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ABSTRACT

Classical economic models make behavioral predictions based on the assumption that people are fully
rational and care only about maximizing their own payoffs. Although this approach successfully
explains human behavior in many situations, there is a wealth of experimental evidence demonstrating
conditions where people deviate from the predictions of these models. One setting that has received
particular attention is fixed length repeated games. Iterating a social dilemma can promote cooperation
through direct reciprocity, even if it is common knowledge that all players are rational and self-
interested. However, this is not the case if the length of the game is known to the players. In the final
round, a rational player will defect, because there is no future to be concerned with. But if you know the
other player will defect in the last round, then you should defect in the second to last round, and so on.
This logic of backwards induction leads to immediate defection as the only rational
(sub-game perfect Nash equilibrium) strategy. When people actually play such games, however,
immediate defection is rare. Here we use evolutionary dynamics in finite populations to study the
centipede game, which is designed to explore this issue of backwards induction. We make the following
observation: since full cooperation can risk-dominate immediate defection in the centipede game,
stochastic evolutionary dynamics can favor both delayed defection and even full cooperation.
Furthermore, our evolutionary model can quantitatively reproduce human behavior from two experi-
ments by fitting a single free parameter, which is the product of population size and selection intensity.
Thus we provide evidence that people’s cooperative behavior in fixed length games, which is often
called ‘irrational’, may in fact be the favored outcome of natural selection.

© 2012 Elsevier Ltd. All rights reserved.




Motivation

Mismatch between
predictions of rational self-
Interest models and actual
human behavior




The perfect example
The Centipede Game

Sequential game
2 Players (>2 is also possible)
Finite number of rounds

Certain (immediate) gain vs higher
uncertain (future) gain

Here the resource to be shared
doubles at each step
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The perfect example

Backward Induction

* At the last turn Player 2 would
take at Step 3 because 3.2 > 1.6
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The perfect example

Backward Induction

* At the last turn Player 2 would
take at Step 3 because 3.2 > 1.6

* Player 1 knows it so they would
take at Step 2 because 1.6 > 0.8
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The perfect example

Backward Induction

* At the last turn Player 2 would

take at Step 3 because 3.2 > 1.6 @ Pass @ Pass @
/ /

* Player 1 knows it so they would
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The perfect example

Backward Induction

* At the last turn Player 2 would
take at Step 3 because 3.2 > 1.6 Pass [ b1 o
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The perfect example

Backward Induction

* At the last turn Player 2 would
take at Step 3 because 3.2 > 1.6 Bl 1

* Player 1 knows it so they would
take at Step 2 because 1.6 > 0.8
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The perfect example

How do people actually play?

Outcome distribution in experimental data
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McKelvey & Palfrey (1992)
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The Paradox of Backward Induction

Why can’t classical game theory explain human behavior?

Possible explanations
1. Bounded rationality: humans might not use full backward induction

2. Altruistic players
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https://thedecisionlab.com/biases/bounded-rationality
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https://thedecisionlab.com/biases/bounded-rationality
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> |In EGT, a player’s payoff is associated with a fithess (biological advantage)

One possible solution
Evolutionary Game Theory (EGT)

> The fittest individuals are more likely to produce offspring

» Stochastic birth-death process (parameters: population size Z & selection strength /)

Domingos, Santos, & Lenaerts, (2023)



4 Decision game
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Example with
Z = 1000 and

B =0.03
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Conclusions

 Natural selection can favor both full cooperation as well as partial
cooperation, without assumptions about other-regarding preferences or

cognitive limitations

* A strategy which does best in a perfectly precise world does not necessarily
triumph In the presence of stochastic effects

* The evolutionary model quantitatively reproduces the behavior of humans
from two behavioral experiments
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Discussion

* Are Cooperation and Defection suitable terms to describe players’ actions?
 What are the differences between our analysis and the paper?
 What happens for large population size?

» How can the model be expanded or improved?
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