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Outline of the course

• Day 1: Introduction to Game Theory 


• Day 2: Evolutionary Game Theory 

• Day 3: Games on Networks


• Day 4: Practical challenges and connecting theory to Behavioural 
Experiments


• Day 5: Final remarks and Project presentations

2



Day 2: Evolutionary Game Theory

1. Evolutionary Stability


2. Infinite Populations


3. Finite Populations


4. Tutorial: how to reproduce an EGT paper
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When you think about Game Theory...
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However, there are many other strategic interactions, 
and many of them occur in Large populations!
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However, there are many other strategic interactions, 
and many of them occur in Large populations!
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However, there are many other strategic interactions, 
and many of them occur in Large populations!
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A change in perspective from individual to population

The complexity in EGT often comes from 
emergent behaviour due to the interactions of 
many individuals in a population.
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https://blogs.bl.uk/untoldlives/2020/03/john-maynard-smith-evolutionary-biology-and-the-logic-of-animal-conflict.html© Tom Lenaerts, 2024
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Part 1: Evolutionary Stable Strategies 
(ESS) 



Evolutionary Stable Strategy (ESS)

An Evolutionary Stable Strategy is an strategy that, if adopted by 
all individuals of a population, cannot be invaded by alternative or 
mutant strategies

A strategy  is evolutionary stable if it follows the following 2 conditions for all strategies :S T ≠ S

1.  or
2.  and 

Π(S, S) > Π(T, S)
Π(S, S) = Π(T, S) Π(S, T) > Π(T, T)
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Prisoners Dilemma, T>R, P>S

C.H. Coombs (1973) A reparameterization of the prisoner’s dilemma game. Behavioral 
Science 18:424-428

Greed and fear

Can C invade a population of D

Assume an infinite population of  D 
players and  C players 

(1 − ϵ)
ϵ

Success of  fraction of C in a population with 
 D players: 

ϵ
(1 − ϵ) S(1 − ϵ) + Rϵ

Success of  fraction of D in a population 
with   C players: 

(1 − ϵ)
ϵ P(1 − ϵ) + Tϵ

C players can take over the population when 
  S(1 − ϵ) + Rϵ > P(1 − ϵ) + Tϵ

This happens when either  or when 
, 

S > P
S = P R > T

If C cannot invade, D is an Evolutionary 
Stable Strategy (ESS)

© Tom Lenaerts, 2024
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P

Prisoners Dilemma, T>R, P>S

C.H. Coombs (1973) A reparameterization of the prisoner’s dilemma game. Behavioral 
Science 18:424-428

Greed and fear

…and inversely, can D invade a population of C

Assume an infinite population of  C 
players and  D players 

(1 − ϵ)
ϵ

Success of  fraction of D in a population with 
 C players: 

ϵ
(1 − ϵ) T(1 − ϵ) + Pϵ

Success of  fraction of C in a population 
with  D players: 

(1 − ϵ)
ϵ R(1 − ϵ) + Sϵ

D players can take over the population when 
  T(1 − ϵ) + Pϵ > R(1 − ϵ) + Sϵ

This happens when either  or when 
, 

T > R
T = R P > S

If D cannot invade, C is an Evolutionary 
Stable Strategy  (ESS)

© Tom Lenaerts, 2024
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No ESS ?
D Is an ESS

ESS C Is an ESS

D Is an ESS

ESS

ESS

What about (1/5,4/5)?

© Tom Lenaerts, 2024
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Given a symmetric two-player normal-form game 
 and a mixed strategy , If  is 

an ESS then  is a NE of the game .
G = ({1,2}, A, u) s s

(s, s) G

Given a symmetric two-player normal-form game 
 and a mixed strategy , If  is a 

strict symmetric NE then  is an ESS
G = ({1,2}, A, u) s (s, s)

s

Connection between NE and ESS
© Tom Lenaerts, 2024
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Part 2: Infinite Populations



The success of a species depends both on its fitness and its numbers.

23



The replicator equation

·xi = xi f(xi) −
n

∑
j=1

xj f(xj)

Frequency of strategy i

Fitness of strategy i

Avg. fitness of the 
population

24



The replicator equation

·xi = xi f(xi) −
n

∑
j=1

xj f(xj)

fi(x) >
n

∑
j=1

xj fj(x) fi(x) <
n

∑
j=1

xj fj(x)

fi(x) =
n

∑
j=1

xj fj(x)

increase decrease

Equilibrium? Only if this is true 
∀i25



Important: in the following slides we assume the 
population participates in a 2-player symmetric game.
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Matrix form of expected payoffs

(Ax)i =
m

∑
j=1

aijxj

xT Ax = ∑
i

xi(Ax)i = ∑
i,j

aijxixj

Expected payoff of type of a type  in a population with state  i x

Average payoff in the population



Nash equilibrium (again...)

G(xi) = ·xi = xi[(Ax)i − xT Ax]
Where the matrix  is a payoff matrix with element  representing the fitness of strategy  

over strategy .

A Aij i

j

A symmetric  game has a symmetric NE  if 
n × n x

zT Ax ≤ xT Ax ∀z ∈ Δn
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Evolutionary stable state (ESS)

G(xi) = ·xi = xi[(Ax)i − xT Ax]
Where the matrix  is a payoff matrix with element  representing the fitness of strategy  

over strategy .

A Aij i

j

Every symmetric NE is a rest point of the replicator equation, 
however, not every rest point of the replicator equation is an NE.
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Evolutionary stable state (ESS)

G(xi) = ·xi = xi[(Ax)i − xT Ax]
Where the matrix  is a payoff matrix with element  representing the fitness of strategy  

over strategy .

A Aij i

j

For all  in some neighbourhood of  (the perturbed state):


Equilibrium condition




Stability condition

if  then 

̂x ≠ x x

̂xT Ax ≤ xT Ax

̂xT Ax = xT Ax ̂xT A ̂x < xT A ̂x
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Evolutionary stable state (ESS)

G(xi) = ·xi = xi[(Ax)i − xT Ax]
Where the matrix  is a payoff matrix with element  representing the fitness of strategy  

over strategy .

A Aij i

j

State  is evolutionary stable if for all  in some 
neighbourhood of  (the perturbed state), then


x ̂x ≠ x
x

xT A ̂x > ̂xT A ̂x

31



Evolutionary stable state (ESS)

G(xi) = ·xi = xi[(Ax)i − xT Ax]
Where the matrix  is a payoff matrix with element  representing the fitness of strategy  

over strategy .

A Aij i

j

State  is evolutionary stable if for all  in some 
neighbourhood of  (the perturbed state), then


x ̂x ≠ x
x

xT A ̂x > ̂xT A ̂x

32



Evolutionary stable state (ESS)

G(xi) = ·xi = xi[(Ax)i − xT Ax]
Where the matrix  is a payoff matrix with element  representing the fitness of strategy  

over strategy .

A Aij i

j

Evolutionary stable state extends the concept of ESS to mixed 
strategies through dynamic stability. That is, a population 
configuration (state) is stable if, after an infinitesimal change in the 
population (e.g., the introduction of a mutant), it converges to that 
state.
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Payoff dominance and Risk dominance

A NE is considered risk dominant if it is perceived as "less risky" 
than all other NE. Risk perception here means that it maximises the 
expected payoff given the uncertainty about what the opponent(s) 
might do. It can also be seen as the equilibria with the largest 
basin of attraction.

A NE is considered payoff dominant if it is Pareto superior (all 
other NE provide less payoff to at least one player) to all other NE in 
the game.

34



Payoff dominance and Risk dominance

A strategy  risk dominates a strategy  if the expected payoff for a 
player  choosing  is bigger than the expected payoff of choosing 

, that is , where  is the is the risk factor of the 
pure NE , that is, the probability that an opponent will choose 
strategy .

S T
i S

T Πi(p |S) > Πi(p |T) p
(S, S)
S

35
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© Tom Lenaerts, 2024
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Replicator equation results for all social 
dilemmas

© Tom Lenaerts, 2024
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Example: The Hawk-Dove game

38



Example: The Hawk-Dove game - Defection 
-dominant

39

V = 3, D = 2, T = 1 (V > D)

(0.5, 0.5 3, 0
0, 3 0.5, 0.5)



Example: The Hawk-Dove game - Anti-
coordination

40

V = 2, D = 3, T = 1 (V < D)

(−0.5, − 0.5 2, 0
0, 2 0, 0)



Example: The Hawk-Dove game - 
Coordination

41

V = 3, D = 2, T = − 2 (V > D)

(0.5, 0.5 3, 0
0, 3 3.5, 3.5)



Example: The Hawk-Dove game - 
Cooperation-dominant

42

(−1.5, − 1.5 −1, 0
0, − 1 −0.5, − 0.5)

V = − 1, D = 2, T = 0 (V > D)



Rock-Paper-Scissors

0.5, 0.5 0, 1 1, 0
1, 0 0.5, 0.5 0, 1
0, 1 1, 0 0.5, 0.5



Rock-Paper-Scissors

0.5, 0.5 0, 1 1, 0
1, 0 0.5, 0.5 0, 1
0, 1 1, 0 0.5, 0.5



Hawk-dove-human Game

−0.5 2 0
0 0 2
0 1 0



Other dynamics

Lotka-Volterra (Predator-prey)

Replicator-mutator equation

See http://www.tiem.utk.edu/~gross/bioed/
bealsmodules/predator-prey.html


http://www.tiem.utk.edu/~gross/bioed/bealsmodules/predator-prey.html
http://www.tiem.utk.edu/~gross/bioed/bealsmodules/predator-prey.html
http://www.tiem.utk.edu/~gross/bioed/bealsmodules/predator-prey.html


Asymmetric Games



Asymmetric Games (see notebook!)



Part 3: Finite Populations



Evolution of trust

https://ncase.me/trust/

https://ncase.me/trust/


Evolutionary dynamics in Finite Populations

Moran process

(Agent-based simulation)

Wright-Fisher process

Evolutionary dynamics (Φ) 


Adopted from
 

Arne Traulsen 
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New behaviour is 
acquired by 

observation/imitation

Social learning is learning that is facilitated 
by observation , or interaction with, another 
individual or its products

Evolutionary dynamics  models use learning by imitating the best 


Reinforcement learning (Bush-Mosteller, Mach-
Flach, Roth-Erev, …, learning automata, Q-
learning) models provide individual learning by 
experience

© Tom Lenaerts, 2024
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A multi-agent model of social learning

μ

1 − μ

p = [1 + eβ( f(D)−f(C)]−1

imitation probability

selection strength



A multi-agent model of social learning
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k = 0 k = 1 k = Z-1 k = Z
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This process can be described by a Markov Chain



A multi-agent model of social learning

Fermi function 

p ≡ [1 + eβ( fi(k)−fj(k))]−1

Assuming 2 strategies C and D in a population of size ,  C players and  D players
Z k Z − k

T+ = (1 − μ)
Z − k

Z
k
Z

[1 + e−β( fC−fD]−1 + μ
Z − k

Z

T− = (1 − μ)
k
Z

Z − k
Z

[1 + eβ( fC−fD]−1 + μ
k
Z



A multi-agent model of social learning

Fermi function 

p ≡ [1 + eβ( fi(k)−fj(k))]−1

Assuming 2 strategies C and D in a population of size ,  C players and  D players
Z k Z − k

T+ = (1 − μ)
Z − k

Z
k
Z

[1 + e−β( fC−fD]−1 + μ
Z − k

Z

T− = (1 − μ)
k
Z

Z − k
Z

[1 + eβ( fC−fD]−1 + μ
k
Z

probability that the imitation process 
occurs and individuals adopting 
different strategies are selected


probability of mutating to 
strategy D




A multi-agent model of social learning

To calculate the fitness we now need to sample without replacement!

For 2-player games, we have:

fD(k) =
k − 1
Z − 1

Π(D, D) +
Z − k
Z − 1

Π(D, C)

fC(k) =
k

Z − 1
Π(C, D) +

Z − k − 1
Z − 1

Π(C, C)



A multi-agent model of social learning

To calculate the fitness we now need to sample without replacement!

For n-player games, where  is the size of the group, we have (hypergeometric 
sampling):

N

fD(k) = (Z − 1
N − 1)

−1 N−1

∑
j=0

(k − 1
j ) (Z − k − 1

N − j − 1) ΠD( j)

fD(k) = (Z − 1
N − 1)

−1 N−1

∑
j=0

(k − 1
j ) ( Z − k

N − j − 1) ΠC( j + 1)



A multi-agent model of social learning
With this we can define the transition matrix  that maps the 
probabilities of transitioning from a state with  Ds to an adjacent 
state with  or  Ds:

T
k

k + 1 k − 1

Ti+1,i = T−

Ti,i+1 = T+

T1,i = 1 − T+ − T−



Important indicators

<latexit sha1_base64="FXhDzsJc/Vaxz112LKdm1pwpV84="></latexit>

G(x) = T+(k)� T�(k) = (1� µ)
k

Z

Z � k

Z
tanh

✓
�

2
[fC(k)� fD(k)]

◆
+ µ

Gradient of selection (most likely path for the evolution):

Stationary distribution (the time spent at each state)

The stationary distribution can be computed as the left eigenvector associated 
with the eigenvalue 1 of the transition matrix.

1.

Vasconcelos, V. V., Santos, F. C. & Pacheco, J. M. A bottom-up 
institutional approach to cooperative governance of risky commons. 
Nature Climate Change 3, 797–801 (2013).




Evolutionary dynamics

Wright-Fisher process

Agent-based simulation

Moran process

Replication dynamics

(Nonlinear) dynamical systems

N→∞ẋi=xi (πi -<π>)

Evolutionary dynamics (Φ) 


Adopted from
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Examples: Hawk-Dove: effect of Z

xi ≡ [ki/Z]Z = 100
β = 1
μ = 0

V = 2, D = 3, T = 1 (V < D)

(−0.5, − 0.5 2, 0
0, 2 0, 0)



Examples: Hawk-Dove: effect of Z

xi ≡ [ki/Z]Z = 100
β = 1
μ = 1e − 3

V = 2, D = 3, T = 1 (V < D)

(−0.5, − 0.5 2, 0
0, 2 0, 0)



Examples: Hawk-Dove: effect of Z

xi ≡ [ki/Z]Z = 10
β = 1
μ = 0

V = 2, D = 3, T = 1 (V < D)

(−0.5, − 0.5 2, 0
0, 2 0, 0)



Examples: Hawk-Dove: effect of Z

xi ≡ [ki/Z]Z = 10
β = 1
μ = 1e − 3

V = 2, D = 3, T = 1 (V < D)

(−0.5, − 0.5 2, 0
0, 2 0, 0)



Examples: Hawk-Dove: effect of β

xi ≡ [ki/Z]Z = 100
β = 10
μ = 0

V = 2, D = 3, T = 1 (V < D)

(−0.5, − 0.5 2, 0
0, 2 0, 0)



Examples: Hawk-Dove: effect of β

xi ≡ [ki/Z]Z = 100
β = 10
μ = 1e − 3

V = 2, D = 3, T = 1 (V < D)

(−0.5, − 0.5 2, 0
0, 2 0, 0)



Examples: Hawk-Dove: effect of β

xi ≡ [ki/Z]Z = 100
β = 1e − 2
μ = 0

V = 2, D = 3, T = 1 (V < D)

(−0.5, − 0.5 2, 0
0, 2 0, 0)



Examples: Hawk-Dove: effect of μ

xi ≡ [ki/Z]Z = 100
β = 1
μ = 1e − 5

V = 2, D = 3, T = 1 (V < D)

(−0.5, − 0.5 2, 0
0, 2 0, 0)



Examples: Hawk-Dove: effect of μ

xi ≡ [ki/Z]Z = 100
β = 1
μ = 1e − 1

V = 2, D = 3, T = 1 (V < D)

(−0.5, − 0.5 2, 0
0, 2 0, 0)



Examples
a b3 strategies2 strategies

<latexit sha1_base64="NfRFyBASiSynyTMwASrgOT0jz+A=">AAACL3icbVDLSsNAFJ3UV42vqEs3g0VxY0mKr6UoiEsFq4UmlMn0tg6dTMLMRCyhf+TGX+lGRBG3/oWTGPBRD1w4c+49zL0nTDhT2nWfrcrU9MzsXHXeXlhcWl5xVteuVZxKCk0a81i2QqKAMwFNzTSHViKBRCGHm3Bwmvdv7kAqFosrPUwgiEhfsB6jRBup45z5IfSZyJKIaMnuR/auW9/H27hhysW+b7sFyYXy4RWC7YPofrs6Ts2tuwXwJPFKUkMlLjrO2O/GNI1AaMqJUm3PTXSQEakZ5TCy/VRBQuiA9KFtqCARqCAr7h3hLaN0cS+WpoTGhfrTkZFIqWEUmkmz4K3628vF/3rtVPeOgoyJJNUg6NdHvZRjHeM8PNxlEqjmQ0MIlczsiuktkYRqE3Eegvf35Ely3ah7B/W9y73a8UkZRxVtoE20gzx0iI7RObpATUTRAxqjF/RqPVpP1pv1/jVasUrPOvoF6+MTeiuiCQ==</latexit>0

@
�0.5 2 0
0 0 2
0 1 0

1

A

0.0 0.2 0.4 0.6 0.8 1.0
frequency of hawks

0.00

0.05

0.10

0.15

0.20

0.25

gr
ad

ie
nt

 o
f s

el
ec

tio
n 

(G
)

<latexit sha1_base64="cx5YuWDjv4ob5yu1wXA8GrdH2C0=">AAACGXicbZDLSgMxFIYzXut4q7p0EyyKG0um1Muy6MZlBXuBTimZ9LQNzWSGJCOWoa/hxldx40IRl7rybUwvoLYeCHz8/znknD+IBdeGkC9nYXFpeWU1s+aub2xubWd3dqs6ShSDCotEpOoB1SC4hIrhRkA9VkDDQEAt6F+N/NodKM0jeWsGMTRD2pW8wxk1VmpliR9Al8s0DqlR/H7onpD8KT7CBez7LrFAXB9k+8dvZXMkT8aF58GbQg5Nq9zKfvjtiCUhSMME1brhkdg0U6oMZwKGrp9oiCnr0y40LEoagm6m48uG+NAqbdyJlH3S4LH6eyKlodaDMLCddsGenvVG4n9eIzGdi2bKZZwYkGzyUScR2ER4FBNucwXMiIEFyhS3u2LWo4oyY8McheDNnjwP1ULeO8sXb4q50uU0jgzaRwfoGHnoHJXQNSqjCmLoAT2hF/TqPDrPzpvzPmldcKYze+hPOZ/ft1edoA==</latexit>✓
�0.5 2
0 0

◆

a b

0.0 0.2 0.4 0.6 0.8 1.0
frequency of hawks (k/Z)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

gr
ad

ie
nt

 o
f s

el
ec

tio
n 

(G
)

3 strategies2 strategies
<latexit sha1_base64="NfRFyBASiSynyTMwASrgOT0jz+A=">AAACL3icbVDLSsNAFJ3UV42vqEs3g0VxY0mKr6UoiEsFq4UmlMn0tg6dTMLMRCyhf+TGX+lGRBG3/oWTGPBRD1w4c+49zL0nTDhT2nWfrcrU9MzsXHXeXlhcWl5xVteuVZxKCk0a81i2QqKAMwFNzTSHViKBRCGHm3Bwmvdv7kAqFosrPUwgiEhfsB6jRBup45z5IfSZyJKIaMnuR/auW9/H27hhysW+b7sFyYXy4RWC7YPofrs6Ts2tuwXwJPFKUkMlLjrO2O/GNI1AaMqJUm3PTXSQEakZ5TCy/VRBQuiA9KFtqCARqCAr7h3hLaN0cS+WpoTGhfrTkZFIqWEUmkmz4K3628vF/3rtVPeOgoyJJNUg6NdHvZRjHeM8PNxlEqjmQ0MIlczsiuktkYRqE3Eegvf35Ely3ah7B/W9y73a8UkZRxVtoE20gzx0iI7RObpATUTRAxqjF/RqPVpP1pv1/jVasUrPOvoF6+MTeiuiCQ==</latexit>0

@
�0.5 2 0
0 0 2
0 1 0

1

A
<latexit sha1_base64="cx5YuWDjv4ob5yu1wXA8GrdH2C0=">AAACGXicbZDLSgMxFIYzXut4q7p0EyyKG0um1Muy6MZlBXuBTimZ9LQNzWSGJCOWoa/hxldx40IRl7rybUwvoLYeCHz8/znknD+IBdeGkC9nYXFpeWU1s+aub2xubWd3dqs6ShSDCotEpOoB1SC4hIrhRkA9VkDDQEAt6F+N/NodKM0jeWsGMTRD2pW8wxk1VmpliR9Al8s0DqlR/H7onpD8KT7CBez7LrFAXB9k+8dvZXMkT8aF58GbQg5Nq9zKfvjtiCUhSMME1brhkdg0U6oMZwKGrp9oiCnr0y40LEoagm6m48uG+NAqbdyJlH3S4LH6eyKlodaDMLCddsGenvVG4n9eIzGdi2bKZZwYkGzyUScR2ER4FBNucwXMiIEFyhS3u2LWo4oyY8McheDNnjwP1ULeO8sXb4q50uU0jgzaRwfoGHnoHJXQNSqjCmLoAT2hF/TqPDrPzpvzPmldcKYze+hPOZ/ft1edoA==</latexit>✓
�0.5 2
0 0

◆



CD
ϕD→C = ρ(C,1)

ϕC→D = ρ(D,1)

We want , the probability that one C can 
take over a population of D players, which is 
given by 

ρ(C,1)

ρ(1,C) = T−(1)ρ(C,0) + T+(1)ρ(C,2) + (1 − T−(1) − T+(1))ρ(C,1)

ρ(1,C) = (
Z−1

∑
k=0

k

∏
i=1

T−(i)
T+(i) )

−1

Fixation probabilities

© Tom Lenaerts, 2024
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Fixation probabilities, evolutionary 
robustness and risk dominance

Fixation probability (of a single mutant)

ρij = (1 +
Z−1

∑
m=1

m

∏
k=1

T−(k)
T+(k) )

−1
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Fixation probabilities and evolutionary robustness

Neutral drift

“In a finite, homogeneous population of size , a newly introduced neutral mutation (i.e., a mutation 
that does not change the payoff to either player) will eventually replace the entire population with 

probability .”

Z

ρ =
1
Z

Stewart, A. J., & Plotkin, J. B. (2013). From extortion to generosity, evolution in the iterated prisoner’s dilemma. Proceedings of the National Academy of Sciences, 110(38), 
15348-15353.

© Tom Lenaerts, 2024

An advantageous mutation, which is favored by selection, will fix with probability .ρ >
1
Z

A deleterious mutation, which is opposed by selection, will fix with probability ρ <
1
Z

Survival of the fittest
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Solution concepts ; Evolutionary Robustness

D

C

DC

R
R

S
T

T
S P

P

Prisoners Dilemma, T>R, P>S

Greed and fear
Remember a  neutral mutation can replace 

the entire population with probability .ρ =
1
Z

Stewart, A. J., & Plotkin, J. B. (2013). From extortion to generosity, evolution in the iterated prisoner’s dilemma. Proceedings of the National Academy of Sciences, 110(38), 
15348-15353.

A strategy  is Evolutionary Robust against 
a mutant strategy  if the latter has a fixation 

probability of  in a population with 

s*
s′ 

ρ ≤
1
Z

s*

In the limit of  the condition reduces 
to the ESS condition

Z → ∞

In terms of the reduced Markov chain, there 

are no edges leaving the state  with s* ρ >
1
Z

© Tom Lenaerts, 2024
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But, as this can quickly become computationally intractable!

N finite
μ << 1

Φx→z Φz→y

Φy→x

Φx→y

Φy→zΦz→x

(Reduced) Markov chains

Small mutation approximation
(stochastic)

Wright-Fisher process

Agent-based simulation

Moran process

Replication dynamics

(Nonlinear) dynamical systems

N→∞ẋi=xi (πi -<π>)

Evolutionary dynamics (Φ) 


Adopted from
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Small mutation limit (SML) and dominance 
between strategies

T±(k) =
k
Z

Z − k
Z

[1 + e∓β( fa−fb)]−1

This allows us to simplify the transition probabilities to

Under the assumption that mutations are rare ( ) we always 
end up in a monomorphic state

μ → 0

And to consider instead the reduced Markov chain which only contains 
the vertices of the simplex, so that the system is now characterised by 
the following transition probabilities:

Ti,j = ρij /(ns − 1) Ti,i = 1 − ∑
∀j

Ti,j



Example: Rock-Paper-Scissors 
0.5, 0.5 0, 1 1, 0

1, 0 0.5, 0.5 0, 1
0, 1 1, 0 0.5, 0.5



https://github.com/Socrats/EGTTools

Domingos, E. F., Santos, F. C., & Lenaerts, T. (2023). EGTtools: Evolutionary 
game dynamics in Python. Iscience, 26(4): 106419 https://doi.org/10.1016/
j.isci.2023.106419 

EGTtools demo
© Tom Lenaerts, 2024
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Hindersin, L., Wu, B., Traulsen, A., & García, J. (2019). Computation and 
simulation of evolutionary game dynamics in finite populations. Scientific 
reports, 9(1), 6946.

Details on the calculation 
© Tom Lenaerts, 2024
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S

T
R+1RR-1

P-1

P+1

P

P-S
R-S-T+P

C D

C

D

C D

xC

C

D

P-S
R-S-T+P

xC

Replicator equation results for all social 
dilemmas

© Tom Lenaerts, 2024
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Mechanisms for the evolution of cooperation

82

where groups of cooperators are less likely to go
extinct.

In the mathematically convenient limit of
weak selection and rare group splitting, we ob-
tain a simple result (51): If n is the maximum
group size and m is the number of groups, then
group selection allows evolution of cooperation,
provided that

b/c > 1 + (n/m) (5)

Evolutionary Success
Before proceeding to a comparative analysis of
the five mechanisms, let me introduce some

measures of evolutionary success. Suppose a
game between two strategies, cooperators C and
defectors D, is given by the payoff matrix

C D
C a b
D g d

The entries denote the payoff for the row
player. Without any mechanism for the evolution
of cooperation, defectors dominate cooperators,
which means a < g and b < d. A mechanism for
the evolution of cooperation can change these
inequalities.

1) If a > g, then cooperation is an evo-
lutionarily stable strategy (ESS). An infinitely
large population of cooperators cannot be in-
vaded by defectors under deterministic selec-
tion dynamics (32).

2) If a + b > g + d, then cooperators are
risk-dominant (RD). If both strategies are
ESS, then the risk-dominant strategy has the
bigger basin of attraction.

3) If a + 2b > g + 2d, then cooperators are
advantageous (AD). This concept is important
for stochastic game dynamics in finite pop-
ulations. Here, the crucial quantity is the fix-
ation probability of a strategy, defined as the
probability that the lineage arising from a
single mutant of that strategy will take over
the entire population consisting of the other
strategy. An AD strategy has a fixation proba-
bility greater than the inverse of the popu-
lation size, 1/N. The condition can also be
expressed as a 1/3 rule: If the fitness of the in-
vading strategy at a frequency of 1/3 is greater
than the fitness of the resident, then the fix-
ation probability of the invader is greater than
1/N. This condition holds in the limit of weak
selection (52).

A mechanism for the evolution of cooper-
ation can ensure that cooperators become
ESS, RD, or AD (Fig. 2). Some mechanisms
even allow cooperators to dominate defectors,
which means a > g and b > d.

Comparative Analysis
We have encountered five mechanisms for the
evolution of cooperation (Fig. 3). Although the
mathematical formalisms underlying the five
mechanisms are very different, at the center of
each theory is a simple rule. I now present a
coherent mathematical framework that allows
the derivation of all five rules. The crucial idea
is that each mechanism can be presented as a
game between two strategies given by a 2 × 2
payoff matrix (Table 1). From this matrix, we
can derive the relevant condition for evolution
of cooperation.

For kin selection, I use the approach of
inclusive fitness proposed by Maynard Smith
(31). The relatedness between two players is r.
Therefore, your payoff multiplied by r is added
to mine. A second method, shown in (53), leads
to a different matrix but the same result. For
direct reciprocity, the cooperators use tit-for-tat
while the defectors use “always-defect.” The
expected number of rounds is 1/(1 − w). Two
tit-for-tat players cooperate all the time. Tit-for-
tat versus always-defect cooperates only in the
first move and then defects. For indirect rec-
iprocity, the probability of knowing someone’s
reputation is given by q. A cooperator helps
unless the reputation of the other person in-
dicates a defector. A defector never helps. For
network reciprocity, it can be shown that the
expected frequency of cooperators is described
by a standard replicator equation with a trans-
formed payoff matrix (54). For group selection,
the payoff matrices of the two games—within

Kin selection

Network reciprocity

Direct reciprocity

Indirect reciprocity

Group selection

1 r

Cooperators Defectors

Fig. 3. Five mechanisms for the evolution of
cooperation. Kin selection operates when the
donor and the recipient of an altruistic act are
genetic relatives. Direct reciprocity requires re-
peated encounters between the same two individ-
uals. Indirect reciprocity is based on reputation; a
helpful individual is more likely to receive help.
Network reciprocity means that clusters of coop-
erators outcompete defectors. Group selection is
the idea that competition is not only between
individuals but also between groups.

Table 1. Each mechanism can be described by a simple 2 × 2 payoff matrix, which specifies the
interaction between cooperators and defectors. From these matrices we can directly derive the nec-
essary conditions for evolution of cooperation. The parameters c and b denote, respectively, the cost
for the donor and the benefit for the recipient. For network reciprocity, we use the parameter H =
[(b − c)k − 2c]/[(k + 1)(k − 2)]. All conditions can be expressed as the benefit-to-cost ratio
exceeding a critical value. See (53) for further explanations of the underlying calculations.
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where groups of cooperators are less likely to go
extinct.

In the mathematically convenient limit of
weak selection and rare group splitting, we ob-
tain a simple result (51): If n is the maximum
group size and m is the number of groups, then
group selection allows evolution of cooperation,
provided that

b/c > 1 + (n/m) (5)

Evolutionary Success
Before proceeding to a comparative analysis of
the five mechanisms, let me introduce some

measures of evolutionary success. Suppose a
game between two strategies, cooperators C and
defectors D, is given by the payoff matrix

C D
C a b
D g d

The entries denote the payoff for the row
player. Without any mechanism for the evolution
of cooperation, defectors dominate cooperators,
which means a < g and b < d. A mechanism for
the evolution of cooperation can change these
inequalities.

1) If a > g, then cooperation is an evo-
lutionarily stable strategy (ESS). An infinitely
large population of cooperators cannot be in-
vaded by defectors under deterministic selec-
tion dynamics (32).

2) If a + b > g + d, then cooperators are
risk-dominant (RD). If both strategies are
ESS, then the risk-dominant strategy has the
bigger basin of attraction.

3) If a + 2b > g + 2d, then cooperators are
advantageous (AD). This concept is important
for stochastic game dynamics in finite pop-
ulations. Here, the crucial quantity is the fix-
ation probability of a strategy, defined as the
probability that the lineage arising from a
single mutant of that strategy will take over
the entire population consisting of the other
strategy. An AD strategy has a fixation proba-
bility greater than the inverse of the popu-
lation size, 1/N. The condition can also be
expressed as a 1/3 rule: If the fitness of the in-
vading strategy at a frequency of 1/3 is greater
than the fitness of the resident, then the fix-
ation probability of the invader is greater than
1/N. This condition holds in the limit of weak
selection (52).

A mechanism for the evolution of cooper-
ation can ensure that cooperators become
ESS, RD, or AD (Fig. 2). Some mechanisms
even allow cooperators to dominate defectors,
which means a > g and b > d.

Comparative Analysis
We have encountered five mechanisms for the
evolution of cooperation (Fig. 3). Although the
mathematical formalisms underlying the five
mechanisms are very different, at the center of
each theory is a simple rule. I now present a
coherent mathematical framework that allows
the derivation of all five rules. The crucial idea
is that each mechanism can be presented as a
game between two strategies given by a 2 × 2
payoff matrix (Table 1). From this matrix, we
can derive the relevant condition for evolution
of cooperation.

For kin selection, I use the approach of
inclusive fitness proposed by Maynard Smith
(31). The relatedness between two players is r.
Therefore, your payoff multiplied by r is added
to mine. A second method, shown in (53), leads
to a different matrix but the same result. For
direct reciprocity, the cooperators use tit-for-tat
while the defectors use “always-defect.” The
expected number of rounds is 1/(1 − w). Two
tit-for-tat players cooperate all the time. Tit-for-
tat versus always-defect cooperates only in the
first move and then defects. For indirect rec-
iprocity, the probability of knowing someone’s
reputation is given by q. A cooperator helps
unless the reputation of the other person in-
dicates a defector. A defector never helps. For
network reciprocity, it can be shown that the
expected frequency of cooperators is described
by a standard replicator equation with a trans-
formed payoff matrix (54). For group selection,
the payoff matrices of the two games—within

Kin selection

Network reciprocity

Direct reciprocity

Indirect reciprocity

Group selection

1 r

Cooperators Defectors

Fig. 3. Five mechanisms for the evolution of
cooperation. Kin selection operates when the
donor and the recipient of an altruistic act are
genetic relatives. Direct reciprocity requires re-
peated encounters between the same two individ-
uals. Indirect reciprocity is based on reputation; a
helpful individual is more likely to receive help.
Network reciprocity means that clusters of coop-
erators outcompete defectors. Group selection is
the idea that competition is not only between
individuals but also between groups.

Table 1. Each mechanism can be described by a simple 2 × 2 payoff matrix, which specifies the
interaction between cooperators and defectors. From these matrices we can directly derive the nec-
essary conditions for evolution of cooperation. The parameters c and b denote, respectively, the cost
for the donor and the benefit for the recipient. For network reciprocity, we use the parameter H =
[(b − c)k − 2c]/[(k + 1)(k − 2)]. All conditions can be expressed as the benefit-to-cost ratio
exceeding a critical value. See (53) for further explanations of the underlying calculations.
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where groups of cooperators are less likely to go
extinct.

In the mathematically convenient limit of
weak selection and rare group splitting, we ob-
tain a simple result (51): If n is the maximum
group size and m is the number of groups, then
group selection allows evolution of cooperation,
provided that

b/c > 1 + (n/m) (5)

Evolutionary Success
Before proceeding to a comparative analysis of
the five mechanisms, let me introduce some

measures of evolutionary success. Suppose a
game between two strategies, cooperators C and
defectors D, is given by the payoff matrix

C D
C a b
D g d

The entries denote the payoff for the row
player. Without any mechanism for the evolution
of cooperation, defectors dominate cooperators,
which means a < g and b < d. A mechanism for
the evolution of cooperation can change these
inequalities.

1) If a > g, then cooperation is an evo-
lutionarily stable strategy (ESS). An infinitely
large population of cooperators cannot be in-
vaded by defectors under deterministic selec-
tion dynamics (32).

2) If a + b > g + d, then cooperators are
risk-dominant (RD). If both strategies are
ESS, then the risk-dominant strategy has the
bigger basin of attraction.

3) If a + 2b > g + 2d, then cooperators are
advantageous (AD). This concept is important
for stochastic game dynamics in finite pop-
ulations. Here, the crucial quantity is the fix-
ation probability of a strategy, defined as the
probability that the lineage arising from a
single mutant of that strategy will take over
the entire population consisting of the other
strategy. An AD strategy has a fixation proba-
bility greater than the inverse of the popu-
lation size, 1/N. The condition can also be
expressed as a 1/3 rule: If the fitness of the in-
vading strategy at a frequency of 1/3 is greater
than the fitness of the resident, then the fix-
ation probability of the invader is greater than
1/N. This condition holds in the limit of weak
selection (52).

A mechanism for the evolution of cooper-
ation can ensure that cooperators become
ESS, RD, or AD (Fig. 2). Some mechanisms
even allow cooperators to dominate defectors,
which means a > g and b > d.

Comparative Analysis
We have encountered five mechanisms for the
evolution of cooperation (Fig. 3). Although the
mathematical formalisms underlying the five
mechanisms are very different, at the center of
each theory is a simple rule. I now present a
coherent mathematical framework that allows
the derivation of all five rules. The crucial idea
is that each mechanism can be presented as a
game between two strategies given by a 2 × 2
payoff matrix (Table 1). From this matrix, we
can derive the relevant condition for evolution
of cooperation.

For kin selection, I use the approach of
inclusive fitness proposed by Maynard Smith
(31). The relatedness between two players is r.
Therefore, your payoff multiplied by r is added
to mine. A second method, shown in (53), leads
to a different matrix but the same result. For
direct reciprocity, the cooperators use tit-for-tat
while the defectors use “always-defect.” The
expected number of rounds is 1/(1 − w). Two
tit-for-tat players cooperate all the time. Tit-for-
tat versus always-defect cooperates only in the
first move and then defects. For indirect rec-
iprocity, the probability of knowing someone’s
reputation is given by q. A cooperator helps
unless the reputation of the other person in-
dicates a defector. A defector never helps. For
network reciprocity, it can be shown that the
expected frequency of cooperators is described
by a standard replicator equation with a trans-
formed payoff matrix (54). For group selection,
the payoff matrices of the two games—within

Kin selection

Network reciprocity

Direct reciprocity

Indirect reciprocity

Group selection

1 r

Cooperators Defectors

Fig. 3. Five mechanisms for the evolution of
cooperation. Kin selection operates when the
donor and the recipient of an altruistic act are
genetic relatives. Direct reciprocity requires re-
peated encounters between the same two individ-
uals. Indirect reciprocity is based on reputation; a
helpful individual is more likely to receive help.
Network reciprocity means that clusters of coop-
erators outcompete defectors. Group selection is
the idea that competition is not only between
individuals but also between groups.

Table 1. Each mechanism can be described by a simple 2 × 2 payoff matrix, which specifies the
interaction between cooperators and defectors. From these matrices we can directly derive the nec-
essary conditions for evolution of cooperation. The parameters c and b denote, respectively, the cost
for the donor and the benefit for the recipient. For network reciprocity, we use the parameter H =
[(b − c)k − 2c]/[(k + 1)(k − 2)]. All conditions can be expressed as the benefit-to-cost ratio
exceeding a critical value. See (53) for further explanations of the underlying calculations.
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where groups of cooperators are less likely to go
extinct.

In the mathematically convenient limit of
weak selection and rare group splitting, we ob-
tain a simple result (51): If n is the maximum
group size and m is the number of groups, then
group selection allows evolution of cooperation,
provided that

b/c > 1 + (n/m) (5)

Evolutionary Success
Before proceeding to a comparative analysis of
the five mechanisms, let me introduce some

measures of evolutionary success. Suppose a
game between two strategies, cooperators C and
defectors D, is given by the payoff matrix

C D
C a b
D g d

The entries denote the payoff for the row
player. Without any mechanism for the evolution
of cooperation, defectors dominate cooperators,
which means a < g and b < d. A mechanism for
the evolution of cooperation can change these
inequalities.

1) If a > g, then cooperation is an evo-
lutionarily stable strategy (ESS). An infinitely
large population of cooperators cannot be in-
vaded by defectors under deterministic selec-
tion dynamics (32).

2) If a + b > g + d, then cooperators are
risk-dominant (RD). If both strategies are
ESS, then the risk-dominant strategy has the
bigger basin of attraction.

3) If a + 2b > g + 2d, then cooperators are
advantageous (AD). This concept is important
for stochastic game dynamics in finite pop-
ulations. Here, the crucial quantity is the fix-
ation probability of a strategy, defined as the
probability that the lineage arising from a
single mutant of that strategy will take over
the entire population consisting of the other
strategy. An AD strategy has a fixation proba-
bility greater than the inverse of the popu-
lation size, 1/N. The condition can also be
expressed as a 1/3 rule: If the fitness of the in-
vading strategy at a frequency of 1/3 is greater
than the fitness of the resident, then the fix-
ation probability of the invader is greater than
1/N. This condition holds in the limit of weak
selection (52).

A mechanism for the evolution of cooper-
ation can ensure that cooperators become
ESS, RD, or AD (Fig. 2). Some mechanisms
even allow cooperators to dominate defectors,
which means a > g and b > d.

Comparative Analysis
We have encountered five mechanisms for the
evolution of cooperation (Fig. 3). Although the
mathematical formalisms underlying the five
mechanisms are very different, at the center of
each theory is a simple rule. I now present a
coherent mathematical framework that allows
the derivation of all five rules. The crucial idea
is that each mechanism can be presented as a
game between two strategies given by a 2 × 2
payoff matrix (Table 1). From this matrix, we
can derive the relevant condition for evolution
of cooperation.

For kin selection, I use the approach of
inclusive fitness proposed by Maynard Smith
(31). The relatedness between two players is r.
Therefore, your payoff multiplied by r is added
to mine. A second method, shown in (53), leads
to a different matrix but the same result. For
direct reciprocity, the cooperators use tit-for-tat
while the defectors use “always-defect.” The
expected number of rounds is 1/(1 − w). Two
tit-for-tat players cooperate all the time. Tit-for-
tat versus always-defect cooperates only in the
first move and then defects. For indirect rec-
iprocity, the probability of knowing someone’s
reputation is given by q. A cooperator helps
unless the reputation of the other person in-
dicates a defector. A defector never helps. For
network reciprocity, it can be shown that the
expected frequency of cooperators is described
by a standard replicator equation with a trans-
formed payoff matrix (54). For group selection,
the payoff matrices of the two games—within
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Fig. 3. Five mechanisms for the evolution of
cooperation. Kin selection operates when the
donor and the recipient of an altruistic act are
genetic relatives. Direct reciprocity requires re-
peated encounters between the same two individ-
uals. Indirect reciprocity is based on reputation; a
helpful individual is more likely to receive help.
Network reciprocity means that clusters of coop-
erators outcompete defectors. Group selection is
the idea that competition is not only between
individuals but also between groups.

Table 1. Each mechanism can be described by a simple 2 × 2 payoff matrix, which specifies the
interaction between cooperators and defectors. From these matrices we can directly derive the nec-
essary conditions for evolution of cooperation. The parameters c and b denote, respectively, the cost
for the donor and the benefit for the recipient. For network reciprocity, we use the parameter H =
[(b − c)k − 2c]/[(k + 1)(k − 2)]. All conditions can be expressed as the benefit-to-cost ratio
exceeding a critical value. See (53) for further explanations of the underlying calculations.

Cooperation is …

0

)1)((

rcbD
cbrrcbC

0

)1/()(

bD
cwcbC

0)1(

)1(

qbD
qccbC

0HbD
cHcbC

0

)())((

bnD
cnmcbnmcbC

DC

Kin 
selection

Direct 
reciprocity

Indirect 
reciprocity

Network 
reciprocity

Group 
selection

rc
b 1

rc
b 1

rc
b 1

r…genetic relatedness 

w…probability of next round

q…social acquaintanceship

k…number of neighbors

n…group size
m…number of groups

wc
b 1

w
w

c
b 2

w
w

c
b 23

qc
b 1

q
q

c
b 2

q
q

c
b 23

k
c
b

k
c
b

k
c
b

m
n

c
b

1
m
n

c
b

1

            ESS            RD             AD

m
n

c
b

1

Payoff matrix

8 DECEMBER 2006 VOL 314 SCIENCE www.sciencemag.org1562

REVIEW

 o
n 

Ju
ne

 1
8,

 2
00

9 
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fro
m

 

where groups of cooperators are less likely to go
extinct.

In the mathematically convenient limit of
weak selection and rare group splitting, we ob-
tain a simple result (51): If n is the maximum
group size and m is the number of groups, then
group selection allows evolution of cooperation,
provided that

b/c > 1 + (n/m) (5)

Evolutionary Success
Before proceeding to a comparative analysis of
the five mechanisms, let me introduce some

measures of evolutionary success. Suppose a
game between two strategies, cooperators C and
defectors D, is given by the payoff matrix

C D
C a b
D g d

The entries denote the payoff for the row
player. Without any mechanism for the evolution
of cooperation, defectors dominate cooperators,
which means a < g and b < d. A mechanism for
the evolution of cooperation can change these
inequalities.

1) If a > g, then cooperation is an evo-
lutionarily stable strategy (ESS). An infinitely
large population of cooperators cannot be in-
vaded by defectors under deterministic selec-
tion dynamics (32).

2) If a + b > g + d, then cooperators are
risk-dominant (RD). If both strategies are
ESS, then the risk-dominant strategy has the
bigger basin of attraction.

3) If a + 2b > g + 2d, then cooperators are
advantageous (AD). This concept is important
for stochastic game dynamics in finite pop-
ulations. Here, the crucial quantity is the fix-
ation probability of a strategy, defined as the
probability that the lineage arising from a
single mutant of that strategy will take over
the entire population consisting of the other
strategy. An AD strategy has a fixation proba-
bility greater than the inverse of the popu-
lation size, 1/N. The condition can also be
expressed as a 1/3 rule: If the fitness of the in-
vading strategy at a frequency of 1/3 is greater
than the fitness of the resident, then the fix-
ation probability of the invader is greater than
1/N. This condition holds in the limit of weak
selection (52).

A mechanism for the evolution of cooper-
ation can ensure that cooperators become
ESS, RD, or AD (Fig. 2). Some mechanisms
even allow cooperators to dominate defectors,
which means a > g and b > d.

Comparative Analysis
We have encountered five mechanisms for the
evolution of cooperation (Fig. 3). Although the
mathematical formalisms underlying the five
mechanisms are very different, at the center of
each theory is a simple rule. I now present a
coherent mathematical framework that allows
the derivation of all five rules. The crucial idea
is that each mechanism can be presented as a
game between two strategies given by a 2 × 2
payoff matrix (Table 1). From this matrix, we
can derive the relevant condition for evolution
of cooperation.

For kin selection, I use the approach of
inclusive fitness proposed by Maynard Smith
(31). The relatedness between two players is r.
Therefore, your payoff multiplied by r is added
to mine. A second method, shown in (53), leads
to a different matrix but the same result. For
direct reciprocity, the cooperators use tit-for-tat
while the defectors use “always-defect.” The
expected number of rounds is 1/(1 − w). Two
tit-for-tat players cooperate all the time. Tit-for-
tat versus always-defect cooperates only in the
first move and then defects. For indirect rec-
iprocity, the probability of knowing someone’s
reputation is given by q. A cooperator helps
unless the reputation of the other person in-
dicates a defector. A defector never helps. For
network reciprocity, it can be shown that the
expected frequency of cooperators is described
by a standard replicator equation with a trans-
formed payoff matrix (54). For group selection,
the payoff matrices of the two games—within
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helpful individual is more likely to receive help.
Network reciprocity means that clusters of coop-
erators outcompete defectors. Group selection is
the idea that competition is not only between
individuals but also between groups.

Table 1. Each mechanism can be described by a simple 2 × 2 payoff matrix, which specifies the
interaction between cooperators and defectors. From these matrices we can directly derive the nec-
essary conditions for evolution of cooperation. The parameters c and b denote, respectively, the cost
for the donor and the benefit for the recipient. For network reciprocity, we use the parameter H =
[(b − c)k − 2c]/[(k + 1)(k − 2)]. All conditions can be expressed as the benefit-to-cost ratio
exceeding a critical value. See (53) for further explanations of the underlying calculations.
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