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Why should you care about EGT?

The Evolution of Sectarianism

Sebastian Ille

New College of the Humanities, London

Human cooperation for reasons other than self-interest has long intrigued social
scientists leading to a substantial literature in economics. Its complement — sectari-
anism — has not received closer attention in economics despite its significant impact.
Based on a dynamic model, the paper shows that sectarianism can be understood as
the outcome of a repeated bargaining process in which sectarian affiliation evolves
into a pure coordination signal that attributes economic and political benefits. It
demonstrates that such sectarian social contracts co-evolve with the sects’ degree
of coerciveness and are self-reinforcing. Sectarian conflict may then not be a result
of diverging religious ideologies but 1s shown to be caused by external manipula-
tions of the signal (e.g. via identity politics), and internal political and economic
grievances within a sect that spill over to the inter-sectarian level while adopting a
sectarian appearance. Theoretical results are supported by empirical findings from
the Middle East.
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A bottom-up institutional approach to cooperative
governance of risky commons

Vitor V. Vasconcelos'?3, Francisco C. Santos"® and Jorge M. Pacheco

Avoiding the effects of climate change may be framed as a
public goods dilemma’, in which the risk of future losses is
non-negligible?7, while realizing that the public good may be
far in the future®*’-°. The limited success of existing attempts
to reach global cooperation has been also associated with a
lack of sanctioning institutions and mechanisms to deal with
those who do not contribute to the welfare of the planet or
fail to abide by agreements’*'°-3, Here we investigate the
emergence and impact of different types of sanctioning to
deter non-cooperative behaviour in climate agreements. We
show that a bottom-up approach, in which parties create local
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through time'®*!' (Methods and Supplementary Information for

further details). Behavioural experiments*>*, as well as other theo-
retical models*>**, have implemented thresholds through repeated
interactions, and other authors have highlighted the role played
by pledges and communication during negotiations'~**, bringing
about additional layers of complexity to this problem (details and
comparison with other models in the Supplementary Information).

Besides contributing to this public good, Ps also contribute with
a punishment tax () to an institution that, whenever endowed
with enough funding (n,7,) will effectively punish Ds by an amount

A. Hence, establishing an institution stands as a second-order
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LETTER
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Social norm complexity and past reputations in the

evolution of cooperation

. “, cisco C. ’ . Pacheco+~
Fernando P. Santos!2, Francisco C. Santos'? & Jorge M. Pacheco?34

Indirect reciprocity is the most elaborate and cognitively
demandingl of all known cooperation mechanisms?, and is the most
specifically human'> because it involves reputation and status. By
helping someone, individuals may increase their reputation, which
may change the predisposition of others to help them in future.
The revision of an individual’s reputation depends on the social
norms that establish what characterizes a good or bad action
and thus provide a basis for morality®. Norms based on indirect
reciprocity are often sufficiently complex that an individual’s
ability to follow subjective rules becomes important*-%, even in
models that disregard the past reputations of individuals, and
reduce reputations to either ‘good’ or ‘bad’ and actions to binary
decisions”®. Here we include past reputations in such a model and
identify the key pattern in the associated norms that promotes
cooperation. Of the norms that comply with this pattern, the one
that leads to maximal cooperation (greater than 90 per cent) with
minimum complexity does not discriminate on the basis of past
reputation; the relative performance of this norm is particularly
evident when we consider a ‘complexity cost’ in the decision
process. This combination of high cooperation and low complexity
suggests that simple moral principles can elicit cooperation even in

use behavioural strategies (often designated action rules) and strategy
spaces that also increase (exponentially with order). For this reason,
a combination of a norm and a strategy that promotes cooperation in
the space of nth-order norms does not necessarily perform equally
well in a space of higher-order norms because the availability of more
complex behaviours (together with those for lower-order norms) often
has non-trivial effects on cooperation'®. Furthermore, the performance
of a complex social norm can be constrained by an individual’s ability
to follow complex subjective rules*®. This raises two fundamental
questions: (1) whether the moral principles that underlie successful
strategies and norms in the space of third-order norms remain valid
within a larger space, and if so which ones; and (2) how the cognitive
skills associated with social norms and strategies impair individuals’
performance. Using the donation game and binary reputations we
answer these questions by investigating the cooperative capacity of
social norms in a space that encompasses norms of up to fourth order
and that span a wide range of cognitive complexities*!”!8, Increasing
the number of possibilities to consider when assigning a good or a
bad reputation to individuals enables us to identify the key pattern
of social norms that provides the necessary conditions for promoting
cooperation.
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Simulation Modelling Practice and Theory 109 (2021) 102299
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Modeling behavioral experiments on uncertainty and cooperation

with population-based reinforcement learning OPEN Committin g to the wron ga rtificial

Elias Fernandez Domingos ¢, Jelena Gruji¢ »", Juan C. Burguillo ¢,

Francisco C. Santos %", Tom Lenaerts " d e I eg ate i Nna COI IECt ive - ri S k

a Artificial Intelligence Lab, Computer Science Department, Vrije Universiteit Brussel, Brussels, 1050, Belgium
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4 INESC-ID & Instituto Superior Técnico, Universidade de Lisboa, 2744-016 Porto Salvo, Portugal

ARTICLE INFO ABSTRACT Inés Terrucha'?*?, Elias Fernandez Domingos?>*, Pieter Simoens® & Tom Lenaerts?3*>>
Keywords: From climate action to public health measures, human collective endeavors are often shaped by While autonomous artificial agents are assumed to perfectly execute the strategies they are

Public goods game different uncertainties. Here we introduce a novel population-based learning model wherein a programmed with, humans who design them may make mistakes. These mistakes may lead to a
Population dynamics group of individuals facing a collective risk dilemma acquire their strategies over time through misalignment between the humans’ intended goals and their agents’ observed behavior, a problem
Individual learning reinforcement learning, while handling different sources of uncertainty. In such an N-person Afuslia alinnmant Curh an alinnmant nrahlam mawv hava narticiilarhs ebrann Francaniniancae whan

Collective risk

Uncertainty collective risk dilemma players make step-wise contributions to avoid a catastrophe that would

result in a loss of wealth for all players. Success is attained if they collectively reach a certain
contribution level over time. or. when the threshold is not reached. thev were luckv enough

Descriptive modelling framework
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- Shayegan Omidshafieil, Christos Papadimitriou®, Georgios Piliouras(®*, Karl Tuyls?,

Mark Rowland?, Jean-Baptiste Lespiau’, Wojciech M. Czarnecki?, Marc Lanctot?, \ f(s!,s!) tes f(s%,875) o= £(sK,s7K)
Received: 18 February 2019 - Julien Perolat? & Remi Munos®
Accepted: 11 June 2019 . Weintroduce a-Rank, a principled evolutionary dynamics methodology, for the evaluation and ranking
Published online: 09 July 2019 - of agents in large-scale multi-agent interactions, grounded in a novel dynamical game-theoretic (b)

- solution concept called Markov-Conley chains (MCCs). The approach leverages continuous-time and

. discrete-time evolutionary dynamical systems applied to empirical games, and scales tractably in

- the number of agents, in the type of interactions (beyond dyadic), and the type of empirical games

- (symmetric and asymmetric). Current models are fundamentally limited in one or more of these

- dimensions, and are not guaranteed to converge to the desired game-theoretic solution concept

- (typically the Nash equilibrium). a-Rank automatically provides a ranking over the set of agents under

. evaluation and provides insights into their strengths, weaknesses, and long-term dynamics in terms

- of basins of attraction and sink components. This is a direct consequence of the correspondence we

. establish to the dynamical MCC solution concept when the underlying evolutionary model’s ranking-

. intensity parameter, ¢, is chosen to be large, which exactly forms the basis of a-Rank. In contrast to the (d)
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Omidshafiei, S., Papadimitriou, C., Piliouras, G., Tuyls,

Improve Al self-play in large deep-RL agents K., Rowland, M., Lespiau, J. B., ... & Munos, R. (2019).

a-rank: Multi-agent evaluation by evolution. Scientific
reports, 9(1), 9937.
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TRANSFORMING THE DILEMMA

Christine Taylor'? and Martin A. Nowak'-3
Program for Evolutionary Dynamics, Department of Organismic and Evolutionary Biology, Department of Mathematics,
Harvard University, Cambridge, Massachusetts 02138

2E-mail: taylor4@fas.harvard.edu

3E-mail: nowak@fas.harvard.edu

Received February 13, 2007
Accepted May 30, 2007

How does natural selection lead to cooperation between competing individuals? The Prisoner’s Dilemma captures the essence of
this problem. Two players can either cooperate or defect. The payoff for mutual cooperation, R, is greater than the payoff for mutual
defection, P. But a defector versus a cooperator receives the highest payoff, T, where as the cooperator obtains the lowest payoff,
S. Hence, the Prisoner’s Dilemma is defined by the payoff ranking T > R > P > S.In a well-mixed population, defectors always have
a higher expected payoff than cooperators, and therefore natural selection favors defectors. The evolution of cooperation requires
specific mechanisms. Here we discuss five mechanisms for the evolution of cooperation: direct reciprocity, indirect reciprocity, kin
selection, group selection, and network reciprocity (or graph selection). Each mechanism leads to a transformation of the Prisoner’s
Dilemma payoff matrix. From the transformed matrices, we derive the fundamental conditions for the evolution of cooperation. The
transformed matrices can be used in standard frameworks of evolutionary dynamics such as the replicator equation or stochastic
processes of game dynamics in finite populations.

KEY WORDS: Direct and indirect reciprocity, evolution of cooperation, group selection, kin selection, network reciprocity (graph
selection), Prisoner’s Dilemma.

Evolutionary biologists are fascinated by cooperation. We think The meaning of the word “cooperation” in evolutionary bi-
this fascination is entirely justified, because cooperation is essen- ology is more specific than just “working together.” In the narrow
tial for construction. Whenever evolution “constructs” a new level sense, “cooperation” and “defection” are the two possible actions

of organization, cooperation is involved. The very origin of life, that are defined by the Prisoner’s Dilemma. The payoff matrix of

Taylor, C., & Nowak, M. A. (2007). Transforming
the dilemma. Evolution, 61(10), 2281-2292.
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Five Rules for the Evolution

of Cooperation

Martin A. Nowak

Cooperation is needed for evolution to construct new levels of organization. Genomes, cells,
multicellular organisms, social insects, and human society are all based on cooperation. Cooperation
means that selfish replicators forgo some of their reproductive potential to help one another. But
natural selection implies competition and therefore opposes cooperation unless a specific mechanism
is at work. Here | discuss five mechanisms for the evolution of cooperation: kin selection, direct
reciprocity, indirect reciprocity, network reciprocity, and group selection. For each mechanism, a simple
rule is derived that specifies whether natural selection can lead to cooperation.

volution is based on a fierce competition
Ebetween individuals and should therefore

reward only selfish behavior. Every gene,
every cell, and every organism should be de-
signed to promote its own evolutionary success
at the expense of its competitors. Yet we ob-
serve cooperation on many levels of biolog-
ical organization. Genes cooperate in genomes.
Chromosomes cooperate in eukaryotic cells.
Cells cooperate in multicellular organisms. There
are many examples of cooperation among ani-
mals. Humans are the champions of cooperation:
From hunter-gatherer societies to nation-states,
cooperation is the decisive organizing principle
of human society. No other life form on Earth is
engaged in the same complex games of cooper-
ation and defection. The question of how natural
selection can lead to cooperative behavior has
fascinated evolutionary biologists for several
decades.

A cooperator is someone who pays a cost,
¢, for another individual to receive a benefit,
b. A defector has no cost and does not deal
out benefits. Cost and benefit are measured in
terms of fitness. Reproduction can be genetic
or cultural. In any mixed population, defectors
have a higher average fitness than cooperators
(Fig. 1). Therefore, selection acts to increase
the relative abundance of defectors. After some

well-mixed populations needs help for establish-
ing cooperation.

Kin Selection

When J. B. S. Haldane remarked, “I will jump
into the river to save two brothers or eight
cousins,” he anticipated what became later known
as Hamilton’s rule (/). This ingenious idea is that
natural selection can favor cooperation if the
donor and the recipient of an altruistic act are
genetic relatives. More precisely, Hamilton’s rule
states that the coefficient of relatedness, », must
exceed the cost-to-benefit ratio of the altruistic act:

r>ch )

Relatedness is defined as the probability of
sharing a gene. The probability that two brothers
share the same gene by descent is 1/2; the same
probability for cousins is 1/8. Hamilton’s theory
became widely known as ‘“kin selection” or
“Inclusive fitness” (2—7). When evaluating the
fitness of the behavior induced by a certain gene,
it is important to include the behavior’s effect on
kin who might carry the same gene. Therefore,
the “extended phenotype” of cooperative behav-
ior is the consequence of “selfish genes” (8, 9).

Direct Reciprocity

observe cooperation between unrelated indi-
viduals or even between members of different
species. Such considerations led Trivers (Z0) to
propose another mechanism for the evolution of
cooperation, direct reciprocity. Assume that
there are repeated encounters between the same
two individuals. In every round, each player has
a choice between cooperation and defection. If I
cooperate now, you may cooperate later. Hence,
it might pay off to cooperate. This game theoretic
framework is known as the repeated Prisoner’s
Dilemma.

But what is a good strategy for playing this
game? In two computer tournaments, Axelrod
(11) discovered that the “winning strategy”
was the simplest of all, tit-for-tat. This strat-
egy always starts with a cooperation, then it
does whatever the other player has done in the
previous round: a cooperation for a coopera-
tion, a defection for a defection. This simple
concept captured the fascination of all enthu-
siasts of the repeated Prisoner’s Dilemma.
Many empirical and theoretical studies were
inspired by Axelrod’s groundbreaking work
(12-14).

But soon an Achilles heel of the world
champion was revealed: If there are erroneous
moves caused by “trembling hands” or “
minds,” then the performance of tit-for-tat de-
clines (15, 16). Tit-for-tat cannot correct mis-
takes, because an accidental defection leads to a
long sequence of retaliation. At first, tit-for-tat
was replaced by generous-tit-for-tat (7), a strat-
egy that cooperates whenever you cooperate,
but sometimes cooperates although you have
defected [with probability 1 — (¢/b)]. Natural
selection can promote forgiveness.

Subsequently, tit-for-tat was replaced by
win-stay, lose-shift, which is the even simpler
idea of repeating your previous move when-
ever you are doing well, but changing other-
wise (/8). By various measures of success,
win-stay, lose-shift is more robust than either
tit-for-tat or generous-tit-for-tat (/5, 18). Tit-
for-tat is an efficient catalyst of cooperation in a
society where nearly everybody is a defector,
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Nowak, M. A. (2006). Five rules for the evolution of
cooperation. science, 314(5805), 1560-1563.
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Human cooperation

David G. Rand’ and Martin A. Nowak?

Cell

P R E S S

" Department of Psychology, Department of Economics, Program in Cognitive Science, School of Management, Yale University,

New Haven, CT, USA

2Program for Evolutionary Dynamics, Department of Mathematics, Department of Organismic and Evolutionary Biology, Harvard

University, Cambridge, MA, USA

Why should you help a competitor? Why should you
contribute to the public good if free riders reap the ben-
efits of your generosity? Cooperation in a competitive
world is a conundrum. Natural selection opposes the
evolution of cooperation unless specific mechanisms
are at work. Five such mechanisms have been proposed:
direct reciprocity, indirect reciprocity, spatial selection,
multilevel selection, and kin selection. Here we discuss
empirical evidence from laboratory experiments and field
studies of human interactions for each mechanism. We
also consider cooperation in one-shot, anonymous inter-
actions for which no mechanisms are apparent. We argue
that this behavior reflects the overgeneralization of coop-
erative strategies learned in the context of direct and
indirect reciprocity: we show that automatic, intuitive
responses favor cooperative strategies that reciprocate.

The challenae of cooneration

defection [1]. These interaction structures specify how the
individuals of a population interact to receive payoffs, and
how they compete for reproduction. Previous work has
identified five such mechanisms for the evolution of coop-
eration (Figure 1): direct reciprocity, indirect reciprocity,
spatial selection, multilevel selection, and kin selection. It
is important to distinguish between interaction patterns
that are mechanisms for the evolution of cooperation and
behaviors that require an evolutionary explanation (such
as strong reciprocity, upstream reciprocity, and parochial
altruism; Box 2).

In this article, we build a bridge between theoretical work
that has proposed these mechanisms and experimental
work exploring how and when people actually cooperate.
First we present evidence from experiments that implement
each mechanism in the laboratory. Next we discuss why
cooperation arises in some experimental settings in which
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Rand, D. G., & Nowak, M. A. (2013). Human cooperation.
Trends in cognitive sciences, 17(8), 413-425.
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Statistical physics of human cooperation

illian J. Jordan,® David G. Rand.**> Zhen Wang.® Stefano Boccaletti,”-® a

tral Sciences and Mathematics, University of Maribor, Koroska cesta 160, SI-2000
2CAMTP - Center for Applied Mathematics and Theoretical Physics,
University of Maribor, Mladinska 3, SI-2000 Maribor, Slovenia
"Department of Psychology, Yale University, New Haven, Connecticut 06511, U!
"Department of Economics, Yale University, New Haven, Connecticut 06511, U’
3School of Management, Yale University, New Haven, Connecticut 06511, USA
tical Imagery Analysis and Learning, Northwestern Polytechnical University, Xi'a
titute of Complex Systems, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, F
“The Italian Embassy in Israel, 25 Hamered st., 68125 Tel Aviv, Israel
YInstitute of Technical Physics and Materials Science, Centre for Energy Researc
Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary

rooperation among unrelated individuals 1s unique to humans, who often sacrifice p
1on good and work together to achieve what they are unable to execute alone. T
ur species is indeed due, to a large degree, to our unparalleled other-regarding ¢
ve understanding of human cooperation remains a formidable challenge. Recent re
:ates that it is important to focus on the collective behavior that emerges as the res
12 individuals, groups. and even societies. Non-equilibrium statistical physics, in p:
ds and the theory of collective behavior of interacting particles near phase transit
very valuable for understanding counterintuitive evolutionary outcomes. By stud
:ration as classical spin models. a physicist can draw on familiar settings from stat
like pairwise interactions among particles that typically govern solid-state physics
g humans often involve group interactions, and they also involve a larger number of
most simplified description of reality. The complexity of solutions therefore ofter
physical systems. Here we review experimental and theoretical research that ad
of human cooperation, focusing on spatial pattern formation, on the spatiotempor
utions, and on self-organization that may either promote or hinder socially favorabl
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Statistical Mechanics of Complex Networks

Réka Albert! and Albert-LaszI6 Barabdsi®
! School of Mathematics, 127 Vincent Hall, University of Minnesota, Minneapolis, Minnesota 55455
* Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556

Complex networks describe a wide range of systems in nature and society, much quoted examples
including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network
of routers and computers connected by physical links. While traditionally these systems were
modeled as random graphs, it is increasingly recognized that the topology and evolution of real
networks is governed by robust organizing principles, Here we review the recent advances in the
field of complex networks, focusing on the statistical mechanics of network topology and dynamics.
After reviewing the empirical data that motivated the recent interest in networks, we discuss the
main models and analytical tools, covering random graphs, small-world and scale-free networks, as
well as the interplay between topology and the network’s robustness against failures and attacks.

CONTENTS 1. Average path length
2. Clustering coefficient
[. INTRODUCTION 2 3. Degree distribution
I[I. THE TOPOLOGY OF REAL NETWORKS: 4. Spectral properties
EMPIRICAL RESULTS 3 VII. THE SCALE-FREE MODEL
1. World-Wide Web 3 A. Definition of the scale-free (SF) model
2. Internet 5 B. Theoretical approaches
3. Movie actor collaboration network 5 C. Limiting cases of the SF maodel
4.  Science collaboration graph 5 D. Properties of the SF model
5. The web of human sexual contacts 6 1. Average path length
6. Cellular networks 6 2. Node degree correlations
7.  Ecological networks 6 3.  Clustering coeflicient
8. Phone-call network 6 4.  Spectral properties
9. Citation networks 7 VIII. EVOLVING NETWORKS
10. Networks in linguistics 7 A. Preferential attachment I1(k)
11. Power and neural networks 7 1.  Measuring II(k) for real networks
12. Protein folding 7 2. Nonlinear preferential attachment
1. RANDOM GRAPH THEORY 9 3. Initial attractiveness
A. The Erdés-Rényi model 9 B. Growth
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Complex networks: Structure and dynamics

S. Boccaletti® *, V. Latora® €. Y. Moreno® €. M. Chavez', D.-U. Hwan

YCNR-Istituto dei Sistemi Complessi, Largo E. Fermi, 6, 50125 Florence, Iraly
bDi;mmmmm di Fisica e Astronomia, Universitd di Catania, Via S. Sofia, 64, 95123 Catania, Italy
“Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Via S. Sofia, 64, 95123 Catania, Italy
instituto de Biocomputacion y Fisica de Sistemas Complejos, Universidad de Zaragoza, Zaragoza 50009, Spa
€ Departamento de Fisica Tedrica, Universidad de Zaragoza, Zaragoza 50009, Spain
re de Newrosciences Cognitives et Imagerie Cérébrale (LENA) CNRS UPR-640, Hopital de la Salpémriére. 47 Be
75651 Paris CEDEX I3, France

Accepted 27 October 2005
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ological and chemical systems, neural networks, social interacting species, the Internet and the V
v examples of systems composed by a large number of highly interconnected dynamical units. The
lobal properties of such systems is to model them as graphs whose nodes represent the dynamical

¢ the interactions between them. On the one hand, scientists have to cope with structural issues, such
f a complex wiring architecture, revealing the unifying principles that are at the basis of real network:
nic the growth of a network and reproduce its structural properties. On the other hand. many releva
2 complex networks” dynamics. such as learning how a large ensemble of dynamical systems that i
12 topology can behave collectively. We review the major concepts and results recently achieved v
dynamics of complex networks, and summarize the relevant applications of these ideas in many dif

nonlinear science to biology, from statistical mechanics to medicine and engineering.

1ier B.V. All rights reserved.
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What are social networks?
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Ego Network Social Ego Network

taken from Centola 2018
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https://www.youtube.com/watch?v=4fHufylWmX0
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Important concepts

* A graph G can be defined as G = (V, E) where V is the set of vertices or nodes of the

graph, and E the set of edges connecting every two nodes in the graph.

 We can also represent a finite graph using an adjacency matrix A. This n X n square

matrix indicate whether pairs of vertices in the graph are connected by an edge, I.e.,

every A;; = 1 where there is and edge between nodes v; and v;, otherwise A;; = 0.

* Graphs can be directed or undirected. In undirected graphs, the adjacency matrix is

symmetric.

20



Important concepts

 The edges of a graph can also be weighted, i.e., some edges are more important than

others.
* The distance matrix is a weighted adjacency matrix, and the distance between two

nodes d(v;, vj) in the network can be defined as the minimum sum of the sum of the

weights on the shortest path between two nodes. Or simply, for binary networks (hon-

weighted) the distance between two nodes is defined as the number of edges

along the shortest path connecting them.

21



Important concepts

* The degree (k) of a node is the total number of edged incident on that node in a binary

undirected network.
« In directed networks, we differentiate between in-degree (k;) and out-degree (k).

* |In weighted networks, the strength measure is also considered.

22



Important concepts

* A clique is a subset of nodes of an undirected graph (or network) such that every two
distinct nodes in the cligue are adjacent. That is, a cligue in a graph G is a complete

subgraph of G.

23



Important concepts: Small worlds

There are many important measures and
indicators of a network topology. We will
focus on the following three concepts:

* Small worlds
 Clustering

 Degree distribution

Watts, Duncan J., and Steven H. Strogatz. "Collective

dynamics of ‘small-world’networks." nature 393.6684
(1998): 440-442.
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Important concepts: Small worlds

SiIX PEGREES OF SEPARATION

THIS CONCEPT wWAS POPULARISED
B8Y THE Six pEGREES OF
KEVIN BACON GAME

START | THIS PATH IS ALSO
POS SIBLE, BUT T AKES
X THE SAME NUMBER

EACH EPGE COUNTS OF PEGREES FACEBOOK CALCULATEPD THE

AVERAGE PEGREES OF SEPARATION
ONE DEGREE
43 g FOR THEIR USERS IN 2016,

IT wAaS 35,
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Important concepts: Clustering

Clustering: cligues tend to form in social networks, representing circles of close friends. This
effect can be quantified using the clustering coefficient (Watts and Strogatz 1998).

Let’s assume we have a node i in the network, with k; edges which connect it to k; other

nodes. If the first neighbours of the original node were part of a clique, there would be
k(k. — 1)/2 edges between them.

The ratio between the number E; of edges that actually exist between these k; nodes and the
total number of nodes in a clique k,(k; — 1)/2 gives the value of the clustering coefficient of
node i:

2FE.

Ci — :
ki(k; — 1)

The clustering coefficient of the whole network is an average of all individual C'’s.
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Important concepts: Clustering
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Important concepts: Clustering

Fig. 2.3. Communities can be defined as groups of nodes such that there 1s a higher density of edges within groups than between them. In the
case shown in figure there are three communities, denoted by the dashed circles. Reprinted figure with permission from Ref. [51]. © 2004 by the
American Physical Society.

Boccaletti et al., ‘Complex Networks’.
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Important concepts: Degree distribution

Degree distribution: The spread in the number of
edges a node has, or node degree, is characterized

by the distribution function P(k).

P(k) gives the probability that a randomly selected

node has exactly k edges.

29
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Important concepts

Characterization and Traversal of Large
Real-World Networks

A. Garcia-Robledo, ... G. Morales-Luna, in Big Data, 2016

5.3 Characterization and Measurement

A complex network G =V, E is a non-empty set V of nodes or vertices
and a set E of links or edges, such that there is a mapping between
the elements of E and the set of pairs {j, j}, i, j € V. Let n = V be the
number of vertices and m = E be the number of edges of G. The

degree k; of a vertex i € V is the number of neighbors of i. Let nj, be

the number of vertices of degree k in G, such that Z n, = n. Let
k

Pk = n;, / n be the degree distribution of G.

Complex networks, random graphs, and graphs arising in scientific
computing (e.g., meshes and lattices) are all sparse. However, unlike

these kinds of graphs, complex networks present the combined

30
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Metric

Density

Clustering coefficient

Avg. path length

Diameter

Betweenness centrality

Central point dominance

Closeness centrality

Avg. neighbor degree

Important concepts

Symbol
d

CG;

(L)

nBc,

CPD

Ckn)

Type
Degree

Clustering

Distance

Distance

Centrality

Centrality

Centrality

Centrality
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Structure and social ties

https://www.youtube.com/watch?
v=sI8TK2mETIrk&source ve path=MM4NTE



https://www.youtube.com/watch?v=sI8TK2mETrk
https://www.youtube.com/watch?v=sI8TK2mETrk&source_ve_path=MjM4NTE
https://www.youtube.com/watch?v=sI8TK2mETrk&source_ve_path=MjM4NTE

Regular Networks

Regular Mesh Graph, n = 100, Communication radius R = 1.000000
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Complex Networks

 Random graphs
e« Small world

e Scale free




Complex Networks: Erdos-Renyi (ER) Random Network

L Y “. “

* The Erdés-Rényi model defines a random

graph as NV labeled nodes connected by n
edges which are chosen randomly from the

N(N — 1)/2 possible edges.

o Cyyver |
. Ihis defines 5 possible graphs with

N nodes and n edges. A random network
can be generating by choosing one of
these possible graphs with equal
probabillity

P(k)

A
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Complex Networks: Erdos-Renyi (ER) Random Network

[ 2P “. %

e Alternatively, we can construct a random
graph using what is known as the
binomial model.

e Start with /NV nodes, and then connect

every pair of nodes with probability p.

® |n this case, the total number of edges is
a random variable with expectation
E(n) = pN(N — 1)/2. Thus, the
probability of obtaining a graph with N
hodes and n edges is
P(N,n) = e"(1 — p)N(N — 1)/2 — n).

e The degree distribution P(k) of a random
graph is a Poisson distribution with a
peak at P( < k > ).

P(k)

36




Complex Networks: Erdos-Renyi (ER) Random Network

Albert and Barabasi, ‘Statistical Mechanics of Complex Networks’.



Complex Networks: Erdos-Renyi (ER) Random Network

P(k) ~ ¢~PN°

Albert and Barabasi, ‘Statistical Mechanics of Complex Networks’.

k
pllc\!’)k _ e_<k> <k>
k!
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0.10

X /N

0.05

0.00 '

FIG. 7. The degree distribution that results from the numer-
ical simulation of a random graph. We generated a single
random graph with N = 10, 000 nodes and connection prob-
ability p = 0.0015, and calculated the number of nodes with
degree k, Xi. The plot compares X /N with the expectation
value of the Poisson distribution (13), E(Xx)/N = P(ki: = k),
and we can see that the deviation is small.



Complex Networks: Small-World Networks

* Also known as the Wattz and Strogatz model, proposed in (Wattz & Strogatz 1998).
* Algorithm:

1. Start with order: start with a ring lattice with NV nodes in which every node is
connected to its first K neighbours (K/2 on either side). In order to have a sparse, but

connected network at all times, consider N > K > [n(N) > 1.
2. Randomise: Randomly rewire each edge of the lattice with probability p, such that

self-connections and duplicate edges are excluded. This process introduces p/Nk/2
long-range edges which connect to nodes that otherwise would be part of different

neighbourhoods. p gives control over the transition between order (regular lattice)
and full randomness.

Albert and Barabasi, ‘Statistical Mechanics of Complex Networks’.
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Complex Networks: Small-World Networks

Regular Small-world Random
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Complex Networks: Small-World Networks

p(k) : I ! I ! 1 ' |
O p=0.1
Albert and Barabasi, ‘Statistical : 0 p=0.2
Mechanics of Complex Networks’. ot | o p=0.4 |
E. A p=0.6
+ p=0.9
| .
° * p=1
10° o :
‘ E Y 1Y, ®
-3 : \ A
10 - o _
E K/2 XA\ ®
: b O '
10‘4 :/ | | . ! A ., @
0 10’ 10’ 10 10’

FIG. 19. Degree distribution of the WS model for K = 3 and
various p. We can see that only k£ > K/2 values are present,
and the mean degree is (k) = K. The symbols are obtained
from numerical simulations of the WS model with N = 1000,
and the lines correspond to Eq. (76). As a comparison, the
degree distribution of a random graph with the same param-
eters is plotted with filled symbols. After Barrat and Weigt
(2000).
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Complex Networks: Scale-Free Networks

A Random network B Scale-free network
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Complex Networks: Scale-Free Networks

. Graph degree distribution follows a power law P(k) ~ Ak,
* |t was found that many of the real-world networks display a degree distribution that is

shaped as a power law with exponents varying in the range 2 < 4 < 3.
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Complex Networks: Scale-Free Networks

Barabasi and Albert (1999) argued that the scale-free nature of real networks is rooted in two
generic mechanisms common in many real networks:

* Growth: most real networks grow by continuously attaching new nodes to a small
nucleolus.

* Preferential attachment: the likelihood of connecting to a node depends on the node’s
degree.
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Complex Networks: Scale-Free Networks

Algorithm:

1. Growth: Growth: starting with a small number (1) of nodes, at every time-step we

add a new node with m ( < m;) edges that link the new node to m different nodes

already present in the system.
2. Preferential attachment: when choosing the nodes to which the new node

connects, we assume that the probability P that a new node will be connected to

k.

l
%k
« After t time-steps this algorithm results in a network with N = ¢ + m, nodes and mt

edges.
e Numerical simulations indicate that this network evolves into a scale-invariant state with

the probability that a node has k edges following a power-law with an exponent A¢, = 3.

node  depends on the degree k; such that P(k;) =
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Complex Networks: Scale-Free Networks
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FIG. 21. (a) Degree distribution of the scale-free model, with
N = mg+4t = 300,000 and mg = m = 1 (circles), mg = m = 3
(squares)., mg = m = 5 (diamonds) and mg = m = 7 (trian-
gles). The slope of the dashed line is v = 2.9. The inset
shows the rescaled distribution (see text) P(k)/2m?* for the
same values of m, the slope of the dashed line being v = 3. (b)
P(k) for my = m = 5 and system sizes N = 100, 000 (circles),
N = 150,000 (squares) and N = 200,000 (diamonds). The
inset shows the time-evolution for the degree of two vertices,
Albert and BarabaSi, ‘StatiSticaI added to the system at t; = 5 and t, = 95. Here mp = m = 5,

and the dashed line has slope 0.5, as predicted by Eq. (80).

MeChanics Of Complex Networks,- After Barabasi, Albert, Jeong (1999).
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Complex Networks: Real-world examples

WORLD-WIDE WEB 10 o A ey
B . 0° % @ § !
= ey o1
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INTERNET 10° D

\l 5 10" Ez" ST is Ez“" o A e
| 10" 100 10" 100 100 10" 10 10" 10 10

K K

Ay =2.45 A, = 2.1
(Albert, Jeong and Barabasi
1999)

Albert and Barabasi, ‘Statistical Mechanics of Complex Networks’.
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Complex Networks: how to infer the network topology
from data?

In finite-size networks, fat-tailed degree distributions have natural cut-offs [83]. When analyzing real networks, it
may happen that the data have a rather strong intrinsic noise due to the finiteness of the sampling. Therefore, when
the size of the system 1s small and the degree distribution P (k) 1s heavy-tailed, 1t 1s sometimes advisable to measure
the cumulative degree distribution Py, (k), defined as Peyp (k) =Y, P(k'). Indeed, when summing up the original
distribution P (k), the statistical fluctuations generally present in the tails of the distribution are smoothed. Consequently,
if P(k) ~ k™7, the exponent y can be obtained from P.ym (k) as one plus the slope of Peym(k) in a log-log plot, i.e.,
v =14 7P.ym- Another possibility is that of performing an exponential binning of data [8].

Boccaletti et al., ‘Complex Networks: structure and dynamics’.
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Complex Networks: how to infer the network topology
from data?

~0

10 ®
E 8
o 1997
[ 5 1998
" Py
10" L Q' -
: ¢ 1999 5
= i
= 107 L ;
Q;J
107 | ]
- D 3
@
o
O
*
]()"‘ _ PR R IPPTY aaal aaal
10" 10! 102 107

Fig. 2.4, Cumulative degree distributions of the Internet AS graph representation for three different years. The power-law behavior 1s clear, as well
as the fact that, regardless of the very dynamic nature of the Internet, the exponent 3 1s constant with tme. Reprinted figure with permission from
Ref. [25]. © 2001 by the American Physical Society.

Boccaletti et al., ‘Complex Networks: structure and dynamics’.
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Complex Networks: how to infer the network topology
from data?

' Use Maximum Likelihood (MLE) to fit distribution like the Power Law, |
, not the Least-Squares (LSE)! :

If the estimation errors belong to a normal distribution, then MLE are
LSE, but this does not have to be true for other distributions.

https://www.youtube.com/watch?v=UdADuHJUX6Q
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Network diffusion and contagion

High value data
in weak links
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AS:772952572301312@1561297662054/Visualisation-of-weak-ties-vs-strong-ties-IE-A-link-to-lIE-C-represents-a-weak-tie-
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Levels of abstraction

structure

These processes may happen at
different time scales!
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Structured populations: Spatial games

o Spatial structure among plants or animals in an ecosystem

 The graph can also describe the architecture of cells in a multicellular
organism, including the cellular differentiation hierarchy

* Relationships in a social network

 Dynamics on graph describe cultural evolution and the spread of new
iInventions and ideas
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Some good references
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Evolutionary dynamics of social dilemmas Cooperation Prevails When Individuals Adjust
in structured heterogeneous populations Their Social Ties

F. C. Santos*, J. M. Pacheco', and Tom Lenaerts**

. 1 2,3 4,5%
*Institut de Recherches Interdisciplinaires et de Développements en Intelligence Artificielle, CP 194/6, Université Libre de Bruxelles, Avenue Franklin Francisco C. Santos ', Jorge M. Pacheco™", Tom Lenaerts
Roosevelt 50, 1050 Brussels, Belgium; "Centra de Fisica Tedrica e Computacional and Departamento de Fisica da Faculdade de Géncias, Universidade de
Lisboa, P-1649-003 Lishon, Portugs’, and *Department of Computer Science, Vrije Universiteit Brussel, Pleinlaan 2. 1050 Brussels, Belgium
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Real populations have been shown to be heterogeneous, In which 1

some individuals have many more contacts than others. This fact B

contrasts with the traditional homogeneous setting used in studies § Conventional evolutionary game theory predicts that natural selection favours the selfish and strong even though
of evolutionary game dynamics. We incorporate heterogeneity in E o cooperative interactions thrive at all levels of organization in living systems. Recent investigations demonstrated that
the population by studying games on graphs, in which the varl- ° a limiting factor for the evolution of cooperative interactions is the way in which they are organized, cooperators
ability in connectivity ranges from single-scale graphs, for which £ 001 becoming evolutionarily competitive whenever individuals are constrained to interact with few others along the edges
heterogenaity is small and associated degree distributions exhibit g of networks with low average connectivity. Despite this insight, the conundrum of cooperation remains since recent
a Gaussian tale, to scale-free graphs, for which heterogeneity is $ empirical data shows that real networks exhibit typically high average connectivity and associated single-to-broad-
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Learnin g to coordinate B arines s nermsiaons Emergence of Fairness in Repeated Group Interactions

. sagepub.co.uk/journalsPermissions.nav s 23 14 <3

iINnNcom plex networks DOI: 10.1177/10597123 10384282 S. Van Segbroeck,” J. M. Pacheco,”” T. Lenaerts, ™ and E C. Santos’
adb.sagepub.com '"MLG, Université Libre de Bruxelles, Brussels, Belgium
®SAGE ’Departamento de Matemdtica e Aplicacées, Universidade do Minho, Braga, Portugal
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. 4 1,2 . . . . .
Francisco C Santos” and Tom Lenaerts DEI, & INESC-ID, Instituto Superior Técnico, TU Lisbon, Lishoa, Portugal
(Received 26 August 2011; published 10 April 2012)

Often groups need to meet repeatedly before a decision is reached. Hence, most individual decisions
will be contingent on decisions taken previously by others. In particular, the decision to cooperate or not
will depend on one’s own assessment of what constitutes a fair group outcome. Making use of a repeated

Abstract N-person prisoner’s dilemma, we show that reciprocation towards groups opens a window of opportunity
for cooperation to thrive, leading populations to engage in dynamics involving both coordination and
coexistence, and characterized by cycles of cooperation and defection. Furthermore, we show that this
process leads to the emergence of fairness, whose level will depend on the dilemma at stake.

Designing an adaptive multi-agent system often requires the specification of interaction patterns between the
different agents. To date, it remains unclear to what extent such interaction patterns influence the dynamics of
the learning mechanisms inherent to each agent in the system. Here, we address this fundamental problem, both
analytically and via computer simulations, examining networks of agents that engage in stag-hunt games with their DOI: 10.1103/PhysRevLett.108.158104 PACS numbers: 87.23.Kg, 89.75.Fb
neighbors and thereby learn to coordinate their actions. We show that the specific network topology does not
affect the game strategy the agents learn on average. Yet, network features such as heterogeneity and clustering
W
e ———————
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Suppressors of selection
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Lieberman, Erez, Christoph Hauert, and Martin A. Nowak. "Evolutionary
dynamics on graphs." Nature 433.7023 (2005): 312-316.
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Amplifiers of selection

superstar funnel

Lieberman, Erez, Christoph Hauert, and Martin A. Nowak. "Evolutionary
dynamics on graphs." Nature 433.7023 (2005): 312-316.
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Proc. Natl. Acad. Sci. USA
Vol. 79, pp. 1331-1335, February 1982

Population Biology

Assortment of encounters and evolution of cooperativeness

(altruism/evolutionary stable strategies/assortative meetings)

ILAN ESHELT AND L. L. CAVALLI-SFORZA

Departments of Mathematics and Genetics, Stanford University, Stanford, California 94305

Contributed by L. L. Cavalli-Sforza, October 13, 1981

ABSTRACT  The method of evolutionary stable strategies
(ESS), in its current form, is confronted with a difficulty when it
tries to explain how some social behaviors initiate their evolution.
We show that this difficulty may be removed by changing the as-
sumption made tacitly in game theory (and in ESS) of randomness

In the case of nonrandom encounters due to active
individuals may actively seek or avoid encounters wit
individuals of their phenotype or strategy. These choic
be the result of learning by the individual, or they may
netically or culturally inherited traits that have spreac
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Homogeneous interactions in space

Spatial games
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The Arithmetics of Mutual Hel
Computer experiments show how cooperation

rather than exploitation can dominate
in the Darwinian struggle for survival
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The fraction of C stabilises
over time in the grid

by Martin A. Nowak, Robert M. May and Karl Sigmund

r I Yhe principle of give and take per- want of natural weapons, & c., are more  “possibly the most important book of
vades our society. It is older than than counterbalanced by his...social the year” (1902), he drew a vast fresco
commerce and trade. All mem- qualities, which lead him to give and of cooperation acting among Siberian

bers of a household, for example, are receive aid from his fellow-men.” herds, Polynesian islanders and medie-
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Nowak, M. A., May, R. M., & Sigmund, K. (1995). The arithmetics of |
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Nowak, M. A., & May, R. M. (1992). Evolutionary games and spatial
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Games on networks

What is the network structure?

How are strategies updated?

Can individual change their social ties?
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Neighbourhood

contribute. 1ne total contribution 1s multiplied by an enhancement

sence of spatial and network reciprocity” .

Figure 1| Population structure and local
neighbourhoods. a, Regular graphs studied so
far, which mimic spatially extended systems.

b, Scale-free graphs® in which small-world effects
coexist with a large heterogeneity in
neighbourhood size. ¢, The focal individual
(largest sphere) belongs to different groups
(neighbourhoods) of different sizes in a
heterogeneous graph. Given his/her connectivity
k = 4, we identify five neighbourhoods, each
centred on one of the members of the focal
individual’s group, such that individual fitness
derives from the payoff accumulated in all five

neighbourhoods (2, 3, v, 6 and &).

Santos, Santos, and Pacheco, ‘Social Diversity Promotes the Emergence of
Cooperation in Public Goods Games’.
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Common rules for behavioural update/adaptation

There are many..., but the most common ones are:

1. “Birth-death” the offspring

selected replaces a

for reproduction random neighbor
proportional to fithess

1 2 -
v

| This process can also be synchronous or asynchronous
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Common rules for behavioural update/adaptation

There are many..., but the most common ones are:

a neighbour will reproduce

2 uDeath_Blrthu and replace the individual

chosen randoml pr.oportion.al to its fithess
to die y iIn the neighbourhood

2%

1 2 ‘

| This process can also be synchronous or asynchronous
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Common rules for behavioural update/adaptation

There are many..., but the most common ones are:

3_ |mitation or SOCial |earning The randomly chosen individuals

chosen randomly imitates a randomly chosen
neighbour proportional to fithess

\

1 2 ‘

’This process can also be synchronous or asynchronous
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The role of heterogeneity

BANAS

Evolutionary dynamics of social dilemmas
in structured heterogeneous populations

F. C. Santos*, J. M. Pacheco', and Tom Lenaerts**s

*Institut de Recherches Interdisciplinaires et de Développements en Intelligence Artificielle, CP 194/6, Université Libre de Bruxelles, Avenue Franklin
Roosevelt 50, 1050 Brussels, Belgium; 'Centro de Fisica Tedrica e Computacional and Departamento de Fisica da Faculdade de Ciéncias, Universidade de
Lisboa, P-1649-003 Lisbon, Portugal; and *Department of Computer Science, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium

Edited by Brian Skyrms, University of California, Irvine, CA, and approved December 15, 2005 (received for review September 21, 2005)

T

Real populations have been shown to be heterogeneous, in which 1
some individuals have many more contacts than others. This fact i
contrasts with the traditional homogeneous setting used in studies
of evolutionary game dynamics. We incorporate heterogeneity in
the population by studying games on graphs, in which the vari-
ability in connectivity ranges from single-scale graphs, for which
heterogeneity is small and associated degree distributions exhibit
a Gaussian tale, to scale-free graphs, for which heterogeneity is
large with degree distributions exhibiting a power-law behavior.

— - single-scale
—— scale-free

0.1}

ative degree distribution

/1



Modelling evolution on networks

Simulating stochastic evolutionary
dynamics

Vertex x plays k, times and
accumulates payoff F_

Choose a neighbour y with payoff £,

Replace strategy s, in node x by
strategy s, of node y with probabillity

@—@]

= max |0,
P |:@G—S

(2
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Well-mixed, the baseline

0 ] 2
Z = 10% 100 runs, 50% C, R=1 and P=0
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Regular networks

SH

[ | | | [ [ | | | | [ | | | [ | . . . . I . . . . . . . . I . . . . T
0 / 2 0 1 2

Z = 10% 100 runs, 50% C, R=1 and P=0 Low average degree k = 4
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Random (Erdos-Reényi) networks
S S

b e S T T o T

0 / 2 0 I 2

Z = 10% 100 runs, 50% C, R=1 and P=0 Low average degree k = 4
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Scale-free (Barabasi) networks
S S

0 1 2

Z = 10% 100 runs, 50% C, R=1 and P=0 Low average degree k = 4
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Randomized Scale-free (Barabasi) networks
S S

0 / 2 0 1 2

Z = 10% 100 runs, 50% C, R=1 and P=0 Low average degree k = 4
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Transforming the PD in an SH or SD

Sucker

~'PLoS one

OPEN a ACCESS Freely available online

From Local to Global Dilemmas in Social Networks

Flavio L. Pinheiro', Jorge M. Pacheco'?, Francisco C. Santos'3*

C

Homogeneous

1 Applications of Theoretical Physics Group, Centro de Matemdtica e Aplicagdes Fundamentais, Instituto para a Investigagao Interdisciplinar da Universidade de Lisboa,
Lisboa, Portugal, 2 Departamento de Matematica e Aplicagdes, Universidade do Minho, Braga, Portugal, 3 Departamento de Engenharia Informatica, Instituto Superior
Técnico, Universidade Técnica de Lisboa, Lisboa, Portugal

Abstract

Social networks affect in such a fundamental way the dynamics of the population they support that the global, population-
wide behavior that one observes often bears no relation to the individual processes it stems from. Up to now, linking the
global networked dynamics to such individual mechanisms has remained elusive. Here we study the evolution of
cooperation in networked populations and let individuals interact via a 2-person Prisoner's Dilemma - a characteristic
defection dominant social dilemma of cooperation. We show how homogeneous networks transform a Prisoner’s Dilemma
into a population-wide evolutionary dynamics that promotes the coexistence between cooperators and defectors, while
heterogeneous networks promote their coordination. To this end, we define a dynamic variable that allows us to track the
self-organization of cooperators when co-evolving with defectors in networked populations. Using the same variable, we
show how the global dynamics — and effective dilemma — co-evolves with the motifs of cooperators in the population,
the overall emergence of cooperation depending sensitively on this co-evolution.

Citation: Pinheiro FL, Pacheco JM, Santos FC (2012) From Local to Global Dilemmas in Social Networks. PLoS ONE 7(2): e32114. doi:10.1371/journal.pone.0032114
Editor: James A. R. Marshall, University of Sheffield, United Kingdom
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Punish -

Introduces a new tool: the
averaged gradient of
selection

I

Sucker < Punish

Temptation

Temptation < Reward

Temptation > Reward

Reward

/8
Nowak, M. A. (2006). Five rules for the evolution of cooperation. science, 314(5805), 1560-1563.



Assortment leads to the transformation of the game
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Increasing heterogeneity favours cooperation

well-mixed homogeneous network heterogeneous network
o, 30
1. Heterogeneity in structure also leads . oot
to heterogeneous payoffs among ’7

TIRRL
individuals (even if they adopt the '%}\:?ﬁ'
same strategy), since some

indiViduaIS interaC‘t more Of‘ten than defector dominance co-existence coordination

others
2. Local information may be different < -
from global 0.0 Yo 1.0 00 % 1.0 0.0 e 10

@ co-existence O coordination

From Prof. Francisco C. Santos

Pinheiro F L, Pacheco J M and Santos F C 2012 From Local to
Global Dilemmas in Social Networks PLoS One 7 e32114
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EGTtools: Evolutionary game dynamics in Python

EGTtools demo

Flexible architecture with methods to analyse and plot evolutionary dynamics

Elias Fernandez
Domingos,
Francisco C.
Santos, Tom

|
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Highlights
Evolutionary Game

| Theory (EGT) provides a
framework to study

collective behavior

EGTtools provides fast
implementations of
analytical and numerical
EGT methods

EGTtools implements
methods to analyze finite
and infinite populations
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Domingos, E. F., Santos, F. C., & Lenaerts, T. (2023). EGTtools: Evolutionary
game dynamics in Python. Iscience, 26(4): 106419 https://doi.org/10.1016/

J-Isci.2023.106419
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What about n-player games?

nature
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Social diversity promotes the emergence of
cooperation in public goods games

Francisco C. Santos', Marta D. Santos” & Jorge M. Pacheco’

Humans often cooperate in public goods games' * and situations
ranging from family issues to global warming*’. However, evolu-
tionary game theory predicts*® that the temptation to forgo the
public good mostly wins over collective cooperative action, and
this is often also seen in economic experiments’. Here we show
how social diversity provides an escape from this apparent para-
dox. Up to now, individuals have been treated as equivalent in all
respects"®, in sharp contrast with real-life situations, where
diversity is ubiquitous. We introduce social diversity by means
of heterogeneous graphs and show that cooperation is promoted
by the diversity associated with the number and size of the
public goods game in which each individual participates and
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factor rand the result is equally distributed between all N members of
the group. Hence, Ds get the same benefit of the Cs at no cost.
Collective action to shelter, protect and nourish, which abounds in
the animal world, provides examples of PGGs, because the coopera-
tion of group members is required. Ultimately, the success (and
survival)’ of the human species relies on the capacity of humans
for large-scale cooperation. In the absence of enforcement mechan-
isms”'*"*, conventional evolutionary game theory predicts that the
temptation to defect leads individuals to forgo the public good® in the
N-person prisoner’'s dilemma. Whenever interactions are not
repeated, and reward and punishment**"’ can be ruled out, several
mechanisms were explored that promote cooperation. Individuals



What about n-player games?

Public good game

cooperate
g— defect
= = § payoff

O endowment
O E+k(c/2)
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Heterogeneous networks also promote
cooperation in public good games

?
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Fixed cost per game




And non-linear games?

Risk of collective failure provides an escape from the

tragedy of the commons

Francisco C. Santos®® and Jorge M. Pacheco®*’

“Departamento de Informatica and Centro de Inteligéncia Artificial, Faculdade de Ciéncias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica,
Portugal; "Applications of Theoretical Physics Group, Centro de Matematica e Aplicacdes Fundamentais, Instituto de Investigacao Interdisciplinar, P-1649-003
Lisbon Codex, Portugal; and “Departamento de Matematica e Aplicacdes, Universidade do Minho, 4710-057 Braga, Portugal

Edited by Simon A. Levin, Princeton University, Princeton, NJ, and approved May 11, 2011 (received for review October 18, 2010)

From group hunting to global warming, how to deal with
collective action may be formulated in terms of a public goods
game of cooperation. In most cases, contributions depend on the
risk of future losses. Here, we introduce an evolutionary dynamics
approach to a broad class of cooperation problems in which
attempting to minimize future losses turns the risk of failure into
a central issue in individual decisions. We find that decisions
within small groups under high risk and stringent requirements to
success significantly raise the chances of coordinating actions and
escaping the tragedy of the commons. We also offer insights on
the scale at which public goods problems of cooperation are best
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contain at least M Cs (or equivalently, a collective effort of Mcb),
all members will lose their remaining endowments with a prob-
ability r (the risk): otherwise, everyone will keep whatever they
have. Imposing such a threshold mimics situations common to
most of the public endeavors described above, and it also extends
to nonhuman dilemmas (21-23), where a minimum combined
effort is needed to achieve a collective goal. This 1s also the case
in international environmental agreements (extensive reviews in
refs. 5, 6, 11, and 12), which demand a minimum number of
ratifications to come into practice (3, 24, 25).
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Heterogenelty also fosters cooperation In
the Collective Risk Dilemma
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Problematic to confirm experimentally

Heterogeneous networks do not promote cooperation

when humans play a Prisoner’'s Dilemma

Carlos Gracia-Lazaro?, Alfredo Ferrer?, Gonzalo Ruiz? Alfonso Tarancon®P®, José A. Cuesta®, Angel Sanchez®<",

and Yamir Moreno®P?"

3Instituto de Biocomputacion y Fisica de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain; PDepartamento de Fisica Tedrica,
Universidad de Zaragoza, 50009 Zaragoza, Spain; and ‘Grupo Interdisciplinar de Sistemas Complejos (GISCY Departamento d= Matematicas, Universidad

Carlos lll de Madrid, 28911 Leganés, Madrid, Spain

Edited by Simon A. Levin, Princeton University, Princeton, NJ, and approved June 8, 2012 (received f:

It is not fully understood why we cooperate with strangers on a
daily basis. In an increasingly global world, where interaction
networks and relationships between individuals are becoming
more complex, different hypotheses have been put forward to
explain the foundations of human cooperation on a large scale and
to account for the true motivations that are behind this phenom-
enon. In this context, population structure has been suggested to
foster cooperation in social dilemmas, but theoretical studies of
this mechanism have yielded contradictory results so far; addition-
ally, the issue lacks a proper experimental test in large systems.
We have performed the largest experiments to date with humans
playing a spatial Prisoner’s Dilemma on a lattice and a scale-free
network (1,229 subjects). We observed that the level of coopera-
tion reached in both networks is the same, comparable with the
level of cooperation of smaller networks or unstructured popula-
tions. We have also found that subjects respond to the coopera-
tion that they observe in a reciprocal manner, being more likely to
cooperate if, in the previous round, many of their neighbors and
themselves did so, which implies that humans do not consider
neighbors’ payoffs when making their decisions in this dilemma
but only their actions. Our results, which are in agreement with
recent theoretical predictions based on this behavioral rule, sug-
gest that population structure has little relevance as a cooperation
promoter or inhibitor among humans.

evolutionary game dynamics | network reciprocity |
conditional cooperation
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Social Experiments in the Mesos«
Spatial Prisoner’s Dilemma

Jelena Gruji¢', Constanza Fosco'”, Lourdes Araujo?, José A.
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Abstract

Background: The evolutionary origin of cooperation among unrelated
several disciplines. Prominent among the several mechanisms propose:
existence of a population structure that determines the interactions

analytically and by simulation the effects of such a structure, particularly
the results of these models largely depend on details such as the type
Therefore, experimental work suitably designed to address this questior

Methods and Findings: We have designed an experiment to test the
Prisoner’s Dilemma on a network whose size is comparable to that of
declines to an asymptotic state with low but nonzero cooperation. R
population is heterogeneous, consisting of a high percentage of defectol
that shares features of the conditional cooperators of public goods game:
coexistence of these different strategies that is in good agreement with

Conclusions: In our large experimental setup, cooperation was not promc
level (around 20%) typical of public goods experiments. Our findings als¢

Experiments reveal condition
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Reinforcement Learning Explains Conditional
Cooperation and Its Moody Cousin

Takahiro Ezaki'*?**, Yutaka Horita®>*, Masanori Takezawa®-®, Naoki Masuda’*

1 Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo,
Japan, 2 Japan Society for the Promotion of Science, Kojimachi, Chiyoda-ku, Tokyo, Japan, 3 National
Institute of Informatics, Hitotsubashi, Chiyoda-ku, Tokyo, Japan, 4 JST, ERATO, Kawarabayashi Large
Graph Project, c/o Global Research Center for Big Data Mathematics, NI, Chiyoda-ku, Tokyo, Japan,

5 Department of Behavioral Science, Hokkaido University, Kita-ku, Sapporo, Japan, 6 Center for
Experimental Research in Social Sciences, Hokkaido University, Kita-ku, Sapporo, Japan, 7 Department of
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* naoki.masuda @ bristol.ac.uk

Abstract

Direct reciprocity, or repeated interaction, is a main mechanism to sustain cooperation
under social dilemmas involving two individuals. For larger groups and networks, which are
probably more relevant to understanding and engineering our society, experiments employ-
ing repeated multiplayer social dilemma games have suggested that humans often show
conditional cooperation behavior and its moody variant. Mechanisms underlying these
behaviors largely remain unclear. Here we provide a proximate account for this behavior by
showing that individuals adopting a type of reinforcement learning, called aspiration learn-

L. mhhamammamalaaiaalhi lialcnaciia ama acacamaAdidlavmal acaamavalas Puor dafliaidl a trmadiisiali cala ava

Reinforcement learning = individual learning by experience (see part 2)
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Individual learning (alone) has no effect in
networks

Adaptive
Original Paper

Adaptive Behavior
18(5) 416427

Learning to coordinate Feprins e
1 sagepub.cd
in complex networks oo @)
adb.sagepu
®SAC
Sven Van Segbroeck"z, Steven de jong"3, Ann Nowé', 1.0 - P

Francisco C Santos? and Tom Lenaerts'’?

Abstract
Designing an adaptive multi-agent system often requires the specification of interaction paf
different agents. To date, it remains unclear to what extent such interaction patterns influeng
the learning mechanisms inherent to each agent in the system. Here, we address this fundame
analytically and via computer simulations, examining networks of agents that engage in stag-huj
neighbors and thereby learn to coordinate their actions. We show that the specific network
affect the game strategy the agents learn on average. Yet, network features such as heterogen

Cooperation
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B Homogeneous random

¥ Random scale-free
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Cooperation Prevails When Individuals Adjust
Their Social Ties

® *
Francisco C. Santos ', Jorge M. Pacheco®?, Tom Lenaerts*”
1 Computer and Decision Engineering Department, Institut de Recherches Interdisciplinaires et de Développements en Intelligence Artificielle, Université Libre de Bruxelles, W h -t . -t h ﬁ -t f
Brussels, Belgium, 2 Program for Evolutionary Dynamics, Harvard University, Cambridge, Massachusetts, United States of America, 3 Department of Physics of the Faculty of a I S e e eC O
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Vrije Universiteit Brussel, Brussels, Belgium, 5 Department of Computer Science, Vrije Universiteit Brussel, Brussels, Belgium C h a n g I n g 'to p O I O g I eS ?
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Conventional evolutionary game theory predicts that natural selection favours the selfish and strong even though
cooperative interactions thrive at all levels of organization in living systems. Recent investigations demonstrated that
a limiting factor for the evolution of cooperative interactions is the way in which they are organized, cooperators
becoming evolutionarily competitive whenever individuals are constrained to interact with few others along the edges
of networks with low average connectivity. Despite this insight, the conundrum of cooperation remains since recent
empirical data shows that real networks exhibit typically high average connectivity and associated single-to-broad-

coala hatavamannaltnww ava o camanssbabimnnal sandal (o canctbuviintbnd tin viddich lndiviidicale ava allla 6a cAlf Avmanicen lhaska

W ;

Both numerical and analytical approaches have been proposed
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How to rewire ?

C likes to interact with C and D
likes to interact with C

C wants to change the link with D.

This rewire with probabillity p to a
neighbour of D

p = (1 + e—ﬁ(Fa_Fb))—l
D wants to change the link with D.

- The first can rewire with probability p
to a neighbour of the other D.

- The second can rewire with
probability (1 — p)

92



© Tom Lenaerts, 2024

Time-scale differences

High average degree k=30
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Time scale and degree are linked
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Time-scale differences
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LETTER

Co-evolution of beb~
promotes human cc

Katrin Fehl, Daniel J. van der Post

and Dirk Semmann*

Junior Research Group Evolution of
Cooperation and Prosocial
Behaviour, Courant Research Centre
Evolution of Social Behaviour,
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Abstract

The ubiquity of cooperation in n
theoretical work shows that if
favoured by natural selection. To
repeated games between participas
links after each social interactior
Through biased link breaking (i.c
this link-breaking behaviour lead
these clusters. This assortment is
direct reciprocity and beyond
Our results highlight the importa

cooperation.

Keywords
Assortment, co-evolution, coopet
social behaviour.
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Dynamic social networks promote cooperation
in experiments with humans

David G. Rand®"", Samuel Arbesman“®', and Nicholas A. Christakis“-*
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Human populations are both highly cooperative and highly
organized. Human interactions are not random but rather are
structured in social networks. Importantly, ties in these networks
often are dynamic, changing in response to the behavior of one’s
social partners. This dynamic structure permits an important form
of conditional action that has been explored theoretically but has
received little empirical attention: People can respond to the co-
operation and defection of those around them by making or
breaking network links. Here, we present experimental evidence
of the power of using strategic link formation and dissolution, and
the network modification it entails, to stabilize cooperation in
sizable groups. Our experiments explore large-scale cooperation,
where subjects’ cooperative actions are equally beneficial to all
those with whom they interact. Consistent with previous research,
we find that cooperation decays over time when social networks
are shuffled randomly every round or are fixed across all rounds.
We also find that, when networks are dynamic but are updated
only infrequently, cooperation again fails. However, when sub-
jects can update their network connections frequently, we see
a qualitatively different outcome: Cooperation is maintained at
a high level through network rewiring. Subjects preferentially
break links with defectors and form new links with cooperators,
creating an incentive to cooperate and leading to substantial
changes in network structure. Our experiments confirm the pre-
dictions of a set of evolutionary game theoretic models and dem-
onstrate the important role that dynamic social networks can play
in supporting large-scale human cooperation.
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conditional action, one that occurs via changes in network
structure rather than via changes in cooperation behavior.

Behavioral reciprocity is a central mechanism for the evolution
of cooperation (1, 20, 21). In evolutionary game theory, reci-
procity is defined as occurring when my actions toward you de-
pend on your actions in the past. Reciprocity traditionally has
been conceptualized in two-player game theory as the emergence
of concordant behaviors within dyads. For example, the “tit-for-
tat” strategy engages in reciprocity by cooperating only if the
opponent cooperated in the previous round. Reciprocity creates
future consequences for one’s choices and has been shown ex-
perimentally to promote cooperation in repeated two-player
interactions (22-25). However, reciprocity is problematic in
group interactions involving more than two players: If the only
way to sanction defectors is to defect, this action also harms the
other cooperators in one’s group (26).

Strategic tie formation and dissolution in dynamic networks
offer a solution to this problem by providing players with an
additional method of responding to the past actions of others.
Players can reciprocate not only by changing their cooperation
behaviors but also by creating or dissolving ties. Thus, coopera-
tors need not switch to defection to punish defectors in their
group; instead they can establish and maintain links with coop-
erators but sever connections with defectors, engaging in what
we call “link reciprocity.” (Note that this reciprocity is different
from the use of the term in social network analysis, where reci-
procity refers to the existence of tie concordance in directed
graphs—that is, if ego nominates alter, alter also nominates ego,
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But, do people really use social learning
on networks?
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Humans do imitate more successful
Individuals on a local scale

TWO: Treatment without payoff difference information

TWI. Treatment with payoff difference information

probability to change the action
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Is this still relevant?
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Abstract: The effectiveness of control measures against the diffusion of the COVID-19
pandemic is grounded on the assumption that people are prepared and disposed to cooperate.
From a strategic decision point of view, cooperation is the unreachable strategy of the prisoner’s
dilemma game, where the temptation to exploit the others and the fear to be betrayed by them
drives the people behavior, which eventually results fully defective. In this work, we integrate the

Andreia SOﬁa Teixeira ’1»2»3:4 Francisco C. Santos ’2’4 Alexandre P. Francisco ’2 SIRS epidemic model \.\'ith l?w l'(‘])]i(‘«‘lt'()l‘ equation of v\'()lu't iunu}‘y games in order to study t.hv
4,5,6 interplay between the infection spreading and the propensity of people to become cooperative

and Fernando P. Santos ’ under the pressure of the epidemic. We find that the developed model possesses several steady

states, including fully or partially cooperative ones and that the presence of such states allows
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Abstract

Regulating the development of advanced technology such
as Artificial Intelligence (AI) has become a principal topic,

given the potential threat they pose to humanity’s long term
future. First deploying such technology promises innumer-

able benefits, which might lead to the disregard of safety pre-

cantions or societal conseauences in favour of sneedv devel-
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which innovation dynamics are pictured through the lens of
Evolutionary Game Theory (EGT) and where all race partic-
ipants are equally well-connected in the system. The base-
line results have showed the importance of accounting for
different time-scales of development, and also exposed the
dilemmas that arise when what is individually preferred by
develooers differs from what is eloballv beneficial. How-
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The level of antagonism between political groups has risen in the
past years. Supporters of a given party increasingly dislike mem-
bers of the opposing group and avoid intergroup interactions,
leading to homophilic social networks. While new connections
offline are driven largely by human decisions, new connections on
online social platforms are intermediated by link recommendation
algorithms, e.g., “People you may know” or “Whom to follow"
suggestions. The long-term impacts of link recommendation in po-
larization are unclear, particularly as exposure to opposing view-
points has a dual effect: Connections with out-group members can
lead to opinion convergence and prevent group polarization or

further separate opinions. Here, we provide a complex adaptive-
systems perspective on the effects of link recommendation algo-

rithms. While several models justify polarization through rewiring
based on oninion similaritv. here we exnlain it throuah rewirina
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That is not an easy task. As pointed out by Woolley and
Howard, “to understand contemporary political communication
we must now investigate the politics of algorithms and automa-
tion” (16). While traditional media outlets are curated by hu-
mans, online social media resorts to computer algorithms to
personalize contents through automatic filtering. To understand
information dynamics in online social networks, one needs to
take into account the interrelated subtleties of human decision
making [e.g., only share specific contents (17), actively engage
with other users, follow or befriend particular individuals, in-
teract offline] and the outcomes of automated decisions (e.g.,
news sorting and recommendation systems) (18, 19). In this
regard, much attention has been placed on the role of news fil-
ters and sorting (1, 18, 19). Shmargad and Klar (20) provide
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