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Outline of the course

• Day 1: Introduction to Game Theory 


• Day 2: Evolutionary Game Theory


• Day 3-4: Games on Networks, connecting theory to Behavioural 
Experiments 

• Day 5: Final remarks and Project presentations
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Day 3: Games on networks

1. Complex networks


2. Games on networks
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Why should you care about EGT?

Improve AI self-play in large deep-RL agents
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Why should you care about EGT?

1.

Omidshafiei, S., Papadimitriou, C., Piliouras, G., Tuyls, 
K., Rowland, M., Lespiau, J. B., ... & Munos, R. (2019). 
α-rank: Multi-agent evaluation by evolution. Scientific 
reports, 9(1), 9937.

Improve AI self-play in large deep-RL agents
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Why should you care about EGT?

Prescriptive Framework?
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Taylor, C., & Nowak, M. A. (2007). Transforming 
the dilemma. Evolution, 61(10), 2281-2292.

Nowak, M. A. (2006). Five rules for the evolution of 
cooperation. science, 314(5805), 1560-1563.

Rand, D. G., & Nowak, M. A. (2013). Human cooperation. 
Trends in cognitive sciences, 17(8), 413-425.

© Tom Lenaerts, 2024
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https://scienceline.org/2015/01/origins-of-cooperation-are-still-fair-game/ https://www.nature.com/articles/nature08366https://www.geocaching.com/geocache/GC85VRG_you-scratch-my-back-ill-scratch-yours?guid=fb3c2b2e-5d3f-453d-8f2b-f0669ab9afc4https://www.britannica.com/topic/kin-selection
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Four of the five rules 
© Tom Lenaerts, 2024

kin selection direct reciprocity

indirect reciprocity group selection
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Rule number five
© Tom Lenaerts, 2024

12



Part 1: Complex networks



Some good references
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Some good references
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What are social networks?

taken from Centola 2018
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What are social networks?

https://www.youtube.com/watch?v=4fHufyIWmX0
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https://www.youtube.com/watch?v=4fHufyIWmX0
https://www.youtube.com/watch?v=4fHufyIWmX0


Important concepts

https://www.youtube.com/watch?v=-ckaLBsCoxo&t=1s
19

https://www.youtube.com/watch?v=-ckaLBsCoxo&t=1s
https://www.youtube.com/watch?v=-ckaLBsCoxo


Important concepts

• A graph G can be defined as  where V is the set of vertices or nodes of the 

graph, and E the set of edges connecting every two nodes in the graph.

• We can also represent a finite graph using an adjacency matrix A. This  square 

matrix indicate whether pairs of vertices in the graph are connected by an edge, i.e., 

every  where there is and edge between nodes  and , otherwise .

• Graphs can be directed or undirected. In undirected graphs, the adjacency matrix is 

symmetric.
•

G = (V, E)

n × n

Aij = 1 vi vj Aij = 0
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Important concepts

• The edges of a graph can also be weighted, i.e., some edges are more important than 
others.

• The distance matrix is a weighted adjacency matrix, and the distance between two 

nodes  in the network can be defined as the minimum sum of the sum of the 

weights on the shortest path between two nodes. Or simply, for binary networks (non-

weighted) the distance between two nodes is defined as the number of edges 

along the shortest path connecting them.
•

d(vi, vj)
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Important concepts

• The degree ( ) of a node is the total number of edged incident on that node in a binary 

undirected network.

• In directed networks, we differentiate between in-degree ( )  and out-degree ( ).

• In weighted networks, the strength measure is also considered.
•

k

kin kout
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Important concepts

• A clique is a subset of nodes of an undirected graph (or network) such that every two 

distinct nodes in the clique are adjacent. That is, a clique in a graph G is a complete 
subgraph of G.

•
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Important concepts: Small worlds

Watts, Duncan J., and Steven H. Strogatz. "Collective 
dynamics of ‘small-world’networks." nature 393.6684 
(1998): 440-442.

There are many important measures and 
indicators of a network topology. We will 
focus on the following three concepts:


• Small worlds

• Clustering

• Degree distribution

24



Important concepts: Small worlds
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Important concepts: Clustering
Clustering: cliques tend to form in social networks, representing circles of close friends. This 

effect can be quantified using the clustering coefficient (Watts and Strogatz 1998). 

Let’s assume we have a node  in the network, with  edges which connect it to  other 
nodes. If the first neighbours of the original node were part of a clique, there would be 

 edges between them. 

The ratio between the number  of edges that actually exist between these  nodes and the 
total number of nodes in a clique  gives the value of the clustering coefficient of 
node :

The clustering coefficient of the whole network is an average of all individual ’s.

i ki ki

ki(ki − 1)/2

Ei ki
ki(ki − 1)/2

i

Ci =
2Ei

ki(ki − 1)
Ci
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Important concepts: Clustering
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Important concepts: Clustering

Boccaletti et al., ‘Complex Networks’.
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Important concepts: Degree distribution

Degree distribution: The spread in the number of 
edges a node has, or node degree, is characterized 
by the distribution function . 

 gives the probability that a randomly selected 
node has exactly  edges.

P(k)

P(k)
k

29



Important concepts
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Important concepts
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Structure and social ties

https://www.youtube.com/watch?
v=sI8TK2mETrk&source_ve_path=MjM4NTE32

https://www.youtube.com/watch?v=sI8TK2mETrk
https://www.youtube.com/watch?v=sI8TK2mETrk&source_ve_path=MjM4NTE
https://www.youtube.com/watch?v=sI8TK2mETrk&source_ve_path=MjM4NTE


Regular Networks

⟨k⟩ = 4
P(k) = δ(4)
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Complex Networks

• Random graphs


• Small world


• Scale free

34



Complex Networks: Erdös-Rényi (ER) Random Network

• The Erdös-Rényi model defines a random 
graph as  labeled nodes connected by  
edges which are chosen randomly from the 

 possible edges.


• This defines  possible graphs with 

 nodes and  edges. A random network 
can be generating by choosing one of 
these possible graphs with equal 
probability

N n

N(N − 1)/2

Cn
N(N−1

2
N n
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Complex Networks: Erdös-Rényi (ER) Random Network
• Alternatively, we can construct a random 

graph using what is known as the 
binomial model.

• Start with  nodes, and then connect 
every pair of nodes with probability . 

• In this case, the total number of edges is 
a random variable with expectation 

. Thus, the 
probability of obtaining a graph with N 
nodes and n edges is 

.
• The degree distribution  of a random 

graph is a Poisson distribution with a 
peak at .

N
p

E(n) = pN(N − 1)/2

P(N, n) = en(1 − p)(N(N − 1)/2 − n)
P(k)

P( < k > )

36



Complex Networks: Erdös-Rényi (ER) Random Network

Albert and Barabasi, ‘Statistical Mechanics of Complex Networks’.
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Complex Networks: Erdös-Rényi (ER) Random Network

P(k) ≃ e−pN (pN)k
k! = e−⟨k⟩ ⟨k⟩k

k!
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Complex Networks: Small-World Networks

• Also known as the Wattz and Strogatz model, proposed in (Wattz & Strogatz 1998).

• Algorithm:


1. Start with order: start with a ring lattice with  nodes in which every node is 
connected to its first  neighbours (  on either side). In order to have a sparse, but 
connected network at all times, consider .


2. Randomise: Randomly rewire each edge of the lattice with probability p, such that 
self-connections and duplicate edges are excluded. This process introduces  
long-range edges which connect to nodes that otherwise would be part of different 
neighbourhoods.  gives control over the transition between order (regular lattice) 
and full randomness.


N
K K/2

N ≫ K ≫ ln(N) ≫ 1

pNk/2

p
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Complex Networks: Small-World Networks

Saadat, Yalda, et al. 2018
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Complex Networks: Small-World Networks
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Complex Networks: Scale-Free Networks
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Complex Networks: Scale-Free Networks

• Graph degree distribution follows a power law .

• It was found that many of the real-world networks display a degree distribution that is 

shaped as a power law with exponents varying in the range .


P(k) ∼ Ak−λ

2 < λ < 3
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Complex Networks: Scale-Free Networks

Barabási and Albert (1999) argued that the scale-free nature of real networks is rooted in two 
generic mechanisms common in many real networks:


• Growth: most real networks grow by continuously attaching new nodes to a small 
nucleolus.


• Preferential attachment: the likelihood of connecting to a node depends on the node’s 
degree.

44



Complex Networks: Scale-Free Networks
Algorithm:


1. Growth: Growth: starting with a small number ( ) of nodes, at every time-step we 
add a new node with  ( ) edges that link the new node to  different nodes 
already present in the system.

2. Preferential attachment: when choosing the nodes to which the new node 
connects, we assume that the probability  that a new node will be connected to 

node i depends on the degree  such that .

m0
m ≤ m0 m

P

ki P(ki) =
ki

∑j kj

• After  time-steps this algorithm results in a network with  nodes and  
edges.


• Numerical simulations indicate that this network evolves into a scale-invariant state with 
the probability that a node has  edges following a power-law with an exponent .


t N = t + m0 mt

k λSF = 3
45



Complex Networks: Scale-Free Networks

46



Complex Networks: Real-world examples
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Complex Networks: how to infer the network topology 
from data?
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Complex Networks: how to infer the network topology 
from data?
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Complex Networks: how to infer the network topology 
from data?

Use Maximum Likelihood (MLE) to fit distribution like the Power Law, 
not the Least-Squares (LSE)!

If the estimation errors belong to a normal distribution, then MLE are 
LSE, but this does not have to be true for other distributions.
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Network diffusion and contagion

https://www.researchgate.net/profile/Badziili-Nthubu/publication/333902908/figure/fig2/
AS:772952572301312@1561297662054/Visualisation-of-weak-ties-vs-strong-ties-IE-A-link-to-IE-C-represents-a-weak-tie-
which.jpg
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Network diffusion and contagion
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Part 2: Games on networks



Levels of abstraction
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Levels of abstraction

These processes may happen at 
different time scales!
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Structured populations: Spatial games

• Spatial structure among plants or animals in an ecosystem


• The graph can also describe the architecture of cells in a multicellular 
organism, including the cellular differentiation hierarchy


• Relationships in a social network


• Dynamics on graph describe cultural evolution and the spread of new 
inventions and ideas

•
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Some good references

57



Suppressors of selection

Lieberman, Erez, Christoph Hauert, and Martin A. Nowak. "Evolutionary 
dynamics on graphs." Nature 433.7023 (2005): 312-316.
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Amplifiers of selection

Lieberman, Erez, Christoph Hauert, and Martin A. Nowak. "Evolutionary 
dynamics on graphs." Nature 433.7023 (2005): 312-316.

superstar funnel
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RewardTemptation < Reward Temptation > Reward

Sucker

Punish

Sucker > Punish

Sucker < Punish

© Tom Lenaerts, 2024
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Temptation
RewardTemptation < Reward Temptation > Reward
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Punish
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Nowak, M. A., May, R. M., & Sigmund, K. (1995). The arithmetics of 
mutual help. Scientific American, 272(6), 76-81.

Homogeneous interactions in space

Nowak, M. A., & May, R. M. (1992). Evolutionary games and spatial 
chaos. nature, 359(6398), 826-829.

Spatial games

Red is a D who was a D before 
Blue is a C who was a C before 
Green is a C who was a D before 
Yellow is a D who was a C before 

The fraction of C stabilises 
over time in the grid

© Tom Lenaerts, 2024
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Games on networks

What is the network structure?

How are strategies updated?

Can individual change their social ties?

66



Neighbourhood

Santos, Santos, and Pacheco, ‘Social Diversity Promotes the Emergence of 
Cooperation in Public Goods Games’.
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Common rules for behavioural update/adaptation
There are many…, but the most common ones are:


1. “Birth-death”

selected

for reproduction 
proportional to fitness

the offspring 
replaces a 

random neighbor

1 2 3

This process can also be synchronous or asynchronous 

68



chosen randomly
to die

a neighbour will reproduce 
and replace the individual 
proportional to its fitness 

in the neighbourhood

1 2 3

Common rules for behavioural update/adaptation
There are many…, but the most common ones are:


2. “Death-Birth”


This process can also be synchronous or asynchronous 

69



chosen randomly
The randomly chosen individuals

 imitates a randomly chosen 
neighbour proportional to fitness

1 2 3

Common rules for behavioural update/adaptation
There are many…, but the most common ones are:


3. Imitation or social learning


This process can also be synchronous or asynchronous 

70



The role of heterogeneity

71



C

D

C

C

D

D

D

D

D
D

D
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Modelling evolution on networks

Vertex  plays  times and 
accumulates payoff 

x kx
Fx

k1 = 1 k2 = 1

k3 = 1 k4 = 5 k6 = 1

k9 = 4

k8 = 4
k7 = 3

k10 = 1

k11 = 1

k13 = 2
k12 = 2

Simulating stochastic evolutionary 
dynamics 

Choose a neighbour  with payoff y Fy

Replace strategy  in node  by 
strategy  of node  with probability

sx x
sy y

p = max [0,
Fy − Fx

k>(T − S ]

© Tom Lenaerts, 2024
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Well-mixed, the baseline

, 100 runs, 50% C, R=1 and P=0Z = 104

© Tom Lenaerts, 2024
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Regular networks

, 100 runs, 50% C, R=1 and P=0Z = 104

S

T
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1

0

-1

Low average degree ̂k = 4

© Tom Lenaerts, 2024
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S

T
210

-1

1

0

Random (Erdös-Rényi) networks

, 100 runs, 50% C, R=1 and P=0Z = 104

S

T
210

-2

1

0

-1

Low average degree ̂k = 4

© Tom Lenaerts, 2024
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Scale-free (Barabasi) networks

, 100 runs, 50% C, R=1 and P=0Z = 104

S

T
210

-2

1

0

-1

Low average degree ̂k = 4
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Randomized Scale-free (Barabasi) networks

, 100 runs, 50% C, R=1 and P=0Z = 104

S

T
210

-2

1

0

-1

Low average degree ̂k = 4
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C DC DX

Temptation
RewardTemptation < Reward Temptation > Reward

Sucker

Punish

Sucker > Punish

Sucker < Punish

Nowak, M. A. (2006). Five rules for the evolution of cooperation. science, 314(5805), 1560-1563.

Transforming the PD in an SH or SD

C

D

?

+

C

D

C

D

D
D

D

C

Heterogeneous

Homogeneous

© Tom Lenaerts, 2024

Introduces a new tool: the 
averaged gradient of 
selection
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Assortment leads to the transformation of the game

1.

Pinheiro, F. L., Pacheco, J. M. & Santos, F. C. From Local to Global Dilemmas in Social Networks. PLoS ONE 7, e32114 (2012).

homogeneous random network Scale-Free 
(Barrabassi-Albert)
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Increasing heterogeneity favours cooperation

Pinheiro F L, Pacheco J M and Santos F C 2012 From Local to 
Global Dilemmas in Social Networks PLoS One 7 e32114

From Prof. Francisco C. Santos

1. Heterogeneity in structure also leads 
to heterogeneous payoffs among 
individuals (even if they adopt the 
same strategy), since some 
individuals interact more often than 
others


2. Local information may be different 
from global
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https://github.com/Socrats/EGTTools

Domingos, E. F., Santos, F. C., & Lenaerts, T. (2023). EGTtools: Evolutionary 
game dynamics in Python. Iscience, 26(4): 106419 https://doi.org/10.1016/
j.isci.2023.106419 

EGTtools demo
© Tom Lenaerts, 2024
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What about n-player games?
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What about n-player games?

c

0
c

cE

E

E E

E

E

0

0

k(c/2)

k(c/2)

k(c/2) k(c/2)

k(c/2)

k(c/2)

E+k(c/2)

E+k(c/2)

E+k(c/2)

E-k(c/2)

E-k(c/2)

E-k(c/2)

cooperate
defect
payoff
endowment

Public good game
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Heterogeneous networks also promote 
cooperation in public good games

Fixed cost per game

Fixed cost per individual
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And non-linear games?
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Heterogeneity also fosters cooperation in 
the Collective Risk Dilemma

Fixed threshold

Variable threshold
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Heterogeneous networks do not promote cooperation
when humans play a Prisoner’s Dilemma
Carlos Gracia-Lázaroa, Alfredo Ferrera, Gonzalo Ruiza, Alfonso Tarancóna,b, José A. Cuestaa,c, Angel Sáncheza,c,1,
and Yamir Morenoa,b,1

aInstituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain; bDepartamento de Física Teórica,
Universidad de Zaragoza, 50009 Zaragoza, Spain; and cGrupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matemáticas, Universidad
Carlos III de Madrid, 28911 Leganés, Madrid, Spain

Edited by Simon A. Levin, Princeton University, Princeton, NJ, and approved June 8, 2012 (received for review April 24, 2012)

It is not fully understood why we cooperate with strangers on a
daily basis. In an increasingly global world, where interaction
networks and relationships between individuals are becoming
more complex, different hypotheses have been put forward to
explain the foundations of human cooperation on a large scale and
to account for the true motivations that are behind this phenom-
enon. In this context, population structure has been suggested to
foster cooperation in social dilemmas, but theoretical studies of
this mechanism have yielded contradictory results so far; addition-
ally, the issue lacks a proper experimental test in large systems.
We have performed the largest experiments to date with humans
playing a spatial Prisoner’s Dilemma on a lattice and a scale-free
network (1,229 subjects). We observed that the level of coopera-
tion reached in both networks is the same, comparable with the
level of cooperation of smaller networks or unstructured popula-
tions. We have also found that subjects respond to the coopera-
tion that they observe in a reciprocal manner, being more likely to
cooperate if, in the previous round, many of their neighbors and
themselves did so, which implies that humans do not consider
neighbors’ payoffs when making their decisions in this dilemma
but only their actions. Our results, which are in agreement with
recent theoretical predictions based on this behavioral rule, sug-
gest that population structure has little relevance as a cooperation
promoter or inhibitor among humans.

evolutionary game dynamics | network reciprocity |
conditional cooperation

The strong cooperative attitude of humans defies the paradigm
of Homo economicus and poses an evolutionary conundrum

(1, 2). This conundrum is because many of our interactions can
be framed as Prisoner’s Dilemmas (3–5) or Public Goods Games
(6), famous for bringing about a tragedy of the commons (7).
Several mechanisms have been suggested as putative explan-
ations of cooperative behavior (8), among which the existence of
an underlying network of contacts constraining who one can
interact with has received very much attention. This mechanism
was first proposed in the work by Nowak and May (9), where
simulations on a square lattice with agents that imitate the be-
havior of their neighbor with the highest payoff showed high
levels of cooperation in the Prisoner’s Dilemma. The ensuing
two decades have witnessed a wealth of theoretical studies that
have concluded that this so-called network reciprocity (8) is,
indeed, possible under a variety of circumstances, but in many
other contexts, networks do not promote—or they even inhibit—
cooperation (10, 11). The effect of regular and homogeneous
networks on cooperation is very sensitive to the details of the
model (e.g., dynamics and clustering), whereas theoretical results
and simulations indicate that heterogeneous networks should be
particularly efficient in fostering cooperation in social dilemmas
(11–13). A natural way to shed some light on these partially
contradictory results would be to test experimentally the pre-
dictions of the different models. Such tests are currently lacking
(14), because the few available experimental works only deal—

with some exception (15)—with very small networks (16–18).
Interestingly, the only theoretical result (19) that takes into
account the behavioral information extracted from experiments
predicts that neither homogeneous nor heterogeneous networks
would influence the cooperative behavior in the Prisoner’s Di-
lemma (i.e., the observed cooperation level should be the same
as if every player interacted with every other player).
Here, we close the cycle by testing the above theoretical pre-

dictions (19) and contributing to the current debate on the ex-
istence and effects of network reciprocity by performing
experiments on large samples of structured populations of indi-
viduals who interact through a Prisoner’s Dilemma (PD) game.
Specifically, we have designed a setup in which 1,229 human
subjects were placed in either a square lattice or a scale-free
network, and for more than 50 rounds, they played a 2 × 2
multiplayer PD game with each of their k neighbors, taking only
one action [either to cooperate (C) or defect (D)—the action
being the same against all opponents]. The experiment was si-
multaneously carried out on two different virtual networks: a
25 × 25 lattice with k = 4 and periodic boundary conditions (625
subjects) and a heterogeneous network with a fat-tailed degree
distribution (604 subjects; the number of neighbors varied be-
tween k = 2 and k = 16). Fig. 1 depicts a snapshot of a visual
representation of the experiment as well as the two networks;
more details on the experimental setup as well as a summary of
the actions of the subjects during the experiment can be found in
SI Materials and Methods and SI Results and Discussion. Subjects
played a repeated (weak) PD with all their neighbors for an ini-
tially undetermined number of rounds. Payoffs of the PD were set
to be 7 Experimental Currency Units (ECUs) for mutual coop-
eration, 10 ECUs for a defector facing a cooperator, and 0 ECUs
for any player facing a defector (weak PD) (9). We note that this
choice of payoffs is like the experiment in the work by Gruji!c
et al. (15) on a smaller regular lattice (Fig. 1), and therefore,
cooperation should reach a high level according to the available
simulations (9, 11–13). The size of each network was large
enough, and therefore, clusters of cooperators could form (the
underlying mechanism by which cooperators may thrive) (20, 21).
On this general setup, we carried out two treatments, which we

will refer to as experiment and control. In the experiment, sub-
jects remained at the same positions in the network with the same
neighbors throughout all of the rounds played. In the control

Author contributions: A.T., J.A.C., A.S., and Y.M. designed research; C.G.-L., A.F., G.R.,
A.T., J.A.C., A.S., and Y.M. performed research; C.G.-L., J.A.C., A.S., and Y.M. analyzed
data; A.F. and G.R. designed and were in charge of the experimental platform; and J.A.C.,
A.S., and Y.M. wrote the paper.
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12922–12926 | PNAS | August 7, 2012 | vol. 109 | no. 32 www.pnas.org/cgi/doi/10.1073/pnas.1206681109

treatment, we removed the effect of the network by shuffling the
neighbors of each subject in every round. Therefore, in this phase,
the players were always connected to the same number of neigh-
bors, but these neighbors changed from round to round. On the
screen, subjects saw the actions and normalized payoffs of their
neighbors from the previous round, who in the control treatment,
were different from their current neighbors with high probability
(SI Materials and Methods and SI Results and Discussion). All
treatments of the experiment were carried out in sequence with
the same subjects. Players were also fully informed of the dif-
ferent setups that they were going to run. The number of rounds
in each treatment was randomly chosen between 50 and 70 to

avoid subjects knowing in advance when it was going to finish,
resulting in 51 and 59 rounds for the experimental and control
treatments, respectively. Full details are provided in SI Materials
and Methods and SI Results and Discussion.

Results and Discussion
Fig. 2 A and B shows the fraction of cooperative actions, c, in
each round for the two networks and both treatments. The first
feature worth noticing in Fig. 2 is that, in the experiment phase,
the level of cooperation in either network quickly drops from
initial values around 60% to values around 40% and finally settles
at a slower pace around 30%, much lower than theoretical models

A B C

Fig. 1. Players in the experiment were sitting in different physical locations but played in two virtual networks. A is a snapshot at round 10 of a graphic
animation illustrating the activity during the experiment (SI Results and Discussion). On a map of Aragón, the image displays small buildings representing the
schools. Arrows (green for cooperate and red for defect) represent actual actions taken by players. They travel to the school, where their randomly assigned
neighbors were sitting. Buildings are colored green and red, proportional to the respective number of cooperative and defective actions taken by the subjects
in that school. The height of the yellow column on top of each building is proportional to the school’s accumulated payoffs. B and C show snapshots of the
two networks at that same round along with their degree distributions (in the case of the heterogeneous network, both the theoretical distribution and the
actual realization corresponding to the network of the experiment are represented). Colors indicate the corresponding player’s action (green, cooperate; red,
defect). The size of a node is proportional to its degree.

A C

B D

Fig. 2. The level of cooperation declines and is independent of the network of contacts. Fraction of cooperative actions (level of cooperation) per round
during the experiment (A) and the control (B) for both networks and histograms of cooperative actions in the lattice (C) and the heterogeneous network (D).
The histograms (C and D) show the number of subjects ranked according to the fraction of cooperative actions that they perform along the experiment in the
two networks. A Kolmogorov–Smirnov test shows that the distributions are statistically indistinguishable (SI Results and Discussion). They illustrate the high
heterogeneity in subjects’ behavior—their levels of cooperation ranging from nearly zero to almost one in a practically continuous distribution. The cor-
responding histograms for the control (Fig. S4) show that a sizable group of subjects lowered their levels of cooperation, hence becoming mostly defectors.
Actually, the decline in the level of cooperation observed in the experiment (A and B) can be explained as a constant flow of subjects to more defective
strategies (evidence supporting this hypothesis in Figs. S5 and S6).
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Problematic to confirm experimentally
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Experiments reveal conditional “moody” behaviour

Reinforcement learning = individual learning by experience (see part 2)

© Tom Lenaerts, 2024

88



Individual learning (alone)  has no effect in 
networks
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What is the effect of 
changing topologies?

Both numerical and analytical approaches have been proposed 
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How to rewire  ?

C likes to interact with C and D 
likes to interact with C

C wants to change the link with D. 
This rewire with probability  to a 
neighbour of D

p

p = (1 + e−β(Fa−Fb))−1

D wants to change the link with D. 


- The first can rewire with probability  
to a neighbour of the other D.


- The second can rewire with 
probability 

p

(1 − p)
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Time-scale differences
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Time scale and degree are linked
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Confirmation …

L ETTER
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Abstract
The ubiquity of cooperation in nature is puzzling because cooperators can be exploited by defectors. Recent
theoretical work shows that if dynamic networks define interactions between individuals, cooperation is
favoured by natural selection. To address this, we compare cooperative behaviour in multiple but independent
repeated games between participants in static and dynamic networks. In the latter, participants could break their
links after each social interaction. As predicted, we find higher levels of cooperation in dynamic networks.
Through biased link breaking (i.e. to defectors) participants affected their social environment. We show that
this link-breaking behaviour leads to substantial network clustering and we find primarily cooperators within
these clusters. This assortment is remarkable because it occurred on top of behavioural assortment through
direct reciprocity and beyond the perception of participants, and represents a self-organized pattern.
Our results highlight the importance of the interaction between ecological context and selective pressures on
cooperation.

Keywords
Assortment, co-evolution, cooperation, dynamic network, game theory, prisoner!s dilemma, self-organization,
social behaviour.
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INTRODUCTION

Cooperative behaviour is widespread throughout the animal
kingdom (for recent reviews, see Pennisi 2009; Melis & Semmann
2010). Such cooperation occurs within social animals, which
naturally interact in networks, for instance in guppies where pairs
more likely inspect predators when they have strong social
associations with the partner (Croft et al. 2006). In primates and
social insects, network structures affect the environment in which
the individuals socially interact and also cooperate (Fewell 2003;
Voelkl & Kasper 2009). In addition, in humans, social networks are
an essential feature of social behaviour (Kossinets & Watts 2006).
However, from an evolutionary perspective, cooperative behaviour
is puzzling. This is because given that cooperative behaviour
benefits others and produces costs for the actor, there is the
potential for exploitation of cooperative individuals by "cheaters!.
Thus, those individuals enjoying cooperative benefits without
performing cooperative acts themselves should be favoured by
natural selection. To understand the evolution of cooperation,
particularly in relation to the structure of animal social networks, is
therefore a challenge.
Network reciprocity has been put forward as a mechanism to

explain how the structure of static networks can support the
evolution of cooperation (Nowak & May 1992; Lieberman et al.
2005; Ohtsuki et al. 2006; but see Hauert & Doebeli 2004).
Cooperation can prevail in spatial lattices, because by assorting
(i.e. clusters of neighbouring individuals performing the same
behavioural strategy) cooperators can avoid interactions with
defectors, reducing the chance of being exploited (Nowak & May
1992; Brauchli et al. 1999; Ifti et al. 2004; see also Fletcher & Doebeli
2009). In line with this theoretical work, evolutionary simulations

based on social networks of non-human primates show that these
have the appropriate static structure to support cooperation (Voelkl
& Kasper 2009).
However, in relation to more extensive theoretical work, it is

somewhat surprising that so far, experiments with humans could not
show that network structure promotes cooperation. Both spatial
lattices and other network topologies either caused cooperation to
decline over time (Grujić et al. 2010; Traulsen et al. 2010) or could not
convincingly reveal differences in levels of cooperation between
network structures (Cassar 2007; Kirchkamp & Nagel 2007).
A potentially very important network property has, however, been

neglected in these studies: network dynamics. In dynamic networks,
not only do strategies evolve but also the network topology is under
evolutionary selection pressure. Recent theoretical work shows that
such co-evolution of behaviour and network structure favours the
evolution of cooperation (for reviews, see Gross & Blasius 2008; Perc
& Szolnoki 2010). In particular, the "active-linking! models of Pacheco
et al. (2006a,b, 2008) show that when individuals playing prisoner!s
dilemma (PD; see Box 1) are allowed to control their interactions, i.e.
to break existing links and to form new links with random partners,
cooperation evolves.
The defining feature of dynamic networks is the interaction

between behaviour and network structure. Such interactions allow
feedback to arise allowing individuals to assort on the network and to
alter their social environment. This in turn can have an impact on
individual fitness and hence selection pressures on behavioural
strategies at the individual level. In general, such ecological interac-
tions and the self-organizing, or self-structuring processes that they
generate, have been suggested as fundamental to understanding
evolution, in particular that of cooperation (Hauert et al. 2006; Lion &
van Baalen 2008).

Ecology Letters, (2011) 14: 546–551 doi: 10.1111/j.1461-0248.2011.01615.x
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Human populations are both highly cooperative and highly
organized. Human interactions are not random but rather are
structured in social networks. Importantly, ties in these networks
often are dynamic, changing in response to the behavior of one’s
social partners. This dynamic structure permits an important form
of conditional action that has been explored theoretically but has
received little empirical attention: People can respond to the co-
operation and defection of those around them by making or
breaking network links. Here, we present experimental evidence
of the power of using strategic link formation and dissolution, and
the network modification it entails, to stabilize cooperation in
sizable groups. Our experiments explore large-scale cooperation,
where subjects’ cooperative actions are equally beneficial to all
those with whom they interact. Consistent with previous research,
we find that cooperation decays over time when social networks
are shuffled randomly every round or are fixed across all rounds.
We also find that, when networks are dynamic but are updated
only infrequently, cooperation again fails. However, when sub-
jects can update their network connections frequently, we see
a qualitatively different outcome: Cooperation is maintained at
a high level through network rewiring. Subjects preferentially
break links with defectors and form new links with cooperators,
creating an incentive to cooperate and leading to substantial
changes in network structure. Our experiments confirm the pre-
dictions of a set of evolutionary game theoretic models and dem-
onstrate the important role that dynamic social networks can play
in supporting large-scale human cooperation.

collective action | economic games | evolutionary game theory |
homophily | reciprocity

Cooperation is central to the success of human societies and is
widespread (1–5). However, cooperation poses a challenge

in both the social and biological sciences: How can this high level
of cooperation be maintained in the face of possible exploita-
tion? One answer involves networked interactions and pop-
ulation structure. Accounting for the fact that individuals are
embedded in a social network and interact only with others in
their neighborhood can lead natural selection to support even
unconditional cooperation in evolutionary game theoretic mod-
els (6–11). The reason is that these local, nonrandom interactions
can lead to the clustering of strategy types, so that cooperators
are more likely to interact with other cooperators and therefore
earn higher payoffs. However, empirical investigations using be-
havioral experiments have found little effect of network structure
on promoting cooperation (12–15), despite evidence that co-
operation and defection (as well as other, related behaviors) can
spread among experimental subjects (15–17).
A key element missing from most prior network experiments is

that real social networks typically are dynamic (18, 19). People
often have control over whom they interact with, and interaction
patterns change over time. This possibility of rewiring ties fun-
damentally alters the role of the network: Dynamic networks not
only afford the opportunity for the clustering of strategy types
but also make it possible for population structure to vary in re-
sponse to cooperation. This variability creates a new form of

conditional action, one that occurs via changes in network
structure rather than via changes in cooperation behavior.
Behavioral reciprocity is a central mechanism for the evolution

of cooperation (1, 20, 21). In evolutionary game theory, reci-
procity is defined as occurring when my actions toward you de-
pend on your actions in the past. Reciprocity traditionally has
been conceptualized in two-player game theory as the emergence
of concordant behaviors within dyads. For example, the “tit-for-
tat” strategy engages in reciprocity by cooperating only if the
opponent cooperated in the previous round. Reciprocity creates
future consequences for one’s choices and has been shown ex-
perimentally to promote cooperation in repeated two-player
interactions (22–25). However, reciprocity is problematic in
group interactions involving more than two players: If the only
way to sanction defectors is to defect, this action also harms the
other cooperators in one’s group (26).
Strategic tie formation and dissolution in dynamic networks

offer a solution to this problem by providing players with an
additional method of responding to the past actions of others.
Players can reciprocate not only by changing their cooperation
behaviors but also by creating or dissolving ties. Thus, coopera-
tors need not switch to defection to punish defectors in their
group; instead they can establish and maintain links with coop-
erators but sever connections with defectors, engaging in what
we call “link reciprocity.” (Note that this reciprocity is different
from the use of the term in social network analysis, where reci-
procity refers to the existence of tie concordance in directed
graphs—that is, if ego nominates alter, alter also nominates ego,
and a mutually reciprocated tie exists.)
In recent years, a number of evolutionary game theory models

have demonstrated the ability of link reciprocity to promote the
evolution of cooperation in group interactions (27–32). Although
these articles differ in the details of their methods and assump-
tions, several qualitative results emerge consistently across dy-
namic network models (see ref. 33 for a review). Most impor-
tantly, these models predict that rapid rewiring of the network
supports cooperation. If the network updates too slowly, the
threat of severed links cannot be carried out often enough to
make defection maladaptive. In addition, several other pre-
dictions arise regularly across models: Rapidly updating net-
works are predicted to have more variation across individuals in
the number of connections (i.e., a greater degree heterogeneity)
than static or slowly updating networks; connections between
two cooperators are predicted to be more stable than con-
nections involving defectors in rapidly updating networks; and
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But, do people really use social learning 
on networks?
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Humans do imitate more successful 
individuals on a local scale

Grujić, J., & Lenaerts, T. (2020). Do 
people imitate when making 
decisions? Evidence from a spatial 
prisoner’s dilemma experiment. 
Royal Society open science, 7(7), 
200618.


TWO: Treatment without payoff difference information


TWI: Treatment with payoff difference information

98



Is this still relevant?

99



Is this still relevant?
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Is this still relevant?
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Part 4: Tutorial on how to reproduce 
an EGT paper

Questions ?

elias.Fernández.Domingos@ulb.be

@esocrats

https://github.com/Socrats


