ESSAI 2024 course: Logic-based specification
and verification of multi-agent systems
Lecture 4.1: Generalised Dining Philosophers games:
Competitive dynamic resource allocation in MAS

Valentin Goranko
Stockholm University

2nd European Summer School on Artificial Intelligence
ESSAI 2024
Athens, July 15-19, 2024 st

7 49
V Goranko

Main reference

Riccardo De Masellis, Valentin Goranko, Stefan Gruner, and Nils Timm.
Generalising the Dining Philosophers Problem: Competitive Dynamic
Resource Allocation in Multi-agent Systems,

Proceedings of the 16th European Conference in Multi-agent Systems
(EUMAS2018), Springer LNCS vol.11450, 2019, pp. 30-47.
https://link.springer.com/chapter/10.1007/978-3-030-14174-5_3

7, &£
Wy 3o

V Goranko

https://link.springer.com/chapter/10.1007/978-3-030-14174-5_3

Generalised Dining Philosophers Games:

Informal introduction

nko

Dijkstra’s dining philosophers problem

Edsger Dijkstra, 1965:

» Five philosophers dining with spaghetti
at a round table.

» Five forks are available, as on the figure.

» Every philosopher either thinks or eats
at any time instant.

» Every philosopher needs 2 forks to eat
the spaghetti.

» The philosophers do not know each
other’s eating routine.

The problem: design a distributed protocol that prevents the philosophers
from starvation, i e. enables each philosopher to eat infinitely often.

Not quite trivial. s,

Generalising the dining philosophers problem
as a dynamic resource allocation problem

Generalising:
» Philosophers are agents
» Forks are resources (resource units)
» Resource accessibility relation

» Each agent has a need to fulfil
(a goal to achieve): accumulate a
prescribed number of resources.

9
V Goranko

Generalized dining philosophers games

A generalized dining philosophers (GDP) game is a tuple
G = (Agt, Res, d, Acc, Act, Rules) where:

v

Agt is a set of agents;

v

Res is a set of resource units;

v

d: Agt = N7 is a demand function;

v

Acc C Agt X Res is a
resource accessibility relation.

» Act is a set of possible actions;

» Rules is a set of transition rules;

Example
n
ai
rn
r
an 3
ry
s
as
e
d(a,-) =2

for i € {1,2,3}

The intended goal for each agent a; is to acquire d(a;) resource units

(needed to carry out its task).

The actions and rules will be specified later.

Aim of this project

To develop a formal framework for specifying and verifying relevant
individual and collective strategic abilities of agents in GDP games,
such as "no deadlocks”, or "no starvation”, or e.g.:

“Agent a can act strategically so as to ensure that she eventually reaches
its goal (collects d(a) resource units).”

or (a collective goal):

“a; and ax can act collaboratively so as to ensure that each of them
reaches its goal (collects the needed resource units) infinitely often.”
or (a competitive goal):

“a; and ay can act collaboratively so as to ensure that each of them
reaches its goal (collects the needed resource units) infinitely often,
whereas a3 never reaches its goal.”

A B
V Goranko

Generalised Dining Philosophers Games:

technical introduction

nko

Actions

Actions:
> req] agent a requests resource r;
» rel? agent a releases resource r;
» rel2, agent a releases all resources it holds;
» idle? agent a does nothing.

An action profile is a mapping ap : Agt — Act.

Configurations

Example
Given G as before the figure

a n
1
r(a1)
A possible state of the game ; r
is called a configuration 2 ra(a2)
rs(az)
c: Res — Agt™ as e

graphically represents configuration
where ry is held by a1, r4 is held by
a» and rs by ap.

Remark
The number of configurations in a GDP game is, in general,
exponential in the number of resources.

9
V Goranko

Transition rules and system dynamics

Given a configuration ¢ and an action profile ap, (c, ap, ¢’) is a step if:

1. ap can be executed in ¢, meaning:

» agents can request only resources available in c;

» if an agents a holds number d(a) resources, it must perform rel3;;
2. and the resulting configuration ¢’ is such that:

» the released resources become available in ¢/;
» if a resource is requested by one agent only, than that agent acquires
it, otherwise no agent gets it.

Example

O p(ar) =reqh e N
r(a1) r(a1)

a r3 ap(az) = reli?l 2 r3(a1)
I‘4(82) Iy
rs(a2) — a3 Is

as 5 ap(a3) = req, as
6 r6(a3)

=

Configuration graph

» Transition function of G is the set p(G) of all game steps;
» & = (Conf,p(G)) is the configuration graph of G

» a play is an infinite sequence of configurations in &.

Competition and cooperation in GDP games

A GDP game is a both competitive and cooperative scenario,
where agents may, but need not to, cooperate in pursuing their goal.

» On the one hand, each agent is interested in reaching their
individual goal.

» However, that may become impossible if each agents acts selfishly
(follows a greedy strategy), as that may lead to blocking resources.

» Thus, it is sometimes preferable for agents to cooperate by releasing
resources before having reached their individual goals.

» Furthermore, some of them may wish to join forces and act in a
coordinated way, as a coalition.
That, inter alia, makes the analysis of GDP games quite non-trivial.

» Hence, the need for formal specification and algorithmic verification.

Remark: GDP games can also be regarded as “self-organising systems’s

V Goranko

A logic for verifying GDP games

Our language Lgpp is a slight variation of ATL:

pu=ga | el Apa w1V | (A)Xe | (A)Go | (A)p1Ups

where A C Agt,
and g, means that agent a; currently holds at least d(a;) resource units
(and has, therefore, reached its goal).

2 S
L7

9
V Goranko

Strategies

For our language it suffices to consider positional strategies.
» a (positional) strategy for an agent a
oa : Conf — Act
which prescribes executable actions to the agent.
» a joint (positional) strategy for A= {a;,...,a,} C Agt:
on(0ay.-.,0a,)
is a tuple of individual strategies o,,, for each a; € A.

Function out(c,o4) returns the set of all plays in Conf® that can occur
when agents in A follow the joint strategy o4 from configuration ¢ on.

Formal semantics

Lcpp is interpreted in GDP games as follows:

>

v

&, ¢ = g, iff the number of resources a; holds is > d(a;);
A, V and — are treated as usual;

&, c E ((A) X o iff there is a joint strategy o4, such that
&, w[1] = ¢ for every path 7 € out(c,op);

&, c = ((A) Gy iff there is a joint strategy o4, such that
&, 7[i] = o for every path m € out(c,04) and for every i € IN;

&, c = (A)) o1 Uy iff there is a joint strategy o4, such that
for every path m € out(c,04):

there exists i > 0 such that &, 7[i] = ¢2 and

&, 7[j] = o1 for all j such that 0 < j < i.

V Goranko

Example

ai n
r
I Sové 8, c1 = (a1, 23) G ({(a) (82) U gar)
a rs(as)

(3

V Goranko

Model checking

ATL provides an algorithm for solving the global model checking problem:

Inputs:
» formula ¢
» a GDP problem G
Output:
» the state extension of ¢ in &

[¢le = {c € Conf : &, c = ¢}

Complexity
The ATL algorithm for global model checking problem applied to Lcpp
has worst-case time complexity exponential in the number of resources.

. . &
Since the number of resources can be large, this can be a problem. Sl

S

Y 5
V Goranko

Can we be more efficient?

Idea:

» Define a suitable abstraction: equivalence relation ~
on configurations, that preserves truth of Lgpp formulae;

» build the global model checking procedure to use that abstraction.

5, 3
B2

Vv Go}anko

A natural abstraction

Observation:

» our logic cannot distinguish on atomic level configurations where
agents hold the same number of resources

So, can we use
i~ G
iff
for each agent a,

the number of resources a holds in ¢
is the same it holds in ¢;?

No! This is too coarse.

V04
V Goranko

The abstraction ~4 is too coarse

Example
C1 ~4 G2
n
ai rs
&
. 2 ,i &, a = (a3) X ga
1 p—
2140 (*)
rn
dai rs
I
a r3 &, o = ((a3)) X ga, False
Cy = 4
rs
% re(a3)

4 S
V Goranko

A correct abstraction

A finer abstraction is required.

1. We first define an equivalence relation on resources
r=ry

iff
ri and r; are accessible by the same subset of agents
2. We then define
C1 ~ C
iff
for each agent a and
for each equivalence class of resource R € Res/ ~

the number of resources from R
that a holds in ¢; is the same as in ¢

LIRS
V Goranko

A sound and complete abstraction

Example

Cl =~ C

r
ai
2

&
. 2 ,j &, a = (a3) X gz
1 p—
a3 2(33)
\%ﬁjfl

ai
2

a & 6, c3 = (a3)) X gay

ra(a3)
s

c3 =

as

] IS

2
i s
V Goranko

Interval expressions

We symbolically represent sets of configurations with expressions:

= /\ /\ (a, R)[I3,IR] | a1 V a2

acAgt RER

and |||/ denotes the set of configurations “contained” in «

Example

is contained in:
ai

(31, Rl)[l, 1] A (31, R2)[0, 0] VAN
(32, Rz)[o, 0] A (32, R3)[2, 2] A
(a3, R3)[0, 0] A (a3, R4)[0, 0]

a

as

V Goranko

A symbolic model checking algorithm for Lopp

We develop a symbolic global model checking algorithm for Lgpp.
Given

» agame §

» a formula ¢
it returns

» the interval constraint expression (G, ¢)

For each game G and formula ¢ € Lopp we have:
c € [¢le iff c € (G,)

Complexity

The symbolic global model checking algorithm runs in time at most
double exponential in the number of agents but polynomial in the
number of resources.

V Goranko

Lecture 4.1: Closing remarks and the read ahead

This project is still in an early state of development. Much yet to be done.

On the technical side:
» To obtain more refined complexity results.
(The double exponential case seems to never actually happen.)

» Can we do better? Is our model-checking algorithm optimal?
» Find analytic solutions for important special cases.

On the conceptual side:
» Explore the cases with agents’ incomplete and imperfect information.

» Gam-theoretic analysis: identify and analyse the equilibria, design
socially optimal equilibria, etc.

» Extend the framework to one where resources are autonomous
agents themselves. Clients/Bankers problem.

END OF LECTURE 4.1

7,
Y
V Goranko

