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Motivation “

You have learned about causal discovery.
Given such an image, what is the causal graph?




Motivation

What about this image?




Motivation “




Motivation “

We can group parts of the image
that “belong together”
(here: Segment Anything [1])

Use these as variables?

[1] Kirillov, Alexander, et al. "Segment anything." arXiv preprint arXiv:2304.02643 (2023).



Motivation “

We can group parts of the image
that “belong together”
(here: Segment Anything [1])

Use these as variables?

But what should a variable be?
—> More than just “pixel labeling”

[1] Kirillov, Alexander, et al. "Segment anything." arXiv preprint arXiv:2304.02643 (2023).



Motivation “

Another example: A classifier (clf) tries to distinguish between cows and camels

Training Data
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Another example: A classifier tries to distinguish between cows and camels

Test Data
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Clearly a cow!
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Another example: A classifier tries to distinguish between cows and camels

Clearly a cow!

A camel,
obviously!

Test Data
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Motivation “

Another example: A classifier tries to distinguish between cows and camels

Clearly a cow!

A camel,
obviously!

Test Data

o[C Y

» Use disentangled

representations for
OOD classification
= Relations are important:
Camels usually live in a
desert but a camel on

grass is still a camel.



Motivation “

CVs: Causal Variables
CG: Causal Graph

We have seen:
» Causal Inference known CVs[ |, CG[
= (Causal Structure Learning known CVs|[, CG X



Motivation “

CVs: Causal Variables
CG: Causal Graph

We have seen;

= Causal Inference known CVs[4, CGL.
= (Causal Structure Learning known CVs|[, CG X
Today:

= Causal Representation Learning known CVs X, CG X
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Representation Learning “

Representation Learning: “learning representations of the data
that make it easier to extract useful information when building
classifiers or other predictors” [2]
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at by Martin LEBRETON, Dog by Serhii Smimov from the Noun Project

[2] Bengio, Yoshua, Aaron Courville, and Pascal Vincent. "Representation learning: A review and new perspectives." IEEE transactions
on pattern analysis and machine intelligence 35.8 (2013): 1798-1828.



Representation Learning “

Representation Learning: “learning representations of the data
that make it easier to extract useful information when building
classifiers or other predictors” [2]

= Also: Feature Learning

= Technically most if not all of deep learning

i - Input Data
incorporates feature learning P Label

= Not exclusive to images (though these will be

the focus of this lecture)

Features

[2] Bengio, Yoshua, Aaron Courville, and Pascal Vincent. "Representation learning: A review and new perspectives." IEEE transactions
on pattern analysis and machine intelligence 35.8 (2013): 1798-1828.



Representation Learning “

= Not exclusive to images (though these will be the focus of this lecture)

Text Output

Text Input

Language

Model

Numeric Representation of
text useful for other systems

https://attri.ai/blog/introduction-to-large-language-models



Representation Learning “

= Not exclusive to images (though these will be the focus of this lecture)
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Jenni et al., Video Representation Learning by Recognizing Temporal Transformations, ECCV 2020


https://sjenni.github.io/temporal-ssl/

Representation Learning “

= DataX € RP can be described a set of latent variables Z € R? where
d L p.Then,Z = h(X) and X = g(2).

lllustrative example:

h(X)

g(Z)

X e R2500x1661 7 € RlOOO (*)

(*) let’s say there are 1000 classes that can be either true or false



Representation Learning “

= Data X € RP can be described a set of latent variables Z € R? where
d L p.Then,Z = h(X) and X = g(2).

5
h=g1




Representation Learning “

= Data X € RP can be described a set of latent variables Z € R4 where

d L p.Then,Z = h(X) and X = g(2).

5
h=g1

= |f g isinvertible, Z = g~1(X) is a perfect representation of X

= However, due to d < p, g can not be invertible if we want to capture the

full space of X € RP



Representation Learning “

Autoencoder
R
. q Probabilistic | > 5 Probabilistic > ¢!
Encoder Decoder
\

= Two neural networks: encoder X - Z and decoder Z - X



Representation Learning “

What does an autoencoder achieve? What can it not be used for?



Representation Learning “

What does an autoencoder achieve? What can it not be used for?

. Learn compact encoded representation that can be used to reconstruct
the original input with minimal error

>{ Encoded representation is not guaranteed to have any tangible
meaning; no disentanglement

>( 1tis difficult if not impossible to interpret or purposefully “intervene” on

the encoded representation



Representation Learning “

Variational Autoencoder

— ﬂ —
R
< — Probabilistic || . e | Probabilistic > 1
Encoder Decoder
\
S 5 —

= The latent is encoded as a distribution instead of a single vector

» Trained with loss for reconstruction and regularization



Representation Learning “

There are many good resources going into more depth on the idea and
mathematical details of variational autoencoders which were skipped due

to time constraints. We recommend looking into these in case of interest.




Representation Learning “

=  Autoencoders work well for uncorrelated features

= \What if features are correlated?

= Example (taken from [3]): autoencoder learns two latent features

a

foot length

Correlated Features:
Body Height and Foot Length

body height

[3] Trauble, Frederik, et al. "On disentangled representations learned from correlated data." International Conference on Machine Learning, 2021.



Representation Learning “

=  Autoencoders work well for uncorrelated features

= \What if features are correlated?

= Example (taken from [3]): autoencoder learns two latent features
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Correlated Features: Entangled
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Representation Learning “

=  Autoencoders work well for uncorrelated features

= \What if features are correlated?

= Example: autoencoder learns two latent features

A
-
*s -
- -
* **
* ’Q
-
* -
o *
. -
** <
. v

body height
body height
body height

foot length . foot length . foot length

Correlated Features: Entangled Disentangled
Body Height and Foot Length Features Features



Representation Learning “

= Disentangled features do not match true probability density as well as
entangled representation
» Probability mass is placed outside of true (train) distribution

» Independency assumption of latent features does not hold

= We want to learn interpretable, disentangled features representations
that take the structure of the real world into account
- Therefore...
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CRL Basics “

What is Causal Representation Learning?

CVs: Causal Variables
CG: Causal Graph

= Causal Inference known CVs[d, CGL2
= (Causal Structure Learning known CVs|[, CG X
= Causal Representation Learning known CVs X{, CG X



CRL Basics “

What is Causal Representation Learning? (figure taken from [4])

Figure 7.1: The causal disentanglement model.

[4] Squires, Chandler. “Chapter 7 Causal Representation Learning” 6.S091-causality, 2023, https://github.com/csquires/6.S091-
causality/blob/main/lecture_notes/Lecture7.pdf



CRL Basics “

What is Causal Representation Learning? (figure taken from [4])

Latent Representation follows a
o 9 @ Structural Causal Model...

Figure 7.1: The causal disentanglement model.

[4] Squires, Chandler. “Chapter 7 Causal Representation Learning” 6.S091-causality, 2023, https://github.com/csquires/6.S091-
causality/blob/main/lecture_notes/Lecture7.pdf



CRL Basics “

What is Causal Representation Learning? (figure taken from [4])

oe '.' Latent Representation follows a
Structural Causal Model...
A here, g is called “mixing function”

9y 9y g 9 ,..that generates the

entangled observations...

Figure 7.1: The causal disentanglement model.

[4] Squires, Chandler. “Chapter 7 Causal Representation Learning” 6.S091-causality, 2023, https://github.com/csquires/6.S091-
causality/blob/main/lecture_notes/Lecture7.pdf



CRL Basics “

What is Causal Representation Learning? (figure taken from [4])

Latent Representation follows a
o 9 @ Structural Causal Model...

here, g is called “mixing function”

J» . .that generates the

entangled observations...

...which are also influenced
by random noise

Figure (.1: 1he causal dlsenljanglemeni. model.

[4] Squires, Chandler. “Chapter 7 Causal Representation Learning” 6.S091-causality, 2023, https://github.com/csquires/6.S091-
causality/blob/main/lecture_notes/Lecture7.pdf



CRL Basics “

What is Causal Representation Learning? (figure taken from [4])

Latent Representation follows a
o 9 @ Structural Causal Model...

here, g is called “mixing function”

J» . .that generates the

entangled observations...

...which are also influenced
by random noise

Figure 7.1: The causal disentanglement model.

[4] Squires, Chandler. “Chapter 7 Causal Representation Learning” 6.S091-causality, 2023, https://github.com/csquires/6.S091-
causality/blob/main/lecture_notes/Lecture7.pdf



CRL Basics “

Schdlkopf et al. "Toward causal representation learning." Proceedings of the IEEE 2021

o ———————

Downstream
Tasks 1

_________

Downstream
Tasks 2

_________

Downstream
Tasks N

- - -



CRL Basics “

Why do we care?

» The independent mechanisms principle [5]:

i

Independent Causal Mechanisms (ICM) Principle.
The causal generative process of a system’s variables
is composed of autonomous modules that do not inform
or influence each other. In the probabilistic case, this
meauns that the conditional distribution of each variable
given its causes (i.e., its mechanism) does not inform
or influence the other mechanisms.

[5] Peters, Jonas, Dominik Janzing, and Bernhard Scholkopf. Elements of causal inference: foundations and learning
algorithms. The MIT Press, 2017.



CRL Basics “

Why do we care?

» The independent mechanisms principle [5]:

[

Independent Causal Mechanisms (ICM) Principle.
The causal generative process of a system’s variables
is composed of autonomous modules that do not inform
or influence each other. In the probabilistic case, this
meuans that the conditional distribution of each variable
given its causes (i.e., its mechanism) does not inform
or influence the other mechanisms.

[5] Peters, Jonas, Dominik Janzing, and Bernhard Scholkopf. Elements of causal inference: foundations and learning
algorithms. The MIT Press, 2017.



CRL Basics “

Why do we care?

= The modularity implied by the independent mechanism principle allows
for distribution shifts of single variables (conditional probability
distributions) and interventions - going beyond the i.i.d. setting

» Requires disentangled representation

= QOther benefits include typical advantages of causal models, such as

robustness, transferability, interpretability, sample-efficiency, ...



CRL Basics “

Why do we care?

» The sparse mechanism shift [5]:

Sparse Mechanism Shift (SMS). Small distribution
changes tend to manifest themselves in a sparse or local
way in the causal/disentangled factorization (4), i.e.,
they should usually not affect all factors simultaneously.

[5] Peters, Jonas, Dominik Janzing, and Bernhard Scholkopf. Elements of causal inference: foundations and learning
algorithms. The MIT Press, 2017.



CRL Basics “

Why do we care?

» The sparse mechanism shift [5]:
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Without any assumptions, identifiability is impossible on purely

observational data. There are three basic approaches [4]

Approaches to identifiability
of latent DAGs

e

Restrict mixing Restrict latent Incorporate
function g DAG G interventional data

Figure 7.2: Approaches to identifiability of latent DAG models.

[4] Squires, Chandler. “Chapter 7 Causal Representation Learning” 6.S091-causality, 2023, https://github.com/csquires/6.S091-
causality/blob/main/lecture_notes/Lecture7.pdf



CRL Basics “

Without any assumptions, identifiability is impossible on purely

observational data. There are three basic approaches

Approaches to identifiability
of latent DAGs

e.g. independence of latent
variables in non-causal
representation learning

Restrict mixing Restrict latent

Incorporate

function g DAG G interventional data

Figure 7.2: Approaches to identifiability of latent DAG models.

[4] Squires, Chandler. “Chapter 7 Causal Representation Learning” 6.S091-causality, 2023, https://github.com/csquires/6.S091-

causality/blob/main/lecture_notes/Lecture7.pdf
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(Some) Causal Representation
Learning Approaches



Invariant Causal Prediction “

Invariant Causal Prediction (ICP)

= Given data from different environments (i.e. interventions)

environment e = 1: environment e = 2: environment e = 3:

2 2 2
Ny 7@\ 2 B /CX

P 2 P
® ®N\ ®

Peters, Jonas, Peter Buhimann, and Nicolai Meinshausen. "Causal inference by using invariant prediction: identification and confidence
intervals." Journal of the Royal Statistical Society Series B: Statistical Methodology 2016



Invariant Causal Prediction “

Invariant Causal Prediction (ICP)

= Given data from different environments (i.e. interventions)

. Goal CIaSSIfy Y environment e = 1: environment e = 2:

&)

\
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environment e = 3:



Invariant Causal Prediction “

Invariant Causal Prediction (ICP)

= Given data from different environments (i.e. interventions)

* Goal: Classify Y et o i

» |dea: Structural ®\ @\
assignment for Y @\®/ ?@\@/@
remains identical for é é&

interventions notonY

environment e = 3:

2 <
®
ol
®



Invariant Causal Prediction “

» identify causal relationships

= construct valid confidence intervals for the effects of interventions
= Even when model is mis-specified, ICP can identify a subset of causal

variables by ensuring that the predictions remain invariant across envs.

environment e = 1: environment e = 2: environment e = 3:

=\ 2 2
[ ?@\ T /C&

2 ¥ Y
® ®N ®



Invariant Causal Prediction “

Given: Datasets D, = (X€,Y®) from environments e € €

Assumption 1 (Invariant prediction) There exists o vector of coefficients v* = (v, ,q’;)t
with support S* = {k: 73 # 0} C{L,...,p} that satisfies

foralle€ €. X has an arbitrary distribution and

Vgt XS B mdd LK ()

where € R is an intercept term, €° is random noise with mean zero, finite variance and

the same distribution F. across all e € €.

S*: set of predictors
Xe: predictor variable
Ye: target variable

Causal relationships remain invariant
across different environments

If a set of variables can predict the target
variable in all environments, it is likely to
contain only causal variables

Interested in settings where such careful
experimentation is not possible

different distributions of X® in the
environments are generated by unknown
and not precisely controlled interventions



Invariant Causal Prediction [6] “

Given: Datasets D, = (X€,Y®) from environments e € €

Assumption 1 (Invariant prediction) There exists a vector of coefficients v* = (771, ... ,fy;)t
with support S* :={k : v} # 0} C{1,...,p} that satisfies

oralle e &: XC€ has an arbitrary distribution and
[}

Ye=pu+ X"+ e°~F.ande® 1L Xg., (3)

where 1 € R is an intercept term, €€ is random noise with mean zero, finite variance and
the same distribution F. across all e € £.

—> Linear functions and no unobserved confounders

« only present results for the linear Gaussian models

« Assumption: the intervention does not change the conditional distribution of the target
given the causal predictors



- not specific to representation learning -
On the linearity assumption in causality

Reasons and implications of the linearity assumption



- not specific to representation learning -
On the linearity assumption in causality

Reasons and implications of the linearity assumption

» Restricting the space of functions rules out many possibilities, making
Identification easier (or even possible)

* |tis one of the (if not the) most common function appearing in our world

= “Knowing” (by assumption) the function, it is possible to extrapolate
outside of the training data (also true for other functions)

= Even if a more general function could be learned by a general function

approximator (e.g. neural network), extrapolation might fail completely



iInvariant Causal Representation Learning (iCaRL)

Lu, Chaochao, et al. "Nonlinear invariant risk minimization: A causal approach." arXiv preprint arXiv:2102.12353 (2021).



ICB.RL [7] “ Not to be confused with:

Incremental Classifier and

Representation Learning (iCaRL)

Invariant Causal Representation Learning (iICaRL)

« leverages causal inference principles to identify and utilize invariant

features across environments

[7] Lu, Chaochao, et al. "Nonlinear invariant risk minimization: A causal approach." arXiv preprint
arXiv:2102.12353 (2021).



Invariant Causal Representation Learning (iICaRL)

= Same goal as ICP but allows for non-linear functions

= |atent variables X can be connected

In any way that results in a DAG

Not to be confused with:
Incremental Classifier and
Representation Learning (iCaRL)




1 Not to be confused with:
ICB.RL “ Incremental Classifier and

Representation Learning (iCaRL)

Invariant Causal Representation Learning (iICaRL)

= optimization framework for training models under the Invariant Risk
Minimization (IRM) approach

» define a loss function that penalizes the variability of the risk across

different environments



ICB.RL [7] “ Not to be confused with:

Incremental Classifier and

Representation Learning (iCaRL)

Invariant Causal Representation Learning (iICaRL)

= Same goal as ICP but allows for non-linear functions

= |atent variables X can be connected

In any way that results in a DAG
= Three steps:
1. ldentify latent variables (extended iVAE)
2. Determine direct causes of Y (PC)

3. Learn invariant predictor based on direct causes only



Experiment on colored MNST

= Color is spuriously correlated with label (digit)

Top row: Intervention on cause variable changes shape but not color

Bottom row: Intervention on effect variable changes color but not shape



CausalVAE “

CausalVAE
= Variational autoencoder that encodes an SCM in the latent

representation

Yang et al. "Causalvae: Disentangled representation learning via neural structural causal models." CVPR 2021.



CausalVAE “

(1) Inference (2) Generate

(3) Details of Generative Process
e v

—_—_—————

N ———

(@) Intervene

Figure 2. Model structure of CausalVAE. The encoder takes observation x as inputs to generate independent exogenous variable €, whose
prior distribution is assumed to be standard Multivariate Gaussian. Then it is transformed by the Causal Layer into causal representations z
(Eq. 1) with a conditional prior distribution p(z|u). A Mask Layer is then applied to z to resemble the SCM in Eq. 2. After that, z is taken

as the input of the decoder to reconstruct the observation x.

Eq.1:z=ATz+e=(U —AT) 1, e~N(0,1)

Eq. 2:z; = g;(4;° z;m) + €




CausalVAE “

CausalVAE

= Variational autoencoder that encodes an SCM in the latent

representation
= True causal concepts u given during training

= Masking layer with adjacency matrix A allows for interventions

» Loss includes acyclicity constraint on A

£ = —ELBO + aH(A) + Bly + Ylm. lu = Eqx|lu —o(ATa)|[3 < &

. 2
H(A) = tr(I+ S Ao A)") —n =0 lm = Eangy D N2 — gi(Ai 0 zm,)||* < 5o
1

i=1



CausalVAE [8]

.

Intervene GENDER Intervene SMILE
EYES -~ d d -~ k1 ; ]
MOUTH
Changed | ) Changed
l&]

GENDER SMILE

not not
Influenced Influenced

a e A.W '%JP:J'

Figure 4. Results of CausalVAE model on CelebA(SMILE). The controlled factors are GENDER, SMILE, EYES OPEN and MOUTH OPEN
respectively. More intervention results are shown in Appendix D.3.



Implicit latent causal models (ILCMs) —> Z
= Learn causal representations from
pixels by using pairs of (counterfactual)
Intervention

samples x and X; no other labels

= Need to observe an intervention on —>

any variable that should be identified

Brehmer, Johann, et al. "Weakly supervised causal representation learning." NeurlPS 2022
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Definition 1 (Latent causal model (LCM)). A latent causal model M = (C, X, g,T, pz) consists of

¢ an acyclic SCM C, which is faithful (all independencies are encoded in its graph [24]),
* un observation spuce X,

* a decoder g : Z — X that is diffeomorphic onto its image,

* u set I of interventions on C, and

* a probability measure pg over I.

Theorem 1 (Identifiability of R-valued LCMs from weak supervision). Let M = (C, X, ¢,Z, p1)
and M' = {C", X, ¢, T, p’.) be LCMs with the following properties:

Figure 2: In LCM M, z; denotes whether the ¢-th stone

from the front is standing. Intervening on the second * The LCMs have an identical observation spuce X.
variable, z», leads to Z. The decoder g renders z, 7 as * The SCMs C and C' both consist of n real-valued endogeneous causal variables and

corresponding exogenous noise variables, i.e. £ = Z; = Z] = £l = R.

 The intervention sets T and T’ consist of all atomic, perfect interventions, T =
{0, {20}, -..,{zn}} and similar for T'.

* The intervention distribution pr und py, have full support.

images x, . LCM M’ has an equivalent representation
in which z denotes whether the 7-th stone from the back
has fallen. In Thm. 1, we prove that if and only if two
causal models have the same pixel distribution p(z, ),

there exists an LCM isomorphism ¢: an element-wise Then the following two statements are equivalent:
reparameterization of the causal variables plus a permu- 1. The LCMs entail equal weakly supervised distributions, pf/{ (z,2) = pf,‘, (x,T).
tation of the ordering that commutes with interventions 2. The LCMs are equivalent in the sense of Def. 2, M ~ M’

and causal mechanisms.
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Definition 1 (Latent causal model (LCM)). A latent causal model M = (C, X, g,T, pz) consists of

¢ an acyclic SCM C, which is faithful (all independencies are encoded in its graph [24]),
* un observation spuce X,

* a decoder g : Z — X that is diffeomorphic onto its image,

* u set I of interventions on C, and

* a probability measure pg over I.

Theorem 1 (Identifiability of R-valued LCMs from weak supervision). Let M = (C, X, ¢,Z, p1)
and M' = {C", X, ¢, T, p’.) be LCMs with the following properties:

* The LCMs have an identical observation space X.
* The SCMs C and C' both consist of n real-valued endogeneous causal variables and
corresponding exogenous noise variables, i.e. £ = Z; = Z] = £l = R.

Figure 2: In LCM M, z; denotes whether the 4-th stone  The intervention sets T and T’ consist of all atomic, perfect interventions, T =
) LI !

from the front is standing. Intervening on the second (0. {z0}, .., {zn}} and similar for T

variable, zs, leads to Z. The decoder g renders z, 7 as * The intervention distribution pg and p7, have full support.

images =, z. LCM M’ has an equivalent representation Then the following two statements are equivalent:

. S .
in which z; denotes whether the 4-th stone from the back 1. The LCMs entail equal weakly supervised distributions, pf/{ (@, @) = pf,‘, (@, ).

has fallen. In Thm. 1, we prove that if and only if two 2. The LCMs are equivalent in the sense of Def. 2, M ~ M.
causal models have the same pixel distribution p(z, ),

there exists an LCM isomorphism ¢: an element-wise
reparameterization of the causal variables plus a permu-

tation of the ordering that commutes with interventions Main result: an LCM M can be identified from p(X ~ X) up to
and causal mechanisms. - ) . . !
a relabeling and elementwise transformations of the causal
variables




Data Noise encoding Projection Reconstruction
[ m
Encoder 4 ... . mE Decoder S
=

rd
"" Solution
Noise prior w0 function
Intervention D. _— _ ‘

encoder O o
Intervention Intervened Intervention
target causal variable prior
‘ Encoder | [ .
—_——— > EmH SE m Decoder R
m m
m m
Data Noise encoding Projection Reconstruction

Figure 3: ILCM architecture. Pre- and post-intervention data (left) are encoded to noise encodings and
intervention targets, which are then decoded back to the data space. To compute the prior probability
density, the noise encodings are transformed into causal variables with the neural solution function.



Nice results on synthetic datasets

Varying,z;

Robot
arm
"4 N
Blue
Interveping on z; light
‘ N

Red
||ght

. Figure 7: Causal graph of
Figure 6: Varymg learned causal factors vs. intervening on them. With a trained ILCM, we encode the CausalCircuit dataset.

a single test image (left column). In the top row, we then vary the latent z; independently, without
computing causal effects, and show the corresponding reconstructed images. Only the robot arm
position changes, highlighting that we learned a disentangled representation. In the bottom row we
instead intervene on z; and observe the causal effects: the robot arm may activate lights, which in
turn can affect other lights in the circuit.



Content-Style Separation “

A causal view on data augmentation

= Goal: learn separate representations for content and style of images

Von Kigelgen, Julius, et al. "Self-supervised learning with data augmentations provably isolates content from style." NeurlPS 2021




Content-Style Separation “ -
style change

A causal view on data augmentation

» Goal: learn separate representations
for content and style of images

= QObservation x, content vars c, style

vars s, and augmentations § and x

)

- e e o o e e - -

Figure 1: Overview of our problem for-
mulation. We partition the latent variable
z into content ¢ and style s, and allow for
statistical and causal dependence of style
on content. We assume that only style
changes between the original view x and
the augmented view X, i.e., they are ob-
tained by
ftoz = (c,s)and z = (c,8).



Content-Style Separation “ .
style change

A causal view on data augmentation

» Goal: learn separate representations 5 @
for content and style of images ;

- e e o o e e - -

= QObservation x, content vars c, style

Figure 1: Overview of our problem for-

] mulation. We partition the latent variable

vars s, and augmentathnS S and x z into content ¢ and style s, and allow for

statistical and causal dependence of style

on content. We assume that only style

. Why c—S and not s - ¢ ? changes between the original view x and

the augmented view X, i.e., they are ob-
tained by

ftoz = (c,s)and z = (c,8).



Content-Style Separation [10]

style change

A causal view on data augmentation

Goal: learn separate representations
for content and style of images
Observation x, content vars c, style
vars s, and augmentations § and x
Why ¢ — sand not s —» ¢ ? Because
the class prediction should be invariant

to the style, it must not depend on it

Figure 1: Overview of our problem for-
mulation. We partition the latent variable
z into content ¢ and style s, and allow for
statistical and causal dependence of style
on content. We assume that only style
changes between the original view x and
the augmented view X, i.e., they are ob-
tained by
ftoz = (c,s)and z = (c,8).



Content-Style Separation “

= Counterfactual guestion: “what would have happened if the style

variables had been (randomly) perturbed, all else being equal?”
» Given a fixed size of the content representation, identification

can be achieved by finding a function with the same (or very

similar) outputs on the original and augmented images x and X

while avoiding that a collapsed representation is learned



Possible loss function:

EAlignMaxEnt(g) = E(x,f{)wpx,i [

Here, the differential entropy H avoids a collapsed representation



p(Y" | do(X))

Section

S Summary & Conclusion
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Summarizing Thoughts “

What works well? What are problems and challenges?

» Given a specific observation, there is not just one single

“true” representation

= Current research is often tested on synthetic problems
and relies on specific assumptions

» |f these assumptions are satisfied, representation
learning and manipulation of the latent space works well

= Still an open research topic



» Causal representation learning: learning low-dimensional
representations of higher-dimensional data where the latent
representation is an SCM

= Causal representations have several advantages due to modularity

» |dentification is impossible without assumptions or further information
(i.e. interventional or counterfactual data)

= Current research mostly focuses specific problems
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