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Outline of the course

 Day 1: Introduction to Game Theory
 Day 2: Evolutionary Game Theory
 Day 3: Games on Networks

 Day 4: Practical challenges and connecting theory to Behavioural
Experiments

 Day 5: Final remarks and Project presentations



Day 2: Evolutionary Game Theory

1. Evolutionary Stability
2. Infinite Populations
3. Finite Populations

4. Tutorial: how to reproduce an EGT paper



When you think about Game Theory...
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However, there are many other strategic interactions,
and many of them occur in Large populations!




However, there are many other strategic interactions,
and many of them occur in Large populations!




However, there are many other strategic interactions,
and many of them occur in Large populations!




A change In perspective from individual to population

Complex individuals - Smaller populations Simpler individuals - Larger populations

The complexity in EGT often comes from
emergent behaviour due to the interactions of
many individuals in a population.
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https://blogs.bl.uk/untoldlives/2020/03/john-maynard-smith-evolutionary-biology-and-the-logic-of-animal-conflict.html
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MICROMOTIVES avo
MACROBEHAVIOR

‘Before Freakonomics and The Tipping Point, there was Micromotives and
Macrobehavior” —BAERY NALEBUFF, coauthor of Thinking Strategically
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Part 1: Evolutionary Stable Strategies
(ESS)




Evolutionary Stable Strategy (ESS)

An Evolutionary Stable Strategy is an strategy that, if adopted by |
- all individuals of a population, cannot be invaded by alternative or |
i mutant strategies !

A strategy S is evolutionary stable if it follows the following 2 conditions for all strategies 1" # S

1. 11(S, S) > 1I(7, S) or
2. 11(S,S) = II(7,S) and I1(S, T) > II(T, T)

12
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Can C invade a population of D

Assume an infinite population of (1 — ¢) D
Greed and fear players and € C players

Success of € fraction of C in a population with
(1 — €) D players: S(1 — €) + Re

Column player

° Success of (1 — ¢) fraction of D in a population
o with € C players: P(1 — €¢) + Te

C players can take over the population when
S(1 —e)+ Re > P(1 —e)+ Te

This happens when either S > P or when
S=P,R>T

C.H. Coombs (1973) A reparameterization of the prisoner’s dilemma game. Behavioral

Science 18:424-428 If C cannot invade, D is an Evolutionary
Stable Strategy (ESS)

13
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...and inversely, can D invade a population of C

Assume an infinite population of (1 — ¢) C
Greed and fear players and € D players

Success of € fraction of D in a population with
(1 —€) Cplayers: T(1 — €) + Pe

Column player

e Success of (1 — ¢€) fraction of C in a population
. with € D players: R(1 — ¢€) + Se

D players can take over the population when
T(1 —€)+ Pe > R(1 —¢€) + Se

This happens when either 7' > R or when
T=R,P>S§

C.H. Coombs (1973) A reparameterization of the prisoner’s dilemma game. Behavioral

Science 18:424-428 If D cannot invade, C is an Evolutionary
Stable Strategy (ESS)

14
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No since S < P

Yessince I > R
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pifighthouse.com

s an ESS
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ESS No since S < P
s an ESS

No since 7' < R
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ESS |ls an ESS ESS
s an ESS

s an ESS
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ESS ESS

Yes since S > P

s an ESS

Yessince I > R
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No ESS ?
What about (1/5,4/5)?

ESS

s an ESS

s an ESS

)
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Connection between NE and ESS

' Given a symmetric two-player normal-form
- G=({1,2},A, u) and a mixed strategy s, If s is |

- G =({1,2}, A, u) and a mixed strategy s, If (s, 5) isa |

21



Part 2: Infinite Populations
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The success of a species depends both on its fithess and its numbers.




The replicator equation

A Frequency of strategy 1

n

e

J=1

X; = X; f(l) —

Fitness of strategy 1



The replicator equation
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mcrease decrease
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fi(x) = fo(x)
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. Important: in the following slides we assume the |
|_Population participates in a 2-player symmetric game. |
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Matrix form of expected payoffs

Expected payoff of type of a type 1 in a population with state x
(Ax); = ) agx,
i=1

Average payoff in the population

xTAx = Z X(Ax); = Z AijXiX;

l l,]



Nash equilibrium (again...)

G(x;) = x; = x[(Ax), — x' Ax]

Where the matrix A is a payoff matrix with element AU- representing the fitness of strategy 1

over strategy J.

' A symmetric n X n game has a symmetric NE x if

'Ax <xTAxVz e A,

28



Evolutionary stable state (ESS)

G(x;) = x; = x[(Ax), — x' Ax]

Where the matrix A is a payoff matrix with element AU- representing the fitness of strategy 1

over strategy J.

f Every symmetric NE is a rest point of the replicator equation, 3
. however, not every rest point of the replicator equation is an NE. |

29



Evolutionary stable state (ESS)

G(x;) = x; = x[(Ax), — x' Ax]

Where the matrix A is a payoff matrix with element AU- representing the fitness of strategy 1

over strategy J.

For all X # x in some neighbourhood of x (the perturbed state):

' Equilibrium condition

| TAx <x'Ax
. Stability condition
if ¢/ Ax = xT Ax then T AX < xT A%

30



Evolutionary stable state (ESS)

G(x;) = x; = x[(Ax), — x' Ax]

Where the matrix A is a payoff matrix with element AU- representing the fitness of strategy 1

over strategy J.

- State x is evolutionary stable if for all X #x in some
: neighbourhood of x (the perturbed state), then
xTA% > #TA%

31



Evolutionary stable state (ESS)

G(x;) = x; = x[(Ax), — x' Ax]

Where the matrix A is a payoff matrix with element AU- representing the fitness of strategy 1

over strategy J.

- State x is evolutionary stable if for all X #x in some
: neighbourhood of x (the perturbed state), then
xTA% > #TA%
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Evolutionary stable state (ESS)

G(x;) = x; = x[(Ax), — x' Ax]

Where the matrix A is a payoff matrix with element AU- representing the fitness of strategy 1

over strategy J.

. Evolutionary stable state extends the concept of ESS to mixed |
' strategies through dynamic stability. That is, a population !
. configuration (state) is stable if, after an infinitesimal change in the |
. population (e.g., the introduction of a mutant), it converges to that |
. state.

33



Payoff dominance and Risk dominance

A NE Is considered payoff dominant if it is Pareto superior (all ‘;‘
. other NE provide less payoff to at least one player) to all other NE in |
. the game. ‘

i A NE Is considered risk dominant if it is perceived as "less risky" i
' than all other NE. Risk perception here means that it maximises the |
| expected payoff given the uncertainty about what the opponent(s)
| might do. It can also be seen as the equilibria with the largest |
. basin of attraction.

34



Payoff dominance and Risk dominance

;‘; A strategy S risk dominates a strategy 1 if the expected payoff for a 1,
, player i choosing S is bigger than the expected payoff of choosing j
T, thatis IL(p|S) > IL(p|T), where p is the is the risk factor of the f,
', pure NE (S, ), that is, the probability that an opponent will choose
| strategy S. |

35



© Tom Lenaerts, 2024

S Social dilemma space

36
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Replicator equation results for all social
dilemmas




Example: The Hawk-Dove game

The Hawk-Dove game

Hawk-Dova Modal: Costs and Banshits of Fighting over Rasources
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The hawk-Dove game is a
coordination game formulated by

John Maynard Smith and Georg
Price. The aim of the game was to

understand the resolution of
conflicts by fighting in the animal
kingdom. The game consists of two
players, which each have the choice
between two possible actions;
either they take time to display
(dove) before fighting or they can
escalate immediately and fight
(hawk). When both players escalate
(hawk), they have a 50% risk of
being injured (-D/2) and 50% of
wining (V/2). When a dove fights

another dove she also wins 50% of the time (V/2) but only after a period of
mutual displays to show of strength (-T). Hawks always win against doves,

resulting in a benefit for one (V) and not for the other (0).
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Example: The Hawk-Dove game - Defection
-dominant

Hawk-Dove game replicator dynamics

S
N

V=3,D=2T=1 (V> D)

0.5,0.5 3,0
0,3 0.5,0.5
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0.00 0.25 0.50 0.75 1.00
frequency of hawks



Example: The Hawk-Dove game - Anti-
coordination

Hawk-Dove game replicator dynamics

V=2.D=3,T=1(V<D)

—0.5, =05 2,0
0, 2 0, O

0.00 0.25 0.50 0.75 1.00
frequency of hawks



Example: The Hawk-Dove game -
Coordination

Hawk-Dove game replicator dynamics

&
-
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V=3,D=2,T=-2((V>D)

0.5,0.5 3,0
0,3 3.5,3.5
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0.00 0.25 0.50 0.75 1.00
frequency of hawks



Example: The Hawk-Dove game -

Cooperation-dominant

Hawk-Dove game replicator dynamics

V==1,D=2,T=0(V> D)

—1.5, — 1.5 -1, 0
0, —1 —0.5, —0.5

gradient of selection (G)

0.00 0.25 0.50 0.75 1.00
frequency of hawks



Rock-Paper-Scissors




Rock-Paper-Scissors

paper




Hawk-dove-human Game

Dove
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Other dynamics

Lotka-Volterra (Predator-prey) v rey

population size

Replicator-mutator equation

. bredator

time (t)

See http://www.tiem.utk.edu/~gross/bioed/
bealsmodules/predator-prey.html



http://www.tiem.utk.edu/~gross/bioed/bealsmodules/predator-prey.html
http://www.tiem.utk.edu/~gross/bioed/bealsmodules/predator-prey.html
http://www.tiem.utk.edu/~gross/bioed/bealsmodules/predator-prey.html

Asymmetric Games




Asymmetric Games (see notebook!)
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Part 3: Finite Populations



Evolution of trust

https://ncase.me/trust/



https://ncase.me/trust/
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Evolutionary dynamics in Finite Populations

Evolutionary dynamics (®)

Moran process
Wright-Fisher process

>
q
-]
D
=
Q
c
»n
D
)

wou} payrdopy

X y
(Agent-based simulation)
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M”d“’enberg ba
i * " David

New behaviour Is
acquired by

Social Learning

w e SAT RN

Social learning is learning that is facilitated
by observation , or interaction with, another
individual or its products

An Introduction to Mechanisms, Methods, and Models

Reinforcement learning (Bush-Mosteller, Mach-
Flach, Roth-Erev, ..., learning automata, Q-
learning) models provide individual learning by
experience




A multi-agent model of social learning

selection strength

/

iImitation probabillity



A multi-agent model of social learning

This process can be described by a Markov Chain



A multi-agent model of social learning

Fermi function

Assuming 2 strategies C and D in a population of size Z, k C players and Z — k D players

/Z—k k Z—k

T+ — 1 — S — 1 -+ _ﬁ(fc_fD —1 + [—
(1 —p) ~ Z[ e I~ +u ~
kZ—k k

T =(] — uy)———|[1 + P(fc—Tp _1_|_ —
( ﬂ)Z ~ [1 +e ] =



A multi-agent model of social learning

Fermi function
b =[1 + PUOfEN]-1

Assuming 2 strategies C and D in a population of size Z, k C players and Z — k D players

/_\ ——_ probability that the imitation process

occurs and individuals adopting
/ — k different strategies are selected

/Z —k k
T+ — 1 — S — 1 -+ e_ﬁ(fC_fD —1 + [—
(1 —p) ~ Z[ ] U ~
k Z —k k
T_ — 1 S — e 1 _|_ eﬂ(fC_fD _1 _|_ —
( //t)Z ~ | | ﬂZ




A multi-agent model of social learning

‘ To calculate the fithess we now need to sample without replacement! i,

For 2-player games, we have:

k—1
Jplk) = ﬁH(D, D) + ]

1I(D, C)

k — 1
fck) = ﬁH(C, D) + ?H(C, C)



A multi-agent model of social learning

. To calculate the fitness we now need to sample without replacement!

For n-player games, where N is the size of the group, we have (hypergeometric
sampling):

o - (2—1)—”2-5 (k—l) (Z—k—l)n |
Jplk) = N — 1 . j N—j—1 p(J)

J=0

(k)_<Z—1>_1N‘1(k—1>( Z—k )n('+1
O={nN_1) . i ) \wojor) Uty

J=0




A multi-agent model of social learning

With this we can define the transition matrix 7 that maps the
probabilities of transitioning from a state with k Ds to an adjacent
state with kK + 1 or k — 1 Ds:

T‘+1,i = 1"

l

T’,i+1 =T

l

T, =1-T"=T"



Important indicators

Gradient of selection (most likely path for the evolution):

k Z —k
4 4

Glz) = TH(k) — T~ (k) = (1 - p tan f (gw _ fD<k>]) y

Stationary distribution (the time spent at each state)

The stationary distribution can be computed as the left eigenvector associated
with the eigenvalue 1 of the transition matrix.

Vasconcelos, V. V., Santos, F. C. & Pacheco, J. M. A bottom-up
institutional approach to cooperative governance of risky commons.
Nature Climate Change 3, 797-801 (2013).
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Evolutionary dynamics

Evolutionary dynamics (®)

Moran process

Replication dynamics W”th-FISF:er process
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(Nonlinear) dynamical systems Agent-based simulétion



gradient of selection (G)

Examples: Hawk-Dove: effect of Z

Hawk-Dove game stochastic dynamics

V=2.D=3,T=1(V<D)

—0.5, =05 2,0
0, 2 0, O

&
-
o
o

0.075
0.050
0.025 Z = 100 x; = |k;/Z]
|
B =
0.000 u=0

0.00 0.25 0.50 0.75 1.00
frequency of hawks (k/Z)



Examples: Hawk-Dove: effect of Z
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V=2.D=3,T=1 (V< D)
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0, 2 0, O
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Examples: Hawk-Dove: effect of Z

Hawk-Dove game stochastic dynamics

V=2.D=3,T=1(V<D)
—-0.5, =05 2,0
0, 2 0, O

x; = |k;/Z]

= N
|-
o

-

=
|
-

0.00 0.25 0.50 0.75 1.00
frequency of hawks (k/Z)



Examples: Hawk-Dove: effect of Z

V=2.D=3,T=1(V<D)

i | —-0.5, =05 2,0
E 0, 2 0, O
§0.4- /=10 Xj = [kz/z]
§0.2 ﬁ:

2 u=1le—-3

o
o

0.2 0.4 0.6 0.8 1.0

kIZ
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Examples: Hawk-Dove: effect of /)

Hawk-Dove game stochastic dynamics

V=2.D=3,T=1(V<D)

—0.5, =05 2,0
0, 2 0, O

gradient of selection (G)

Z =100 x; = [k/Z]
£ =10
u=0

0.00 0.25 0.50 0.75 1.00
frequency of hawks (k/Z)



Examples: Hawk-Dove: effect of /)

V=2.D=3,T=1(V<D)

5o -0.5, =05 2,0
5 0.150

'g 0.125 O, 2 O, O
% 0.100

3‘0075

‘O 0.050 — 10

© 0.025 ﬁ

% u=1le—3

Na



Examples: Hawk-Dove: effect of /)

V=2.D=3,T=1(V<D)

Hawk-Dove game stochastic dynamics

S 0.00125 —05, —05 2,0
© 0.00100

: 0,2 0,0
% 0.00075

N

‘E 0.00050 I 7 = 100 x: = |k/Z]
$ 0.00025 | p=1le—2

o

S 0.00000 u=0

(@)

0.00 0.25 0.50 0.75 1.00
frequency of hawks (k/Z)



Examples: Hawk-Dove: effect of u

V=2.D=3,T=1(V<D)

(—0.5, —-0.5 2,0

o
~J
|

stationary distribution

O
o
!

O
(o))
|

O O O
w R wn
] | I

O
N

O
p—
|

a

0, 2

Z =100
p =
u=1e—->5

0, O

x; = |k;/Z]

)



Examples: Hawk-Dove: effect of i

V=2.D=3,T=1(V<D)

< _0.5, =05 2,0
2 0,2 0,0
s Z =100 x; = [k/Z]
= p =

2 u=1le—1

0.0 0.2 0.4 0.6 0.8 1.0
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Examples

a | 2 strategies 3 strategies Dove | b
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Fixation probabilities

¢p_c=p(C,1)

¢C—>D — p(Dal)

G We want p(C, 1), the probability that one C can
take over a population of D players, which is
given by

p(1,C) =T (Dp(C0)+ T (Dp(C.2) + (1 = T~(1) = T™(1))p(C.1)

1 k -1
oS5

k=0 i=1

(2



Fixation probabilities, evolutionary
robustness and risk dominance

Fixation probability (of a single mutant)
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Fixation probabilities and evolutionary robustness

Neutral drift

“In a finite, homogeneous population of size Z, a newly introduced neutral mutation (i.e., a mutation
that does not change the payoff to either player) will eventually replace the entire population with

probability p = —
P /

Survival of the fittest

1
A deleterious mutation, which is opposed by selection, will fix with probability p < —

/
1

An advantageous mutation, which is favored by selection, will fix with probability p > E

Stewart, A. J., & Plotkin, J. B. (2013). From extortion to generosity, evolution in the ite7r4ated prisoner’s dilemma. Proceedings of the National Academy of Sciences, 110(38),
15348-15353.
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Solution concepts ; Evolutionary Robustness

Remember a neutral mutation can replace

1
the entire population with probability p = —.

/

Greed and fear

A strategy s* is Evolutionary Robust against
a mutant strategy s if the latter has a fixation

|
probability of p < ~ in a population with s*

In terms of the reduced Markov chain, there
1

are no edges leaving the state s* with p > ~

In the limit of Z — o0 the condition reduces
to the ESS condition

Stewart, A. J., & Plotkin, J. B. (2013). From extortion to generosity, evolution in the ite7r5ated prisoner’s dilemma. Proceedings of the National Academy of Sciences, 110(38),
15348-15353.
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But, as this can quickly become computationally intractable!

Evolutionary dynamics (®)

Moran process (stochastic)
Wright-Fisher process Small mutation approximation

Replication dynamics ®

> 2
2 O
DOx—z Oz — SI -9|-
. . V4 y
N finite A 3 3
zox Qy-z =
ﬁ 0 =
1 S 3
l.,l << Dx—
T ® - a > @
X y Dy —x

(Nonlinear) dynamical systems Agent-based s'tmulétion (Reduced) Markov chains



Small mutation limit (SML) and dominance
between strategies

'f Under the assumption that mutations are rare (1 — 0) we always
' end up in a monomorphic state

This allows us to simplify the transition probabilities to

k Z—k _
T = — Zo {1 4 U]

And to consider instead the reduced Markov chain which only contains
the vertices of the simplex, so that the system is now characterised by

the following transition probabillities: Px=z Oz-ry
Oz—-+x Qy—-z
Ti,j — Pij/(”s — 1) I;;=1- E,Ti,j Ox—y
. @ - > @
‘v’] Qy—-x



Example: Rock-Paper-Scissors

0.5,0.5 0,1 1, O
1,0 05,05 0,1
0, 1 1,0 05,05
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iIScience

¢ Cell’ress

OPEN ACCESS

EGTtools: Evolutionary game dynamics in Python

Flexible architecture with methods to analyse and plot evolutionary dynamics

Elias Fernandez
Domingos,
Francisco C.
Santos, Tom

|
|
> analytical
I Gamed : —l Lenaerts
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Domingos, E. F., Santos, F. C., & Lenaerts, T. (2023). EGTtools: Evolutionary
game dynamics in Python. Iscience, 26(4): 106419 https://doi.org/10.1016/
J.isci.2023.106419
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import numpy as np

# Plotting libraries

import matplotlib.pylab as plt

# Magic function to make matplotlib inline; other style specs must come AFTER
smatplotlib inline

# This enables high resolution PNGs.

%config InlineBackend.figure_formats = {'png', 'svg'}

from egttools.analytical import replicator_equation

from egttools.analytical.utils import (calculate_gradients, find_roots, check_replicator_stability_pairwise_games,)

from egttools.plotting import plot_gradients

#Payoff matrix prisoners dilemma
T=7; R=3; P=1; S=0
A=np.array([[R,S], [T,P]])

#define a sequence of fractions of cooperators in the population
nb_points = 101

strategy_i = np.linspace(@, 1, num=nb_points, dtype=np.float64)
#strategy 1

# Calculate gradient for every population state.
gradient_function = lambda x: replicator_equation(x, A)
gradients = calculate_gradients(np.array((strategy_i, 1 - strategy_i)).T, gradient_function)

#what are the roots (fixed points) of the replicator dynamic in the PD and ae they stable?

roots = find_roots(gradient_function, 2, nb_initial_random_points=10, method="hybr")

stability = check_replicator_stability_pairwise_games(roots, A, atol_neg=le-4, atol_pos=le-4, atol_zero=le-4)
#help(check_replicator_stability_pairwise_games)

JupyterLab []

-

[22]: plot_gradients(gradients[:, @], figsize=(5,4), fig_title="PD replicator dynamics",
xlabel="frequency of cooperators", roots=roots, stability=stability)
plt.show()

PD replicator dynamics
1 ' 1 v 1

0.0

-0.2

iradient of selection (G)
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Details on the calculation

SCIENTIFIC REPQPRTS

Computation and Simulation of
Evolutionary Game Dynamics in
Fi n ite POPU I atio ns Method Advantages Disadvantages

- Laura Hindersin’, Bin Wu?, ArneTraulsen©* & Julian Garcia’ Wall time is independent of the game Limited to birth-death processes

Received: 22 October 2018

Accepted: 11 April 2019 : .
Published online: 06 May 2019 The study of evolutionary dynamics increasingly relies on computational methods, as more and Direct Extendable to other birth-death processes, such as

. more cases outside the range of analytical tractability are explored. The computational methods .. . lexi
. for simulation and numerical approximation of the relevant quantities are diverging without being palrwise€ comparison processes (Same comp emty)

. compared for accuracy and performance. We thoroughly investigate these algorithms in order to

. propose a reliable standard. For expositional clarity we focus on symmetric 2 X 2 games leading to one- St Iv limited b lati ize due to si
. dimensional processes, noting that extensions can be straightforward and lessons will often carry over Matrix-based dabl ith d " . rong Y .lml € Y population S1Z€ du€ 1o S1Z€
- to more complex cases. We provide time-complexity analysis and systematically compare three families Extendable to Pprocesses with dense transition matrix, of transition matrix

- of methods to compute fixation probabilities, fixation times and long-term stationary distributions such as Wright- Fisher (incr eased complexity)
- forthe popular Moran process. We provide efficient implementations that substantially improve wall )
- times over naive orimmediate implementations. Implications are also discussed for the Wright-Fisher Extendable to Fermi and Wright-Fisher Wall time depends on the game and the

. process, as well as structured populations and multiple types. Simulations selection intensity

Not extendable to general graphs

Wall time is independent of the game

Extendable to games on graphs and multi-player games | Large number of realisations might be necessary

- Theoretical models of evolutionary games in finite populations typically require numerical procedures or sim-
- ulations'~. This is even the case when analytical results exist, as these are often difficult to interpret or confined
© to specific limits®-'3. Simulations as well as numerical approximations are therefore common in the field, but far . . . . . . . . .
" from being standardised. There are different computational methods to assess the key quantities in evolutionary Table 1. Overview of the three methods discussed here. This table lists their limitations and possible
. game dynamics. Here we focus on studying the popular Moran process®. The purpose of this paper is to give an .

- overview of such computational methods and to compare their limitations and scalability. We provide algorithms extensions.

- in pseudo-code as well as the source code for all the procedures that we study.

The Moran process'* and the Wright-Fisher process'> have become popular models to describe how pheno-

- types change over time by evolution. Both processes have their roots in population genetics. Only recently, they

- were introduced to evolutionary game dynamics in finite populations®'®". In each time step of the Moran process,

Hindersin, L., Wu, B., Traulsen, A., & Garcia, J. (2019). Computation and
simulation of evolutionary game dynamics in finite populations. Scientific
reports, 9(1), 6946.
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Replicator equation results for all social
dilemmas




Mechanisms for the evolution of cooperation
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