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Motivation

You have learned about causal discovery. 

Given such an image, what is the causal graph?



Motivation

What about this image?



Motivation

Or this?



Motivation

[1] Kirillov, Alexander, et al. "Segment anything." arXiv preprint arXiv:2304.02643 (2023).

We can group parts of the image 

that “belong together”

(here: Segment Anything [1])

Use these as variables?



Motivation

We can group parts of the image 

that “belong together”

(here: Segment Anything [1])

Use these as variables?

[1] Kirillov, Alexander, et al. "Segment anything." arXiv preprint arXiv:2304.02643 (2023).

But what should a variable be?

→ More than just “pixel labeling”



Motivation

Another example: A classifier (clf) tries to distinguish between cows and camels
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Another example: A classifier tries to distinguish between cows and camels

T
e

s
t 
D

a
ta

Clearly a cow!

A camel, 

obviously!

▪ Use disentangled 

representations for 

OOD classification

▪ Relations are important:

Camels usually live in a 

desert but a camel on 

grass is still a camel.



Motivation

We have seen:

▪ Causal Inference known CVs , CG

▪ Causal Structure Learning known CVs , CG

CVs: Causal Variables

CG: Causal Graph



Motivation

We have seen:

▪ Causal Inference known CVs , CG

▪ Causal Structure Learning known CVs , CG

Today:

▪ Causal Representation Learning known CVs , CG

CVs: Causal Variables

CG: Causal Graph
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Representation Learning 

Representation Learning: “learning representations of the data 

that make it easier to extract useful information when building 

classifiers or other predictors” [2]

[2] Bengio, Yoshua, Aaron Courville, and Pascal Vincent. "Representation learning: A review and new perspectives." IEEE transactions 

on pattern analysis and machine intelligence 35.8 (2013): 1798-1828.



Representation Learning 

Representation Learning: “learning representations of the data 

that make it easier to extract useful information when building 

classifiers or other predictors” [2]

[2] Bengio, Yoshua, Aaron Courville, and Pascal Vincent. "Representation learning: A review and new perspectives." IEEE transactions 

on pattern analysis and machine intelligence 35.8 (2013): 1798-1828.

▪ Also: Feature Learning

▪ Technically most if not all of deep learning 

incorporates feature learning

▪ Not exclusive to images (though these will be 

the focus of this lecture)

Input Data Label

Features



Representation Learning 

https://attri.ai/blog/introduction-to-large-language-models

▪ Not exclusive to images (though these will be the focus of this lecture)



Representation Learning 

▪ Not exclusive to images (though these will be the focus of this lecture)

Jenni et al., Video Representation Learning by Recognizing Temporal Transformations, ECCV 2020  

Video Representation Learning by Recognizing Temporal Transformations
Video Representation Learning by Recognizing Temporal Transformations

https://sjenni.github.io/temporal-ssl/


Representation Learning 

▪ Data 𝑋 ∈ ℝ𝑝 can be described a set of latent variables 𝑍 ∈ ℝ𝑑 where 

𝑑 ≪ 𝑝. Then, 𝑍 = ℎ(𝑋) and 𝑋 = 𝑔(𝑍). 

Illustrative example:

𝑋 ∈ ℝ2500𝑥1661

ℎ(𝑋)

Z ∈ ℝ1000 (*)

(*) let’s say there are 1000 classes that can be either true or false

g(𝑍)



Representation Learning 

▪ Data 𝑋 ∈ ℝ𝑝 can be described a set of latent variables 𝑍 ∈ ℝ𝑑 where 

𝑑 ≪ 𝑝. Then, 𝑍 = ℎ(𝑋) and 𝑋 = 𝑔(𝑍). 

?
ℎ = 𝑔−1



Representation Learning 

▪ Data 𝑋 ∈ ℝ𝑝 can be described a set of latent variables 𝑍 ∈ ℝ𝑑 where 

𝑑 ≪ 𝑝. Then, 𝑍 = ℎ(𝑋) and 𝑋 = 𝑔(𝑍). 

ℎ = 𝑔−1
?

▪ If 𝑔 is invertible, 𝑍 = 𝑔−1 𝑋 is a perfect representation of 𝑋

▪ However, due to 𝑑 ≪ 𝑝, 𝑔 can not be invertible if we want to capture the

full space of 𝑋 ∈ ℝ𝑝



Representation Learning 

▪ Two neural networks: encoder 𝑋 → 𝑍 and decoder 𝑍 → 𝑋

Autoencoder



Representation Learning 

What does an autoencoder achieve? What can it not be used for?



Representation Learning 

What does an autoencoder achieve? What can it not be used for?

Learn compact encoded representation that can be used to reconstruct 

the original input with minimal error

Encoded representation is not guaranteed to have any tangible 

meaning; no disentanglement

It is difficult if not impossible to interpret or purposefully “intervene” on 

the encoded representation



Representation Learning 

Variational Autoencoder

▪ The latent is encoded as a distribution instead of a single vector

▪ Trained with loss for reconstruction and regularization



Representation Learning 

There are many good resources going into more depth on the idea and 

mathematical details of variational autoencoders which were skipped due 

to time constraints. We recommend looking into these in case of interest.



Representation Learning 

▪ Autoencoders work well for uncorrelated features

▪ What if features are correlated?

▪ Example (taken from [3]): autoencoder learns two latent features

[3] Träuble, Frederik, et al. "On disentangled representations learned from correlated data." International Conference on Machine Learning, 2021.

Correlated Features:

Body Height and Foot Length
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▪ Autoencoders work well for uncorrelated features

▪ What if features are correlated?

▪ Example (taken from [3]): autoencoder learns two latent features

Correlated Features:

Body Height and Foot Length
Entangled

Features



Representation Learning 

▪ Autoencoders work well for uncorrelated features

▪ What if features are correlated?

▪ Example: autoencoder learns two latent features

Correlated Features:

Body Height and Foot Length
Entangled

Features

Disentangled

Features



Representation Learning 

▪ Disentangled features do not match true probability density as well as 

entangled representation

▪ Probability mass is placed outside of true (train) distribution

▪ Independency assumption of latent features does not hold

▪ We want to learn interpretable, disentangled features representations 

that take the structure of the real world into account

→ Therefore…



Causal Representation 
Learning (CRL) Basics

Section

3



CRL Basics

▪ Causal Inference known CVs , CG

▪ Causal Structure Learning known CVs , CG

▪ Causal Representation Learning known CVs , CG

CVs: Causal Variables

CG: Causal Graph

What is Causal Representation Learning?



CRL Basics

[4] Squires, Chandler. “Chapter 7 Causal Representation Learning” 6.S091-causality, 2023, https://github.com/csquires/6.S091-

causality/blob/main/lecture_notes/Lecture7.pdf

What is Causal Representation Learning? (figure taken from [4])
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[4] Squires, Chandler. “Chapter 7 Causal Representation Learning” 6.S091-causality, 2023, https://github.com/csquires/6.S091-

causality/blob/main/lecture_notes/Lecture7.pdf

Latent Representation follows a 

Structural Causal Model…

What is Causal Representation Learning? (figure taken from [4])



CRL Basics

[4] Squires, Chandler. “Chapter 7 Causal Representation Learning” 6.S091-causality, 2023, https://github.com/csquires/6.S091-

causality/blob/main/lecture_notes/Lecture7.pdf

Latent Representation follows a 

Structural Causal Model…

…that generates the 

entangled observations…

What is Causal Representation Learning? (figure taken from [4])

here, 𝑔 is called “mixing function”
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[4] Squires, Chandler. “Chapter 7 Causal Representation Learning” 6.S091-causality, 2023, https://github.com/csquires/6.S091-

causality/blob/main/lecture_notes/Lecture7.pdf

Latent Representation follows a 

Structural Causal Model…

…that generates the 

entangled observations…

…which are also influenced 

by random noise

What is Causal Representation Learning? (figure taken from [4])

here, 𝑔 is called “mixing function”



CRL Basics

What is Causal Representation Learning? (figure taken from [4])

[4] Squires, Chandler. “Chapter 7 Causal Representation Learning” 6.S091-causality, 2023, https://github.com/csquires/6.S091-

causality/blob/main/lecture_notes/Lecture7.pdf

Latent Representation follows a 

Structural Causal Model…

…that generates the 

entangled observations…

…which are also influenced 

by random noise

here, 𝑔 is called “mixing function”



CRL Basics

Schölkopf et al. "Toward causal representation learning." Proceedings of the IEEE 2021



CRL Basics

Why do we care?

▪ The independent mechanisms principle [5]:

[5] Peters, Jonas, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference: foundations and learning 

algorithms. The MIT Press, 2017.



CRL Basics

Why do we care?

▪ The independent mechanisms principle [5]:

[5] Peters, Jonas, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference: foundations and learning 

algorithms. The MIT Press, 2017.



CRL Basics

Why do we care?

▪ The modularity implied by the independent mechanism principle allows 

for distribution shifts of single variables (conditional probability 

distributions) and interventions → going beyond the i.i.d. setting

▪ Requires disentangled representation

▪ Other benefits include typical advantages of causal models, such as 

robustness, transferability, interpretability, sample-efficiency, …  



CRL Basics

Why do we care?

▪ The sparse mechanism shift [5]:

[5] Peters, Jonas, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference: foundations and learning 

algorithms. The MIT Press, 2017.



CRL Basics

Why do we care?

▪ The sparse mechanism shift [5]:

[5] cite



CRL Basics

[4] Squires, Chandler. “Chapter 7 Causal Representation Learning” 6.S091-causality, 2023, https://github.com/csquires/6.S091-

causality/blob/main/lecture_notes/Lecture7.pdf

Without any assumptions, identifiability is impossible on purely 

observational data. There are three basic approaches [4]



CRL Basics

[4] Squires, Chandler. “Chapter 7 Causal Representation Learning” 6.S091-causality, 2023, https://github.com/csquires/6.S091-

causality/blob/main/lecture_notes/Lecture7.pdf

Without any assumptions, identifiability is impossible on purely 

observational data. There are three basic approaches

e.g. independence of latent 

variables in non-causal 

representation learning
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Invariant Causal Prediction 

Peters, Jonas, Peter Bühlmann, and Nicolai Meinshausen. "Causal inference by using invariant prediction: identification and confidence 

intervals." Journal of the Royal Statistical Society Series B: Statistical Methodology 2016

Invariant Causal Prediction (ICP)

▪ Given data from different environments (i.e. interventions)



Invariant Causal Prediction 

Invariant Causal Prediction (ICP)

▪ Given data from different environments (i.e. interventions)

▪ Goal: Classify 𝑌



Invariant Causal Prediction 

Invariant Causal Prediction (ICP)

▪ Given data from different environments (i.e. interventions)

▪ Goal: Classify 𝑌

▪ Idea: Structural

assignment for Y

remains identical for

interventions not on 𝑌



Invariant Causal Prediction 

▪ identify causal relationships 

▪ construct valid confidence intervals for the effects of interventions

▪ Even when model is mis-specified, ICP can identify a subset of causal 

variables by ensuring that the predictions remain invariant across envs.



Invariant Causal Prediction

Given: Datasets 𝐷𝑒 ≔ 𝑋ⅇ, 𝑌ⅇ from environments ⅇ ∈ ℰ

• Causal relationships remain invariant 

across different environments

• If a set of variables can predict the target 

variable in all environments, it is likely to 

contain only causal variables

• Interested in settings where such careful 

experimentation is not possible

• different distributions of Xe in the 

environments are generated by unknown 

and not precisely controlled interventions

S*: set of predictors

Xe: predictor variable

Ye: target variable



Invariant Causal Prediction [6]

Given: Datasets 𝐷𝑒 ≔ 𝑋ⅇ, 𝑌ⅇ from environments ⅇ ∈ ℰ

→ Linear functions and no unobserved confounders
• only present results for the linear Gaussian models

• Assumption: the intervention does not change the conditional distribution of the target 

given the causal predictors



- not specific to representation learning -
On the linearity assumption in causality

Reasons and implications of the linearity assumption



- not specific to representation learning -
On the linearity assumption in causality

Reasons and implications of the linearity assumption

▪ Restricting the space of functions rules out many possibilities, making 

identification easier (or even possible)

▪ It is one of the (if not the) most common function appearing in our world

▪ “Knowing” (by assumption) the function, it is possible to extrapolate

outside of the training data (also true for other functions)

▪ Even if a more general function could be learned by a general function 

approximator (e.g. neural network), extrapolation might fail completely



iCaRL

invariant Causal Representation Learning (iCaRL)

Lu, Chaochao, et al. "Nonlinear invariant risk minimization: A causal approach." arXiv preprint arXiv:2102.12353 (2021).



iCaRL [7]

invariant Causal Representation Learning (iCaRL)

• leverages causal inference principles to identify and utilize invariant 

features across environments

Not to be confused with: 

Incremental Classifier and 

Representation Learning (iCaRL)

[7] Lu, Chaochao, et al. "Nonlinear invariant risk minimization: A causal approach." arXiv preprint 

arXiv:2102.12353 (2021).



iCaRL

invariant Causal Representation Learning (iCaRL)

▪ Same goal as ICP but allows for non-linear functions

▪ Latent variables 𝑋 can be connected

in any way that results in a DAG

Not to be confused with: 

Incremental Classifier and 

Representation Learning (iCaRL)



iCaRL

invariant Causal Representation Learning (iCaRL)

▪ optimization framework for training models under the Invariant Risk 

Minimization (IRM) approach

▪ define a loss function that penalizes the variability of the risk across 

different environments

Not to be confused with: 

Incremental Classifier and 

Representation Learning (iCaRL)



iCaRL [7]

invariant Causal Representation Learning (iCaRL)

▪ Same goal as ICP but allows for non-linear functions

▪ Latent variables 𝑋 can be connected

in any way that results in a DAG

▪ Three steps:

1. Identify latent variables (extended iVAE)

2. Determine direct causes of 𝑌 (PC)

3. Learn invariant predictor based on direct causes only

Not to be confused with: 

Incremental Classifier and 

Representation Learning (iCaRL)



iCaRL

Experiment on colored MNST

▪ Color is spuriously correlated with label (digit)

Top row: Intervention on cause variable changes shape but not color

Bottom row: Intervention on effect variable changes color but not shape



CausalVAE

Yang et al. "Causalvae: Disentangled representation learning via neural structural causal models." CVPR 2021.

CausalVAE

▪ Variational autoencoder that encodes an SCM in the latent 

representation



CausalVAE

Eq. 1: 𝑧 = 𝐴𝑇𝑧 + 𝜖 = 𝐼 − 𝐴𝑇 −1𝜖, 𝜖~𝒩(0, 𝐼) Eq. 2: zi = 𝑔𝑖 𝐴𝑖 ∘ 𝑧; 𝜂𝑖 + 𝜖𝑖



CausalVAE

CausalVAE

▪ Variational autoencoder that encodes an SCM in the latent 

representation

▪ True causal concepts 𝑢 given during training

▪ Masking layer with adjacency matrix 𝐴 allows for interventions

▪ Loss includes acyclicity constraint on 𝐴



CausalVAE [8]



ILCM 

Implicit latent causal models (ILCMs)

▪ Learn causal representations from 

pixels by using pairs of (counterfactual) 

samples 𝑥 and ෤𝑥; no other labels

▪ Need to observe an intervention on 

any variable that should be identified

Brehmer, Johann, et al. "Weakly supervised causal representation learning." NeurIPS 2022



ILCM [9]



ILCM [9]

Main result: an LCM M can be identified from p(x, ˜ x) up to 

a relabeling and elementwise transformations of the causal 

variables



ILCM



ILCM

Nice results on synthetic datasets



Content-Style Separation

Von Kügelgen, Julius, et al. "Self-supervised learning with data augmentations provably isolates content from style." NeurIPS 2021

A causal view on data augmentation

▪ Goal: learn separate representations for content and style of images



Content-Style Separation

A causal view on data augmentation

▪ Goal: learn separate representations 

for content and style of images

▪ Observation 𝑥, content vars 𝑐, style 

vars 𝑠, and augmentations ǁ𝑠 and ෤𝑥



Content-Style Separation

A causal view on data augmentation

▪ Goal: learn separate representations 

for content and style of images

▪ Observation 𝑥, content vars 𝑐, style 

vars 𝑠, and augmentations ǁ𝑠 and ෤𝑥

▪ Why 𝒄 → 𝒔 and not 𝒔 → 𝒄 ?



Content-Style Separation [10]

A causal view on data augmentation

▪ Goal: learn separate representations 

for content and style of images

▪ Observation 𝑥, content vars 𝑐, style 

vars 𝑠, and augmentations ǁ𝑠 and ෤𝑥

▪ Why 𝑐 → 𝑠 and not 𝑠 → 𝑐 ? Because 

the class prediction should be invariant 

to the style, it must not depend on it



Content-Style Separation

▪ Counterfactual question: “what would have happened if the style 

variables had been (randomly) perturbed, all else being equal?”

▪ Given a fixed size of the content representation, identification 

can be achieved by finding a function with the same (or very 

similar) outputs on the original and augmented images 𝑥 and ෤𝑥

while avoiding that a collapsed representation is learned 



Content-Style Separation [10]

Possible loss function:

Here, the differential entropy 𝐻 avoids a collapsed representation
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Summarizing Thoughts

What works well? What are problems and challenges?
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▪ Given a specific observation, there is not just one single 

“true” representation

▪ Current research is often tested on synthetic problems 

and relies on specific assumptions
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Summarizing Thoughts

What works well? What are problems and challenges?

▪ Given a specific observation, there is not just one single 

“true” representation

▪ Current research is often tested on synthetic problems 

and relies on specific assumptions

▪ If these assumptions are satisfied, representation 

learning and manipulation of the latent space works well

▪ Still an open research topic



Conclusion

▪ Causal representation learning: learning low-dimensional 

representations of higher-dimensional data where the latent 

representation is an SCM

▪ Causal representations have several advantages due to modularity

▪ Identification is impossible without assumptions or further information 

(i.e. interventional or counterfactual data)

▪ Current research mostly focuses specific problems
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