Machines Climbing Pearl's Ladder of Causation Lecture II - Causal Discovery

adele.ribeiro@uni-marburg.de https://adele.github.io/ GitHub: <u>@adele</u> | Youtube: <u>@adelehelena</u> | X: <u>@adelehr</u>

Faculty of Mathematics and Computer Science, Philipps-University of Marburg Institute of Medical Informatics, University of Münster

> 2nd European Summer School on Artificial Intelligence (ESSAI) July 22-26, 2024

Adèle H. Ribeiro

Outline

- Bayesian Networks Encoders of Conditional Independencies
- Markov Equivalence Class
- **D-Separation**
- Causal Discovery Score-Based & Constraint-Based Algorithms - Fast Causal Inference (FCI) Algorithm
- Advances in Causal Discovery under Latent Confounding
 - From Observational & Interventional Data / Multiple Environments
 - Integration of Background Knowledge
 - Probabilistic Approach for Modeling Uncertainty
 - Parametric Approaches Linear + Non-Gaussian / Additive Noise Models
 - Dynamic Systems: Cycles and Time-Series Data
- Current Challenges and Open Problems

What Do Statistical Associations Reveal?

"one user of the Reddit website posted the following graph"

The Real Cause of Increasing Autism Prevalence?

What Do Statistical Associations Reveal?

The graph, titled "A New Parameter for Sex Education," appeared in a humorous publication in Nature.

"Perhaps the old tall tale is right: Perhaps storks do bring babies after all."

"Pairs of brooding storks in West Germany and the number of newborn human babies."

Correlation does not imply causation!

$$\mathcal{M}_{1} = \begin{cases} \mathbf{V} = \{X, Y\} \\ \mathbf{U} = \{U_{x}, U_{Y}\} \\ \mathcal{F} = \begin{cases} f_{X}(U_{X}) \\ f_{Y}(X, U_{Y}) \\ f_{Y}(X, U_{Y}) \end{cases} \\ P(\mathbf{U}) \end{cases}$$

 $\mathbf{V} = \{X, Y\}$ $\mathcal{M}_{N-1} = \begin{cases} \mathbf{U} = \{U_x, U_Y, U_{X,Y}\} \\ \mathcal{F} = \begin{cases} f_X(Y, U_X, U_{X,Y}) \\ f_Y(U_Y, U_{X,Y}) \end{cases}$ $P(\mathbf{U})$

$$\mathcal{M}_{N} = \begin{cases} \mathbf{V} = \{X, Y\} \\ \mathbf{U} = \{U_{x}, U_{Y}\} \\ \mathcal{F} = \begin{cases} f_{X}(U_{X}) \\ f_{Y}(U_{Y}) \\ f_{Y}(U_{Y}) \end{cases} \end{cases}$$

Markov Equivalence Class

(class of models implying the same set of conditional independencies)

Correlation does not imply causation!

I Causal Diagrams

Observational Data

Å

P(Y|X=x)

Loss of Information / Knowledge

Potential SCMs

$$\begin{array}{c}
\mathcal{H}_{11} = \langle \mathbf{V}, \mathbf{U}_{1}, \mathcal{F}_{11}, P_{11}(\mathbf{u}_{1}) \rangle \\
\vdots \\
\mathcal{M}_{1k_{1}} = \langle \mathbf{V}, \mathbf{U}_{1}, \mathcal{F}_{1k_{1}}, P_{1k_{1}}(\mathbf{u}_{1}) \rangle \\
\mathcal{M}_{21} = \langle \mathbf{V}, \mathbf{U}_{2}, \mathcal{F}_{21}, P_{21}(\mathbf{u}_{2}) \rangle \\
\vdots \\
\mathcal{M}_{2k_{2}} = \langle \mathbf{V}, \mathbf{U}_{2}, \mathcal{F}_{2k_{2}}, P_{2k_{2}}(\mathbf{u}_{2}) \rangle \\
\mathcal{M}_{31} = \langle \mathbf{V}, \mathbf{U}_{3}, \mathcal{F}_{31}, P_{31}(\mathbf{u}_{3}) \rangle \\
\vdots \\
\mathcal{M}_{3k_{3}} = \langle \mathbf{V}, \mathbf{U}_{3}, \mathcal{F}_{3k_{3}}, P_{3k_{3}}(\mathbf{u}_{3}) \rangle \\
\mathcal{M}_{41} = \langle \mathbf{V}, \mathbf{U}_{4}, \mathcal{F}_{4} \\
\mathcal{M}_{51} = \langle \mathbf{V}, \mathbf{U}_{5}, \mathcal{F}_{5} \\
\vdots \\
\end{array}$$
Multiple neural net leading to different

 $\mathcal{M}_{51} = \langle \mathbf{V}, \mathbf{U}_5, \mathcal{F}_5 \rangle$

Ра

 $\mathcal{M}_{5k_5} = \langle \mathbf{V}, \mathbf{U}_5, \mathcal{F}_{5k_5}, P_{5k_5}(\mathbf{u}_5) \rangle$

 \mathbf{U}_5

ent causal explanations!

$$(X) \leftarrow (Y)$$

Loss of Information / Knowledge

Association vs Causation

https://xkcd.com/925/ - Creative Commons Attribution-NonCommercial 2.5 License.

Will we be able to decide the true relationship just by **seeing** more data?

Which type of data would helps us to derive more definite conclusions?

How is then possible to learn causal relations solely from observational data?

Bayesian Network

A DAG, possibly with latent confounders (ADMG), representing the **conditional independences** implied by an SCM

Directed Acyclic Graph Acyclic Directed Mixed Graph

10

Graphical Kinship Notation

Directed Acyclic Graph (DAG)

- X and Y are parents of Z, i.e., $X, Y \in Pa(Z)$ Z is a child of Y, i.e., $Z \in Ch(Y)$
- W is a descendent of X, i.e., $W \in De(X)$
- Y is ancestor of W, i.e., $Y \in An(W)$
- Y is non-descendant of X, i.e., $Y \in NDesc(X)$

11

Graphical Kinship Notation

- X and Y are parents of Z, i.e., $X, Y \in Pa(Z)$ Z is a child of Y, i.e., $Z \in Ch(Y)$
- W is a descendent of X, i.e., $W \in De(X)$
- Y is ancestor of W, i.e., $Y \in An(W)$

Acyclic Directed Mixed Graph (ADMG)

- Y is non-descendant of X, i.e., $Y \in NDesc(X)$
- A is spouse of W

Bayesian Networks & Markov Condition

P is satisfies the **Markov Condition** w.r.t. G

Edges have no causal semantics!

A DAG G over V is a Bayesian Network for a joint probability distribution P(V) if, for every $V_i \in \mathbf{V}$, it holds that $V_i \perp NDesc_i \mid Pa_i$ and, therefore, $P(\mathbf{v})$ factorizes as follows:

 $P(\mathbf{v}) = \frac{P(w|z, x, y, a)}{P(z|x, y, a)} \frac{P(z|x, y, a)}{P(x|y, a)} \frac{P(y|a)}{P(y|a)} P(x|y)$ = P(w|z) P(z|x,y) P(x|a) P(y|a) P(a)

 $W \perp\!\!\!\perp X, Y, A \mid\!\!\!\!\!\mid Z \qquad A \perp\!\!\!\!\perp Z \mid\!\!\!\!\!\!\mid X, Y \qquad Y \perp\!\!\!\!\!\perp X \mid\!\!\!\!\!\mid A$

13

Bayesian Networks & Semi-Markov Condition

An ADMG G over V is a Bayesian Network for a joint probability distribution P(V) if, for every $V_i \in \mathbf{V}$, it holds that $V_i \perp NDesc_i | Pa_i^+$ and, therefore, $P(\mathbf{v})$ factorizes as follows:

P is satisfies the Semi-Markov Condition w.r.t. G

$$P(\mathbf{v}) = \prod_{V_i \in \mathbf{V}} P(v_i | pa_i^+).$$

The extended parents of V_i is defined as $Pa_i^+ = Pa^1(\{V \in \mathbb{C}(V_i) : V \le V_i\}) \setminus \{V_i\},\$ where $Pa^{1}(V) = Pa(V) \cup V$ and $\mathbf{C}(V_{i})$ is a maximal path entirely made of bidirected edges.

 $P(\mathbf{v}) = \frac{P(e \mid d, c, b, a, f)}{P(d \mid c, b, a, f)} \frac{P(c \mid b, a, f)}{P(b \mid a, f)} \frac{P(f \mid a)}{P(f \mid a)} P(f \mid a)$ $= P(e \mid d, c, a) P(d \mid c, b, a) P(c \mid a) P(b \mid a) P(f \mid a) P(a)$

 $E \perp F, B \mid D, C, A$ $D \perp F \mid B, C, A$ $C \perp F, B \mid A$ $B \perp F \mid A$

14

Distribution

P(X, Y)with $P(Y|X) \neq P(Y)$

i.e., $X \perp Y$

Bayesian Networks Factorization $P(x, y) = P(y \mid x)P(x)$ $P(x, y) = P(x \mid y)P(y)$ V $oldsymbol{V}$ \boldsymbol{V} X

Definition (Markov Equivalence Class, MEC for short): A Markov Equivalence Class is a set of models that encode the same set of conditional independencies.

Markov

Equivalent BNs

Distribution

Factorization

P(X, Y)with $P(Y|X) \neq P(Y)$ $P(x, y) = P(y \mid x)P(x)$

 $P(x, y) = P(x \mid y)P(y)$

i.e., $X \not\sqcup Y$

All models imply no independence and no other invariance

Definition (Markov Equivalence Class, MEC for short): A Markov Equivalence Class is a set of models that encode the same set of conditional independencies.

Distribution

 $P(x, y, z) = P(x \mid y, z)P(y \mid z)P(z)$ $= P(x \mid z)P(z \mid y)P(y)$

 $P(x, y, z) = P(y \mid x, z)P(x \mid z)P(z)$ = P(y | z)P(x | z)P(z)

P(X, Y, Z)with P(Y|X,Z) = P(Y|X)i.e., $X \perp \!\!\!\perp Y \mid Z$

Factorization

 $P(x, y, z) = P(y \mid x, z)P(z \mid x)P(x)$ $= P(y \mid z)P(z \mid x)P(x)$

Bayesian Networks

17

Distribution

Factorization

P(X, Y, Z)with P(Y|X,Z) = P(Y|X)i.e., $X \perp \!\!\!\perp Y \mid Z$

 $P(x, y, z) = P(y \mid x, z)P(z \mid x)P(x)$ $= P(y \mid z)P(z \mid x)P(x)$

 $P(x, y, z) = P(x \mid y, z)P(y \mid z)P(z)$ $= P(x \mid z)P(z \mid y)P(y)$

All models imply only $X \perp Y \mid Z$ and Z is always a *non-collider* in such models.

 $= P(y \mid z)P(x \mid z)P(z)$

Bayesian Networks

Distribution

P(X, Y, Z)with P(Y|X) = P(Y)i.e., $X \perp \!\!\!\perp Y$

 $P(x, y, z) = P(z \mid x, y) P(x \mid y) P(y)$ = P(z | x, y) P(x) P(y)

Factorization

Bayesian Networks

Distribution

P(X, Y, Z)with P(Y|X) = P(Y)i.e., $X \perp \!\!\!\perp Y$

 $P(x, y, z) = P(z \mid x, y) P(x \mid y) P(y)$ $= P(z \mid x, y) P(x) P(y)$

All models imply only $X \perp Y$ and Z is always a *collider* in such models, Note: Z is never an ancestor of X or Y

Factorization

Bayesian Networks

D-Separation

Graphical Tool for Identifying Conditional Independencies implied by Bayesian Networks

Implied Conditional independencies

Active and Inactive Triplets

- **Definition (inactive):** A triplet $\langle V_i, V_m, V_j \rangle$ is said to be *inactive* relative to a set \mathbb{Z} if the middle node V_m :
 - 1. Is a non-collider and is in ${f Z}$; or
 - 2. Is a collider and neither it nor any of its descendants in ${f Z}.$

W is (descendant of) a collider and $W, A \notin \mathbb{Z}$

D-Separation

of variables \mathbb{Z} if and only if p contains an inactive triplet in it.

Y. We denote that by $(X \perp I \mid Z)_G$.

Does \mathbb{Z} d-separate X and Y?

Definition (d-separation): A path p in an ADMG G is said to be *d-separated* (or blocked) by a set

A set Z d-separates X and Y if and only if Z blocks every path between a node in X and a node in

 $X \longleftarrow B \longrightarrow W \longrightarrow Y \qquad Z: [X] \{\} \qquad [M] \{W\} \qquad [B, W\}$ $\bigvee \{W\}$ ${B}$ $\{B, W\}$ $\mathbf{Z}: \mathbf{X} \{ \} \quad \mathbf{X} \{ B \}$ $[] \{W\}$ $| \times | \{B, W\}$

> D-separations in G correspond to conditional independencies in P

Markov Blanket (Markovian)

Markov Blanket (MB) of a *Markovian* BN over V: the union of parents, children, and parents of the children V.

 $V \coprod \mathbf{V} \backslash \mathsf{mb}_G(V) | \mathsf{mb}_G(V)$

$\mathsf{mb}_G(V) = Pa(V) \cup Ch(V) \cup Pa(Ch(V))$

Markov Blanket of V

Markov Blanket (Semi-Markovian)

parents of the district of V (excluding V itself) i.e.:

Richardson, T. (2003). Markov Properties for Acyclic Directed Mixed Graphs. Scandinavian Journal of Statistics, 30(1), 145–157

Markov Blanket (MB) of a Semi-Markovian BN over V: is the district of V and the

 $\mathsf{mb}_G(V) = \mathsf{dis}_G(V) \cup \mathsf{Pa}_G(\mathsf{dis}_G(V)) \setminus \{V\}$

District of V, dis_G(V), is the set of variables connected with Vthrough an edge or a bidirected path.

Markov Blanket of V

 $V \perp \mathbf{V} \setminus \mathsf{mb}_G(V) \mid \mathsf{mb}_G(V)$

Learning the Markov equivalence class from observational data.

Causal Discovery

Super-Exponential Growth

The space of DAGs grows super-exponentially with the number *n* of variables, as shown by the following recurrence relation (Robinson, 1973):

$$|DAG(n)| = \sum_{i=1}^{n} {\binom{n}{1}} 2^{i(n-i)} |DAG(n)| = \sum_{i=1}^{n} {\binom{n}{1}} 2^{i(n-i)} 2^{i(n-i)} |DAG(n)| = \sum_{i=1}^{n} {\binom{n}{1}} 2^{i(n-i)} 2^{i(n-i)$$

	n	DAG(n)
(<i>n</i> – 1)	2	3
	3	27
	4	729
	5	59,049
	6	1.4349×10^{7}
	7	1.0460×10^{10}
	8	2.2877×10^{13}

Super-Exponential Growth

variables, and it is much bigger than the space of DAGs:

$|ADMG(n)| = |DAG(n)| \times 2^{n(n-1)}$

$|ADMG(n)| \gg |DAG(n)|$

Causal Discovery is not feasible through naive enumeration!

The space of ADMGs also grows super-exponentially with the number n of

	n	DAG(n)	ADMG(n)
.)/2	2	3	6
	3	27	216
	4	729	46,656
	5	59,049	6.0457×10^7
	6	1.4349×10^{7}	4.7019×10^{11}
	7	1.0460×10^{10}	2.1936×10^{16}
	8	2.2877×10^{13}	6.1410×10^{21}

Learning the Markov Equivalence Class

Identifiability: In non-parametric settings (i.e., without making parametric or distributional assumptions) and solely from observational data, causal discovery algorithms can only learn a graphical representation of a *Markov equivalence class*!

Algorithms: Score-Based vs Constraint-Based

Causal Sufficiency: assumption that all confounding variables have been observed although strong, it has been widely employed to simplify causal discovery and inference.

- **Systems:** Causal Sufficient vs Causal Insufficient

Score-Based Causal Discovery Algorithms

goodness-of-fit scores of different possible structures.

and the BDeu score for multinomial variables.

Under causal sufficiency:

- GES: Greedy Equivalence Search, by Chickering, 2003.
- FGES: Fast GES, by <u>Ramsey et al., 2017</u> extension of the GES that improves the runtime of the algorithm by using parallelization.

- Strategy: search for the most probable causal structure by assessing
- **Common Scores:** Bayesian Information Criterion (BIC) for Gaussian variables

31

Score-Based Causal Discovery Algorithms

Accounting latent confounding:

- **GSMAG:** a greedy search algorithm for learning MAGs, by Triantafillou, S. and Tsamardinos, I., 2016.
- <u>Rantanen et al., 2021</u> it is guaranteed to find a globally optimal MAG.
- procedures to find the best fitting ADMG, by <u>Bhattacharya et al., 2021</u>.
- linear SCM with additive noise.

Use BIC, assuming linear Gaussian models

• MAGSL: search based on dynamic programming and branch and bound, by

• Diff-discovery: solves a continuous optimization problem with differentiable

• N-ADMG: Neural ADMG Learning, by <u>Ashman et al., 2013</u> — extends Diff-discovery to the setting where the true causal diagram is bow-free and corresponds to a non-

Constraint-Based Causal Discovery Algorithms

Strategy: construct a causal structure that aligns with all observed conditional independencies, identified using conditional independence tests.

Under causal sufficiency:

IC: Inductive Causation, by Verma and Pearl, 1990.

PC: Peter-Clark, by Spirtes and Glymour, 1991.

They start with an adjacency (skeleton) phase, based on conditional independence tests, followed by an orientation phase.

Spirtes, P., Glymour, C., and Scheines, R. (2001). *Causation, Prediction, and Search*, 2nd edn. Cambridge, MA: MIT Press.

Constraint-Based Causal Discovery Algorithms

Accounting for latent confounding:

- FCI: Fast Causal Inference, by <u>Spirtes et al., 1995</u> most prominent extension of the PC and IC/IC* algorithms. Together with the additional rules by <u>Zhang, J. (2008)</u>, is a complete algorithm accounting for both latent confounding and selection bias.
- FCI variants: Anytime FCI (AFCI), by Spirtes P., 2001, Conservative FCI (CFCI) and Really FCI (RFCI), by Colombo et al. 2012; and FCI+, by Claassen et al. 2013.
- SAT-Based: uses a Answer Set Programming (ASP) solver to find a causal structure that most satisfies the minimal observed conditional independencies, by <u>Hyttinen et al., 2014</u>.
- ACI: Ancestral Causal Inference a logic-based algorithm by Magliacane et al., 2016.

34

Causal Discovery: Learning Structural Invariances

 $\mathbf{V} = \{X, Y, Z\}$ $\mathbf{U} = \{U_x, U_Y, U_Z\}$ Conditional $\mathcal{M}_{1} = \begin{cases} \mathcal{K} \leftarrow f_{X}(U_{X}) \\ Z \leftarrow f_{Z}(X, Y, U_{Z}) \\ Y \leftarrow f_{Y}(U_{Y}) \end{cases}$ (in)dependencies Data $P(\mathbf{U})$ $P(\mathbf{v})$ $X \perp \!\!\!\!\perp Y$ $\mathbf{V} = \{X, Y, Z\}$ $\mathcal{M}_{N-1} = \begin{cases} \mathcal{U}_{XZ}, \mathcal{U}_{YZ}, \mathcal{U}_X, \mathcal{U}_Y, \mathcal{U}_Z \\ \\ \mathcal{F} = \begin{cases} X \leftarrow f_X(\mathcal{U}_{XZ}, \mathcal{U}_X) \\ Z \leftarrow f_Z(Y, \mathcal{U}_{XZ}, \mathcal{U}_Z) \\ Y \leftarrow f_Y(\mathcal{U}_Y) \end{cases}$ $X \not\perp Z$ $Z \not \perp Y$ $X \not\sqcup Y | Z$ $P(\mathbf{U})$ $\int \mathbf{V} = \{X, Y, Z\}$ $\mathbf{U} = \{U_{XZ}, U_{YZ}, U_X, U_Y, U_Z\}$ $\mathcal{M}_{N} = \begin{cases} \mathcal{K} \leftarrow f_{X}(U_{XZ}, U_{X}) \\ Z \leftarrow f_{Z}(U_{XZ}, U_{YZ}, U_{Z}) \\ Y \leftarrow f_{Y}(U_{YZ}, U_{Y}) \end{cases}$ $P(\mathbf{U})$

Causal Discovery: Learning Structural Invariances

Zhang, J. (2008). On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias. Artificial Intelligence, 172(16):1873–1896. Link

FCI Algorithm - Pipeline

- $A \longrightarrow B \implies A \text{ ancestror of } B$
- $A \longleftrightarrow B \implies$ spurious association
- $A \longrightarrow B \implies$ selection bias

Conditional Independence Tests

Gaussian errors and independent observations: partial correlation test

Fisher, R.A. (1921). On the Probable Error of a Coefficient of Correlation Deduced from a Small Sample. R package: <u>https://cran.r-project.org/web/packages/pcalg/</u>

Kernel-based non-parametric test:

Zhang, K., Peters, J., Janzing, D., & Schölkopf, B. (2012). Kernel-based conditional independence test and application in causal discovery. In: Uncertainty in artificial intelligence. AUAI Press; 2011. p.804–13 R package: <u>https://cran.r-project.org/web/packages/CondIndTests</u>

Continuous (conditional Gaussian) or Discrete (Binary, Ordinal, Multinomial) - Linear Regression

- data. Int J Data Sci Anal 6, 19–30. (Link)
- R package: <u>https://cran.r-project.org/web/packages/MXM/</u>

Gaussian errors and correlated observations (family data) :

Ribeiro A.H., Soler J.M.P. (2020). Learning Genetic and environmental graphical models from family data, Statistics in Medicine.

R package: <u>https://github.com/adele/FamilyBasedPGMs</u>

• Tsagris, M., Borboudakis, G., Lagani, V. et al. (2018) Constraint-based causal discovery with mixed

PAG: Representation of the Markov Equivalence Class

Partial Ancestral Graph (PAG)

Z is not an ancestor of X or W.

Z and W are ancestors of Y.

Z is not confounded with Y.

Fast Causal Inference (FCI) Algorithm

Underlying Causal Diagram

Partial Ancestral Graph

FCI - Skeleton

Form a complete graph on the set of variables, in which there is a circle-circle edge between every pair of variables;

True, unknown ADMG

FCI - Skeleton

then remove the edge between V_1 and V_2 and add $S_{1,2}$ in Sepset(V_1, V_2).

True, unknown ADMG

For every pair of variables V_1 and V_2 , if exists a set $S_{1,2}$ such that $V_1 \perp V_2 | S_{1,2}$,

 $V_1 \perp V_3 \mid V_4$ and $V_4 \perp V_5 \mid V_1, V_2, V_3$

FCI - Orienting the Colliders

RO:

True, unknown ADMG

If $\langle V_1, V_2, V_3 \rangle$ is unshielded and $V_2 \notin \text{Sepset}(V_1, V_3)$, then

That is the only way for the path between V_1 and V_3 to be blocked when not conditioning on V2

 $V_1 \perp V_3 \mid V_4 \text{ and } V_1 \perp V_3 \mid V_4, V_2$

FCI - Orienting the Colliders

R0:

True, unknown ADMG

If $\langle V_1, V_2, V_3 \rangle$ is unshielded and $V_2 \notin \text{Sepset}(V_1, V_3)$, then

We apply R0 until no more collider can be oriented!

 $V_1 \perp V_3 \mid V_4 \text{ and } V_1 \perp V_3 \mid V_4, V_5$

True, unknown ADMG

After Skeleton + R0

Applying R3

R1:

where V_1 and V_3 are not adjacent

True, unknown ADMG

After Skel + R0 + R3

Applying R1

Final PAG

True, unknown ADMG

 $V_1 \perp V_3 \mid V_4$ $V_4 \perp V_5 \mid V_1, V_2, V_3$

Final PAG After Skel + R0 + R3 + R1 + R4 + R4

$$V_1 \perp V_3 \mid V_4$$
$$V_4 \perp V_5 \mid V_1, V_2, V_3$$

R1:

Or

where V_1 and V_3 are not adjacent

Definition (discriminating path): A path p = (X, ..., W, V, Y) in a MAG is a discriminating path for V if
(i) p includes at least three edges;
(ii) V is a non-endpoint vertex on p, and is adjacent to Y on p; and
(iii) X is not adjacent to Y, and every vertex between X and V is a collider on p and is a parent of Y.

R5:

 $\langle V_1, V_2, ..., V_{k-1}, V_k \rangle$ is an uncovered circle path V_1 and V_{k-1} are not adjacent V_2 and V_k are not adjacent

R6:

 V_3

 V_1 and V_3 may or may not be adjacent

V_1 and V_3 are not adjacent

 $\langle V_1, V_2, ..., V_{k-1}, V_k \rangle$ is an uncovered potentially directed path from V_1 to V_k

 V_2 and V_k are not adjacent

R10:

 $\langle V_1, A_1, \dots, A_k \rangle$ is an uncovered potentially directed path from V_1 to A_k (A_1 may be A_k) $\langle V_1, B_1, \dots, B_k \rangle$ is an uncovered potentially directed path from V_1 to B_k (B_1 may be B_k) $A_1 \neq B_1$ and A_1 and B_1 are not adjacent

Another Example

True, unknown Causal Diagram

 $V_{1} \perp V_{3} \mid V_{2}, V_{4}, V_{5}$ $V_{1} \perp V_{5} \mid V_{4}$ $V_{2} \perp V_{4} \mid V_{1}, V_{5}$

Hint: apply Rules 0, 1, 2, 4 and then Rule 9 three times.

Corresponding PAG

 $V_{1} \perp V_{3} \mid V_{2}, V_{4}, V_{5}$ $V_{1} \perp V_{5} \mid V_{4}$ $V_{2} \perp V_{4} \mid V_{1}, V_{5}$

Available Implementations of the FCI

R Packages:

- pcalg R package:
 - https://cran.r-project.org/web/packages/pcalg/
 - https://github.com/cran/pcalg/

Python Packages:

- Do-discover in PyWhy: <u>https://github.com/py-why/dodiscover</u>
- Causal-Learn: https://causal-learn.readthedocs.io/en/latest/index.html
- Py-Tetrad (Wrapper in Python): <u>https://github.com/bd2kccd/py-causal</u>

• RPy-Tetrad (Wrapper in R): <u>https://github.com/cmu-phil/py-tetrad/tree/main/pytetrad/R</u>

Other Causal Discovery Algorithms

Hybrid approaches accounting for latent confounding:

Parametric approaches under causal sufficiency – Identifiable Structure

• M3HC: Max-Min Hill Climbing, by Tsirlis et al., 2018 – extends GSMAG by introducing a constraint-based first phase that greatly reduces the space of structures to investigate.

• GFCI: Greedy FCI, by Ogarrio et al., 2016 – combines FGES and FCI. The skeleton and orientation phases are firstly performed using FGES and then refined by using the FCI.

• LINGAM: Linear, non-Gaussian, and Acyclic Model, by Shimizu et al., 2006 — leverage distributional asymmetries with linear causal mechanisms are non-Gaussian error terms.

• ANM: Non-linear additive noise model (Hoyer et al., 2009; Zhang and Hyvärinen, 2009a) leverage distributional asymmetries with non-linear mechanisms and additive noise.

Going *Beyond* the Markov Equivalence Class:

1. Causal Discovery with Interventional Data

- processing systems, 33, pp.9551-9561.
- *Processing Systems* NeurIPS-23.

• Jaber, A., Kocaoglu, M., Shanmugam, K. and Bareinboim, E., (2020). Causal discovery from soft interventions with unknown targets: Characterization and learning. Advances in neural information

• A. Li, A. Jaber, E. Bareinboim. Causal discovery from observational and interventional data across multiple environments. (2023) In Proceedings of the 37th Annual Conference on Neural Information

Going *Beyond* the Markov Equivalence Class:

- 2. Causal Discovery with Prior Knowledge
 - *Systems*, *35*, pp.10325-10338.
 - Venkateswaran, A., & Perkovic, E. (2024). Towards Complete Causal Explanation with Expert Knowledge. arXiv preprint arXiv:2407.07338.
- 3. Human-in-the-Loop Probabilistic Causal Discovery
 - da Silva, T., Silva, E., Ribeiro, A., Góis, A., Heider, D., Kaski, S., & Mesquita, D. (2023). Human-in-the-Loop Causal Discovery under Latent Confounding using Ancestral GFlowNets. arXiv preprint arXiv:2309.12032.

• Wang, T. Z., Qin, T. and Zhou, Z.H., (2022). Sound and complete causal identification with latent variables given local background knowledge. Advances in Neural Information Processing

Going *Beyond* the Markov Equivalence Class:

- 4. Causal Discovery in Linear Models
 - Tashiro, T., Shimizu, S., Hyvärinen, A., & Washio, T. (2014). ParceLiNGAM: A causal ordering method robust against latent confounders. Neural computation, 26(1), 57-83.
 - Wang, Y. S., & Drton, M. (2023). Causal discovery with unobserved confounding and non-Gaussian data. Journal of Machine Learning Research, 24(271), 1-61.
- 5. Causal Discovery for Additive Noise Models
 - Van Diepen, M. M., Bucur, I. G., Heskes, T., & Claassen, T. (2023). Beyond the Markov Equivalence Class: Extending Causal Discovery under Latent Confounding. In Conference on Causal Learning and *Reasoning* (pp. 707-725). PMLR.

Relax the causal sufficiency assumption of LinGAN by Shimizu et al., 2006: order / ancestral identifiability under linear systems with non-gaussian error terms

FCI-CDC: causal direction criterion (CDC) allows pairwise orientation in (weakly) additive noise models with independent causal mechanisms.

Learning Dynamic Systems:

- 1. Causal Discovery with Cycles
 - Bongers, S., Forré, P., Peters, J., & Mooij, J. M. (2021). Foundations of structural causal models with cycles and latent variables. The Annals of Statistics, 49(5), 2885-2915.
 - Claassen, T. &; Mooij, J.M.. (2023). Establishing Markov equivalence in cyclic directed graphs. Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, PMLR 216:433-442, 2023.
- 2. Causal Discovery from Time-Series Data
 - Gerhardus, A., & Runge, J. (2020). High-recall causal discovery for autocorrelated time series with latent confounders. Advances in Neural Information Processing Systems (NeurIPS 2020), 33, 12615-12625.

Current Challenges & Open Problems

- Robustness in real-world scenarios, with small (unfaithful) datasets.
- Scalability in insufficient systems development of adaptive approaches.
- Uncertainty modeling, lack of ground-truth in real-world applications.
- Integration of expert / human knowledge completeness results.
- Causal experimental design what if a causal relation is not identified?
- Learning from multi-modal datasets connection with causal abstraction and causal representation learning.
- Continual causal discovery

Additional Resources

- \rightarrow Causal Discovery Google Colab Notebook: <u>(Link)</u>
- Tutorials, talks, and complete lectures on YouTube: (Link)

Feel free to reach out to me if you have any questions or are interested in collaborations.

adele.ribeiro@uni-marburg.de

Causality Tutorial: <u>https://github.com/adele/Causality-Tutorial/</u>

Thank you! :)

