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Introduction to Evolutionary Game Theory

Karl Sigmund

Abstract. This chapter begins with some basic terminology, introducing ele-
mentary game theoretic notions such as payoff, strategy, best reply, Nash equi-
librium pairs etc. Players who use strategies which are in Nash equilibrium
have no incentive to deviate unilaterally. Next, a population viewpoint is intro-
duced. Players meet randomly, interact according to their strategies, and ob-

tain a payoff. This payoff determines how the frequencies in the strategies will
evolve. Successful strategies spread, either (in the biological context) through
inheritance or (in the cultural context) through social learning. The simplest
description of such an evolution is based on the replicator equation. The ba-
sic properties of replicator dynamics are analyzed, and some low-dimensional
examples such as the Rock-Scissors-Paper game are discussed. The relation
between Nash equilibria and rest points of the replicator equation are inves-
tigated, which leads to a short proof of the existence of Nash equilibria. We
then study mixed strategies and evolutionarily stable strategies. This intro-
ductory chapter continues with a brief discussion of other game dynamics, such
as the best reply dynamics, and ends with the simplest extension of replicator
dynamics to asymmetric games.

1. Predictions and Decisions

Predictions can be difficult to make, especially, as Niels Bohr quipped, if they
concern the future. Reliable forecasts about the weather or about some social
development may seem to offer comparable challenges, at first sight. But there is a
fundamental difference: a weather forecast does not influence the weather, whereas
a forecast on economy can influence the economic outcome. Humans will react if
they learn about the predictions, and they can anticipate that others will react,
too.

When the economist Oskar Morgenstern, in the early ’thirties, became aware
of the problem, he felt that he had uncovered an ’impossibility theorem’ of a simi-
larly fundamental nature as the incompleteness theorem of his friend, the logician
Kurt Gödel. Morgenstern was all the more concerned about it as he was director
of the Vienna-based Institut für Konjunkturforschung, the Institute for Business
Cycles Research, whose main task was actually to deliver predictions on the Aus-
trian economy. Oscar Morgenstern expained his predicament in many lectures and
publications, using as his favorite example the pursuit of Sherlock Holmes by the
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infamous Professor Moriarty [24]. These two equally formidable adversaries would
never arrive at a conclusive solution in mutually outguessing each other.

We can describe the fundamental nature of the problem by using some of the
mathematical notation which later was introduced through game theory. Let us
suppose that player I has to choose between n options, or strategies, which we
denote by e1,..., en, and player II between m strategies f1,..., fm. If I chooses ei
and II chooses fj , then player I obtains a payoff aij and player II obtains bij . The
game, then, is described by two n×m payoff matrices A and B: alternatively, we
can describe it by one matrix whose element, in the i-th row and j-th column, is the
pair (aij , bij) of payoff values. The payoff is measured on a utility scale consistent
with the players’ preference ranking.

The two players could engage in the game ’Odd or Even?’ and decide that the
loser pays one dollar to the winner. At a given signal, each player holds up one or
two fingers. If the resulting sum is odd, player I wins. If the sum is even, player II
wins. Each player then has to opt for even and odd, which correspond to e1 and
e2 for player I and f1 and f2 for player II, and the payoff matrix is

(1.1)

(
(−1, 1) (1,−1)
(1,−1) (−1, 1)

)

If the two players graduate to the slightly more sophisticated Rock-Scissors-Paper
game, they would each have to opt between three strategies, numbered in that
order, and the payoff matrix would be

(1.2)

⎛
⎝ (0, 0) (1,−1) (−1, 1)

(−1, 1) (0, 0) (1,−1)
(1,−1) (−1, 1) (0, 0)

⎞
⎠ .

If both Rock-Scissors-Paper players opt for the same move, the game is a tie and
both obtain payoff zero. If the outcome is (0, 0) or (−1, 1), then player I (who
chooses the row of the payoff matrix) would have done better to choose another
strategy; if the outcome is (1,−1) or (0, 0), then it is player II, the column player,
who would have done better to switch. If a prediction is made public, then at
least one of the players would have an incentive to deviate. The other player would
anticipate this, and deviate accordingly, and both would be launched into a vicious
circle of mutual outguessing.

A few years, however, after Morgenstern had started to broadcast his impossi-
bility result, the topologist Cech pointed out to him that John von Neumann had
found, in an earlier paper on parlor games, a way to avoid Morgenstern’s dead
end [42]. It consists in randomizing, i.e. letting chance decide. Clearly, if players
opt with equal probability for each of their alternatives, none has an incentive to
deviate. Admittedly, this would lead to the expected payoff 0, somewhat of an
anti-climax. But John von Neumann’s minimax theorem holds for a much larger
class of games. Most importantly, it led, in the ’forties, to a collaboration of John
von Neumann with Oscar Morgenstern which gave birth to game theory [43]. A
few years later, John Nash introduced an equilibrium notion valid in an even more
general context, which became the cornerstone of game theory [33].

2. Mixed strategies and best replies

Suppose that player I opts to play strategy ei with probability xi. This mixed
strategy is thus given by a stochastic vector x = (x1, ..., xn) (with xi ≥ 0 and
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x1 + ... + xn = 1). We denote the set of all such mixed strategies by Δn: this is a
simplex in Rn, spanned by the unit vectors ei of the standard base, which are said
to be the pure strategies, and correspond to the original set of alternatives.

Similarly, a mixed strategy for player II is an element y of the unit simplex Δm

spanned by the unit vectors fj . If player I uses the pure strategy ei and player II
uses strategy y, then the payoff for player I (or more precisely, its expected value)
is

(2.1) (Ay)i =

m∑
j=1

aijyj .

If player I uses the mixed strategy x, and II uses y, the payoff for player I is

(2.2) x ·Ay =
∑
i

xi(Ay)i =
∑
i,j

aijxiyj ,

and the payoff for player II, similarly, is

(2.3) x ·By =
∑
i,j

bijxiyj .

If player I knows the strategy y of the co-player, then player I should use a
strategy which is a best reply to y. The set of best replies is the set

(2.4) BR(y) = argmax
x

x ·Ay,

i.e. the set of all x ∈ Δn such that z · Ay ≤ x · Ay holds for all z ∈ Δn. Player I
has no incentive to deviate from x and chose another strategy z instead.

Since the function z �→ z ·Ay is continuous and Δn is compact, the set of best
replies is always non-empty. It is a convex set. Moreover, if x belongs to BR(y),
so do all pure strategies in the support of x, i.e. all ei for which xi > 0. Indeed, for
all i,

(2.5) (Ay)i = ei ·Ay ≤ x ·Ay.

If the inequality sign were strict for some i with xi > 0, then xi(Ay)i < xi(x ·Ay);
summing over all i = 1, ..., n then leads to a contradiction. It follows that the set
BR(y) is a face of the simplex Δn. It is spanned by the pure strategies which are
best replies to y.

If player I has found a best reply to the strategy y of player II, then player I has
no incentive not to use it, as long as player II sticks to y. But will player II stick
to y? Only if player II has no incentive either to use another strategy, i.e. has also
hit upon a best reply. Two strategies x and y are said to form a Nash equilibrium
pair if each is a best reply to the other, i.e., if x ∈ BR(y) and y ∈ BR(x), or
alternatively if

(2.6) z ·Ay ≤ x ·Ay

holds for all z ∈ Δn, and

(2.7) x ·Bw ≤ x ·By

holds for allw ∈ Δm. A Nash equilibrium pair (x,y) satisfies a minimal consistency
requirement: no player has an incentive to deviate (as long as the other player does
not deviate either).

A basic result states that there always exist Nash equilibrium pairs, for any
game (A,B). The result holds for vastly wider classes of games than considered so
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far; it holds for any number of players, any convex compact sets of strategies, any
continuous payoff functions, and even beyond (see, e.g., [30]). But it would not
hold if we had not allowed for mixed strategies, as is shown by the Rock-Scissors-
Paper game. In that case, the mixed strategy which consists in choosing, with equal
probability 1/3, among the three alternative moves, clearly leads to an equilibrium
pair. No player has a reason to deviate. On the other hand, if player I uses any
other strategy (x1, x2, x3) against the (1/3, 1/3, 1/3) of player II, player I would
still have an expected payoff of 0. However, the other player II would then have an
incentive to deviate, presenting I with an incentive to deviate in turn, and so on.

In this example, (x,y) with x = y = (1/3, 1/3, 1/3) is the unique Nash equilib-
rium pair. We have seen that as long as player II chooses the equilibrium strategy
y, player I has no reason to deviate from the equilibrium strategy x, but that on the
other hand, player I has no reason not to deviate, either. This would be different
if (x,y) were a strict Nash equilibrium pair, i.e. if

(2.8) z ·Ay < x ·Ay

holds for all z �= x, and

(2.9) x ·Bw < x ·By

holds for all w �= y. In this case, i.e. when both best-reply sets are singletons, and
hence correspond to pure strategies, each player will be penalized for unilaterally
deviating from the equilibrium.

Whereas every game admits a Nash equilibrium pair, some need not admit a
strict Nash equilibrium pair, as our previous examples show.

3. Excurse to zero sum

Historically, game theory focused first on zero-sum games, for which aij = −bij
for all i, j, i.e., A = −B (the gain of player I is the loss of player II). This condition
clearly holds for a large set of parlor games. But it certainly restricts the range of
applications. For most types of social and economic interactions, the assumption
that the interests of the two players are always diametrically opposite does not
hold. Even in military confrontations, there often exist outcomes both parties
want to avoid. Most interactions are of mixed motive type, and contain elements
of cooperation as well as competition. Interestingly, John von Neumann did not
greatly appreciate the solution concept proposed by the undergraduate student
John Nash. A short interview ended when John von Neumann remarked, somewhat
dismissively, ’Oh, just a fixed point theorem’ [32]. We shall see that the existence
proof for Nash equilibrium pairs does indeed reduce to a fixed point theorem, and
a rather simple one at that. Nevertheless, it yields a very powerful result, as can
be seen by applying it to the special case of zero sum games, where it leads to a
three-liner proof of the celebrated maximin theorem, a proof which is considerably
simpler than John von Neumann’s original, brute-force demonstration.

It is easy to see that (x̄, ȳ) is a Nash equilibrium pair of a zero-sum game iff

(3.1) x ·Aȳ ≤ x̄ ·Aȳ ≤ x̄ ·Ay

for all x ∈ Δn,y ∈ Δm. Suppose that player II correctly guesses that player I plays
x. Then player II will use a strategy which is a best reply, i.e., minimizes player
I’s payoff, which will reduce to g(x) := miny x · Ay. A player I who expects to be
anticipated, then, ought to maximize g(x). Any strategy x̂ yielding this maximum
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is said to be a maximin strategy for player I. Such a maximin strategy is defined
by x̂ := argmaxx g(x), and it guarantees player I a security level

(3.2) wu := max
x

min
y

x ·Ay.

Similarly, we can expect player II to maximize the own security level, i.e., since
A = −B, to play a minimax strategy ŷ such that player I has a payoff bounded
from above by

(3.3) wo := min
y

max
x

x ·Ay.

The pair (x̂, ŷ) is said to be a maximin pair. It satisfies

(3.4) min
y

x̂ ·Ay = wu, max
x

x ·Aŷ = wo,

and leads to a payoff which clearly satisfies

(3.5) wu ≤ x̂ ·Aŷ ≤ wo.

If (x̄, ȳ) is a Nash equilibrium pair for a zero sum game, then it is a maximin pair.
Indeed, by (3.1),

(3.6) max
x

x ·Aȳ ≤ x̄ ·Aȳ ≤ min
y

x̄ ·Ay.

Now by (3.3), wo is less than the left hand side of the previous inequality and by
(3.2) wu larger than the right hand side. Since wu ≤ wo by (3.5), we must actually
have equality everywhere. But wu = miny x̄ · Ay means that x̄ is a maximin
solution, and maxx x ·Aȳ = wo that ȳ is a minimax solution.

For zero-sum games, the existence of a Nash equilibrium pair thus implies the
existence of a maximin pair. The previous argument implies wu = wo, i.e.,

(3.7) min
y

max
x

x ·Ay = max
x

min
y

x ·Ay.

Conversely, it is easy to see that if (x̂, ŷ) is a maximin pair of a zero sum game,
then it is a Nash equilibrium pair.

4. Concerns about the Nash solution

Let us note that if (x̂, ŷ) and (x̄, ȳ) are two Nash equilibrium pairs for a zero
sum game, then so are (x̂, ȳ) and (x̄, ŷ). Indeed,

(4.1) x̂ ·Aŷ ≤ x̂ ·Aȳ ≤ x̄ ·Aȳ ≤ x̄ ·Aŷ ≤ x̂ ·Aŷ,

hence equality holds everywhere, and therefore for all x and y:

(4.2) x ·Aȳ ≤ x̂ ·Aȳ ≤ x̂ ·Ay

so that (x̂, ȳ) is a Nash equilibrium pair.
The same need not hold for general (non zero-sum) games. Consider for in-

stance

(4.3)

(
(1, 1) (−1,−1)

(−1,−1) (1, 1)

)

It is easy to see that (e1, f1) and (e2, f2) are two Nash equilibrium pairs. But
(e1, f2) or (e2, f1) are not. How should the two players coordinate their choice?
The problem becomes even more acute for a coordination game given by

(4.4)

(
(2, 2) (−100, 0)

(0,−100) (1, 1)

)
.
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Again, (e1, f1) and (e2, f2) are two Nash equilibrium pairs. The former has the
advantage of yielding a higher payoff to both players: it is said to be Pareto-optimal.
But the second is less risky, and therefore said to be risk-dominant. Indeed, it can
be very costly to go for the Pareto-optimum if the other player fails to do so. It
may actually be best to decide against using the Pareto-optimum right away. In
any case, if the game is not zero-sum, Nash equilibrium pairs may not offer much
help for decision makers.

Moreover, even if there exists a unique Nash equilibrium pair, it can lead to
frustration, as in the following example:

(4.5)

(
(10, 10) (−5, 15)
(15,−5) (0, 0)

)
.

In this case, e2 is the best reply to every (pure or mixed) strategy of player II, and
similarly f2 is always the best reply for player II. Hence (e2, f2) is the unique Nash
equilibrium pair, and it is strict. This game is an example of a Prisoner’s Dilemma
game. The payoff matrix may occur, for instance, if two players are asked to choose,
independently and anonymously, whether or not to provide a gift of 15 dollars to
the co-player, at a cost of 5 dollars to themselves. It the two players cooperate by
both opting for their first strategy, they will end up with 10 dollars each. But each
has an incentive to deviate. It is only when both opt for their second solution and
defect, that they cannot do better by choosing to deviate. But then, they end up
with zero payoff. Let us remark that this dilemma cannot be solved by appealing to
non-monetary motivations. It holds whenever the payoff values reflect each players’
preference ordering, which may well include a concern for the other.

5. Population Games

So far, we have considered games between two specific players trying to guess
each other’s strategy and find a best reply. This belongs to the realm of classical
game theory, and leads to interesting mathematical and economic developments.
Starting with the ’sixties and ’seventies, both theory and applications were con-
siderably stimulated by problems in evolutionary biology, such as sex-ratio theory
or the investigation of fighting behavior [12, 27]. It required a radical shift in
perspective and the introduction of thinking in terms of populations [29]. It pro-
vided a welcome tool for the analysis of frequency dependent selection and, later,
of learning processes.

Let us therefore consider a population of players, each with a given strategy.
From time to time, two players meet randomly and play the game, using their
strategies. We shall consider these strategies as behavioral programs. Such pro-
grams can be learned, or inherited, or imprinted in any other way. In a biological
setting, strategies correspond to different types of individuals (or behavioral phe-
notypes). The outcome of each encounter yields payoff values which are no longer
measured on utility scales reflecting the individual preferences of the players, but in
the one currency that counts in Darwinian evolution, namely fitness, i.e., average
reproductive success. If we assume that strategies can be passed on to the offspring,
whether through inheritance or through learning, then we can assume that more
successful strategies spread.

In order to analyze this set-up, it is convenient to assume, in a first approach,
that all individuals in the population are indistinguishable, except in their way
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of interacting, i.e. that the players differ only by their strategy. This applies
well to games where both players are on an equal footing. Admittedly, there are
many examples of social interactions which display an inherent asymmetry between
the two players: for instance, between buyers and sellers, or between parents and
offspring. We will turn to such interactions later.

Thus we start by considering only symmetric games. In the case of two-player
games, this means that the game remains unchanged if I and II are permuted. In
particular, the two players have the same set of strategies. Hence we assume that
n = m and fj = ej for all j; and if a player plays strategy ei against someone using
strategy ej (which is the former fj), then that player receives the same payoff,
whether labeled I or II. Hence aij = bji, the payoff for a ei-player against a ej-
players does not depend on who is labelled I and who is II, or in other wordsB = AT .
Thus a symmetric game is specified by the pair (A,AT ), and therefore is defined by
a single, square payoff matrix A. All examples encountered so far are symmetric,
with the exception of ’Even or Odd’. A zero-sum game which is symmetric must
satisfy AT = −A and hence corresponds to a skew-symmetric payoff matrix.

It is easy to see that the symmetric game given by

(5.1)

(
−1 1
1 −1

)
,

where success depends on doing the opposite of the co-player, admits (e1, e2) and
(e2, e1) as asymmetric Nash equilibrium pairs. These are plainly irrelevant as
solutions of the game, since it is impossible to distinguish players I and II. Of
interest are only symmetric Nash equilibrium pairs, i.e. pairs of strategies (x,y)
with x = y. A symmetric Nash equilibrium, thus, is specified by one strategy x
having the property that it is a best reply to itself (i.e. x ∈ BR(x)). In other
words, we must have

(5.2) z ·Ax ≤ x ·Ax

for all z ∈ Δn. A symmetric strict Nash equilibrium is accordingly given by the
condition

(5.3) z ·Ax < x ·Ax

for all z �= x.
We shall soon prove that every symmetric game admits a symmetric Nash

equilibrium. But first, we consider a biological toy model which played an essential
role in the emergence of evolutionary game theory [27]. It is due to two eminent
theoretical biologists, John Maynard Smith and George Price, who tried to explain
the evolution of ritual fighting in animal contests. It had often been observed that
in conflicts within a species, animals did not escalate the fight, but kept to certain
stereotyped behavior, such as posturing, glaring, roaring or engaging in a pushing
match. Signals of surrender (such as offering the unprotected throat) stopped the
fight as reliably as a towel thrown into the boxing ring. Interestingly, thus, animal
fights seem to be restrained by certain rules, without even needing a referee. Such
restraint is obviously all for the good of the species, but Darwinian thinking does
not accept this as an argument for its emergence. An animal ignoring these ’gloved
fist’-type of rules, and killing its rivals, should be able to spread its genes, and the
readiness to escalate a conflict should grow, even if this implies, in the long run,
suicide for the species.
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Maynard Smith and Price imagined, in their thought experiment, a population
consisting of two phenotypes (or strategies). Strategy e1 is a behavioral program
to escalate the conflict until death or injury settles the outcome. Strategy e2 is a
behavioral program to flee as soon as the opponent starts getting rough. The former
strategy is called ’Hawk’, the latter ’Dove’. Winning the conflict yields an expected
payoff G, and losing an escalated fight costs C > G (with G and C measured on
the scale of Darwinian fitness). If we assume that whenever two ’Hawks’ meet, or
two ’Doves’, both are equally likely to win the contest, then their expected payoff
is G/2− C/2 resp. G/2. The payoff matrix thus is

(5.4)

(
G−C

2 G
0 G

2

)
.

Clearly, neither ’Hawk’ nor ’Dove’ is a Nash equilibrium. In terms of evolutionary
biology, a homogeneous ’Dove’ population could be invaded by a minority of ’Hawks’
who win all their contests hands down; but similarly, a homogeneous ’Hawk’ pop-
ulation could be invaded by a minority of ’Doves’, whose payoff 0 is larger than
the negative payoff (G−C)/2 experienced by the ’Hawks’ tearing at each other. It
is better to experience no change in reproductive success, rather than a reduction.
In this sense neither ’Hawk’ nor ’Dove’ is an evolutionarily stable strategy. On
the basis of this extremely simplified model, we must expect evolution to lead to a
mixed population.

6. Population dynamics

Let us consider a symmetric game with payoff matrix A and assume that in
a large, well-mixed population, a fraction xi uses strategy ei, for i = 1, ..., n. The
state of the population is thus given by the vector x ∈ Δn. A player with strategy
ei has as expected payoff

(6.1) (Ax)i =
∑
j

aijxj .

Indeed, this player meets with probability xj a co-player using ej . The average
payoff in the population is given by

(6.2) x ·Ax =
∑
i

xi(Ax)i.

It should be stressed that we are committing an abuse of notation. The same
symbol x ∈ Δn which denoted in the previous sections the mixed strategy of one
specific player (cf. (2.1) and (2.2)) now denotes the state of a population consisting
of different types, each type playing its pure strategy. (We could also have the
players use mixed strategies, but will consider this case only later.)

Now comes an essential step: we shall assume that populations can evolve,
in the sense that the relative frequencies xi change with time. Thus we let the
state x(t) depend on time, and denote by ẋi(t) the velocity with which xi changes.
The assumption of differentiability implies an infinitely large population, or the
interpretation of xi as an expected value, rather than a bona fide frequency. Both
ways of thinking are familiar to mathematical ecologists. In keeping with our
population dynamical approach, we shall be particularly interested in the (per
capita) growth rates ẋi/xi of the frequencies of the strategies.
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How do the frequencies of strategies evolve? There are many possibilities for
modeling this process. We shall at first assume that the state of the population
evolves according to the replicator equation (see [40, 16, 46] and, for the name,
[37]). This equation holds if the growth rate of a strategy’s frequency corresponds
to the strategy’s payoff, or more precisely to the difference between its payoff (Ax)i
and the average payoff x ·Ax in the population. Thus we posit

(6.3) ẋi = xi[(Axi)− x ·Ax]

for i = 1, ..., n. Accordingly, a strategy ei will spread or dwindle depending on
whether it does better or worse than average.

This yields a deterministic model for the state of the population. Before we
try to motivate the replicator equation, let us note that

∑
ẋi=0. Furthermore, it

is easy to see that the constant function xi(t) = 0 for all t obviously satisfies the
i-th component of equation (6.3). Hence the hyperplanes

∑
xi = 1 and xi = 0 are

invariant. From this follows that the state space, i.e. the simplex Δn, is invariant:
if x(0) ∈ Δn then x(t) ∈ Δn for all t ∈ R. The same holds for all sub-simplices of
Δn (which are given by xi = 0 for one or several i), and hence also for the boundary
bdΔn of Δn (i.e. the union of all such sub-simplices), and moreover also for the
interior intΔn of the simplex (the subset satisfying xi > 0 for all i). From now on
we only consider the restriction of (6.3) to the state simplex Δn.

7. Basic properties of the replicator equation

It is easy to see that if we add an arbitrary function b(x) to all payoff terms
(Ax)i, the replicator equation (6.3) remains unchanged: what is added to the payoff
is also added to the average payoff x · Ax, since

∑
xi = 1, and cancels out in the

difference of the two terms. In particular, this implies that we can add a constant
cj to the j-th column of A (for j = 1, ..., n) without altering the replicator dynamics
on Δn. We shall frequently use this to simplify the analysis.

Another useful property is the quotient rule: if xj > 0, then the time-derivative
of the quotient satisfies

(7.1) (
xi

xj
). = (

xi

xj
)[(Ax)i − (Ax)j].

Thus the relative proportions of two strategies change according to their payoff
ranking. More generally, if V =

∏
xpi

i then

(7.2) V̇ = V [p ·Ax− (
∑

pi)x ·Ax].

The rest points z of the replicator equation are those for which all payoff values
(Az)i are equal, for all indices i for which zi > 0. The common value of these
payoffs is the average payoff z ·Az. In particular, all vertices ei of the simplex Δn

are rest points. (Obviously, if all players are of the same type, mere copying leads
to no change.) The replicator equation admits a rest point in intΔn if there exists
a solution (in intΔn) of the linear equations

(7.3) (Ax)1 = ... = (Ax)n.

Similarly, all rest points on each face can be obtained by solving a corresponding
system of linear equations. Generically, each sub-simplex (and Δn itself) contains
one or no rest point in its interior.
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One can show that if no rest point exists in the interior of Δn, then all orbits
in intΔn converge to the boundary, for t → ±∞. In particular, if strategy ei is
strictly dominated, i.e., if there exists a w ∈ Δn such that (Ax)i < w · Ax holds
for all x ∈ Δn, then xi(t) → 0 for t → +∞ [21]. In the converse direction, if there
exists an orbit x(t) bounded away from the boundary of Δn (i.e. such that for some
a > 0 the inequality xi(t) > a holds for all t > 0 and all i = 1, ..., n), then there
exists a rest point in intΔn [18]. One just has to note that for i = 1, ..., n,

(7.4) (log xi)
. = ẋi/xi = (Ax(t))i − x(t) ·Ax(t).

Integrating for t ∈ [0, T ], and dividing by T , leads on the left hand side to [log xi(T )−
log xi(0)]/T , which converges to 0 for T → +∞. The corresponding limit on the
right hand side implies that for the accumulation points zi of the time averages

(7.5) zi(T ) =
1

T

∫ T

0

xi(t)dt,

the relations zi ≥ a > 0,
∑

zi = 1, and

(7.6)
∑

a1jzj = ... =
∑

anjzj

must hold. Using (7.3), we see that z is a rest point in intΔn.

8. The Lotka-Volterra connection

There is an intimate connection between Lotka-Volterra equations, which are
the staple fare of mathematical population ecology, and the replicator equation
[18]. More precisely, there exists a diffeomorphism from Δ−

n = {x ∈ Δn : xn > 0}
onto Rn−1

+ mapping the orbits of the replicator equation (6.3) onto the orbits of
the Lotka-Volterra equation

(8.1) ẏi = yi(ri +
n−1∑
j=1

dijyj),

where ri = ain − ann and dij = aij − anj . Indeed, let us define yn ≡ 1 and consider
the transformation y → x given by

(8.2) xi =
yi∑n
j=1 yj

i = 1, . . . , n

which maps {y ∈ Rn
+ : yn = 1} onto Δ−

n . The inverse x → y is given by

(8.3) yi =
yi
yn

=
xi

xn
i = 1, . . . , n .

Now let us consider the replicator equation in n variables given by (6.3). We
shall assume that the last row of the n × n matrix A = (aij) consists of zeros:
since we can add constants to columns, this is no restriction of generality. By the
quotient rule (7.1)

(8.4) ẏi = (
xi

xn
)[(Ax)i − (Ax)n].

Since (Ax)n = 0, this implies

(8.5) ẏi = yi(
n∑

j=1

aijxj) = yi(
n∑

j=1

aijyj)xn .
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By a change in velocity, we can remove the term xn > 0. Since yn = 1, this yields

(8.6) ẏi = yi(ain +

n−1∑
j=1

aijyj)

or (with ri = ain) equation (8.1).
The converse direction from (8.1) to (6.3) is analogous.
Results about Lotka-Volterra equations can therefore be carried over to the

replicator equation and vice versa. Some properties are simpler to prove (or more
natural to formulate) for one equation and some for the other.

For instance, it is easy to prove for the Lotka-Volterra equation that the interior
of Rn

+ contains α- or ω- limit points if and only if it admits an interior rest point.
Indeed, let L : x → y be defined by

(8.7) yi = ri +

n∑
j=1

aijxj i = 1, . . . , n .

If (8.1) admits no interior rest point, the set K = L(int Rn
+) is disjoint from 0.

A well known theorem from convex analysis implies that there exists a hyperplane
H through 0 which is disjoint from the convex set K. Thus there exists a vector
c= (c1, . . . , cn) �= 0 orthogonal to H (i.e. c · x = 0 for all x ∈ H) such that c · y is
positive for all y ∈ K. Setting

(8.8) V (x) =
∏

xci
i ,

we see that V is defined on int Rn
+. If x(t) is a solution of (8.1) in int Rn

+, then the
time derivative of t → V (x(t)) satisfies

(8.9) V̇ = V
∑

ci
ẋi

xi
= V

∑
ciyi = V c · y > 0 .

Thus V is increasing along each orbit. But then no point z ∈ int Rn
+ may belong to

an ω-limit: indeed, by Lyapunov’s theorem, the derivative V̇ would have to vanish
there. This contradiction completes the proof.

In particular, if intΔn contains a periodic orbit of the replicator equation (6.3),
it must also contain a rest point.

9. Two-dimensional examples

Let us discuss the replicator equation when there are only two types in the
population. Since the equation remains unchanged if we subtract the diagonal term
in each column, we can assume without restricting generality that the 2× 2-matrix
A is of the form

(9.1)

(
0 a
b 0

)
.

Since x2 = 1 − x1, it is enough to consider x1, which we denote by x. Thus
x2 = 1− x, and

(9.2) ẋ = x[(Ax)1 − x ·Ax] = x[(Ax)1 − (x(Ax)1 + (1− x)(Ax)2)],

and hence

(9.3) ẋ = x(1− x)[(Ax)1 − (Ax)2],
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which reduces to

(9.4) ẋ = x(1− x)[a− (a+ b)x].

We note that

(9.5) a = lim
x→0

ẋ

x
.

Hence a corresponds to the limit of the per capita growth rate of the missing
strategy e1. Let us omit the trivial case a = b = 0: in this case all points of the
state space Δ2 (i.e. the interval 0 ≤ x ≤ 1) are rest points. The right hand side of
our differential equation is a product of three factors, the first vanishing at 0 and
the second at 1; the third factor has a zero x̂ = a

a+b in ]0, 1[ if and only if ab > 0.
Thus we obtain three possible cases.

(1) There is no rest point in the interior of the state space. This happens if
and only if ab ≤ 0. In this case, ẋ has always the same sign in ]0, 1[. If this sign is
positive (i.e. if a ≥ 0 and b ≤ 0, at least one inequality being strict), this means
that x(t) → 1 for t → +∞, for every initial value x(0) with 0 < x(0) < 1. The
strategy e1 is said to dominate strategy e2. It is always the best reply, for any
value of x ∈]0, 1[. Conversely, if the sign of ẋ is negative, then x(t) → 0 and e2
dominates. In each case, the dominating strategy converges towards fixation.

As an example, we consider the Prisoner’s Dilemma Game from (4.5). The
two strategies e1 and e2 are usually interpreted as ’cooperation’ (by providing a
benefit to the co-player) and ’defection’ (by refusing to provide a benefit). The
payoff matrix is transformed, by adding appropriate constants to each column, into

(9.6)

(
0 −5
5 0

)

and defection dominates.
(2) There exists a rest point x̂ in ]0, 1[ (i.e. ab > 0), and both a and b are

negative. In this case ẋ < 0 for x ∈]0, x̂[ and ẋ > 0 for x ∈]x̂, 1[. This means that
the orbits lead away from x̂: this rest point is unstable. As in the previous case,
one strategy will be eliminated: but the outcome, in this bistable case, depends on
the initial condition. If x is larger than the threshold x̂, it will keep growing; if it
is smaller, it will vanish – a positive feedback.

As an example, we can consider the coordination game (4.3). The payoff matrix
is transformed into

(9.7)

(
0 −2
−2 0

)

and it is best to play e1 if the frequency of e1-players exceeds 50 percent. Bistability
also occurs if the Prisoner’s Dilemma game given by (4.5) is repeated sufficiently
often. Let us assume that the number of rounds is a random variable with mean
value m, for instance, and let us consider only two strategies of particular interest.
One, which will be denoted by e1, is the Tit For Tat strategy which consists in
cooperating in the first round and from then on imitating what the co-player did in
the previous round. The other strategy, denoted as e2, consists in always defecting.
The expected payoff values are given by the matrix

(9.8)

(
10m −5
15 0

)
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which can be transformed into

(9.9)

(
0 −5

15− 10m 0

)
.

If m > 3/2, it is best to do what the co-player does. Loosely speaking, one should
go with the trend. The outcome, in such a population, would be the establishment
of a single norm of behavior (either always defect, or play Tit For Tat). Which
norm emerges depends on the initial condition.

(3) There exists a rest point x̂ in ]0, 1[ (i.e. ab > 0), and both a and b are
positive. In this case ẋ > 0 for x ∈]0, x̂[ and ẋ < 0 for x ∈]x̂, 1[. This negative
feedback means that x(t) converges towards x̂, for t → +∞: the rest point x̂
is a stable attractor. No strategy eliminates the other: rather, their frequencies
converge towards a stable coexistence.

This situation can be found in the Hawk-Dove-game, for example. The payoff
matrix (5.4)is transformed into

(9.10)

(
0 G

2
C−G

2 0

)

and the rest point corresponds to x = G/C. The higher the cost of injury, i.e.,
C, the lower the frequency of escalation. Another well-known example is the so-
called snowdrift game. Suppose that two players are promised 40 dollars each if
they contribute 30 dollars to the experimenter. They have to decide independently
whether to come up with such a fee or not. If both contribute, they can split the
cost equally, and pay only 15 dollars. If e1 is the decision to contribute, and e2 not
to contribute, the payoff matrix is

(9.11)

(
25 10
40 0

)

which can be normalized to

(9.12)

(
0 10
15 0

)
.

In this case, it is best to do the opposite of what the co-player is doing, i.e., to swim
against the stream.

10. Rock-Scissors-Paper

Turning now to n = 3, we meet a particularly interesting example if the three
strategies dominate each other in a cyclic fashion, i.e., if e1 dominates e2, in the
absence of e3, and similarly e2 dominates e3, and e3, in turn, dominates e1. Such
a cycle occurs in the game of Rock-Scissors-Paper shown in (1.2). It is a zero-sum
game: one player receives what the other player loses. Hence the average payoff in
the population, x ·Ax, is zero. There exist only four rest points, one in the center,
m = (1/3, 1/3, 1/3) ∈ intΔ3, and the other three at the vertices ei.

Let us consider the function V := x1x2x3, which is positive in the interior of
Δ3 (with maximum at m) and vanishes on the boundary. Using (7.2), we see that
t → V (x(t)) satisfies

(10.1) V̇ = V (x2 − x3 + x3 − x1 + x1 − x2) = 0.

Hence V is a constant of motion: all orbits t → x(t) of the replicator equation
remain on constant level sets of V . This implies that all orbits in intΔn are closed
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orbits surrounding m. The invariant set consisting of the three vertices ei and
the orbits connecting them along the edges of Δ3 is said to form a heteroclinic set.
Any two points on it can be connected by ’shadowing the dynamics’. This means to
travel along the orbits of that set and, at appropriate times which can be arbitrarily
rare, to make an arbitrarily small step. In the present case, it means for instance
to flow along an edge from e2 towards e1, and then stepping onto the edge leading
away from e1 and toward e3. This step can be arbitrarily small: travellers just
have to wait until they are sufficiently close to the ’junction’ e1.

Now let us consider the generalized Rock-Scissors-Paper game with matrix

(10.2)

⎛
⎝ 0 a −b

−b 0 a
a −b 0

⎞
⎠ .

with a, b > 0, which is no longer zero-sum, if a �= b. It has the same structure of
cyclic dominance and the same rest points. The point m is a Nash equilibrium and
the boundary of Δ3 is a heteroclinic set, as before. But now,

(10.3) x ·Ax = (a− b)(x1x2 + x2x3 + x3x1),

and hence

(10.4) V̇ = V (a− b)[1− 3(x1x2 + x2x3 + x3x1)],

which implies

(10.5) V̇ =
V (a− b)

2
[(x1 − x2)

2 + (x2 − x3)
2 + (x3 − x1)

2].

This expression vanishes on the boundary of Δ3 and at m. It has the sign of a− b
everywhere else on Δ3. If a > b, this means that all orbits cross the constant-level
sets of V in the uphill direction, and hence converge to m. For a > b, the function
V (x) is a strict Lyapunov function: indeed V̇ (x) ≥ 0 for all x, and equality holds
only when x is a rest point. This implies that ultimately, all three types will be
present in the population in equal frequencies: the rest point m is asymptotically
stable. But for a < b, the orbits flow downhill towards the boundary of Δ3. The
Nash equilibrium m corresponds to an unstable rest point, and the heteroclinic
cycle on the boundary attracts all other orbits.

Let us follow the state x(t) of the population, for a < b. If the state is very
close to a vertex, for instance e1, it is close to a rest point and hence almost at rest.
For a long time, the state does not seem to change. Then, it picks up speed and
moves towards the vicinity of the vertex e3, where it slows down and remains for a
much longer time, etc. This looks like a recurrent form of ’punctuated equilibrium’:
long periods of quasi-rest followed by abrupt upheavals.

The same holds if all the a’s and b’s, in (10.2), are distinct positive numbers.
There exists a unique rest point m in the interior of Δ3 which, depending on the
sign of detA (which is the same as that of m · Am) is either globally stable, i.e.,
attracts all orbits in intΔ3, or is surrounded by periodic orbits, or is repelling. In
the latter case, all orbits converge to the heteroclinic cycle formed by the boundary
of Δn.

Interestingly, several biological examples for Rock-Scissors-Paper cycles have
been found. We only mention two examples: (A) Among the lizard species Uta
stansburiana, three inheritable types of male mating behavior are e1: attach your-
self to a female and guard her closely, e2: attach yourself to several females and
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guard them (but inevitably, less closely); and e3: attach yourself to no female, but
roam around and attempt sneaky matings whenever you encounter an unguarded
female [39]. (B) Among the bacteria E. coli, three strains occur in the lab through
recurrent mutations, namely e1: the usual, so-called wild type; e2: a mutant pro-
ducing colicin, a toxic substance, together with a protein conferring auto-immunity;
and e3: a mutant producing the immunity-conferring protein, but not the poison
[23]. In case (A), selection leads to the stable coexistence of all three types, and in
case (B) to the survival of one type only.

There exist about 100 distinct phase portraits of the replicator equation for
n = 3, up to re-labeling the vertices [1]. 0f these, about a dozen are generic.
Interestingly, none admits a limit cycle [19]. For n > 3, limit cycles and chaotic
attractors can occur. A classification seems presently out of reach.

11. Nash equilibria and saturated rest points

Let us consider a symmetric n×n-game with payoff matrixA, and z a symmetric
Nash equilibrium. With x = ei, condition (5.2) implies

(11.1) (Az)i ≤ z ·Az

for i = 1, ..., n. Equality must hold for all i such that zi > 0. Hence z is a rest
point of the replicator dynamics. Moreover, it is a saturated rest point: this means
by definition that if zi = 0, then

(11.2) (Az)i − z ·Az ≤ 0.

Conversely, every saturated rest point is a Nash equilibrium. The two concepts
are equivalent.

Every rest point in intΔn is trivially saturated; but on the boundary, there
may be rest points which are not saturated, as we shall presently see. In that
case, there exist strategies which are not present in the population z, but which
would do better than average (and better, in fact, than every type that is present).
Rest points and Nash equilibria have in common that there exists a c such that
(Az)i = c whenever zi > 0; the additional requirement, for a Nash equilibrium, is
that (Az)i ≤ c whenever zi = 0.

Hence every symmetric Nash equilibrium is a rest point, but the converse does
not hold. Let us discuss this for the examples from the previous section. It is clear
that the rest points in the interior of the simplex are Nash equilibria. In case n = 2
and dominance, the strategy that is dominant is a Nash equilibrium, and the other
is not. In case n = 2 with bi-stability, both pure strategies are Nash equilibria.
Generically (and in contrast to the example (9.7)), one of the pure strategies fares
better than the other in a population where both are equally frequent. This is the
so-called risk-dominant equilibrium. It has the larger basin of attraction. In the
case n = 2 leading to stable co-existence, none of the pure strategies is a Nash
equilibrium. If you play a bistable game, you should choose the same strategy as
your co-player; but in the case of stable coexistence, you should choose the opposite
strategy. In both cases, however, the two of you might have different ideas about
who plays what.

In the case n = 3 with the Rock-Scissors-Paper structure, the interior rest point
m is the unique Nash equilibrium. Each of the vertex rest points can be invaded.

A handful of results about Nash equilibria and rest points of the replicator
dynamics are known as folk theorem of evolutionary game theory [5]. For instance,
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any limit, for t → +∞, of a solution x(t) starting in intΔn is a Nash equilibrium;
and any stable rest point is a Nash equilibrium. (A rest point z is said to be stable
if for any neighborhood U of z there exists a neighborhood V of z such that if
x(0) ∈ V then x(t) ∈ U for all t ≥ 0). Both results are obvious consequences of the
fact that if z is not Nash, then there exists an i and an ε such that (Ax)i−x·Ax > ε
for all x close to z. In the other direction, if z is a strict Nash equilibrium, then z is
an asymptotically stable rest point (i.e. not only stable, but in addition attracting
in the sense that for some neighborhood U of z, x(0) ∈ U implies x(t) → z for
t → +∞). The converse statements are generally not valid.

In order to prove the existence of a symmetric Nash equilibrium for the sym-
metric game with n × n matrix A, i.e. the existence of a saturated rest point for
the corresponding replicator equation (6.3), we perturb that equation by adding a
small constant term ε > 0 to each component of the right hand side. Of course,
the relation

∑
ẋi = 0 will no longer hold. We compensate this by subtracting the

term nε from each growth rate (Ax)i − x ·Ax. Thus we consider

(11.3) ẋi = xi[(Ax)i − x ·Ax− nε] + ε.

Clearly,
∑

ẋi = 0 is satisfied again. On the other hand, if xi = 0, then ẋi = ε > 0.
This influx term changes the vector field of the replicator equation: at the boundary
of Δn (which is invariant for the unperturbed replicator equation), the vector field
of the perturbed equation points towards the interior.

Brouwer’s fixed point theorem implies that (11.3) admits at least one rest point
in intΔn, which we denote by zε. It satisfies

(11.4) (Azε)i − zε ·Azε = ε(n− 1

(zε)i
).

Let ε tend to 0, and let z be an accumulation point of the zε in Δn. The limit on
the left hand side exists, and is given by (Az)i − z ·Az. Hence the right hand side
also has a limit for ε → 0. This limit is 0 if zi > 0, and it is ≤ 0 if zi = 0. This
implies that z is a saturated rest point of the (unperturbed) replicator equation
(6.3), and hence corresponds to a Nash equilibrium (see also [15, 38]).

12. Mixed strategies and evolutionary stability

Let us now consider the case when individuals can also use mixed strategies,
for instance escalate a conflict with a certain probability. Thus let us assume that
there exist N types, each using a (pure or mixed) strategy p(i) ∈ Δn (we need not
assume n = N). The average payoff for a p(i)-player against a p(j)-player is given
by uij = p(i) · Ap(j), and if x ∈ ΔN describes the frequencies of the types in the
population, then the average strategy within the population is p(x) =

∑
xip(i).

The induced replicator dynamics on ΔN , namely ẋi = xi[(Ux)i − x · Ux] can be
written as

(12.1) ẋi = xi[(p(i)− p(x)) ·Ap(x)].

This dynamics on ΔN induces a dynamics t → p(x(t)) of the average strategy on
Δn.

Let us now turn to the concept of an evolutionarily stable strategy, or ESS. If
all members of the population use such a strategy p̂ ∈ Δn, then no mutant minority
using another strategy p can invade (cf. [29, 25]). Thus a strategy p̂ ∈ Δn is said
to be evolutionarily stable if for every p ∈ Δn with p �= p̂, the induced replicator
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equation describing the dynamics of the population consisting of these two types
only (the ’resident’ using p̂ and the ’invader’ using p) leads to the elimination of
the invader. By (9.4) this equation reads (if x is the frequency of the invader):

(12.2) ẋ = x(1− x)[x(p ·Ap− p̂ ·Ap)− (1− x)(p̂ ·Ap̂− p ·Ap̂)]

and hence the rest point x = 0 is asymptotically stable iff the following conditions
are satisfied:

(a) (equilibrium condition)

(12.3) p ·Ap̂ ≤ p̂ ·Ap̂

holds for all p ∈ Δn;
(b) (stability condition)

(12.4) if p ·Ap̂ = p̂ ·Ap̂ then p ·Ap < p̂ ·Ap.

The first condition means that p̂ is a Nash equilibrium: no invader does better than
the resident, against the resident. The second condition states that if the invader
does as well as the resident against the resident, then it does less well than the
resident against the invader. Based on (7.2), it can be shown that the strategy p̂

is an ESS iff
∏

i x
p̂i

i is a strict local Lyapunov function for the replicator equation,
or equivalently iff

(12.5) p̂ ·Ap > p ·Ap

for all p �= p̂ in some neighborhood of p̂ [16, 18]. If p̂ ∈ intΔn, then Δn itself is
such a neighborhood.

In particular, an ESS corresponds to an asymptotically stable rest point of
(6.3). The converse does not hold in general [46]. But the strategy p̂ ∈ Δn is an
ESS iff it is strongly stable in the following sense: whenever it belongs to the convex
hull of p(1), ...,p(N) ∈ Δn, the strategy p(x(t)) converges to p̂, under (12.1), for
all x ∈ ΔN for which p(x) is sufficiently close to p̂ [4].

The relation between evolutionary and dynamic stability is particularly simple
for the class of partnership games. These are defined by payoff matrices A =
AT . In this case the interests of both players coincide. For spartnership games,
p̂ is an ESS iff it is asymptotically stable for (6.3). This in turn holds iff it is
a strict local maximum of the average payoff x · Ax [18]. Replicator equations
for partnership games occur prominently in population genetics. They describe
the effect of selection on the frequencies xi of alleles i on a single genetic locus,
for i ∈ {1, ..., n}. In this case, the aij correspond to the survival probabilities of
individuals with genotype (i, j) (i.e., having inherited the alleles i and j from their
parents).

13. Generalizations of the replicator dynamics

We have assumed so far that the average payoff for a player using strategy
i is given by a linear function (Ax)i of the state of the population. This makes
sense if the interactions are pairwise, with co-players chosen randomly within the
population. But many interesting examples lead to non-linear payoff functions
ai(x), for instance if the interactions occur in groups with more than two members.
This is the case, for instance, in the sex-ratio game, where the success of a strategy
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(i.e., an individual sex ratio) depends on the aggregate sex ratio in the population.
Nonlinear payoff functions ai(x) lead to the replicator equation

(13.1) ẋi = xi(ai(x)− ā)

on Δn, where ā =
∑

i xiai(x) is again the average payoff within the population.
Many of the previous results can be extended in a straightforward way. For instance,
the dynamics is unchanged under addition of a function b to all payoff functions
ai. Equation (13.1) always admits a saturated rest point, and a straight extension
of the folk theorem is still valid. The notion of an ESS has to be replaced by a
localized version.

Initially, the replicator dynamics was intended to model the transmission of be-
havioral programs through inheritance. The simplest inheritance mechanisms lead
in a straightforward way to (6.3), but more complex cases of Mendelian inheritance
through one or several genetic loci yield more complex dynamics [13, 7, 45, 17].
The replicator equation (6.3) can also be used to model imitation processes [14, 2,
36, 34]. A rather general approach to modeling imitation processes leads to

(13.2) ẋi = xi[f(ai(x))−
∑

xjf(aj(x))]

for some strictly increasing function f of the payoff, and even more generally to the
imitation dynamics given by

(13.3) ẋi = xigi(x)

where the functions gi satisfy
∑

xigi(x) = 0 on Δn. The simplex Δn and its faces
are invariant. Such an equation is said to be payoff monotonic if

(13.4) gi(x) > gj(x) ⇔ ai(x) > aj(x),

where the ai correspond to the payoff for strategy i. For payoff monotonic equations
(13.3), the folk theorem holds again [31, 8]: Nash equilibria are rest points, strict
Nash equilibria are asymptotically stable, and rest points that are stable or ω-limits
of interior orbits are Nash equilibria.

The dynamics (13.3) can be reduced (through a change in velocity) to a repli-
cator equation (13.1) if it has the following property:

(13.5) y · g(x) > z · g(x) ⇐⇒ y · a(x) > z · a(x)
for all x,y, z ∈ Δn.

14. Best reply dynamics

It is worth emphasizing that imitation (like selection, in genetics) does not pro-
duce anything new. If a strategy ei is absent from the population, it will remain so
(i.e. if xi(t) = 0 holds for some time t, it holds for all t). An equation such as (13.1)
or more generally (13.3) does not allow the introduction of new strategies. There
exist game dynamics which are more innovative. For instance, clever players could
adopt the strategy which offers the highest payoff, even if no one in the population
is currently using it. We describe this dynamics presently. Other innovative dy-
namics arise if we assume a steady rate of switching randomly to other strategies.
This can be interpreted as an ’exploration rate’, and corresponds to a mutation
term in genetics [35].

The best-reply dynamics assumes more sophistication than mere learning by
copying others. Let us assume that in a large population, a small fraction of
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the players revise their strategy, choosing best replies BR(x) to the current mean
population strategy x. This approach, which postulates that players are intelligent
enough to know the current population state and to respond optimally, yields the
best reply dynamics

(14.1) ẋ ∈ BR(x)− x.

Since best replies are in general not unique, this is a differential inclusion rather than
a differential equation [26]. For continuous payoff functions ai(x), the set of best
replies BR(x) is a non-empty convex, compact subset of Δn which is upper semi-
continuous in x. Hence solutions exist, they are Lipschitz functions x(t) satisfying
(14.1) for almost all t ≥ 0. If BR(x) is a uniquely defined (and hence pure) strategy
b, the solution of (14.1) is given by

(14.2) x(t) = (1− e−t)b+ e−tx

for small t ≥ 0, which describes a linear orbit pointing straight towards the best
response. This can lead to a state where b is no longer the unique best reply. But
for each x there always exists a b ∈ BR(x) which, among all best replies to x, is
a best reply against itself (i.e. a Nash equilibrium of the game restricted to the
simplex BR(x)) [20]. In this case b ∈ BR((1− ε)x + εb) holds for small ε ≥ 0, if
the game is linear. An iteration of this construction yields at least one piecewise
linear solution of (14.1) starting at x and defined for all t > 0. One can show that
for generic linear games, essentially all solutions can be constructed in this way. For
the resulting (multi-valued) semi-dynamical system, the simplex Δn is only forward
invariant and bdΔn need no longer be invariant: the frequency of strategies which
are initially missing can grow, in contrast to the imitation dynamics. In this sense,
the best reply dynamics is an innovative dynamics.

For n = 2, the phase portraits of (14.1) differ only in details from that of the
replicator dynamics. If e1 is dominated by e2, there are only two orbits: the rest
point e2, and the semi-orbit through e1 which converges to e2. In the bistable situa-
tion with interior Nash equilibrium p, there are infinitely many solutions starting at
p besides the constant one, staying there for some time and then converging mono-
tonically to either e1 or e2. In the case of stable coexistence with interior Nash
equilibrium p, the solution starting at some point x between p and e1 converges
toward e2 until it hits p, in finite time, and then remains there forever.

For n = 3, the differences to the replicator dynamics become more pronounced.
In particular, for the generalized Rock-Scissors-Paper game given by (10.2), all
orbits converge to the Nash equilibrium p whenever detA > 0 (just as with the
replicator dynamics); but for detA < 0, all orbits (except possibly p) converge to
a limit cycle, the so-called Shapley triangle spanned by the three points Ai (given
by the intersections of the lines (Ax)2 = (Ax)3 etc. in Δ3). In fact, the piecewise
linear function V (x) :=|maxi(Ax)i | is a Lyapunov function for (14.1). In this case,
the orbits of the replicator equation (6.3) converge to the boundary of Δn; but
interestingly, the time averages

(14.3) z(T ) :=
1

T

∫ T

0

x(t)dt

have the Shapley triangle as the set of accumulation points, for T → +∞. Similar
parallels between the best reply dynamics and the behavior of time-averages of the
replicator equation are quite frequent [9, 10].
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15. A brief look at asymmetric games

So far, we have considered evolutionary games in the symmetric case only. Thus
players are indistinguishable (except by their strategies), and the game is described
by a single n×n payoff matrix A. In the first section, however, we had started out
with two players I and II having strategies ei and fj respectively (with 1 ≤ i ≤ n
and 1 ≤ j ≤ m), and a game was defined by two n ×m payoff matrices A and B
There is an obvious way to turn the non-symmetric game (A,B) into a symmetric
game: simply by letting a coin toss decide who of the two players will be labeled
player I. A strategy for this symmetrized game must therefore specify what to do in
role I, and what in role II, i.e., such a strategy is given by a pair (ei, fj). A mixed
strategy is given by an element z = (zij) ∈ Δnm, where zij denotes the probability
to play ei when in role I and fj when in role II. To the probability distribution z
correspond its marginals: xi =

∑
j zij and yj =

∑
i zij . The vectors x = (xi) and

y = (yj) belong to Δn and Δm, respectively.
The expected payoff for a player using (ei, fj) against a player using (ek, fl),

with i, k ∈ {1, ..., n} and j, l ∈ {1, ...,m}, is given by

(15.1) cij,kl =
1

2
ail +

1

2
bkj .

Since every symmetric game has a symmetric Nash equilibrium, it follows immedi-
ately that every game (A,B) has a Nash equilibrium pair.

Let us now turn to population games. Players meet randomly and engage in a
game (A,B), with chance deciding who is in role I and who in role II. For simplicity,
we assume that there are only two strategies for each role. The payoff matrix is

(15.2)

(
(A, a) (B, b)
(C, c) (D, d)

)
.

The strategies for the resulting symmetric game will be denoted by G1 = e1f1,
G2 = e2f1, G3 = e2f2 and G4 = e1f2. The payoff for a player using Gi against a
player using Gj is given, up to the factor 1/2 which we shall henceforth omit, by
the (i, j)-entry of the matrix

(15.3) M =

⎛
⎜⎜⎝

A+ a A+ c B + c B + a
C + a C + c D + c D + a
C + b C + d D + d D + b
A+ b A+ d B + d B + b

⎞
⎟⎟⎠ .

This corresponds to (15.1). For instance, a G1-player meeting a G3-opponent is
with probability 1/2 in role I, plays e1 against the co-player’s f2, and obtains B.
With probability 1/2, the G1-player is in role II, plays f1 against the co-players’
e2, and obtains c.

The replicator dynamics

(15.4) ẋi = xi[(Mx)i − x ·Mx]

describes the evolution of the state x = (x1, x2, x3, x4) ∈ Δ4. Since the dynamics
is unaffected if each mij is replaced by mij −m1j (for i, j ∈ {1, 2, 3, 4}), we can use
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the matrix

(15.5)

⎛
⎜⎜⎝

0 0 0 0
R R S S

R + r R+ s S + s S + r
r s s r

⎞
⎟⎟⎠

with R := C − A, r := b − a, S := D − B and s := d − c. We shall denote this
matrix again by M . It has the property that

(15.6) m1j +m3j = m2j +m4j

for j = 1, 2, 3, 4. Hence

(15.7) (Mx)1 + (Mx)3 = (Mx)2 + (Mx)4

holds for all x. From this and (7.2) follows that the function V = x1x3/x2x4

satisfies

(15.8) V̇ = V [(Mx)1 + (Mx)3 − (Mx)2 − (Mx)4] = 0

in the interior of Δ4, and hence that V is an invariant of motion for the replicator
dynamics: its value remains unchanged along every orbit.

Therefore, the interior of the state simplex Δ4 is foliated by the surfaces

(15.9) WK := {x ∈ Δ4 : x1x3 = Kx2x4},
with 0 < K < ∞. These are saddle-like surfaces which are spanned by the quad-
rangle of edges G1G2, G2G3, G3G4 and G4G1 joining the vertices of the simplex
Δ4.

The orientation of the flow on the edges can easily be obtained from the previous
matrix. For instance, if R = 0, then the edge G1G2 consists of rest points. If
R > 0, the flow along the edge points from G1 towards G2 (which means that
in the absence of the strategies G3 and G4, the strategy G2 dominates G1), and
conversely, if R < 0, the flow points from G2 to G1.

Generically, the parameters R,S, r and s are non-zero. This corresponds to 16
orientations of the quadrangle G1G2G3G4, which by symmetry can be reduced to
4. Since (Mx)1 trivially vanishes, the rest points in the interior of the simplex Δ4

must satisfy (Mx)i = 0 for i = 2, 3, 4. This implies for S �= R

(15.10) x1 + x2 =
S

S −R
,

and for s �= r

(15.11) x1 + x4 =
s

s− r
.

Such solutions lie in the simplex if and only if RS < 0 and rs < 0. If this is the
case, one obtains a line of rest points which intersects each WK in exactly one point.
These points can be written as

(15.12) xi = mi + ξ

for i = 1, 3 and

(15.13) xi = mi − ξ

for i = 2, 4, with ξ as parameter and

(15.14) m =
1

(S −R)(s− r)
(Ss,−Sr,Rr,−Rs) ∈ W1.
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Of particular interest is the so-called Wright-manifold W1, where the strategies,
in the two roles, are independent of each other. (On W1, the probability that a
randomly chosen individual uses strategy e1f1 is the product of the probabilities
x := x1 + x4 and y := x1 + x2 of choosing e1 when in role I, resp. f1 when in role
II. Indeed, x1 = (x1 + x4)(x1 + x2)). It then follows that

(15.15) ẋ = x(1− x)(s− (s− r)y),

and

(15.16) ẏ = y(1− y)(S − (S −R)x).

If rR > 0, each interior rest point is a saddle point within the corresponding
manifold WK , and the system is bistable: depending of the inital condition, orbits
converge either to G1 or to G3, if r < 0, and either to G2 or to G4, if r > 0. If
rR < 0, each rest point has (in addition of the eigenvalue 1) a pair of complex
conjugate eigenvalues. Within the corresponding manifold WK , the eigenvalues
spiral around this rest point. Depending on whether K is larger or smaller than 1,
they either converge to the rest point (which must be a spiral sink), or else toward
the heteroclinic cycle defined by the quadrangle of the edges forming the boundary
of WK . For K = 1, the orbits are periodic.

16. Applications

In this lecture course, the authors aim to stress the variety of plausible dynam-
ics which describe adaptive mechanisms underlying game theory. The replicator
equation and the best reply dynamics describe just two out of many dynamics. For
applications of evolutionary game theory, it does not suffice to specify the strate-
gies and the payoff values. One also has to be explicit about the transmission
mechanisms describing how strategies spread within a population.

We end this introductory part with some signposts to the literature using evo-
lutionary games to model specific social interactions. The first applications, and
indeed the motivation, of evolutionary game theory are found in evolutionary biol-
ogy, where by now thousands of papers have proved the fruitfulness of this approach,
see [6]. In fact, questions of sex-ratio, and more generally of sex-allocation, even
pre-date any explicit formulation in terms of evolutionary game theory. It was R.F.
Fisher, a pioneer in both population genetics and mathematical statistics, who used
frequency-dependent selection to explain the prevalence of a 1:1 sex ratio, and W.D.
Hamilton who extended this type of thinking to make sense of other, odd sex ratios
[12]. We have seen how Price and Maynard Smith coined their concept of evolu-
tionary stability to explain the prevalence of ritual fighting in intraspecific animal
contests. The subtleties of such contests are still a favorite topic among the students
of animal behavior. More muted, but certainly not less widespread conflicts arise
on the issues of mate choice, parental investment, and parent-offspring conflicts.
Social foraging is another field where the success of a given behavior (scrounging,
for instance) depends on its prevalence; so are dispersal and habitat selection. Com-
munication (alarm calls, threat displays, sexual advertisement, gossip), with all its
opportunities for deceit, is replete with game theoretical problems concerning bluff
and honest signaling. Predators and their prey, or parasites and their hosts, offer
examples of games between two populations, with the success of a trait depending
on the state of the other population. Some strategic interactions are surprisingly
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sophisticated, considering the lowly level of the players: for instance, bacteria can
engage in quorum sensing as cue for conditional behavior.

Quite a few biological games turned out to have the same structure as games
that had been studied by economists, usually under another name [3]: the biolo-
gists’ ’Hawk-Dove’ game, for example, has the same structure as the economists’
’Chicken’-game. Evolutionary game theory has found a large number of applica-
tions in economic interactions [44, 22, 41, 8, 11].

One zone of convergence for studies of animal behavior and human societies is
that of cooperation. Indeed, the theory of evolution and economic theory have each
their own paradigm of selfishness, encapsulated in the slogans of the ’selfish gene’
and the ’homo economicus’. Both paradigms conflict with wide-spread evidence
of social, ’other-regarding’ behavior. In ant and bee societies, the relatedness of
individuals is so close that their genetic interests overlap and their communities
can be viewed as ’super-organisms’. But in human societies, close cooperation can
also occur between individuals who are unrelated. In many cases, such cooperation
is based on reciprocation. Positive and negative incentives, and in particular the
threat of sanctions offer additional reasons for the prevalence of cooperation [38].
This may lead to two or more stable equilibria, corresponding to behavioral norms.
If everyone adopts a given norm, no player has an incentive to deviate. But which
of these norms eventually emerges depends, among other things, on the history of
the population.

Animal behavior and experimental economics fuse in this area. Experimental
economics, has greatly flourished in the last few years. It often reduces to the
investigation of very simple games which can be analyzed by means of evolutionary
dynamics. These and other games display the limitations of ’rational’ behavior in
humans, and have assisted in the emergence of new fields, such as behavioral game
theory and neuro-economics.
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