can be done by employing a technique similar to gradient descent 

to find the minimum
• That is, finding the derivative of the configuration space



—
Approximate Solving via the Jacobian
The Jacobian matrix, J, is all partial derivatives of a systems kinematics:

 

For an analytical solution, solving still requiring inverting the Jacobian, 
which may not be possible. However:

• An approximation to inverting J is: 𝐽! = "!

"."!
= $

"
 

• This can be used for an iterative convergence method: ∆𝑗 = 𝐽!𝜖
• Where ϵ is the error between the desired and actual position
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Motion Control



—
Types of control
The general form of control for a robotic actuation system uses:
• Position control
• Velocity control
• Acceleration control
Rigid-body motion mathematically formalises a robot’s motion:



—
Rigid-Body Motion
Rigid-body motion mathematically formalises a robot’s motion:

But what is this mean?
• Control of is a function of time, that is, we are controlling a dynamic 

motion, not an instantaneous snapshot
• Control requires effective measurement of the joint parameters
• This motion is a function of all joint parameters
• The desired control can be computed by solving the motion equation
• There are many different motion equations depending on the robot



—
Open-Loop Motion Control
Rigid-body motion mathematically formalises a robot’s motion:

This is what we have already looked at with inverse kinematics.



—
Practical Issues of Motion Control
Aside from the issue of solveability, open-loop control has issues with:
• Sensor noise
• Instantaneous actuation error
• Accumulative error
• Drift
Worked Example with ROSBot

Image: Correll, 2022, introduction 
to Autonomous Robots



—
Closed-Loop Control
Closed-loop control uses actively monitors the error between a desired set-
point of the actuator and actual-position. The motion-control (position, 
velocity and/or acceleration) is then adjusted based on the error.
This means the actuator is “servo-ed” into position gradually.
Closed-loop control can also be used in-place of inverse kinematic solving.

Image: Siciliano & Khatib (Eds), 2016, 
Springer Handbook of Robotics



PID Control
The most common form of closed-loop control is PID-control.
The general PID controller equation is:

Where:
• P – Proportion of the instantaneous error
• I – Integral of the cumulative error
• D – Derivative of the instantaneous change in the error
• Each ‘K’ term is the ‘Gain’ of how much each PID term should be weighted



PID Control: Online example
The general PID controller equation is:

Online PID example: http://grauonline.de/alexwww/ardumower/pid/pid.html 

http://grauonline.de/alexwww/ardumower/pid/pid.html


PID Control: ROSBot
The general PID controller equation is:

ROSBot worked example of PID Control



—
PID Tuning
There are a wide variety of approaches for tuning the parameters of PID 
controllers including:
• Manual tuning
• Process Reaction Curve
• Ziegler-Nichols Method
• Cohen-Coon Method
• Lambda Tuning Method
• Internal Model Control
• Reinforcement Learning
• etc.



—
PID Tradeoffs
PID is still very common as it:
• Simple
• Directly uses known control dynamics of common systems
• Surprisingly robust to noise
However, the tuning of a PID system is critical. A poorly tuned system:
• May oscillate rather than converge
• May diverge with an exploding error



—
PID – Expanding for practical issues
Additional components can be included in PID (or closed-loop) controllers 
to correct for noise, error, slip, etc.

Image: Chu, Liang & Chao, Libo & Ou, Yang & Lu, WenBo. (2012). Hardware-in-the-
loop Simulation of Traction Control Algorithm Based on Fuzzy PID. Energy Procedia. 

16. 1685–1692. 10.1016/j.egypro.2012.01.261. 
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Motion Planning



—
Motion Planning
Simple closed-loop control assumed that the robot actuators are capable of 
moving through all intermediate ranges without conflict.
For a complex actuation system, such as a robot arm, this assumption is 
not true, due to:
• Self collisions
• Environment collusions



Motion Planning: Example



—
Motion Planning
Motion planning overcomes this problem, by finding a sequence of 
intermediate positions for actuators before the end-position is reached.
A motion plan is the sequence of joint movements to move the joints from 
one position to another position.

Motion planning is one of the hardest problems now in robotics due to:
• Need for precise fine-grained motor control motion
• The complex nature of solving motion equations



—
Example with the Puma560
Worked example in Matlab with the Puma 560



Configuration Spaces
Motion planning can be solved analytically, but this is computational expensive.
An different approach to motion planning uses Configuration Spaces.
A configuration space described all valid actuator positions. When visualised, this is the 
actuator space, not the 3D space of the environment.

Image: Siciliano & Khatib (Eds), 2016, 
Springer Handbook of Robotics



Configuration Spaces



Configuration Spaces
Configuration spaces:
• May have complex shapes for self collisions
• Include boundaries (or breaks) for environment collisions

Image: Siciliano & Khatib (Eds), 2016, 
Springer Handbook of Robotics



Sampling Based Motion Planning
A common approach to Motion Planning is to randomly sample the configuration space and 
build a traversable graph through the space. Algorithm:
1. Initialise a Graph, G, with the starting & end configuration.
2. Randomly sample a configuration, 𝛼(𝑖), from with the configuration space, and add as a 

vertex to G
3. Find all vertices in G within a neighbourhood of

𝛼 𝑖  and connect the vertices if possible
4. Repeat (2) & (3)
5. Terminate when a path is found and

at least N vertices are added to G

MoveIt, the ROS package, uses sampling based 
approaches, and you can visualise the planning Image: Siciliano & Khatib (Eds), 2016, 

Springer Handbook of Robotics
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A practical perspective

Learning Motion



—
Learning Motion
Machine Learning in both simulation and online-learning is leveraged to 
learn complex motion. This could be a course to itself.
Learning motion is explored to handle a variety of issues in robotics:
• Noise
• Slip
• Hardware failures
• Probabilistic Actions
• Non-deterministic Actions 
Reinforcement Learning is a very popular approach as various RL forms 
can help account for these issues without ‘manual’ intervention



—
Learning Motion
As a reminder, the RL problems is defined as:

𝑅𝐿 ≔< 𝑆, 𝐴, 𝑇, 𝑅, 𝛾 >
Where:
• S – State Space (discretised, continuous)
• A – Action Set (discrete, continuous)
• T – Transition Function (model-based, or model-free)
• R – Reward Function
• 𝛾 – Discount Factor



—
Learning Motion
Again, entire courses can be devoted to variations on this definition, along 
with structures for the RL agent. Wide varieties of RL methods have been 
investigated in both simulation and online learning:
• Classic Value/Policy Iteration
• Q-Learning
• PPO
• Deep Q-Learning
• Actor-Critic
… to name a few



—
Learning Motion: Issues
Reinforcement Learning methods encounter issues:
• Iterations required for convergence
• Balancing Exploration vs Exploitation
• Appropriate definition of the RL problem
• Transferring simulated behaviours to real-systems

This field is rapidly changing with Deep Networks and LLM approaches. 
For ESSAI, we’ll explore some more ‘classic’ techniques that are of value 
for a rounded understanding of leaning robot control.



—
Classic Example – Cart and Pole
For simplified domains, a traditional representation with any combination of 
value iteration, policy iteration, q-learning, etc., are successful:

𝑅𝐿 ≔< 𝑆, 𝐴, 𝑇, 𝑅, 𝛾 >
S – Cart/pole position
A – L/R force
T – Either model-based or model-free
R – Balancing time, distance from centre, etc.



Learning Motion: Examples



—
Learning Bi-Pedal Walk
Earlier we’ve noted that control can be governed by known equations 
(models) of motion for a particular system.
Bi-pedal motion has been studied quite some time, on Nao we typically 
modelled with two concepts:
• Zero-Moment Point (for foot control)
• Inverted Pendulum of dynamic walk motion



Bi-Pedal Walk (ZMP)
The ZMP concept simplifies bi-pedal walk by reducing all the forces acting on the robot to a 
single force termed the ‘Zero-Moment Point’. 

Images: Vukobratović, Miomir, and Branislav Borovac. "Zero-moment point—thirty five 
years of its life." International journal of humanoid robotics 1.01 (2004): 157-173.



Bi-Pedal Walk (Inverted Pendulum)
Bi-pedal walk also has a ‘rocking’ motion as:
• Weight is transferred between feet
• Single leg moving back/forwards

Images: Hengst, Bernhard, Manuel Lange, and Brock White. "Learning to control a biped with feet.”, Tech. Report 2014.
Hengst, Bernhard. "Reinforcement learning inspired disturbance rejection and Nao bipedal locomotion." 15th IEEE RAS 

Humanoids Conference. 2015.



—
Learning Bi-Pedal Walk
These combine to give a parameterised control equation, where the 
regularity of the pendulum is maintained, and the foot placement is 
controlled to maintain the ZMP within the foot boundary.
The parameters of the walk can are learnt through RL.

Hengst, Bernhard. "Reinforcement learning inspired disturbance rejection and Nao bipedal 
locomotion." 15th IEEE RAS Humanoids Conference. 2015.



Learning Joint Wear
Additional parameters can be introduced into the model to adjust for wear and tear in joints. 
Tuning (or learning) these parameters on a per-robot basis allows for correction of joint error.

Reichenberg, Philip, and Thomas Röfer. "Dynamic joint control for a humanoid walk." Robot World Cup. Cham: 
Springer Nature Switzerland, 2023. 215-227.



Online Deep Reinforcement Learning
Online learning of robot control in real-world testing:
• Embedding action operators into the state space + action space
• Minimal shaping of reward function
• Actor-Critic RL structure



—
Online Deep Reinforcement Learning
Online learning of robot control in real-world testing:
• Embedding action operators into the state space + action space
• Minimal shaping of reward function
• Actor-Critic RL structure



Online Deep Reinforcement Learning



—
Sim2Real Learning
See talk by Katerina Fragkiadaki!

My favourite recent example is the training of DeepMind OP3 Soccer
• 1v1 Soccer behaviour
• Deep RL trained in Simulation, then further refinement on a real system
• Required intermediate guided rewards, such as requiring bi-pedal walk



Learning Motion: Examples (DeepMind)



—
Multi-Strategy Learning

Model Inducer

Qualitative
Symbolic Planner

Quantitative
Parameter Refiner

Deliberative
Layer

Sequencing
Layer

Reactive
Layer

Trial-and-Error
Learning

Data Samples

Qualitative Model Parameterised Plan

Control
Policy

World/Environment

Reactive Controller

Execute

State Space 
Sampler

Exploration

Robot System

Task

Wiley, T.,  A Planning and Learning Hierarchy for the Online Acquisition of Robot Behaviours. PhD 
Dissertation, (2017) UNSW, Australia Wiley, T., Bratko, I. & Sammut, C. A Machine Learning System 

for Controlling a Rescue Robot. in vol. 11175 108–119 (2018).



Combining Planning and Reinforcement Learning
for Learning Locomotion



Negotiator Robot Model

Base Flippers

✓b

posx/y

✓f
� v +

✓b

✓f

const (✓b, 0)

M+ (✓f , ✓b)

M+ (✓f , ✓b)

M� (✓f , ✓b)



Naive Reinforcement Learning

Base Flippers

✓b

posx/y

✓f
� v +



Planning into Reinforcement Learning

Plan: . . . sQi sQi+1
. . .

SMDP: . . . . . .

sTi,1

...

sTi,n

sTi+1,1

...

sTi+1,n

aQi
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SMDP Over Options

MDP SMDP SMDP over Options



Planning into Reinforcement Learning

Plan: . . . sQi sQi+1
. . .

SMDP: . . . . . .

sTi,1

...

sTi,n

sTi+1,1

...

sTi+1,n

aQi
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MDP SMDP SMDP over Options



Planning into Reinforcement Learning
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Examples of Learning



Examples of Learning



Examples of Learning
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Day 3: Localisation, 
Mapping and Navigation

Noon Gudgin
Thank you


