ESSAI 2024 course: Logic-based specification
and verification of multi-agent systems
Lecture 1: Introduction. Multi-agent transition
systems and concurrent game models.

The alternating time temporal logic ATL

Valentin Goranko
Stockholm University

2nd European Summer School on Artificial Intelligence
ESSAI 2024
Athens, July 15-19, 2024

V Goranko
1of 34



Overview of the lecture

» Introduction: agents and multi-agent systems (MAS),

» Multi-agent transition systems and concurrent game models

» The temporal logic ATL for reasoning about strategic abilities in multi-agent
systems

» Logical decision problems for ATL and their algorithmic solutions.

» Solving the model checking problem for ATL.

V Goranko
2 of 34



Introduction: agents and multi-agent systems

V Goranko
3 of 34



V Goranko
4 of 34



Introduction: multi-agent systems (MAS)

Multi-agent
systems

V Goranko
5 of 34



Introduction: Agents and multi-agent systems

» Agents:
> relatively autonomous.

> have knowledge/information: about the system, themselves, and the other
agents (incl. the environment).

>> have abilities to perform certain actions.

> have goals, and can act in their pursuit.

> can plan their actions ahead and can execute plans (strategies).

> Can communicate, i.e. exchange information and cooperate with other agents.

» Multi-agent system (MAS): a set of agents acting in a common framework
('system’), in pursuit of their goals, by following individual or collective strategies.

Examples: open systems, distributed systems, concurrent processes, computer
networks, social networks, stock markets, etc.

V Goranko
6 of 34



Why using logic for multi-agent systems?

Formal logic provides a generic and uniform framework for:

» Formal representation and modelling of multi-agent systems.
» Formal specification of properties of MAS in logical languages.

» Conceptual analysis of multi-agent systems and the interaction of rational
agents in them.

» Formal logical reasoning about multi-agent systems,
using systems of deduction and logical decision procedures.

» Formal verification of properties of MAS by model checking.
Applications e.g. to automated design of agents’ strategies.

» Applications of constructive satisfiability testing to synthesis of agents,
communication protocols, controllers, or entire multi-agent systems
satisfying formally specified behavior or objectives.

V Goranko
7 of 34



Modelling multi-agent strategic interaction:

Multi-agent transition systems / concurrent game models

V Goranko
8 of 34



Multi-agent transition systems intuitively

> Agents (players) act in a common environment (the “system")
by taking actions in a discrete succession of rounds.

D> At any moment the system is in a current state.

D> At the current state all players take simultaneously actions, each choosing
from a set of available actions.

> The resulting collective action effects a transition to a successor state,
where the same happens, resulting in a new transition, etc.

This dynamics is captured by a multi-player transition system.

V Goranko
9 of 34



Concurrent Game Models formally

(A, States, Act, act, out, Prop, L)
where:
» A is a finite set of agents (players);
> States is a set of system states;
> Act is a set of possible actions. An action profile is a mapping
o0 A — Act, i.e. a tuple of actions, one for each agent.

> act: A x States — P(Act) — mapping assigning to every agent i and state s
a non-empty set act(i, s) of actions available to i at s.

An action profile o is available at s if o(i) € act(i, s), for each i € A.

> out : States — (Act”— — States) is a global outcome (partial) function,
assigning for every s € States and an available action profile o the successor
(outcome) state out(s, o).

» Prop is the set of atomic propositions;

v

L : States — P(Prop) is the labeling (state description) function.

V Goranko
10 of 34



Example: a two-agent transition system

Two robots, Yin and Yang, are pushing a trolley along tracks.
Usually Yin pushes clockwise and Yang pushes anticlockwise, with the same force.
Exception: when both push at either state s; or s, the trolley moves to ss.

(wait, wait)
(push,push)

(push,wait) (push,wait)

(wait, wait) (wait,wait)

(wait,push)

(push, park)

(park, push)
(wait, park)

- (park,wait)
(push, wait)

(push,push) (push,push)

(wait,wait) C. (wait wait) c‘ ‘3 (wait,wait)

A={Yin, Yang}; States={so, 51, 2, 53, 54, S5 }; Act = {push, wait, park}.
P Action function: as on the figure. Outcome function: as on the figure.
Prop={Goal, Park}. L : States — P(Prop) defined as on the figure:
L(so) = L(s1) = L(s2) = 0, L(ss) = {Goal}, L(s3) = L(ss) = {Park}.

V Goranko
11 of 34



Plays and strategies in concurrent game models

Given a CGM M = (A, States, Act, act, out, Prop, L) and a state s € States:

» A state s’ in M is a successor of the state s if there is an available action
profile (o1, ...,00) € s such that s’ = out(s; o1, ..., on).

The set of successors of s: succ(s).

» A play in M: an infinite sequence s, s1, ..., such that s;1; € succ(s;).

> A (perfect recall) strategy in M for an agent i € A:
a mapping f; : States™ — Act that assigns to every finite sequence of states
S0, -+, Sp @n action fi((sp, ..., sp)) € act(sp,i).
A no recall (memoryless, positional) strategy is one that prescribes actions
only depending on the current state.

> A collective strategy in M for a set (coalition) of agents C:
a family of strategies fc = {fi};cc-

» A collective strategy fc enables a play X if that play can occur

as a result of the players in C following their strategies in fc.

V Goranko
12 of 34



The multi-agent logic of strategic reasoning ATL(*)

V Goranko
13 of 34



The multi-agent logic of strategic reasoning ATL(*)

Alternating-time Temporal Logic ATL(*): introduced by Alur, Henzinger, and
Kupferman, during 1997-2002. Extends propositional logic PL with:
» Temporal operators: X (next time), G (forever), U (until)

» Coalitional strategic path operators: {A) for any group of agents A. We
will write (i) instead of ({i}).

Syntax of the full version ATL*:

p=p|pletVer| (A | Xo|Go|pillps

Syntax of the restricted version ATL:

pi=p| @ lerVer | (A)Xe [ (A)Ge | (A)erld v

Remark: the computation tree logic CTL(*) can be regarded as a fragment of
ATL(*), where:

- the existential path quantifier E is identified with (A},

- the universal path quantifier A is identified with (0).

One agent suffices. v Gorankg.



Semantics of ATL intuitively

(A): “The coalition A has a collective strategy to guarantee the satisfaction of
the goal ¢ on every play enabled by that strategy.”

In particular:
> (A)X¢: 'The coalition A has a collective action that ensures an outcome

(state) satisfying ',

> (A)Ge: 'The coalition A has a collective strategy to maintain forever
outcomes satisfying ¢',

> (A)YU ¢: 'The coalition A has a collective strategy to eventually reach an
outcome satisfying @, while meanwhile maintaining the truth of i)'

Definable operators:

> (A)Fo :=(A)T U p, meaning ‘The coalition A has a collective strategy to
eventually reach an outcome satisfying ¢'.

> [[A]]l ¢ := = {A)—p, meaning:
‘The coalition A cannot prevent the satisfaction of ¢'.
V Goranko
15 of 34



Expressing properties in ATL: some examples

(Yin) F Park — [[Yang]] F Park

If Yin has a strategy to eventually park the trolley,
then Yang cannot prevent the parking of the trolley.

=(Yin) X Goal A ={Yang)X Goal A ({Yin, Yang})X Goal

Neither Yin nor Yang has has an action ensuring an outcome satisfying Goal,
but they both have a collective action ensuring such outcome.
(True at states s; and s, in the example.)

((Yin)G Safe A (Yin) F Goal) — (Yin)(Safe U Goal)

If Yin has a strategy to keep the system in safe states forever and has a strategy to
eventually achieve its goal, then Yin has a strategy to keep the system in safe states
until it achieves its goal.

((Yin)G Safe A (Yang)F Goal) — (Yin, Yang)(Safe U Goal)

If Yin has a strategy to keep the system in safe states forever and Yang has a strategy
to eventually reach a goal state, then Yin and Yang together have a strategy to stay in
safe states until a goal state is reached.

V Goranko
16 of 34



ATL semantics: formally

Truth of a formula 7 at a state s of a CGM M:
M,skEY

Defined by structural induction on formulae, via the clauses:

> M, s ((A) X iff there exists a collective strategy Fa = {fi};ca such that
M, s1 E ¢ for every s-play s, s1, ... enabled by Fjx.

> M, s E (A)Gy iff there exists a collective strategy Fa = {fi};ca such that
M, s; E @ for every s-play s, si, ... enabled by Fa and i > 0.

> M, s E (A)pU ) iff there exists a collective strategy Fa = {fi};.5 such that
for every s-play s, s, ... enabled by Fy4 there is i > 0 for which M, s; E ¢
and for all j such that 0 < j < i, M,s; F .

For the semantics of ATL memoryless strategies suffice.

V Goranko
17 of 34



Deciding the truth of ATL formulae in a CGM: examples

(wait, wait)
(push,push)

(push,wait) (push,wait)

(wait, wait) (wait, wait)

(push, park) (park, push)

(wait, park) (park,wait)
(push,wait)
(push,push) (push,push)
@ (wait,wait) @ @
M, so |: (Yin) X pos: N M, so i ((Yln Yang) X pos; Y
?
M, s = (Yin, Yang) F Goal Y M, s |: {(Yin)G —Park Y

M,sol?:((Yin,Yang))((—\posl) U Park) Y; M, s |7: (Yin)F {Yang)F Park N

M, sp |; {Yin, Yang)G(—pos: A (Yin, Yang) X'posi) Y

V Goranko
18 of 34



Deciding the truth of ATL formulae: exercises

Two agents: 1 and 2. Two types of actions: a, b.

(a,a)
(a,b)

(b,a)
(b,b)

(a,b)

(ba) 0O (b:a)

M,si = (1)FqV (2)G-q No  M,s = (1)GpA (2)Gp No

? ?

M, s = (D) F(2)Xp Yes M, s, = (1)G(1,2)(—qUp) Yes

V Goranko
19 of 34



Extending the semantics of ATL*

Two types of formulae in ATL*:

State formulae p ::=p | = | @ A | (A)v, where AC A and p € Prop.
Path formulae: v =@ | 7y | vAy | Xy | Gy | vU~

The semantics of state formulae: as in ATL.

The semantics of path formulae: defined on paths (plays), as in LTL.

ATL* is much more expressive and has more complex semantics.

Strategies generally need memory. Example: {(a)(Fp A Fq).
(Exercise: find a simple model where this is true at some state if memory-based
strategies are used, but false if only positional strategies are allowed.)

Nesting of strategic operators causes higher complexity and also some problems
with the semantics.

V Goranko
20 of 34



Logical decision problems in ATL

V Goranko
21 of 34



Validity and satisfiability in ATL

An ATL formula ¢ is:

> (logically) valid if M, s E ¢ for every CGM M and a state s € M.

» satisfiable if M, s E ¢ for some CGM M and a state s € M.

V Goranko
22 of 34



Axiomatizing the validities of ATL: local axioms

Pauly (2000) introduced the Coalition Logic CL, which is essentially the
()X -fragment of ATL. Pauly’s complete axiomatization of CL extends the
classical propositional logic with the following axioms and rule:

> A-Maximality: =(0)X—p — (A)X¢

v

Safety: =(C)X L

v

Liveness: (CYXT

v

Superadditivity: for any C;, G, C A such that GG N G = 0:

((C)Xo1 A (C)Xp2) = (G U Y X (01 A ¢2)

v

{C)X-Monotonicity Rule:

Y1 — P2
(CYXp1 — (C) X2

V Goranko
23 of 34



Axiomatizing the validities of ATL: fixpoint axioms

The axiomatization of CL extends to one for ATL with the following fixed point
axioms and rules for G and U :

(FPg) (C)Gw & o A (ChX{C)Gp.

(@G0 — (o A (C)X0)) = (D)G(0 — (C)Gp),
(Ot oV (@A (OYX(ChpU ),

(0)G((e v (¥ A (C)XO)) = 0) = (D)G((ChypU o — 0),

plus the rule () G-Necessitation:

GFPg

(FPy

)
)
)
LFPy)

(0)Ge

Completeness: VG and G. van Drimmelen (TCS'2006).

V Goranko
24 of 34



Logical decision problems in ATL

» Local model checking: given an ATL formula %, a finite CGM M and a state
s € M, determine whether M, s F 1.

» Global model checking: given an ATL formula ¥ and a finite CGM M,
determine the set [[1)]| o Of states in M where 1) is true.

Used for automated verification of formal specifications in open and multi-agent
systems and synthesis of strategies and protocols.

» Satisfiability testing: given an ATL formula v, determine whether ) is
satisfiable, i.e., whether M, s F v for some CGM M and a state s € M.

» Constructive satisfiability testing: given an ATL formula v, determine whether
1) is satisfiable, and if so, construct a CGM M and a state s € M such that

M, sE .

Used for synthesis of multi-agent systems and controllers from formal
specifications.

V Goranko
25 of 34



Solving the model checking problem for ATL

» Alur, Henzinger, and Kupferman [JACM'2002] extend the labeling algorithm
for model checking for CTL to ATL and show that the model checking of ATL is
PTIME-complete.

» They also extend the method to Fair ATL (ATL with fairness constraints) and
to the full ATL* and show that:

- model checking of Fair ATL is PSPACE-complete

- model-checking ATL* is 2EXPTIME-complete

(even in the special case of turn-based synchronous models).

» Furthermore, under assumptions of incomplete information and perfect
memory, model checking of ATL becomes undecidable.

V Goranko
26 of 34



Solving the satisfiability problem for ATL

VG and G. van Drimmelen [TCS'2006]: an algorithm for deciding SAT, using
alternating tree automata and bounding-branching model property.

» VG and D. Shkatov [ToCL'2010]: constructive and practically usable
tableau-based method for deciding for ATL in EXPTIME.

» VG, S. Cerrito, and A. David [ToCL'2014]: extended to ATL*
(with goals being boolean combinations of ATL goals).

Extended to ATL* and implemented in 2013-2015 by Amélie David (Univ.
d’Evry Val d’Essonne). Links:

for ATL: http://atila.ibisc.univ-evry.fr/tableau_ATL

for ATL*: https://atila.ibisc.univ-evry.fr/tableau_ATL_star

Sven Schewe [ICALP'2008]: SAT for ATL* is 2EXPTIME-complete. Uses
automata on infinite trees. Implementation?

V Goranko
27 of 34


http://atila.ibisc.univ-evry.fr/tableau_ATL
https://atila.ibisc.univ-evry.fr/tableau_ATL_star

Addendum:
Solving the model checking problem for ATL



The operator Pre

Given a CGM M = (A, S, Act, d, out, Prop, L) a coalition C C A and a set

X C S, we define Pre(M, C, X) as the set of states from which the coalition C
has a collective action that guarantees the outcome to be in X, no matter how
the remaining agents act.

Formally:
Pre(M, C, X) := {s € S | JacVay\ cout(s,ac,aa\c) € X}

where a.c denotes a vector of moves for the set of agents C.

In particular, Pre(M, C, ||pa]]) is precisely the set of states in M where the
formula {C) Xy is true.

V Goranko
29 of 34



The temporal operators as fixed points: (C))G

The validity (C)Gp < o A (CYX(C)Gy

means that ||{C)Go| s is a fixed point of the operator
Ge.o(2) = llellm N Pre(M, C, 2)
The validity (0)G(0 — (p A (C)X0)) — (DYG(O — (C)Gy)

means that |[{C)Gp||a¢ is the greatest (post)-fixed point of G¢ .

Therefore: ||{C)Gp||lm can be computed by starting from Z = States and
iteratively applying G¢ . until stabilization.

It suffices to reach a stage where Z C G¢ ,(Z).

Then G¢ ,(Z) = Z will hold.

V Goranko
30 of 34



The temporal operators as fixed points: ((C)) U

The validity (C)itp > 9V (10 A (CYX(CYU )
means that ||{C)y U || am is a fixed point of the operator
Ucp.v(Z) = llellam U ([9]|m N Pre(M, C, Z))
The validity (0)G((¢ V (v A (C)X0)) — 0) = (DYG((ChvU v — 0)

means that |[{C) U ¢|| a1 is the least (pre)-fixed point of Uc o 4.

Therefore: ||{C)y U ¢||pm can be computed by starting from Z = () and
iteratively applying Uc , , until stabilization.

It suffices to reach a stage where Uc ., +(Z) C Z.
Then Uc,,.(Z) = Z will hold.

V Goranko
31 of 34



Algorithm for global model checking of ATL formulae

1: procedure GLOBALMC(ATL)(M, )

2: case ¢ = p € Prop : return {s € States | p € L(s)}
3 case o = ) : return S\ ||| rq

& case p=1r Vi : retumn [in]a U ol a
5: case p = (A)X : return Pre(M, A, ||¥]| i)
6: case ¢ = (A)Gu: p + States; T + |9 m;

7 while p Z 7 do

8 p 7, T+ Pre(M, A, p) N ||Y]| m

9: end while; return p

10: end case

11 case ¢ = (A)v1 Uz p < 0; 7+ |12l M
12: while 7 Z p do

13: p 7 7 < [[P2]m U (Pre(M, A, p) N |41 m)
14: end while; return p
15: end case

16: end procedure

V Goranko
32 of 34



Global model checking of ATL formulae: exercises

(a,2)
(ab)

(b,a)

(b,a)
(b,b)

Y

EZ:S; (a,a)(a,b)(b,b) {54} (6:4)
1€1)Gpllr = {51, %2} 1(2)Gplirm =0
{0} (=qUp)llr1 = {s1, 52} [142)(=qUp)llm = {51, 52, 54}

1{1)G{2)(=qUp)llpm = {s1, %2, 54}

V Goranko
33 of 34



Lecture 1: concluding remarks

» Concurrent game models and the logic ATL provides a general framework
for modelling, specification, formal verification, and synthesis strategies and
of entire multi-agent systems.

» Various potential applications, to distributed computing, concurrency,
networks, robotic systems, Al, etc.

» Many variations and extensions,
and many challenges, conceptual and technical.

» Great potential for new research and contributions.

END OF LECTURE 1

V Goranko
34 of 34



