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In open systems werification, to formally check for reliability, one needs an appropriate formalism to
model the interaction between agents and express the correctness of the system no matter how the enwvi-
ronment behaves. An important contribution in this context is given by modal logics for strategic ability,
in the setting of multi-agent games, such as AtL, ATrL", and the like. Recently, Chatterjee, Henzinger, and
Piterman introduced Strategy Logic, which we denote here by CHP-SL, with the aim of getting a powerful
framework for reasoning explicitly about strategies. CHP-SL is obtained by using first-order quantifications
over strategies and has been investigated in the very specific setting of two-agents turned-based games,
where a non-elementary model-checking algorithm has been provided. While CHP-SL is a very expressive
logic, we claim that it does not fully capture the strategic aspects of multi-agent systems.

In this paper, we introduce and study a more general strategy logic, denoted SiL, for reasoning about
strategies in multi-agent concurrent games. We prove that SL includes CHP-SL, while maintaining a decid-
able model-checking problem. In particular, the algorithm we propose is computationally not harder than
the best one known for CHP-SL. Moreover, we prove that such a problem for S is NONELEMENTARY SPACE-
HARD. This negative result has spurred us to investigate here syntactic fragments of Si, strictly subsuming
Atr*, with the hope of obtaining an elementary model-checking problem. Among the others, we study the
sublogics SL[NG], SL[BG], and SL[1G]. They encompass formulas in a special prenex normal form having,
respectively, nested temporal goals, Boolean combinations of goals and, a single goal at a time. About these
logics, we prove that the model-checking problem for SL[1G] is 2ExPTIME-COMPLETE, thus not harder than
the one for ATr*. In contrast, SL[NG] turns out to be NONELEMENTARYSPACE-HARD, strengthening the
corresponding result for SL. Finally, we observe that SL[BG] includes CHP-SL, while its model-checking
problem relies between NONELEMENTARY TIME and 2EXPTIME.
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1. INTRODUCTION

In system designmodel checkings a well-established formal method that allows to automat-
ically check for global system correctness [Clarke and Eaed 981 Queille and Sifakis 1981;
Clarke et al. 2002]. In such a framework, in order to check tivbe a system satisfies a re-
quired property, we describe its structure in a mathemlaticadel (such asKripke struc-
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tures [Kripke 1963] or labeled transition systemfKeller 1976]), specify the property with a
formula of a temporal logic (such asTL [Pnueli 1977], GL [Clarke and Emerson 1981], or
CTtL* [Emerson and Halpern 1986]), and check formally that the ehsdtisfies the formula. In
the last decade, interest has arisen in analyzing the bahefvindividual components or sets of
them in systems with several entities. This interest haestan reactive systems, which are sys-
tems that interact continually with their environmentsimadule checkinfKupferman et al. 2001],
the system is modeled as a module that interacts with its@mvient and correctness means that a
desired property holds with respect to all such interastion

Starting from the study of module checking, researcherse hiaoked for logics focus-
ing on the strategic behavior of agents in multi-agent systeAlur et al. 2002; Pauly 2002;
Jamroga and van der Hoek 2004]. One of the most important laewent in this field is
Alternating-Time Temporal Logi€ATL*, for short), introduced by Alur, Henzinger, and Kupfer-
man [Alur et al. 2002]. AL* allows reasoning about strategies of agents with tempaakg For-
mally, it is obtained as a generalization of IC in which the path quantifierghere exists E” and
for all “A”, are replaced witlstrategic modalitie®f the form “(A))” and “[A]]", where A is a set
of agents(a.k.a.playerg. Strategic modalities over agent sets are used to expoegeation and
competition among them in order to achieve certain goalpalticular, these modalities express
selective quantifications over those paths that are thét refsinfinite games between a coalition
and its complement.

ATL* formulas are interpreted oveoncurrent game structur¢€Gs, for short) [Alur et al. 2002],
which model interacting processes. Given@asdj and a sefA of agents, the AL* formula {(A))
is satisfied at a stateof G if there is a set of strategies for agentsAirsuch that, no matter strate-
gies are executed by agents notAinthe resulting outcome of the interactiongnsatisfiesy at
s. Thus, ATL* can express properties related to the interaction amongaoents, while €L* can
only express property of the global system. As an examplesider the property “processasand
[ cooperate to ensure that a system (having more than twogsegenever enters a failure state”.
This can be expressed by thelA formula {({«, 5}))G —fail, whereG is the classical LL tempo-
ral operators ¢lobally’. CTL*, in contrast, cannot express this propelrty [Alur et al. 300®%leed,
it can only assert whether the set of all agents may or may meeept the system from entering a
failure state.

The price that one has to pay for the greater expressivenéseLd is the increased complexity
of model checking. Indeed, both its model-checking andsBakiility problems are 2EPTIME-
coMPLETE[AIlur et al. 2002 Schewe 2008].

Despite its powerful expressiveness;LA suffers from a strong limitation, due to the fact that
strategies are treated only implicitly, through modadittbat refer to games between competing
coalitions. To overcome this problem, Chatterjee, Herzingnd Piterman introducestrategy
Logic (CHP-S., for short) [Chatterjee et al. 2007], a logic that treatatsigies intwo-player turn-
based gameas explicitfirst-order objectsin CHP-3., the ArL* formula {({a}))v, for a system
modeled by a Gs with agentsy and3, becomesix.Vy.1(x, y), i.e., “there exists a player-strat-
egy x such that for all playep strategies, the unique infinite path resulting from the two play-
ers following the strategies andy satisfies the property”. The explicit treatment of strategies
in this logic allows to state many properties not expressibl ATL*. In particular, it is shown
in [Chatterjee et al. 2007] that7A*, in the restricted case of two-agent turn-based gamesg-corr
sponds to a proper one-alternation fragment of CHPI®e authors of that work have also shown
that the model-checking problem for CHR-% decidable, although only a non-elementary algo-
rithm for it, both in the size of system and formula, has bemvided, leaving as open question
whether an algorithm with a better complexity exists or itte complementary question about the
decidability of the satisfiability problem for CHPtSvas also left open and, as far as we known, it
is not addressed in other papers apart our preliminary vilddgavero et al. 2010a].

While the basic idea exploited in [Chatterjee et al. 2007 tantify over strategies and then
to commit agents explicitly to certain of these strategiesig to be very powerful and use-
ful [Eisman et al. 2010], CHPASstill presents severe limitations. Among the others, itdse®

ACM Journal Name, Vol. V, No. N, Article A, Publication datéanuary YYYY.



Reasoning About Strategies A:3

be extended to the more general concurrent multi-ageimgeflso, the specific syntax considered
there allows only a weak kind of strategy commitment. Fomepde, CHP-$ does not allow dif-
ferent players to share the same strategy, suggestingtthtggies have yet to become first-class
objects in this logic. Moreover, an agent cannot changethasegly during a play without forcing
the other to do the same.

These considerations, as well as all questions left opentatszision problems, led us to intro-
duce and investigate a neStrategy Logicdenoted 8, as a more general framework than CHP-S
for explicit reasoning about strategiesnmulti-agent concurrent gameSyntactically, $ extends
LTL by means of twatrategy quantifierghe existential{(x)) and the universdlz], as well asagent
binding (a, 2), wherea is an agent and a variable. Intuitively, these elements can be respegtivel
read as'there exists a strategy.”, “for all strategiesz”, and“bind agenta to the strategy asso-
ciated withz” . For example, in a Gs with the three agents, 3, v, the previous AL* formula
{{e, B})G —fail can be translated in theLSormula {(x)) {(y) [[z]] (ca, x)(8, y) (7, 2)(G —fail). The
variablesx andy are used to select two strategies for the agerasds, respectively, while is used
to select one for the agentsuch that their composition, after the binding, results plagy where
fail is never met. Note that we can also require, by means of amppate choice of agent bindings,
that agentsy and 8 share the same strategy, using the formi(¥a [[z] («, x) (8, x) (v, 2)(G —fail).
Furthermore, we may vary the structure of the game by chartgimway the quantifiers alternate,
as in the formula(x)) [z]] {y)) (o, x)(B,y)(«, z)(G —fail). In this casex remains uniform w.r.tz,
buty becomes dependent on it. Finally, we can change the stritiagpne agent uses during the
play without changing those of the other agents, by simpilygisested bindings, as in the formula
N YN 2] {w ) (a, ) (B, y) (v, 2)(G (v, w)G —fail). The last examples intuitively show that %

a extension of both A-* and CHP-$. It is worth noting that the pattern of modal quantifications
over strategies and binding to agents can be extended tolimibar-time temporal logics tharrL,
such as the lineauCaLcuLus [Vardi 1988]. In fact, the use ofiL here is only a matter of sim-
plicity in presenting our framework, and changing the endsebtemporal logic only involves few
side-changes in proofs and decision procedures.

As one of the main results in this paper about, Sve show that the model-checking
problem is non-elementarily decidable. To gain this, we @s®e automata-theoretic ap-
proach [Kupferman et al. 2000]. Precisely, we reduce the decisimblpm for our logic to the
emptiness problem of a suitabldternating parity tree automatgnwhich is an alternating
tree automaton(see [Gradel et al. 2002], for a survey) along withparity acceptance condi-
tion [Muller and Schupp 1995]. Due to the operations of projectiequired by the elimination
of quantifications on strategies, which induce at any stepxgonential blow-up, the overall size
of the required automaton is non-elementary in the size effdhmula, while it is only polyno-
mial in the size of the model. Thus, together with the comipfeaf the automata-nonemptiness
calculation, we obtain that the model checking problem i®mME, w.r.t. the size of the model,
and NONELEMENTARY TIME, w.r.t. the size of the specification. Hence, the algorithenpropose
is computationally not harder than the best one known for €E34Rand even a non-elementary
improvement with respect to the model. This fact allows foagtical applications of Sin the
field of system verification just as those done for the monadmond-order logic on infinite ob-
jects [Elgaard et al. 1998]. Moreover, we prove that our fmobhas a non-elementary lower bound.
Specifically, it isk-EXPSPACE-HARD in the alternation numbér of quantifications in the specifi-
cation.

The contrast between the high complexity of the model-cimgckroblem for our logic and the
elementary one for AL* has spurred us to investigate syntactic fragments.gB8ictly subsuming
ATL*, with a better complexity. In particular, by means of thesklsgics, we would like to under-
stand why & is computationally more difficult than*.

The main fragments we study here alested-GoaBoolean-GoglandOne-Goal Strategy Logic
respectively denoted byLEnc], SL[BG], and S [1c]. Note that the last, differently from the first
two, was introduced irf [Mogavero et al. 2012]. They encoragasnulas in a special prenex nor-
mal form having nested temporal goals, Boolean combinatidigoals, and a single goal at a time,
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respectively. For goal we mean an frmula of the type, whereb is a binding prefix of the form
(a1,21), ..., (an, zy,) containing all the involved agents agids an agent-full formula. With more
detail, the idea behindL$ng] is that, when in) there is a quantification over a variable, then there
are quantifications of all free variables contained in themsubformulas. So, a subgoalwthat
has a variable quantified in itself cannot use other variables quantified out of this idenThus,
goals can be only nested or combined with Boolean and terhppeaiators. $[ec] and S.[1c]
further restrict the use of goals. In particular, in[8s], each temporal formula is prefixed by

a quantification-binding prefiyb that quantifies over a tuple of strategies and binds themlto al
agents.

As main results about these fragments, we prove that the Irebeéeking problem for §1g]
is 2EXPTIME-COMPLETE, thus not harder than the one fori&A. On the contrary, for §ng], it
is both NONELEMENTARY TIME and NONELEMENTARY SPACE-HARD and thus we enforce the
corresponding result fortS Finally, we observe thati$sc] includes CHP-8, while the relative
model-checking problem relies between@H IME and NONELEMENTARY TIME.

To achieve all positive results about [$c], we use a fundamental property of the semantics of
this logic, callecelementarinessvhich allows us to strongly simplify the reasoning abotat&ygies
by reducing it to a set of reasonings about actions. Thigsitr characteristic of §1¢], which un-
fortunately is not shared by the other fragments, asseatsitha determined history of the play, the
value of an existential quantified strategy depends onlyhernvalues of strategies, from which the
first depends, on the same history. This means that, to clamosestential strategy, we do not need
to know the entire structure of universal strategies, astobut only their values on the histories
of interest. Technically, to describe this property, we mage of the machinery dependence map
which defines a Skolemization procedure far, 81spired by the one in first order logic.

By means of elementariness, we can modify then®del-checking procedure via alternating
tree automata in such a way that we avoid the projection tipasaby using a dedicated automaton
that makes an action quantification for each node of the tredein Consequently, the resulting
automaton is only exponential in the size of the formulagpehdently from its alternation num-
ber. Thus, together with the complexity of the automataemoptiness calculation, we get that the
model-checking procedure foL8¢] is 2EXPTIME. Clearly, the elementariness property also holds
for ATL*, as it is included in §[1g]. In particular, although it has not been explicitly statdds
property is crucial for most of the results achieved in &tere about AL* by means of automata
(seel[Schewe 2008], as an example). Moreover, we believetih@roof techniques are of indepen-
dent interest and applicable to other logics as well.

Related works. Several works have focused on extensions ofL*Ato incorporate
more powerful strategic constructs. Among them, we reédiernating-Time uCALCULUS
(AuCaLcurus, for short) [Alur et al. 2002],Game Logic(GL, for short) [Alur et al. 2002],
Quantified Decision ModalityuCaLcuLus (QDu, for short) [Pinchinat 2007]Coordination
Logic (CL, for short) [Finkbeiner and Schewe 2010], and some extassaf ATL* considered
in [Brihaye et al. 2009]. ACALcuLUS andQDy are intrinsically different from §(as well as from
CHP-S and ATL*) as they are obtained by extending the propositipraalculus [Kozen 1983]
with strategic modalities. Cis similar to QDu but with LTL temporal operators instead of ex-
plicit fixpoint constructors. G is strictly included in CHP-§, in the case of two-player turn-based
games, but it does not use any explicit treatment of strasegieither it does the extensions afLA
introduced in[[Brihaye et al. 2009]. In particular, the dattvork consider restrictions on the mem-
ory for strategy quantifiers. Thus, all above logics areedéht from %, which we recall it aims
to be a minimal but powerful logic to reason about strategibdvior in multi-agent systems. A
very recent generalization of TA*, which results to be expressive but a proper sublogiclgfiS
also proposed in [Costa et al. 2010a]. In this logic, a qfiaation over strategies does not reset the
strategies previously quantified but allows to maintaimthie a particular context in order to be
reused. This makes the logic much more expressive thrah. ®n the other hand, as it does not al-
low agents to share the same strategy, it is not comparatiidivé fragments we have considered in
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this paper. Finally, we want to remark that our non-elenmwrttardness proof about the. $nodel-
checking problem is inspired by and improves a proof progdsetheir logic and communicated
to us [Costa et al. 2010b] by the authors|of [Costa et al. 2010a

Note on [Mogavero et al. 2010areliminary results oniSappeared irf [Mogavero et al. 2010a].
We presented there a ETIME algorithm for the model-checking problem. The describextpr
dure applies only to thel$1c] fragment, as model checking for fulLS$s non-elementary.

Outline. The remaining part of this work is structured as follows. kec®n[2, we recall the
semantic framework based on concurrent game structuregtinduce syntax and semantics of
SL. Then, in Sectioh]3, we show the non-elementary lower boanthe model-checking problem.
After this, in Sectiofi}¥4, we start the study of few syntactid aemantic §fragments and introduce
the concepts of dependence map and elementary satisfiabililly, in Sectiori b, we describe
the model-checking automata-theoretic procedures faBlafragments. Note that, in the accom-
panying AppendiX’A, we recall standard mathematical noteéind some basic definitions that are
used in the paper. However, for the sake of a simpler undwetistg of the technical part, we make
a reminder, by means of footnotes, for each first use of a naaltor immediate mathematical
concept. The paper is self contained. All missing prooffigmain body of the work are reported
in appendix.

2. STRATEGY LOGIC

In this section, we introduc&trategy Logic an extension of the classic linear-time temporal
logic LTL [Pnueli1977] along with the concepts of strategy quantiices and agent binding.
Our aim is to define a formalism that allows to express stiatptans over temporal goals in
a way that separates the part related to the strategic riegséoom that concerning the tacti-
cal one. This distinctive feature is achieved by decoupting instantiation of strategies, done
through the quantifications, from their application by mear bindings. Our proposal, on the
line marked by its precursor CHP:-JChatterjee et al. 2007; Chatterjee etal. 2010] and differ-
ently from classical temporal logics [Emerson 1990], tuims logic that is not simply propo-
sitional but predicative, since we treat strategies as & dider concept via the use of agents
and variables as explicit syntactic elements. This factuteto write Boolean combinations and
nesting of complex predicates, linked together by some comsirategic choice, which may
represent each one a different temporal goal. However, woigh noting that the technical ap-
proach we follow here is quite different from that used foe thefinition of CHP-$, which is
based, on the syntactic side, on theLCformula framework [[Emerson and Halpern 1986] and,
on the semantic one, on the two-player turn-based game riféeieln and Pin 2004].

The section is organized as follows. In Subsediioh 2.1, walrthe definition of concurrent game
structure used to interpret Strategy Logic, whose syntatieduced in Subsectidn 2.2. Then, in
Subsectioh 213, we give, among the others, the notionsatisly and play, which are finally used,
in Subsectiof 214, to define the semantics of the logic.

2.1. Underlying framework

As semantic framework for our logic language, we usgraph-based moddior multi-player
gamesnamed concurrent game structur¢Alur et al. 2002]. Intuitively, this mathematical for-
malism provides a generalization Bfipke structuregKripke 1963] andlabeled transition sys-
tems[Keller 1976], modelingnulti-agent system@ewed as games, in which players perfozon-
current actionhosen strategically as a function on the history of the.play

Definition2.1 (Concurrent Game Structurgs A concurrent game structur@CGs, for short)
is a tupleG £ (AP, Ag, Ac,St, \, 7, s0), where AP and Ag are finite non-empty sets @ftomic
propositionsandagents Ac andSt are enumerable non-empty setsaotionsandstates so € St
is a designatethitial state, and\ : St — 24F is alabeling functionthat maps each state to the

set of atomic propositions true in that state. Det 2 Ac*¢ be the set oflecisionsi.e., functions
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from Ag to Ac representing the choices of an action for each adeFtien,r : St x Dc — Stis a
transition functiormapping a pair of a state and a decision to a state.

Observe that elements Bt are not global states of the system, but states of the emaigahin
which the agents operate. Thus, they can be viewed as sfaties game, which do not include
the local states of the agents. From a practical point of vibis means that all agents have per-
fect information on the whole game, since local states ateaken into account in the choice of
actions [[Fagin et al. 1995]. Observe also that, differefrtiyn other similar formalizations, each
agent has the same set of possible executable actions eindepmtly of the current state and of
choices made by other agents. However, as already reparliéerature [Pinchinat 2007], this sim-
plifying choice does not result in a limitation of our sermastframework and allow us to give a
simpler and clearer explanation of all formal definitions é&chniques we work on.

From now on, apart from the examples and if not differentbtesd, all Gsss are defined on
the same sets of atomic propositioAB and agentsAg, so, when we introduce a new struc-
ture in our reasonings, we do not make explicit their definitanymore. In addition, we use
the italic lettersp, a, ¢, and s, possibly with indexes, as meta-variables on, respegtithe
atomic propositions, q,... in AP, the agentsy, 8,~,... in Ag, the actions0,1,... in Ac,

and the states,... in St. Finally, we use the name of adS as a subscript to extract the
components from its tuple-structure. Accordingly,df = (AP, Ag, Ac, St, A\, 7, s9), we have
that Acg = Ac, \¢ = A, sopg = so, and so on. Furthermore, we use the same nota-

tional concept to make explicit to whichd3 the setDc of decisions is related to. Note that,
we omit the subscripts if the structure can be unambiguandlyiduated from the context.

Now, to get attitude to the introduced semantic framewaek, |
us describe two running examples of simple concurrent games N
particular, we start by modeling thmaper, rock, and scissajame.

D;

Example2.2 (Paper, Rock, and Scissor Consider the classic 7N
two-player concurrent ganpaper, rock, and scissqPRS, for short) P \

as represented in Figuré 1, where a play continues until étieeo
participants catches the move of the other. Vertexes atessté the

game and labels on edges represent decisions of agentssanfset U \
them, where the symbelis used in place of every possible action. In

this specific case, since there are only two agents, the pgynabols ~ F19- 11 The GSGprs.
% indicates the whole sddc of decisions. The agents “Alice” and “Bob” ing £ {A, B} have
as possible actions those in the set= {P, R, S}, which stand for “paper”, “rock”, and “scissor”,

respectively. During the play, the game can stay in one ofthinee states st = {s;,sa,ss},
which represent, respectively, the waiting moment, nandég and the two winner positions.
The latter ones are labeled with one of the atomic propasitia AP £ {wa,wg}, in order to
represent who is the winner. The catch of one action overhanas described by the relation
C 2 {(P,R),(R,S),(S,P)} C Ac x Ac. We can now define the& Gprs £ (AP, Ag, Ac, St, \,
7,s;) for the PRS game, with the labeling given bis;) = 0, A(sa) = {wa}, and\(sg) = {ws}
and the transition function set as follows, whég = {d € Dcg,,. : (d(A),d(B)) € C} and
Dg £ {d € Dcg,, : (d(B),d(A)) € C} are the sets of winning decisions for the two agents: if
s = s; andd € Da thent(s,d) £ sa, else ifs = s; andd € Dg then7(s,d) £ sg, otherwise
7(s,d) £ s. Note that, when none of the two agents catches the actidmeadther, i.e., the used

decision is inD; £ Dcg,,. \ (Da U Dg), the play remains in the idle state to allow another try,
otherwise it is stuck in a winning position forever.

LIn the following, we use bot’& — Y andYX to denote the set of functions from the domzirio the codomairy .
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We now describe a non-classic qualitative version of thd-wel
knownprisoner’s dilemma
Example2.3 (Prisoner’s Dilemma In the prisoner’s dilemma % AN
(PD, for short), two accomplices are interrogated in sepdreooms pc | o

by the police, which offers them the same agreement. If ofectke / DLD \
i.e., testifies for the prosecution against the other, wthiéeother co-

operates, i.e., remains silent, the defector goes freerensilent ac- () ¥
complice goes to jail. If both cooperate, they remain fra, vill o D o

be surely interrogated in the next future waiting for a défec On *

the other hand, if every one defects, both go to jail. It isueed Fig. 2: The G3SGrp.

that no one will know about the choice made by the other. This

tricky situation can be modeled by thes€Gpp £ (AP, Ag, Ac, St, \, 7, s;) depicted in Figurgl2,
where the agents “Accomplice-1" and “Accomplice-2" &g = {A;, A2} can chose an action in
Ac £ {C, D}, which stand for “cooperation” and “defection”, respeetix There are four states in
St = {s;,5A,,5A,, s; }. In the idle state; the agents are waiting for the interrogation, whijeep-
resents the jail for both of them. The remaining statesandsa, indicate, instead, the situations in
which only one of the agents become definitely free. To charae the different meaning of these
states, we use the atomic propositionaih £ {fa,, fa, }, which denote who is “free”, by defining
the following labeling:\(s;) = {fa,,fa, }» A(sa,) = {fa, }, AM(sa,) = {fa,}, andA(s;) £ (. The
transition functionr can be easily deduced by the figure.

2.2. Syntax

Strategy LogidSL, for short) syntactically extendsrL by means of twastrategy quantifiersthe
existential({x)) and the universdlz], andagent bindinga, ), wherea is an agent and a variable.
Intuitively, these new elements can be respectively reatthese exists a strategy:”, “for all
strategiesr” , and“bind agenta to the strategy associated with the variable. The formal syntax
of SL follows.

Definition2.4 (SL Syntay. SL formulasare built inductively from the sets of atomic proposi-
tions AP, variablesVar, and agentg\g, by using the following grammar, whepec AP, = € Var,
anda € Ag:

pu=pl-plenpleve|XeleUpleRe|(@he] [2]e | (@ 2)e.
SL denotes the infinite set of formulas generated by the abdes.ru

Observe that, by constructionTL is a proper syntactic fragment of S.e., LTL C SL. In order to
abbreviate the writing of formulas, we use the boolean watueet and falsef and the well-known
temporal operators futufey £ tU ¢ and globallyG ¢ £ R ¢. Moreover, we use the italic letters
x,vy, 7, ..., possibly with indexes, as meta-variables on the variablgs, . . . in Var.

A first classic notation related to the. Syntax that we need to introduce is thatsobformula
i.e., a syntactic expression that is part of an a priori gieemula. Bysub : SL — 25- we formally
denote the function returning the set of subformulas of arfidBmula. For instance, consider=
{(x) (e, x)(F p). Then, it is immediate to see thatb () = {¢, (a, x)(F p), (F p), p, t}.

Normally, predicative logics need the concepts of free amahld placeholdersn order to for-
mally define the meaning of their formulas. The placehol@deesused to represent particular po-
sitions in syntactic expressions that have to be highldhsence they have a crucial role in the
definition of the semantics. In first order logic, for instanthere is only one type of placeholders,
which is represented by the variables. In #istead, we have both agents and variables as placehold-
ers, as it can be noted by its syntax, in order to distinguetiveen the quantification of a strategy
and its application by an agent. Consequently, we need a avdjfferentiate if an agent has an
associated strategy via a variable and if a variable is dfiethtTo do this, we use the set frée
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agents/variablesis the subset okg U Var containing(i) all agents for which there is no binding
after the occurrence of a temporal operator @ndll variables for which there is a binding but no
quantifications.

Definition2.5 (SL Free Agents/Variablgs The set ofree agents/variablesf an S formula is
given by the functiorree : SL — 248YVar defined as follows:
(i) free(p) = (), wherep € AP;

(i) free(—yp) £ free(y);

(iii) free(v10p @o) £ free(p;) U free(ipz), whereOp € {A, V};

(iv) free(X p) = Ag U free(y);

(v) free(p10p 2) 2 Ag U free(ip1) U free(ws), whereOp € {U,R};

(vi) free(Qn ) = free(¢) \ {z}, whereQn € {((z)), [[z] : = € Var};

(vii) free((a,z)p) £ free(p), if a & free(p), wherea € Ag andz € Var;
(viii) free((a,z)p) £ (free(p) \ {a}) U {x}, if a € free(p), wherea € Ag andz € Var.

A~ N N S/~

Aformulay without free agents (resp., variables), i.e., Witle(0)NAg = 0 (resp.free(¢)NVar =

(), is namedagent-closedresp.,variable-closedl If ¢ is both agent- and variable-closed, it is
referred to as aentenceThe functionsnt : SL — 2% returns the set cdubsentencesit(p) £
{¢ € sub(yp) : free(¢) = 0} for each & formulag.

Observe that, on one hand, free agents are introduced is[&endv and removed in Item Miii.
On the other hand, free variables are introduced in [fedawiii removed in Itef Vvi. As an example,
let = {(x)) (e, x)(B,y)(F p) be a formula on the agentgs = {«, 8,7}. Then, we havéree(y) =
{v,y}, sincey is an agent without any binding aftErp andy has no quantification at all. Consider
also the formulaga, z)¢ and(vy, z)¢, where the subformula is the same as above. Then, we have
free((«, z)p) = free(p) andfree((y,z)¢) = {y, z}, sincex is not free inp but~ is, i.e.,«a ¢ free(y)
and~y € free(y). So,(, z)p is agent-closed whiléx, z)¢ is not.

Similarly to the case of first order logic, another importaahcept that characterizes the syn-
tax of S is that of thealternation numbenf quantifiers, i.e., the maximum number of quantifier
switches{(-M -], [-T-N, €)=, or [-]—[] that bind a variable in a subformula that is not a
sentence. The constraint on the kind of subformulas that@msidered here means that, when we
evaluate the number of such switches, we consider eachbp@ssibsentence as an atomic propo-
sition, hence, its quantifiers are not taken into accountiddeer, it is important to observe that
vacuous quantifications, i.e., quantifications on varidbét are not free in the immediate inner
subformula, need to be not considered at all in the countirguantifier switches. This value is
crucial when we want to analyze the complexity of the deaigimblems of fragments of our logic,
since higher alternation can usually mean higher compleRy alt : SL — N we formally de-
note the function returning the alternation number of anf@&mula. Furthermore, the fragment
Sik-al] £ {p € SL : V¢’ € sub(y) . alt(¢’) < k} of SL, for k € N, denotes the subset of
formulas having all subformulas with alternation numbeufibed byk. For instance, consider the
sentencey = [x[{(y)) (e, x)(8,y)(F ¢') with " = [[x]|(y)} (v, x)(8,y)(X p), on the set of agents
Ag = {a, f}. Then, the alternation numbelt(y) is 1 and not3, as one can think at a first glance,
sincey’ is a sentence. Moreover, it holds thét(¢’) = 1. Hencey € SL[1-alt]. On the other hand,
if we substitutey’ with ¢” = [[x]](a, x)(X p), we have thatlt(¢) = 2, sincey” is not a sentence.
Thus, it holds thap ¢ SL[1-alt] buty € SL[2-alt].

At this point, in order to practice with the syntax of our lodly expressing game-theoretic
concepts through formulas, we describe two examples of itapbproperties that are possible to
write in SL, but neither in AL* [Alur et al. 2002] nor in CHP-8. This is clarified later in the
paper. The first concept we introduce is the well-known dheiteistic concurrent multi-playddash
equilibriumfor Boolean valued payoffs.
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Example2.6 (Nash Equilibriun). Consider the: agentsas, . .., «,, Of a game, each of them
having, respectively, a possibly different temporal goasatibed by one of thelL formulas
¥1,...,¥n. Then, we can express the existence of a strategy predile .. ., x,,) that is aNash
equilibrium(NE, for short) fora, . .., o, W.I.t.2bq, . . ., 1), by using the $[1-alt] sentencepng £
() (ar, x1) -+ (%)) (s ) e, Whereyns = AJ ((y) (i, y)s) — ¢ is a variable-closed
formula. Informally, this asserts that every agaphasx; as one of the best strategy w.r.t. the goal
1;, once all the other strategies of the remaining agentsvith j # 4, have been fixed te;. Note
that here we are only considering equilibria under deteistimstrategies.

As in physics, also in game theory an equilibrium is not alsvatable. Indeed, there are games
like the PD of Examplg 2.3 on pagg 7 having Nash equilibria éina instable. One of the simplest
concepts of stability that is possible to think is caldbility profile

Example2.7 (Stability Profile. Think about the same situation of the above example on NE.
Then, astability profile (SP, for short) is a strategy profiley, ..., x,) for ai,...,a, wrt.
1, ..., ¥, such that there is no agemt that can choose a different strategy frapwithout chang-
ing its own payoff and penalizing the payoff of another agentwith j # i. To represent the exis-

tence of such a profile, we can use thg1Salt] sentencessp 2 (X, ) (a1, x1) - -+ (X0 ) (n, X0 ) Usp,

wheresp = /\Zj:l,i;éj Y = [yl < (i, y)¥i) — (ai,y);). Informally, with theysp
subformula, we assert that, if; is able to achieve his goat;, all strategiesy of «; that left
unchanged the payoff related @, also leta; to maintain his achieved goal. At this point, it
is very easy to ensure the existence of an NE that is also ahySksing the §[1-alt] sentence

PSNE £ <<x1>>(alvxl) T <<Xn>>(o‘naxn) Ysp N Yne-

2.3. Basic concepts

Before continuing with the description of our logic, we hawentroduce some basic concepts, re-
garding a generic Gs, that are at the base of the semantics formalization. Rethatd description
of used mathematical notation is reported in Appefdix A.

We start with the notions dfack and path Intuitively, tracks and paths of ad% G are legal
sequences of reachable state§ ithat can be respectively seen as partial and complete gésns
of possible outcomes of the game modelediiself.

Definition2.8 (Tracks and Paths A track (resp.path) in a CGs g is a finite (resp., an infinite)
sequence of statgs € St* (resp.,m € St*) such that, for alk € [0,|p| — 1[ (resp.,i € N),
there exists a decisioth € Dc such that(p);+1 = 7((p),d) (resp.,(7)ir1 = 7((n);,d)).A A
track p is non-trivial if it has non-zero length, i.ep| > 0 thatisp # . The setTrk C St*
(resp.,Pth C St“) contains all non-trivial tracks (resp., paths). Moreoik(s) £ {p € Trk :
fst(p) = s} (resp.,Pth(s[% £ {r € Pth: fst(n) = s}) indicates the subsets of tracks (resp., paths)
starting at a state € St.

For instance, consider the PRS game of Exarfiple 2.2 on padesh, 7 = s; - s, € St* and

T = s¥ € St¥ are, respectively, a track and a path in thesGjprs. Moreover, it holds that
Trk =s;7 +5;* - (sa™ +sg™) andPth = ;% + s, - (sa” + sg%).

At this point, we can define the conceptatfategy Intuitively, a strategy is a scheme for an agent
that contains all choices of actions as a function of theohysof the current outcome. However,
observe that here we do not set an a priori connection betaestrategy and an agent, since the
same strategy can be used by more than one agent at the same tim

2The notation(w); € X indicates theslementof indexi € [0, |w|[ of a non-empty sequenae € °°.
3The Greek lettee stands for thempty sequence
4By fst(w) £ (w)o it is denoted thdirst elemenbf a non-empty sequenae € >>°.
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Definition2.9 (Strategiep. A strategyin a Ccs g is a partial functiorf : Trk — Ac that maps
each non-trivial track in its domain to an action. For a state St, a strategy is saids-total if
it is defined on all tracks starting isy i.e.,dom(f) = Trk(s). The setStr & Trk — Ac (resp.,
Str(s) £ Trk(s) — Ac) contains all (resps-total) strategies.

An example of strategy in the® Gprs is the functionf; € Str(s;) that maps each track having
length multiple of3 to the actiorP, the tracks whose remainder of length modiile 1 to the action
R, and the remaining tracks to the acti®rA different strategy is given by the functién € Str(s;)
that returns the actioR, if the tracks ends ina or sg or if its length is neither a second nor a third
power of a positive number, the acti@nif the length is a square power, and the acBontherwise.

An important operation on strategies is thatmihslationalong a given track, which is used to
determine which part of a strategy has yet to be used in thegam

Definition2.10 (Strategy Translation Letf € Str be a strategy ang € dom(f) a track in its

domain. Then(f), € Str denotes théranslationof f alongp, i.e., the strategy witdom((f),) =

{p’ € Trk(Ist(p)) : p- p, € dom(f)} such thatf),(p') £ f(p - pL,), forall p’ € dom((f),).H0

Intuitively, the translatiorif), is the update of the stratedlyonce the history of the game becomes
p- Itis important to observe that, ffis afst(p)-total strategy thef(f), is Ist(p)-total. For instance,
consider the two tracks; = s;* € Trk(s;) andp, = s;* - sa? € Trk(s;) in the GcS Gprs and the
strategyf; € Str(s;) previously described. Then, we have th@ag,, = f;, while (f;),, € Str(sa)
maps each track having length multiple®fo the actiorS, each track whose remainder of length
modulo3 is 1 to the actiorP, and the remaining tracks to the actien

We now introduce the notion ofassignment Intuitively, an assignment gives a val-
uation of variables with strategies, where the latter areduso determine the behav-
ior of agents in the game. With more detail, as in the case dft forder logic,
we use this concept as a technical tool to quantify over effias associated with
variables, independently of agents to which they are rélate. So, assignments are
used precisely as a way to define a correspondence betweaablgaand agents via strategies.

Definition2.11 (Assignmenis Anassignmenin a CGs§ is a partial functiory : VarUAg —
Str mapping variables and agents in its domain to a strategy.s&igamenty is completeif it
is defined on all agents, i.eAg C dom(y). For a states € St, it is said thaty is s-total if all
strategiesy(l) are s-total, for! € dom(x). The setAsg £ Var U Ag — Str (resp.,Asg(s) £
VarUAg — Str(s)) contains all (resps-total) assignments. MoreoveYsg(X) = X — Str (resp.,
Asg(X, s) £ X — Str(s)) indicates the subset of-defined(resp. s-total) assignments, i.e., (resp.,
s-total) assignments defined on the ¥e€ Var U Ag.

As an example of assignment, let us consider the functipre Asg in the GsS Gprg, defined
on the sef{A, x}, whose values ar§ on A andf, onx, where the strategiefs, f; € Str(s;) are
those described above. Another examples is given by thgramsnty, € Asg, defined on the set
{A, B}, such thaty2(A) = x1(x) andx2(B) = x1(A). Note that both are;-total and the latter is
also complete while the former is not.

As in the case of strategies, it is useful to define the opmratf translationalong a given track
for assignments too.

Definition2.12 (Assignment Translation For a given state € St, let x € Asg(s) be ans-
total assignment angd € Trk(s) a track. Then(y), € Asg(Ist(p)) denotes theranslationof x

alongp, i.e., thelst(p)-total assignment, witdom((x),) = dom(x), such thatx),(1) = (x(1)),,
forall I € dom(x).

5By Ist(w) £ (w)|w|—1 itis denoted théast elemenbf a finite non-empty sequenee € X*.
6The notation(w)>; € £°° indicates thesuffixfrom index: € [0, |w|] inwards of a non-empty sequenzec $°°.
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Intuitively, the translatior(), is the simultaneous update of all strategi¢s) defined by the as-
signmenty, once the history of the game becomes

Given an assignmeryt, an agent or variable and a strateg$, it is important to define a notation
to represent theedefinitionof y, i.e., a new assignment equal to the first on all elementssof it
domain but, on which it assumes the valtie

Definition2.13 (Assignment Redefinitipn Let y € Asg be an assignment, € Str a strategy
and! € Var U Ag either an agent or a variable. Theyl] — f] € Asg denotes the new assignment

defined ondom(x [l — f]) £ dom(x) U {I} that returng on and is equal to¢ on the remaining
part of its domain, i.ex[l — f](1) = f andx[l — f](I') £ x(I'), forall I’ € dom(x) \ {I}.

Intuitively, if we have to add or update a strategy that needse bound by an agent or variable,
we can simply take the old assignment and redefine it by usia@bove notation. It is worth to
observe that, ifc andf ares-total theny|[l — f] is s-total too.

Now, we can introduce the conceptplflyin a game. Intuitively, a play is the unique outcome of
the game determined by all agent strategies participatititg t

Definition2.14 (Plays. A pathm € Pth(s) starting at a state € St is aplayw.r.t. a complete
s-total assignmeng € Asg(s) ((x, s)-play, for short) if, for alli € N, it holds that(r);+1 =
7((m)i,d), whered(a) £ x(a)((r)<;), for eacha € Ag.[] The partial functiorplay : Asg x St —
Pth, with dom(play) = {(x,s) : Ag C dom(x) A x € Asg(s) A s € St}, returns thgy, s)-play
play(x, s) € Pth(s), for all pairs(x, s) in its domain.

As a last example, consider again the compdetiotal assignmeny, previously described for the
CGsGprs, which returns the strategiésandf; on the agenté andB, respectively. Then, we have
thatplay(xz,s;) = s;* - sg*. This means that the play is won by the agént

Finally, we give the definition of global translation of a cplete assignment together with a
related state, which is used to calculate, at a certain stéqe@lay, what is the current state and its
updated assignment.

Definition2.15 (Global Translatior). For a given state € St and a complete-total assign-
mentx € Asg(s), thei-th global translationof (x, s), with ¢ € N, is the pair of a complete
assignment and a state, s)° = ((x)(x), (7):), wherer = play(x;, s).

In order to avoid any ambiguity of interpretation of the désed notions, we may use the name
of a Ccs as a subscript of the sets and functions just introducedaigfgto which structure they
are related to, as in the case of components in the tupletsteuiof the Gsitself.

2.4. Semantics

As already reported at the beginning of this section, jk& ATL* and differently from CHP-5,
the semantics of Sis defined w.r.t. concurrent game structures. Focs G, one of its states, and
an s-total assignment with free(p) C dom(x), we writeG, x, s = ¢ to indicate that the formula
¢ holds ats in G undery. The semantics of ISformulas involving the atomic propositions, the
Boolean connectives, A, andv, as well as the temporal operatatsU, andR is defined as usual
in LTL. The novel part resides in the formalization of the meanihstiategy quantification§z))
and[z]] and agent bindinga, x).

Definition2.16 (SL Semantics Given a Gss g, for all SL formulasy, statess € St, and
s-total assignmentg € Asg(s) with free(p) C dom(x), the modeling relatior@, x,s = ¢ is
inductively defined as follows.

(1) G,x,s =pif p e A(s), withp € AP.
(2) For all formulasp, ¢1, andys, it holds that:

"The notation(w) <; € £* indicates therefixup to index: € [0, |w|] of a non-empty sequenee € $°°.
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@ G,x,s E~wifnot G, x, s E ¢, thatisg, x, s = ¢;
() G,x,s =1 A2 if G x, s =1 andG, x, s = ¢2;

© G.x.s Ep1Vpif G x,s Ep1org, x,s = .
(3) For avariabler € Var and a formulap, it holds that:
(@) G, x,s | (z)¢if there exists an-total strategyf € Str(s) such thag, x[z — f], s E ¢;
(b) G, x, s = [[z] g if for all s-total strategie$ € Str(s) it holds thatG, x[z — f], s | ¢.
(4) For an agent € Ag, a variablex € Var, and a formulap, it holds thatG, x, s = (a,z)yp if
G,xla = x(2)],s = ¢.
(5) Finally, if the assignment is also complete, for all formulas, 1, andys, it holds that:
(@) G,x,s EXpif G, (x,9)' E ¢ _
(b) G, x,s E ¢p1U 2 if there is an index € N with k < ¢ such thag, (x, s)* = 2 and, for
allindexesj € N with k < j < 4, it holds thatg, (x, s)? = ¢1;
(©) G,x,s = ¢1R 2 if, for all indexesi € N with k < i, it holds thatg, (x, s)* |= 2 or there
is an indexj € Nwith k& < j < i such thaig, (x, s)’ = ¢1.

Intuitively, at Item$3h anld 3b, respectively, we evaluhtedxistential(z)) and universa]z] quan-
tifiers over strategies, by associating them to the variabMoreover, at Ilteni 4, by means of an
agent bindinda, ), we commit the agent to a strategy associated with the variabldt is evident
that, due to Itemis 5&, bb, ahd 5c, the Llsemantics is simply embedded into the @e.

In order to complete the description of the semantics, we gioe the classic notions ghodel
andsatisfiabilityof an S sentence.

Definition2.17 (SL Satisfiability. We say that a €s G is amodelof an S. sentencep, in
symbolsG = o, if G, 9, s = ¢.1 In general, we also say thétis amodelfor ¢ ons € St, in
symbolsg, s = ¢, if G, &, s = ¢. An SL sentence is satisfiablef there is a model for it.

It remains to introduce the conceptsimiplicationandequivalencéetween § formulas, which
are useful to describe transformations preserving the mganf a specification.

Definition2.18 (SL Implication and Equivalenge Given two 3 formulasy; and o with
free(p1) = free(ps), we say thatp; implies o, in symbolsp; = o, if, for all Ccss G, states
s € St, andfree(¢; )-defineds-total assignmentg € Asg(free(¢1), s), it holds thatifG, x, s = ¢1
theng, x, s = 2. Accordingly, we say thap, is equivalentto ¢, in symbolsp; = ¢, if both
p1 = 2 andpy = 1 hold.

In the rest of the paper, especially when we describe a decfmiocedure, we may consider
formulas inexistential normal forn{enf, for short) andoositive normal form(pnf, for short), i.e.,
formulas in which only existential quantifiers appear or inieh the negation is applied only to
atomic propositions. In fact, it is to this aim that we havesidered in the syntax of.Shoth the
Boolean connectives andV, the temporal operatot$ andR, and the strategy quantifies)) and
[-]- Indeed, all formulas can be linearly translategif by using De Morgan’s laws together with
the following equivalences, which directly follow from tisemantics of the logicaX ¢ = X —p,

~(p1U 2) = (—p1)R (mp2), =@ = [z] ¢, and—(a, 2)¢ = (a, ). "
At this point, in order to better understand the meaning of ou N
logic, we discuss two examples in which we describe the etialn
of the semantics of some formula w.r.t. the a priori givepss. We PN
start by explaining how a strategy can be shared by differgants. o /f \\ 10
00 **% (1 *% \

Example2.19 (Shared Variablg Consider the §2-alt] sen- o \ j ™~
tencew = () Iy] () (. x)(B.y)(X p) A (ay)(B.2)(X q)). It
is immediate to note that both agentandg use the strategy asso-

ciated withy to achieve simultaneously tha L temporal goalX p

Fig. 3: The GssGsy.

8The symbolz stands for the empty function.

ACM Journal Name, Vol. V, No. N, Article A, Publication datéanuary YYYY.



Reasoning About Strategies A:13

andX q. A model forp is given by the @sGsy = ({p,q}, {«, 8},

{07 1}7 {50751752753}7)\777 50>, Where)\(so) é Q’ A(51) é {p}’ )\(52) é {paq}' A(53) é {q}’
7(s0, (0,0)) £ s1, 7(s0, (0,1)) £ s3, 7(s0, (1,0)) = s3, and all the remaining transitions (with any
decision) go tag. In Figurg 3 on the facing palge, we report a graphical reptatien of the struc-
ture. ClearlyGgsy = ¢ by letting, onsy, the variables to chose actiof (the goal(«, x)(5,y)(X p)

is satisfied for any choice of, since we can move frony to eithers; or sy, both labeled withp)
andz to choose actioh wheny has actiord and, vice versa) wheny hasl (in both cases, the goal
(a,y)(8,2)(X q) is satisfied, since one can move fregto eithers, or ss, both labeled withy).

We now discuss an application of the concepts of Nash egjuitiband stability profile to both
the prisoner’s dilemma and the paper, rock, and scissor game

Example2.20 (Equilibrium Profileg. Let us first to consider the & Gpp of the prisoner’s
dilemma described in the Exampple 2.3 on pajge 7. Intuitivedgh of the two accomplice’s; and
A, want to avoid the prison. These goals can be, respectivegyesented by theTlL formulas

Ya, 2 Gfa, andyn, £ G fa,. The existence of a Nash equilibriumgipp, for the two accomplices

w.r.t. the above goals can be written @sg = ((x1)) (A1, x1){(x2)) (A2, x2) ¥nE, Whereyng =

(L) (A1, y)¥a,) = ¥a,) A ((Ky) (A2, y)¥a,) — ¥a,), Which results to be an instantiation of the
general sentencgyz of Examplg 2.6 on pagg 9. In the same way, the existence obé&ediash

equilibrium can be represented with the sentepgg 2 ((x1) (A1, x1){(x2)) (A2, x2) Yne A tsp,

whereysp £ (Y1 — [y]((¥2 ¢ (Ao, y)¥2) = (A2, y)¥1)) A (%2 — [yI((¥1 < (Ar,y)en) —
(A1,y)12)), which is a particular case of the sentenggr of Example 2.7 on pag€ 9. Now, it is
easy to see th&@lpp = ¢sve and, soGpp = ¢éne. Indeed, an assignmegte Asgg , (Ag,s;), for
which x(A1)(s;) = x(A2)(s;) = D, is a stable equilibrium profile, i.e., it is such tiatp, x,s; E
Une A Ysp. This is due to the fact that, if an ageft, for £ € {1,2}, choses another strategy
f € Strg,, (si), heis stillunable to achieve his gaal, i.e.,Gpp, x[Ar — f,s; [~ %, SO, he cannot
improve his payoff. Moreover, this equilibrium is stablice the payoff of an agent cannot be made
worse by the changing of the strategy of the other agent. Mekyi is interesting to note that there
are instable equilibria too. One of these is representetidassignment’ € Asgg, (Ag,s;), for
whichx/(A1)(s;7) = x'(A2)(s;i?) = C, forall j € N. Indeed, we have th&ep, \’,s; = ¥nE, Since
Grp,X',si E Y1 andGpp, X', s = e, butGpep, X', s; = tsp. The latter property holds because,
if one of the agentd\;, for k € {1, 2}, choses a different stratelyc Strg,,, (s;) for which there
isaj € Nsuchthat’(s;”) = D, he cannotimprove his payoff but makes surely worse thefpafo
the other agent, i.eGpp, }X'[Ax — f'],s: E ¥k butGpep, X' [Ar — '], si = 13—k Finally, consider
the GesGprs of the paper, rock, and scissor game described in the Exghipln page|6 together
with the associated formula for the Nash equilibrigga: 2 (x1) (A, x1){(x2)) (B, x2) ¢we, Where
Unve = () (A Y)EA) = va) A () (B,y)vs) — vB) with ¥a = Fwa andys = Fweg
representing theiL temporal goals for Alice and Bob, respectively. Then, itas Imard to see that
Grrs [~ onE, 1.€., there are no Nash equilibria in this game, since tisemecessarily an agent that
can improve his/her payoff by changing his/her strategy.

Finally, we want to remark that our semantics frameworkeldasn concurrent game structures,
is enough expressive to describe turn-based features multieagent case too. This is possible by
simply allowing the transition function to depend only oe tthoice of actions of an a priori given
agent for each state.

Definition2.21 (Turn-Based Game Structuges A CGs G is turn-basedif there exists a func-
tionn : St — Ag, namedwner functionsuch that, for all statese St and decisiong, d; € Dc,
it holds that ifd; (n(s)) = d2(n(s)) thent(s,d1) = 7(s,d2).

Intuitively, a Gasis turn-based if it is possible to associate with each stai@gent, i.e., the owner
of the state, which is responsible for the choice of the ssmmeof that state. It is immediate to
observe that introduces a partitioning of the set of states ifrtg(r))| components, each one ruled
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by a single agent. Moreover, observe that@s®aving just one agent is trivially turn-based, since
this agent is the only possible owner of all states.

In the following, as one can expect, we also consider the raséhich S has its semantics
defined on turn-baseddas only. In such an eventuality, we name the resulting semdirgtgment
Turn-based Strategy Log{d@ B-SL, for short) and refer to the related satisfiability concegatiuan-
based satisfiability

3. MODEL-CHECKING HARDNESS

In this section, we show the non-elementary lower boundHernodel-checking problem ofLS
Precisely, we prove that, for sentences having alternationberk, this problem is-EXPSPACE
HARD. To this aim, in Subsectidn 3.1, we first recall syntax andagins of QR L [Sistla 1983].
Then, in Subsection 3.2, we give a reduction from the salbidifia problem for this logic to the
model-checking problem for.S

3.1. Quantified propositional temporal logic

Quantified Propositional Temporal Log{QPrL, for short) syntactically extends the old-style tem-
poral logic with thefuture F andglobal G operators by means of twaroposition quantifiersthe
existentialdqg. and the universalq., whereq is an atomic proposition. Intuitively, these elements
can be respectively read dbere exists an evaluation af’ and“for all evaluations ofq”. The
formal syntax of QRL follows.

Definition3.1 (QPTL Syntay. QPrL formulasare built inductively from the sets of atomic
propositionsAP, by using the following grammar, whepec AP:

pu=pl-plerp|leVe | Xe[Fe|[Ge|Ipe|Vpe.
QPTL denotes the infinite set of formulas generated by the ab@amamiar.

Similarly to S_, we use the concepts of subformula, free atomic proposisientence, and alter-
nation number, together with the QPsyntactic fragment of bounded alternation QR-alt], with
keN.

In order to define the semantics of @R we have first to introduce the concepts of truth evalua-
tions used to interpret the meaning of atomic propositidiisepassing of time.

Definition3.2 (Truth Evaluations. A temporal truth evaluatiois a functiontte : N — {f, t}
that maps each natural number to a Boolean value. Moreopeopasitional truth evaluations a
partial functionpte : AP — TTE mapping every atomic proposition in its domain to a temporal
truth evaluation. The setSTE 2 N — {f,t} andPTE £ AP — TTE contain, respectively, all
temporal and propositional truth evaluations.

At this point, we have the tool to define the interpretatio@éfrL formulas. For a propositional
truth evaluatiorpte with free(y) C dom(pte) and a numbek, we writepte, k |= ¢ to indicate that
the formulap holds at thek-th position of thepte.

Definition3.3 (QPTL Semantics For all QPrL formulas ¢, propositional truth evaluation
pte € PTE with free(p) C dom(pte), and numberg € N, the modeling relatiopte, k E ¢
is inductively defined as follows.

(1) pte, k E piff pte(p)(k) = t, withp € AP.
(2) For all formulasp, ¢1, andys, it holds that:
(@) pte, k = —p iff not pte, k |= ¢, thatispte, k £ ¢;
(b) pte, k |= o1 A w2 iff pte, k |= 1 andpte, k = ¢o;
(c) pte,k |= o1 V o iff pte, k |= ¢1 O pte, k [= po;
(d) pte, k = X giff pte,k+ 1 = ¢;
(e) pte, k = F g iff there is an index € N with k& < i such thabte, i = ¢;

ACM Journal Name, Vol. V, No. N, Article A, Publication datéanuary YYYY.



Reasoning About Strategies A:15

(f) pte, k = G ¢ iff, for all indexesi € N with k& < 4, it holds thatpte, i = ¢.
(3) For an atomic propositiopn € AP and a formulap, it holds that:
(a) pte, k | Jq.y iff there exists a temporal truth evaluatiote € TTE such thatpte[g —
tte], k = ;
(b) pte,k = Vq.p iff for all temporal truth evaluationste € TTE it holds thatpte[q —
tte], k | .

Obviously, a QRL sentencey is satisfiableif @,0 |= ¢. Observe that the described semantics is
slightly different but completely equivalent to that preed and used in [Sistla et al. 1987] to prove
the non-elementary hardness result for the satisfiabitipjem.

3.2. Non-elementary lower-bound

We can show how the solution of QP satisfiability problem can be reduced to that of the model-
checking problem for 5, over a turn-based constant size £with a unique atomic proposition.
In order to do this, we first prove the following auxiliary lema,
which actually represents the main step of the above mesdioeduc- f t
tion.

A (
—
LEMMA 3.4 (QPTL REDUCTION). Thereis a one-agei@Gs Grq. ‘\f/

such that, for eactQPTL[k-alt] sentencep, with &k € N, there exists Fig. 4: The @S Grae.
an TB-SL[k-alt] variable-closed formula such thaty is satisfiable iffGrqc, X, so p, for all
complete assignmenise Asg(Ag, sp).

PROOF. Consider the one-agenta® Gra. = ({p}, {a}, {f,t}, {s0,s1}, \, 7, s0) depicted in
Figure[4, where the two actions are the Boolean values faldegrae and where the labeling and

transition functions\ andr are set as followsA(sp) 2 0, A(s1) £ {p}, and7(s,d) = s iff
d(a) = f, forall s € St andd € Dec. Itis evident thatir,. is a turn-based €s. Moreover, consider
the transformation function: QPTL — SL inductively defined as follows:

—q = (a,xg)X p, for g € AP;

—3Jq.0 £ (x) P

—Vq.p £ [x];

—Op ¢ £ Op®, whereOp € {-,X,F,G};
—10p 2 = B70p 73, whereOp € {A, V}.

Itis not hard to see that a QP formulay is a sentence ifp is variable-closed. Furthermore, we
have thatlt(p) = alt(y).

At this point, it remains to prove that, a @P sentencep is satisfiable iffGr4., x,s0 = P, for
all total assignmentg € Asg({a},so). To do this by induction on the structure @f we actually
show a stronger result asserting that, for all subformulassub(y), propositional truth evaluations
pte € PTE, andi € N, it holds thatpte, i |= v iff Grac, (X,s0)’ = 1, for each total assignment
x € Asg({a} U{x, € Var : ¢ € free(y)},so) such thaty(x,)((m)<n) = pte(q)(n), where
7 2 play(x, so), for all ¢ € free(y)) andn € [i,w].

Here, we only show the base case of atomic propositions anthih inductive cases regarding
the proposition quantifiers. The remaining cases of Booteamectives and temporal operators are
straightforward and left to the reader as a simple exercise.

= q_

By Item[d of Definitio 3.B of QPL semantics, we have thate, : |= q iff pte(q)(i) = t. Thus,
due to the above constraint on the assignment, it followtsptieas = ¢ iff x(x,)((7)<;) = t. Now,
by applying Item$¥ an@ ba of Definitidn 2116 of Semantics, we have thtz,., (x,s0) =
(c, %)X piff Grac, (X'[a— X' (x4)],8")' E p, Where(y/, s’) = (x,s0)’. At this point, due to the
particular structure of the € Grq., we have thaGra., (x' [ — X' (x,)], s') = piff (7)1 = s1,
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wherer’ £ play(x'[a — x'(x)],s’), which in turn is equivalent to/’(x,)((7")<0) = t. So,
Grae. (x.50)" = (0r,%)X p iff X'(x,)((x')<0) = t. Now, by observing thatr’)<o = (r); and
using the above definition af , we obtain thak’(x,) ((7")<0) = x(X¢)((7)<;). Hencepte,i = ¢
izf pte(q 3b(’i) = X(xg)((m)<i) = t = X'(xg)((7") <0) Hf Grac, (x;50)" = (%)X p.

[Only if]. If pte,z = Jq¢.7’, by ltem34 of Definitiol 313, there exists a temporal truthlestion
tte € TTE such thatpte[qg — tte],« = ¢’. Now, consider a strategly € Str(sg) such that
f((m)<n) = tte(n), for all n € [i,w[. Then, itis evident tha[x, — f](xy)((7)<n) = pte[g —
tte](¢')(n), for all ¢’ € free(yp) andn € [i,w]. So, by the inductive hypothesis, it follows that
GRac, (X[xq = f],50)" = 9. Thus, we have thalrac, (x,s0)" = (xg)?-

[f]. If Grae, (X, 50)" = ((x)¥’, there exists a stratedye Str(sy) such thaGrae, (x[x,
f],s0)" = ¢’. Now, consider a temporal truth evaluatias € TTE such thatte(n) = f((7 ) )
forall n € [i,w[. Then, itis evident thay[x, — f](xy)((7)<n) = ptelg — tte](¢")(n), for all
q € free(y)) andn € [i,w[. So, by the inductive hypothesis, it follows that[q — tte],i = 9.
Thus, by Iteni 3a of Definition 313, we have that, ; = 3q.9'.

—p =Vq.1)'.

[Only if]. For each strategy € Str(sp), consider a temporal truth evaluatiote € TTE
such thattte(n) = f((m)<y), for all n € [i,w[. It is evident thaty[x, — f](x¢)((7)<n) =
pte[g — tte](¢')(n), for all ¢ € free(yp) andn € [i,w][. Now, sincepte,i = Vq.¢', by
Item[3B of Definition[3.B, it follows thapte[q — tte],i = «’. So, by the inductive hypothe-
sis, for each strategly € Str(so), it holds thatGrac, (x[x; — f],50)¢ | ¢’. Thus, we have that
GRdc, (X;50)" [F [xq]J¥"-

[If]. For each temporal truth evaluatiate € TTE, consider a strategly € Str(sp) such
thatf((7)<y,) = tte(n), foralln € [i,w[. Itis evident thaty[x, — f](x¢)((7)<n) = ptelg —
tte](¢')(n), forall ¢’ € free(y)) andn € [i,w[. Now, SINCEG R, (X,50)" = [x,]J¥, it follows that
GRrae, (X[xq = f],50)" = . So, by the inductive hypothesis, for each temporal trutiiuation
tte € TTE, it holds thatpte[g — tte],7 = ¢’. Thus, by Iteni3b of Definition 313, we have that
pte,i = Vq.u'.

Thus, we are done with the proofc

Now, we can show the full reduction that allows us to stateekistence of a non-elementary
lower-bound for the model-checking problem a#-BL and, thus, of &.

THEOREM3.5 (TB-SL MODEL-CHECKING HARDNESS). The model-checking problem for
TB-SL[k-alt] is k-EXPSPACE-HARD.

PROOF Let ¢ be a QR L[k-alt] sentencey the related B-SL[k-alt] variable-closed formula,
andGrq. the turn-based €sof Lemmd3.4 of QL reduction. Then, by applying the previous men-
tioned lemma, it is easy to see thais satisfiable iffGrq. = [X] (a0, X)@ Iff Grae = (X)) (@, x)P.
Thus, the satisfiability problem for Q® can be reduced to the model-checking problem ferSL.
Now, since the satisfiability problem for QP[k-alt] is k-EXPSPACE-HARD [Sistla et al. 1987], we
have that the model-checking problem fas-BL [k-alt] is k-EXPSPACE-HARD as well. O

The following corollary is an immediate consequence of tfevipus theorem.

COROLLARY 3.6 (SL MODEL-CHECKING HARDNESS). The model-checking problem for
SL[k-alt] is k-EXPSPACE-HARD.

4. STRATEGY QUANTIFICATIONS

Since model checking for LSis non-elementary hard while the same problem far*Ais only
2EXPTIME-COMPLETE, a question that naturally arises is whether there are prfopgments of
SL of practical interest, still strictly subsumingr&, that reside in such a complexity gap. In this
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section, we answer positively to this question and go evethdu Precisely, we enlighten a funda-
mental property that, if satisfied, allows to retain a2 IME-coMPLETEMOodel-checking problem.
We refer to such a property afementarinesslo formally introduce this concept, we use the notion
of dependence mags a machinery.

The remaining part of this section is organized as followsSuibsectiof 411, we describe three
syntactic fragments ofiS named §[na], SL[BG], and S$[1c], having the peculiarity to use strategy
guantifications grouped in atomic blocks. Then, in Subsefi.2, we define the notion of depen-
dence map, which is used, in Subsecfiod 4.3, to introducedheept of elementariness. Finally,
in Subsectiof 414, we prove a fundamental result, which thatbase of our elementary model-
checking procedure fori$1ac].

4.1. Syntactic fragments

In order to formalize the syntactic fragments af e want to investigate, we first need to define
the concepts afuantificationandbinding prefixes

Definition4.1 (Prefixes. A quantification prefixover a setV C Var of variables is a finite
word p € {(x)), [[z] : 2 € V}V! of length|V| such that each variable € V occurs just once in
p, i.e., there is exactly one indeéxe [0, |V|[ such that(p);, € {{z), [=]}. A binding prefixover
a set of variable¥/ C Var is a finite word> € {(a,z) : @ € Ag Az € V}IA8l of length|Ag|
such that each ageatc Ag occurs just once ih, i.e., there is exactly one indéxe [0, |Ag|[ for
which (v); € {(a,z) : € V}. Finally, Qut(V) C {()), [z] : € V}VI andBnd(V) C {(a, )
a € Ag Az € V4l denote, respectively, the sets of all quantification andibin prefixes over
variables inV.

We now have all tools to define the syntactic fragments we waahalyze, which we name, re-
spectivelyNested-GoalBoolean-GoalandOne-Goal Strategy Logi(SL[NG], SL[BG], and S [1g],
for short). Forgoalwe mean an Sagent-closed formula of the kirbgb, with Ag C free(y), being
b € Bnd(Var) a binding prefix. The idea behind Big] is that, when there is a quantification over a
variable used in a goal, we are forced to quantify over a#l frariables of the inner subformula con-
taining the goal itself, by using a quantification prefix. histway, the subformula is build only by
nesting and Boolean combinations of goals. In additior) 8it[sc] we avoid nested goals sharing
the variables of a same quantification prefix, but allow tBeioclean combinations. Finally,L5LG]
forces the use of a different quantification prefix for eactgkd goal in the formula. The formal
syntax of $[ng], SL[BG], and S [1¢] follows.

Definition4.2 (SL[NG], SL[BG], andSL[1G] Synta}. SL[NG] formulas are built inductively
from the sets of atomic propositiod®, quantification prefixe§nt(V) for any V. C Var, and
binding prefixeBnd(Var), by using the following grammar, with € AP, p € UycvaQut(V),
andb € Bund(Var):

pu=plopleApleVve | XeleUploRe| pp| b,

where in the formation rulgy it is ensured thap is agent-closed and € Qnt(free(y)).

In addition, S[Bc] formulas are determined by splitting the above syntactis<in two different
parts, of which the second is dedicated to build the Boole@anhinations of goals avoiding their
nesting:

pu=ploploApleVe | XeleUe|pRe| e,
Yu=bo | | YA |V,

where in the formation rulg it is ensured thap € Qnt(free(v))).
Finally, the simpler $[1c] formulas are obtained by forcing each goal to be coupled avifuan-
tification prefix:

pu=ploploANe|leVe|Xe|leUp|pRo| phe,
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where in the formation rulgby it is ensured thap € Qut(free(byp)).
SL D SL[NG] D SL[BG] D SL[1g] denotes the syntactic chain of infinite sets of formulas gpaed
by the respective grammars with the associated consti@irfige variables of goals.

Intuitively, in SL[NG], SL[BG], and S[1c], we force the writing of formulas to use atomic blocks
of quantifications and bindings, where the related freeatdes are strictly coupled with those that
are effectively quantified in the prefix just before the bigliln a nutshell, we can only write
formulas by using sentences of the fogmt belonging to a kind oprenex normal fornin which the
guantifications contained into timeatrix 1) only belong to the prefixes’ of some inner subsentence
Py € snt(py).

An SL[NG] sentencep is principal if it is of the form ¢ = p, where is agent-closed and
p € Qnt(free(y))). By psnt(¢) C snt(y) we denote the set of all principal subsentences of the
formulagp.

We now introduce other two general restrictions in whichrthmbergAg| of agents an¢Var| of
variables that are used to write a formula are fixed to the@ipraluesn, m € [1,w[, respectively.
Moreover, we can also forbid the sharing of variables, @ach variable is binded to one agent only,
s0, we cannot force two agents to use the same strategy. We thase three fragments [@-ag),
SL[m-var], and S[fvs], respectively. Note that, in the one agent fragment, theicden on the
sharing of variables between agents, naturally, does mnot@g S [1-ag, fvs]= SL[1-ag].

To start to practice with the above fragments, consider raghé sentencep of Exam-
ple[2.190on page 12. It is easy to see that it actually belondd [sG, 2-ag, 3-var, 2-alt], and so,
to SL[NG], but not to $[1¢], since it is of the formp(b1 X p A b2X q), where the quantification
prefix isp = {(x)[y]{(z)) and the binding prefixes of the two goals aie= («,x)(8,y) and
s = (a,y)(8.2).

Along the paper, sometimes we assert that a given formpput@longs to an S syntactic frag-
ment also if its syntax does not precisely correspond to ighdescribed by the relative gram-
mar. We do this in order to make easier the reading and irgtjon of the formulap itself
and only in the case that it is simple to translate it into anieent formula that effectively be-
longs to the intended logic, by means of a simple gener@izaif classic rules used to put a
formula of first order logic in the prenex normal form. For exyae, consider the sentenggg
of Exampld 2.6 on page 9 representing the existence of a Nashbeium. This formula is con-
sidered to belong to 1$8G, n-ag, 2n-var, fvs, 1-alt], since it can be easily translated in the form
one = o NIy bithi — o, wherep = () (xa) vl - [ynll b = (1,31) (@, x0),
bi = (al, Xl) v (ai_l,xi_l)(ai, yi)(ai_ﬂ, Xi+1) ce (Oén, Xn), andfree(z/Ji) = Ag. As another ex-
ample, consider the sentengg- of Examplg 2.7 on pagg 9 representing the existence of distabi
profile. Also this formula is considered to belong to[Ss, n-ag, 2n-var, fvs,1-alt], since it is equiv-
alent t0¢5p = p/\Zj:Li;éj bw] — ((bwz L bﬂ/]z) — bzl/Jj) Note that bOthb]\E and ¢SP are
principal sentences.

Now, it is interesting to observe thattC' and ArL* are exactly equivalent toL$La, fvs, 0-alt]
and 3 [1g, fvs, 1-alt], respectively. Moreover, G[Alur et al. 2002] is the very simple fragment of
SL[BG, fvs, 1-alt] that forces all goals in a formula to have a common part coirtgiall variables
quantified before the unique possible alternation of thentjfieation prefix. Finally, we have that
CHP-S is the TB-SL[BG, 2-ag, fvs]fragment.

Remarlk4.3 (TB-SL[NG] Model-Checking Hardness It is well-known that the non-elementary
hardness result for the satisfiability problem of QHSistla et al. 1987] already holds for formulas
in prenex normal form. Now, it is not hard to see that the ti@msation described in Lemnia_3.4
of QPTL reduction puts QPL[k-alt] sentences in prenex normal form into B-SL[NG, 1-ag, k-alt]
variable-closed formulag = p. Moreover, the derived 8-SL[1-ag, k-alt] sentence(x)) (o, x) p)
used in Theorem 3.5 of 8-SL model-checking hardness is equivalent to tre JL[NG, 1-ag, k-
alt] principal sentencéx))o(«,x)1, sincex is not used in the quantification prefix Thus, the
hardness result for the model-checking problem holds B4SL[NG, 1-ag, k-alt] and, consequently,
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for SL[NG, 1-ag, k-alt] as well. However, it is important to observe that, unfortehait is not know
if such an hardness result holds foB-BL[BG] or SL[BG] and, in particular, for CHP-S We leave
this problem open here.

AN AN
D, Dcg, \ D1 Do Dcg, \ D2
rd N rd
. Lo
(a) Cesai. (b) CcsgGo.

Fig. 5: Alternation2 non-equivalent Gss.

At this point, we prove that A* is strictly less expressive than 8] and, consequently, than
SL[Bc] and S [ng]. To do this, we show the existence of two structures thattresbe equivalent
only w.r.t. sentences having alternation number bounded. btycan be interesting to note that,
we use an ad-hoc technique based on a brute-force checkitp thet all ATL* formulas cannot
distinguish between the two structures. A possible futime of research is to study variants of
the Ehrenfeucht-Fraissé game [Ebbinghaus and Flum 19%gd$dl993] for 8§, which allow to
determine whether two structures are or not equivalent a.particular $ fragment.

THEOREM4.4 (SL[1G] VS ATL* EXPRESSIVENESS. There exists arSL[1G, 3-ag, fvs, 2-alt]
sentence having nATL* equivalent.

PROOF. Consider the two Gss G; = ({p},{a, 8,7}, {0,1}, {s0,51,52}, \, 71,50) and G, =
<{p}v {Oé, ﬂa ’Y}? {Oa 17 2}3 {507 S1, 52}7 Av T2, SO> depiCted in Figur{]S’ Wherﬁ(SO) = A(SQ) £ ®'
A(s1) £ {p}, D1 £ {00%,11%}, andDy £ {00%, 11%, 12%,200, 202, 211}. Moreover, consider the
SL[16, 3-ag, fvs,2-alt] sentencex* = p*h*X p, wherep* = [[x](y) [z] andb* £ (a,x)(B,y)(7,2).
Then, it is easy to see th&@; = ¢* but Go [~ ¢*. Indeed,Gi,x1,50 E b*Xp, for all
X1 € Asgg ({x,y,z},s0) such thatyi(y)(so) = x1(x)(so), and Gz, x2,50 = b*X —p, for all
X2 € Asgg, ({x,y,2},50) such thaty»(x)(so) = 2 andyxa2(z)(so) = (x2(y)(so) + 1) mod 3.

Now, due to the particular structure of thes& G, under exam, with € {1, 2}, for each path
7 € Pthg, (so), we have that eithek((n);) = {p} or \((7);) = 0, forall j € [1,w][, i.e., apart
from the initial state, the path is completely labeled aituith {p} or with (). Thus, it is easy to see
that, for each AL* formulagpby, there is a literal,, € {p, —-p} such thay; = pby iff G; = EhXly,
for all i € {1,2}. W.l.o.g., we can suppose that= b*, since we are always able to uniformly
rename the variables of the quantification and binding pesfixithout changing the meaning of the
sentence.

At this point, it is easy to see that there exists an inklex{1, 2, 3} for which it holds that either
prb* Xy = b*Xly or ph*Xly = Prd*Xiy, wherep: £ [X][](y), p2 = (x){y)[z], and
o3 2 [[yll[z]{x). Thus, to prove that every7* formula cannot distinguish betweéh andgs,
we can simply show that the sentenggs* X, with k € {1,2,3} andl € {p, —p}, do the same. In
fact, it holds thayy; = pib*XI, foralli € {1,2}, k € {1,2,3}, andl € {p, —p}. Hence, the thesis
holds. The check of the latter fact is trivial and left to tleader as an exercisex

4.2. Dependence Maps

We now introduce the concept of dependence map of a quatitifi@nd show how any quantifica-
tion prefix contained into aniSformula can be represented by an adequate choice of a deende
map over strategies. The main idea here is inspired by whale8kproposed for the first order
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logic in order to eliminate each existential quantificatouer variables, by substituting them with
second order existential quantifications over functiorf®pse choice is uniform w.r.t. the universal
variables.

First, we introduce some notation regarding quantificagicefixes. Letp € Qut(V) be a quan-
tification prefix over a se¥(p) £ V C Var of variables. By((p)) = {z € V(p) : Ji € [0,
ol - (p)i = (=)} and[p] = V(p) \ (p) we denote, respectively, the setsedistentialand
universal variablegjuantified inp. For two variables:, y € V(p), we say that: precedeg in p, in
symbols:z:<py, if © occurs befor@ in p, i.e., there are two indexes;j € [0, |p|[, with i < j, such
that (p); € {{z), [z]} and(p); € {(y),[y]}. Moreover, we say thaj is functional dependent
ong, in symbolsz~,y, if z € [[p]] y € ((p), andz<,y, i.e.,y is existentially quantified after that
x is universally quantified, so, there may be a dependenceceeta value chosen hyand that
chosen byy. This definition induces the sBlep(p) = {(z,y) € V(p) x V(p) : z~,y} of depen-
dence pairand its derived versioDep(p, y) £ {z € V(p) : 2~>,y} containing all variables from
which y depends. Finally, we uge € Qnt(V(yp)) to indicate the quantification derived fromby
dualizingeach quantifier contained in it, i.e., for all indexes [0, |p|[, it holds that(p); = () iff
()i = [=], withz € V(p). Itis evident that(p)) = [p] and[[E] = (). As an example, lgp =
[x] (y) () [w] {v). Then, we havé{)) = {y.z,v}, ] = {x w}, Dep(p,x) = Dep(p, w) = 0,
Dep(p,y) = Dep(p,z) = {x}, Dep(p,v) = {x,w}, andp = {(x)) [y] [z] {w)) [v].

Finally, we define the notion ofaluationof variables over a generic sBt, calleddomain i.e.,

a partial functionv : Var — D mapping every variable in its domain to an elemenbDinBy
Valp (V) £V — D we denote the set of all valuation functions oledefined onV C Var.

At this point, we give a general high-level semantics fordantification prefixes by means of

the following main definition oflependence map

Definition4.5 (Dependence Maps Let p € Qut(V) be a quantification prefix over a SétC
Var of variables, and a set. Then, dependence mdpr p overD is a functiond : Valp ([¢]]) —
Valp (V) satisfying the following properties:

(1) 6(v) gy =V, forallv € Valp([p]); B
(2) 0(v1)(w)=0(v2)(z), for all vi,vs € Valp ([]]) andz € (p)) such thav pep(p,2) = V2 1Dep(p,a)-

DMp (p) denotes the set of all dependence mapsgfoverD.

Intuitively, Item[1 asserts tha#takes the same values of its argument w.r.t. the universalblas
in o and ltem2 ensures that the valuefbiv.r.t. an existential variable in p does not depend
on variables not iMep(p, z). To get a better insight into this definition, a dependencp énfor
p can be considered as a set$¥#olem functionshat, given a value for each variable ¥(p)
that is universally quantified ig, returns a possible value for all the existential variahtesg,
in a way that is consistent w.r.t. the order of quantificagioBbserve that, eache DMp(p) is
injective, so,/mg(#)| = |dom ()| = |D|¥Il. Moreover,[DMp ()| = [T,y IDIP" "
As an example, leD = {0,1} andp = [x]{y)[z]] € Qut(V) be a quantification prefix over
= {x,y,z}. Then, we have thaDMp(p)| = 4 and|DMp(p)| = 8. Moreover, the dependence
maps@ € DMp(p) with i € [0,3] andd; € DMp(p) with i € [0, 7], for a particular fixed order,
are such thafo(v)(y) = 0, 01(v)(y) = v(x), f2(v)(y) = 1 — v(x), andbs(v)(y) = 1, forallv €
Valp ([[p]])), andé; (v)(x) = 0 with ¢ € [0, 3] J(V)(X) = 1withi € [4,7],00(V)(z) = 04(V)(z) =0,
0,(v)(z) = 05(V)(2) = (y), 02(¥)(2) = 06(v)(2) = 1 — ¥(y), andfs(v)(z) = 07(v)(2) = 1, for
allv e Valp ([g])-
We now prove the following fundamental theorem that dessribow to eliminate the strategy
quantifications of an Sformula via a choice of a suitable dependence map over gieateThis

9By gz : (XN Z) — Y we denote theestriction of a functiong : X — Y to the elements in the sgt
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procedure can be seen as the equivaleBi@iemizatiomn first order logic (se€ [Hodges 1993], for
more details).

THEOREM4.6 (SL STRATEGY QUANTIFICATION). LetG be aCcsandy = @i an SL for-
mula, beingp € Qut(V) a quantification prefix over a s C free(¢)) N Var of variables. Then,
for all assignmentg € Asg(free(i), s9), the following holdsg, x, so = ¢ iff there exists a depen-
dence ma € DMg,(s,) () Such thaig, x W o(x’'), so = ¢, for all x’ € Asg([[¢], s0).H

PrROOF The proof proceeds by induction on the length of the quaatifin prefixp. For
the base cask| = 0, the thesis immediately follows, sindg]] = @ and, consequently, both
DMgi,(so) () @ndAsg([[¢]], s0) contain the empty function only (we are assuming, by corigant
thato (@) £ 2).

We now prove, separately, the two directions of the indeatizse.

[Only if]. Suppose thaf, x, so = ¢, wherep = Qn - ¢’. Then, two possible cases arise: either
Qn = ((z)) orQn = [z].

—Qn = ().
By Item[3a of Definitiod 2.16 of 6 semantics, there is a strateQ¢ Str(so) such thay, x[z —
f],s0 E p'v. Note that[p]] = [[¢']- By the inductive hypothesis, we have that there exists

a dependence map € DMgy, (s, (¢') such thatg, x[z — fl U 0(x’),so = ¥, for all ' €
Asg([[¢'], s0). Now, consider the functiot : Asg([¢], s0) — Asg(V,so) defined byd’(y') £
O(x")[x — f], forall x" € Asg([[p]; so0)- Itis easy to check tha is a dependence map fprover
Str(sp), i.e.,0’ € DMS“(SO)(@). Moreoverx[z — flUO(x') = x UO(X )|z — f] = x WO (X'),
for x' € Asg([[e], so). HenceG, x W 0’ (x'), so = v, forall x’ € Asg([[e]], so)-

—Qn = ([z]].
By Iterg[% of Definitior 2.1, we have that, for all strategfies Str(s¢), it holds thatG, x[z —
f], s0 = ©’'¢. Note that[p] = [¢’]|U{x}. By the inductive hypothesis, we derive that, for efeh
Str(so), there exists a dependence ntagE DMgq, (s, (') such thag, x|z — f] W o (x'), s0 =
¥, for all X’ € Asg([[¢'], so)- Now, consider the functio’ : Asg([p]],s0) — Asg(V,so)
defined by’ (') = Oy () (X 1oy [z = X/ (@), forall X" € Asg([[p]l, so). Itis evident that” is
a dependence map feroverStr(sg), i.€.,0" € DMg,(s,)(p). Moreoverx[z — f] U O¢(x') =
XU 0(x)z — f] = x VW& ([z — f]), forf € Str(so) andx’ € Asg([[¢'], s0). Hence,
G.xUO'(X'), s0 =, forall X" € Asg([[p]], s0)-

[If]. Suppose that there exists a dependencefmaMsg;, s, () such thalg, x U 0(x’), so =
, forall x’ € Asg([[p]l, so), wherep = Qn - ©’. Then, two possible cases arise: eit@er = (z))
orQn = [z].

—Qn = {x)).
There f<s >’2\ strategy € Str(sg) such thatf = 6(x’)(x), for all x' € Asg([¢], so). Note that
o]l = [¢']- Consider the functiof’ : Asg([¢'], s0) — Asg(V \ {z}, s0) defined by?’ (y') £
O(X") 1(v\{z}). for all x" € Asg([[©']], s0). It is easy to check that is a dependence map fof
over Str(sg), i.e.,0” € DMgy(s,)(g'). Moreover,x U 0(x') = x W0 (X )[z — f] = x[z —
flu @ (x’), for x’ € Asg([[¢'], so)- Then, itis evident tha§, x[z — f] W 6'(x), so = ¥, for all
x' € Asg([[¢'], so)- By the inductive hypothesis, we derive tiaty [z — f],so = p'1, which
means thag, x, so = ¢, by Item[3& of Definitiom 2.16 of Ssemantics.

—Qn = [[z]].
First ngtg thaf{p]] = [[¢'] U {z}. Also, consider the function : Asg([[¢'], so) — Asg(V \
{z}, 50) defined byd;(x) £ 0(x/[z — f]) ;v\ (x}), fOr eachf € Str(so) andx’ € Asg([¢']], s0).

0By g1 W gs : (X1 UX2) — (Y1 UYa2) we denote the operation aiion of two functionsg; : X; — Y; and
g2 : X9 — Y2 defined on disjoint domains, i.6X; N X2 = 0.
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It is easy to see that evety is a dependence map fpf overStr(sg), i.e.,6; € DMSH(SO)( M.

Moreover,x U 0(x') = x U 6, (X}[op)[z = X' (@)] = x[z = X'(z )]u9 () Xy )» fOr
X' € Asg([[¢], s0)- Then, itis evident tha@, x[z — fl W 6;(X'), so = ¥, for aIIf € Str(so) and
X' € Asg([[¢'], so). By the inductive hypothesis, we derive tt@ty [z — f], so = ©'¢, for all
f € Str(sp), which means thag, x, so = ¢, by Item[3b of Definitio 2.16.

Thus, the thesis of the theorem holds]
As an immediate consequence of the previous result, weatré/following corollary.

COROLLARY 4.7 (SL STRATEGY QUANTIFICATION). LetG be aCcsandy = gy an SL
sentence, wherg is agent-closed ang € Qut(free(¢))). ThengG |= ¢ iff there exists a dependence
mapé € DMg;, () () such thaig, 6(x), so = ¢, forall x € Asg([¢], so)-

4.3. Elementary quantifications

We now have all tools we need to introduce the property of elgariness for a particular class of
dependence maps. Intuitively, a dependence map over@unsdtiom a seT to a seD is elementary

if it can be split into a set of dependence maps dvemne for each element of. This idea
allows us to enormously simplify the reasoning about stiatpiantifications, since we can reduce
them to a set of quantifications over actions, one for eadk fratheir domains. This means that,
under certain conditions, we can transform a dependencémnaapMg;, () () Over strategies in a

functiond : Trk(s) — DMa.(gp) that associates with each track a dependence map oversaction
To formally develop the above idea, we have first to introdilneegeneric concept of adjoint
function and state an auxiliary lemma.

Definition4.8 (Adjoint Functions. LetD, T, U, andV be four sets, aneh : (T — D)V
(T - D)Vandm : T — (DY — DV) two functions. Thenm is the adjoint of m if
m(t)(g(t))(x) = m(g)(z)(t), forallg € (T — D)V, z € V,andt € TH

Intuitively, m is the adjoint ofm if the dependence from the s&tin both domain and codomain
of the latter can be extracted and put as a common factor dfitieor given by the former. This
means also that, for every pair of functianis g» € (T — D)V such thag; (t) = g»(¢) for some
t € T, it holds thatm(g1)(x)(t) = m(gz2)(z)(¢), forall z € V. It is immediate to observe that if a
function has an adjoint then this adjoint is unique. At theesavay, if one has an adjoint function
then it is possible to determine the original function withany ambiguity. Thus, it is established a
one-to-one correspondence between functions admittirglgint and the adjoint itself.

Next lemma formally states the property briefly describeovabi.e., that each dependence map
overasefl' — D, admitting an adjoint function, can be represented as gifumavith T as domain,
which returns dependence maps oleas values.

LEMMA 4.9 (ADJOINT DEPENDENCEMAPS). Letp € Qnt(V) be a quantification prefix over
a setV C Var of variables D andT two sets, and : Valr_p([[¢]) — Valr_p(V) andd : T —
(Valp([[p]]) — Valp(V)) two functions such that is the adjoint of). Then,# € DM_,p(p) iff,
forall t € T, it holds thatf(t) € DMp (p).

We now define the formal meaning of the elementariness of ardignce map over functions.

Definition4.10 (Elementary Dependence MapsLet ¢ € Qnt(V) be a quantification pre-
fix over a setV C Var of variables,D and T two sets, andd € DM~r_,p(p) a dependence
map forp overT — D. Then,# is elementanyif it admits an adjoint functionEDM_,p ()
denotes the set of all elementary dependence magsdoerT — D.

1By g : Y — X — Z we denote the operation @fpping of a functiong : X — Y — Z.
yeg p ping g
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It is important to observe that, unfortunately, there arpesi@lence maps that are not elemen-
tary. To easily understand why this is actually the cases gnough to count both the number
of dependence mapBMr_,(p) and of adjoint functionsST — DMp(p), where|D| > 1,

|T| > 1 andgp is such that there is an € ((p)) for which Dep(p, z) # 0. Indeed, it holds that
|D1\1T—>D(p)| _ Hme«p» |D|\T|~|D|\T\'\Dep(§a,m)\ S Hme«p» |D||THDUDep(@,m)\ _ |T N Dl\lD(p”
So, there are much more dependence maps, a number doubleetpbin|T|, than possible ad-
joint functions, whose number is only exponential in thikreaFurthermore, observe that the simple
setQuta.y. (V) = {p € Qut(V) : Fi € [0, |pl] . [(0)<i] = 0 A ((p)>:)) = 0}, for V C Var,

is the maximal class of quantification prefixes that admily efementary dependence maps over
T — D, i.e., itis such that each € DM1_,p(p) is elementary, for alp € Qnts.y. (V). Thisis
due to the fact that there are no functional dependencesbetvariables, i.e., for eaahe (p)),

it holds thatDep(p, z) = 0.

Finally, we can introduce a new very important semanticsSosyntactic fragments, which is
based on the concept of elementary dependence map oveggstand we refer to the related
satisfiability concept aslementary satisfiabilityin symbolsi=¢. Intuitively, such a semantics has
the peculiarity that a strategy, used in an existential tifieation in order to satisfy a formula, is
only chosen between those that are elementary w.r.t. tversail quantifications. In this way, when
we have to decide what is its valuen a given tracko, we do it only in dependence of the values
on the same track of the strategies so far quantified, but meheir whole structure, as it is the
case instead of the classic semantics. This means thags not depend on the values of the other
strategies on tracks that exteng, i.e., it does not depend on future choices madg’oim addition,
we have that does not depend on values on parallel traekihat only share a prefix with, i.e.,
it is independent on choices made on the possibly altem&ituresy’. The elementary semantics
of SL[NG] formulas involving atomic propositions, Boolean connesdi temporal operators, and
agent bindings is defined as for the classic one, where thelingdelation= is substituted with
e, and we omit to report it here. In the following definition, wely describe the part concerning
the quantification prefixes.

Definition4.11 (SL[NG] Elementary Semantigs LetG be a Gss, s € St one of its states, and
py an S [Ng] formula, wherey is agent-closed ang € Qut(free(¢))). ThenG, @, s Ee pv
if there is an elementary dependence ntapc EDMg,(4)(p) for o over Str(s) such that

G,0(x), s e ¢, forall x € Asg([[]l, s).

Itis immediate to see a strong similarity between the statgrof Corollary 4.17 of & strategy quan-
tification and the previous definition. The only crucial ditnce resides in the choice of the kind of
dependence map. Moreover, observe that, differently flenctassic semantics, the quantifications
in the prefix are not treated individually but as an atomickld his is due to the necessity of having
a strict correlation between the point-wise structure efghantified strategies.

Remark4.12 (SL Elementary Semantigs It can be interesting to know that we do not define
an elementary semantics for the whole, Since we are not able, at the moment, to easily use the
concept of elementary dependence map, when the quantifisatie not necessarily grouped in pre-
fixes, i.e., when the formula is not in prenex normal form.datf this may represent a challenging
problem, whose solution is left to future works.

Due to the new semantics of_@ic], we have to redefine the related concepts of model and
satisfiability, in order to differentiate between the claselation = and the elementary oneg.
Indeed, as we show later, there are sentences that areadd¢idfut not elementary satisfiable and
vice versa.

Definition4.13 (SL[NG] Elementary Satisfiabilily We say that a 6s G is an elementary
modelof an S [NG] sentencep, in symbolsG =g ¢, if G, &, s0 Fe ¢. In general, we also say
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thatG is aelementary modédbr ¢ ons € St, in symbolsG, s =g ¢, if G, 9, s Ee ¢. An SL[NG]
sentence is elementarily satisfiabld there is an elementary model for it.

We have to modify the concepts of implication and equivadeas well. Indeed, also in this case
we can have pairs of equivalent formulas that are not eleamignéquivalent, and vice versa. Thus,
we have to be careful when we use natural transformationdsgtiormulas, since it can be the case
that they preserve the meaning only under the classic séraaAn example of this problem can
arise when one want to put a formulagnf.

Definition4.14 (SL[NnG] Elementary Implication and Equivalence Given two $[nG] formu-
las o1 and o with free(p;) = free(ps2), we say thaty; elementarily impliesps, in sym-
bols o1 =g o, if, for all Cess G, statess € St, and free(y1)-defined s-total assignments
X € Asg(free(py), s), it holds that ifG, x,s Ee ¢1 thenG, x,s Ee 2. Accordingly, we say
thatp; is elementarily equivalenb ¢, in symbolsp; =g o3, if both o1 =g @3 andys = 1
hold.

4.4. Elementariness and non-elementariness

Finally, we show that the introduced concept of elementatisgability is relevant to the context
of our logic, as its applicability represents a demarcdiimnbetween “easy” and “hard” fragments
of SL. Moreover, we believe that it is because of this fundamentgberty that several well-known
temporal logics are so robustly decidalble [Vardi 1996].

Remarkd.15 (SL[NG, 0-alt] Elementariness It is interesting to observe that, for everys€6G
and S [Ng, 0-alt] sentencep, it holds thatg | ¢ iff G =g . This is an immediate consequence of
the fact that all quantification prefixgsused inp belong toQnt5.. (V), for a given se¥V C Var of
variables. Thus, as already mentioned, the related depeadeaps on strategiéss DMgg,(s,) ()
are necessarily elementary.

By Corollary[4.T of $ strategy quantification, it is easy to see that the followtoderence
property about the elementariness of thgng] satisfiability holds. Intuitively, it asserts that every
elementarily satisfiable sentencepinf is satisfiable too.

THEOREM4.16 (SL[NG] ELEMENTARY COHERENCE. LetG be aCas, s € St one of its
statesy an SL[NgG] formula in pnf, andy € Asg(s) an s-total assignment witlfree(o) C dom(x).
Then, it holds thag, x, s e ¢ impliesg, x, s E .

PrRoOFE The proof proceeds by induction on the structure of the tdamFor the sake of suc-
cinctness, we only show the crucial case of principal suleseesp € psnt(yp), i.e., wheng is of
the formpwy, wherep € Qnt(free(v)) is a quantification prefix, angd is an agent-closed formula.

Suppose thaf, @, s = . Then, by Definitio 4.111 of §nc] elementary semantics, there is
an elementary dependence ntag EDMgy,(,) () such that, for all assignmengse Asg([[¢]], s),
it holds thatg, 6(x), s = %. Now, by the inductive hypothesis, there is a dependencefmap
DMg,(s) () such that, for all assignmentsc Asg([[¢]], s), it holds thatG, 6(x), s = . Hence,
by Corollarny[4.¥ of $ strategy quantification, we have tHata, s = . O

However, it is worth noting that the converse property may had, as we show in the next
theorem, i.e., there are sentencepiifithat are satisfiable but not elementarily satisfiable. Nudé t
the following results already holds for CHR-S

THEOREM4.17 (TB-SL[BG] NON-ELEMENTARINESS). There exists a satisfiableTs-
SL[BG, 1-ag, 2-var, 1-alt] sentence in pnf that is not elementarily satisfiable.

PROOF. Consider the B-SL[BG, 1-ag, 2-var, 1-alt] sentencepy = ¢, A oo in pnf where

p1 = o1 Atba), with o = [x](y), 1 £ (a,x)Xp <> (0, y)X =p, andyn £ (a,x)X X p ¢
(o, y)X X p, ands 2 [[x](c, x)X (({(x) (c, X)X p) A ({x)) (e, x)X —=p)). Moreover, note that the
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TB-SL[1G, 1-ag, 1-var, 0-alt] sentencep, is equivalent to the @ formulaAX ((EX p) A (EX —p)).
Then, it is easy to see that the turn-basess@rq. of Figure[4 on page 15 satisfies Indeed,
GRrac,0(x),s0 = 1 A g, for all assignmenty € Asg({x},so), where the non-elementary de-
pendence map € DMsy(s,)(g) is such that(x)(y)(so) = —x(x)(so) andd(x)(y)(so - s:) =
x(X)(so - s1—4), foralli € {0,1}.

Now, let G be a generic Gs. If G [~ ¢, by Theorem[4.16 of 9nc] elementary co-
herence, it holds thag }~e . Otherwise, we have thaf | ¢ and, in particularg E
¢1, which means thai = p(¢¥1 A v3). At this point, to prove thaG e ¢, we show
that, for all elementary dependence mapsc EDMsgy, (s, (), there exists an assignment
x € Asg({x},s0) such thatG,0(x),so e ¥1 A ¥2. To do this, let us fix an elementary
dependence map and an assignment. Also, assumes; 2 7(so,0[a — x(x)(s0)]) and
s2 = 7(s0,0[a = 0(x)(y)(s0)]). Now, we distinguish between two cases.

—p € A(s1) iff p € A(s2). In this case, we can easily observe tfab(y), so [~ 1 and conse-
quently, by Theorem 4.16, it holds th&tf(x), so ~e ¥1 A 12. SO, we are done.

—p € A(s1) iff p & A(s2). If G,0(x), s0 [~ 12 then, by Theoref 4.16, it holds th@t6(x), so e
Y1 Aba. SO, we are done. Otherwise, lgt= (s, D — x(x)(s0 - 51)]) andsy = 7(sa, Do —
O(x)(y)(so - s2)])- Then, it holds thap € A(s3) iff p € A(s4). Now, consider a new assignment
X' € Asg({x},s0) such thaty’(z)(so - s2) = x(z)(s0 - s2) andp € A(s3’) iff p & A(s4),
wheress’ £ 7(s1, 0[a — X' (x)(s0 - 51)]). Observe that the existence of such an assignment, with
particular reference to the second condition, is ensur@tidfact thaty = ¢». At this point, due
to the elementariness of the dependence fhaye have thaf(x')(y)(so - s2) = 6(x)(y)(so - s2).
Consequently, it holds tha = 7(s2, Ola — 6(x")(y)(s0 - $2)]). Thus,G, 8(x’), so [~ 12, which
implies, by Theorerh 4.16, th&t 6(x'), so e Y1 A ¥2. SO, we are done.

Thus, the thesis of the theorem holds]

The following corollary is an immediate consequence of ttevipus theorem. It is interesting
to note that, at the moment, we do not know if such a result @aaxbended to the simpler .G
fragment.

COROLLARY 4.18 (SL[Bc] NON-ELEMENTARINESS). There exists a satisfiablL[Bg, 1-ag,
2-var, 1-alt] sentence in pnf that is not elementarily satisfiable.

Remark4.19 (Kinds of Non-Elementarinegs It is worth remarking that the kind of non-
elementariness of the sentengeshown in the above theorem can be callessential i.e.,
it cannot be eliminated, due to the fact thatis satisfiable but not elementarily satisfiable.
However, there are different sentences, such as the cdnjpn@ ¢, having both models on
which they are elementarily satisfiable and models, like @®s Gr4., on which they are
only non-elementarily satisfiable. Such a kind of non-eletagness can be callatbn-essential
since it can be eliminated by an opportune choice of the uyidgrmodel. Note that a sim-
ilar reasoning can be done for the dual concept of elememissi which we calkessential
if all models satisfying a given sentence elementarilyséatt as well.

Before continuing, we want to show the reason why we havefireztbthe concepts of implica-
tion and equivalence in the context of elementary semarioasider the §Bg, 1-ag, 2-var, 1-alt]
sentencer; used in Theoreii 4.17 ofgFSL[BG] non-elementariness. It is not hard to see that it is
equivalent to the §1¢, 1-ag, 1-var, 0-alt] ¢’ = ({(x)) (c, x)b1 <+ (X)) (a,x)2) A (X)) (e, x)1h3 >
() (c;x)pa), whereyy = X (pAXp), ¢2 £ X (=p AXp), ¢3 = X (pAX =p), andypy = X (—=p A
X —p). Note thaty’ is in turn equivalent to the @* formula(Evy, <> Ei2) A (Evs < Etps). How-
ever,p, andy’ are not elementarily equivalent, since we have that. e @1 butGra. Ee ¢/,

whereGrg. is the Gss of Figurg4 on page 15.
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At this point, we can proceed with the proof of the elementss of satisfiability for §1a].

It is important to note that there is no gap, in our knowledgsyeen the logics that are elemen-
tarily satisfiable and those that are not, since the fragr8efes, 1-ag, 2-var, 1-alt] used in the pre-
vious theorem cannot be further reduced, due to the factatetrwise it collapses intoL$lg].
Before starting, we have to describe some notation reggiclassic two-player games on infinite
words [Perrin and Pin 2004], which are used here as a tedhniula Note that we introduce the
names of scheme and match in place of the more usual strateigylay, in order to avoid confu-
sion between the concepts related to@s@nd those related to the tool.

A two-player arengTPA, for short) is a tupled = (N, N,, E, no), whereN, andN,, are non-
empty non-intersecting sets obdesfor playerevenandodd, respectivelyE £ E, U E,, with
E. C N, xNyandE, C N, x N, is theedge relatiorbetween nodes, and) € N, is a designated
initial node

An even positiorin A is a finite non-empty sequence of nodes N, " such that(o)y = ng
and, for alli € [0,]o| — 1[, there exists a node € N, for which ((g);,n) € E. and
(n,(0)i+1) € E, hold. In addition, arodd positionin A is a finite non-empty sequence of nodes
o =0 -n¢€ N7 N, withn € N,, such thaty’ is an even position andst(¢’),n) € E..
By Pos, andPos, we denote, respectively, the sets of even and odd positions.

An even(resp.,0dd) schemen A is a functions, : Pos, — N, (resp.s, : Pos, — N) that maps
each even (resp., odd) position to an odd (resp., even) nadway that is compatible with the edge
relation £, (resp.,E,), i.e., for allp € Pos, (resp.,0 € Pos,), it holds that(Ist(g),s.(0)) € E.
(resp.(Ist(0),s0(0)) € E,). By Sch, (resp.Sch,) we indicate the sets of even (resp., odd) schemes.

A matchin A is an infinite sequence of nodese N.* such thaiw), = no and, for alli € N,
there exists a node € N,, such tha{(w);,n) € E. and(n, (w);+1) € E,. By Mtc we denote the
set of all matches. Anatch mapntc : Sch, x Sch, — Mtc is a function that, given two schemes
se € Sch, ands, € Sch,, returns the unique mateb = mtc(se, so) such that, for alf € N, it holds
that(w)i+1 = so((@)<i - se((@)<i))-

A two-player gaméTPg, for short) is a tuplé{ = (A, Win), whereA is a TPAandWin C Mtc.
On one hand, we say that player even wihg there exists an even schemec Sch, such that, for
all odd schemes, € Sch,, it holds thatmtc(s.,s,) € Win. On the other hand, we say that player
odd winsH if there exists an odd schemg € Sch, such that, for all even schemgse Sch,, it
holds thatmtc(se, so) ¢ Win.

In the following, for a given binding prefix € Bnd(V) with V C Var, we denote by, : Ag —

V the function associating with each agent the related varimby, i.e., for alla € Ag, there is
i € [0, |b|[ such thatb); = (a,(,(a)).

As first step towards the proof of the elementarinessi.gf §, we have to give a construction of
a two-player game, based on an a priori chosels,@h which the players are explicitly viewed one
as a dependence map and the other as a valuation, both aeesadtis construction results to be
a deep technical evolution of the proof method used for thadiziation of alternating automata on
infinite objects|[[Muller and Schupp 1987].

Definition4.20 (Dependence-vs-Valuation GajneLet G be a G5s, s € St one of its states,
P C Pth(s) a set of pathsp € Qnt(V) a quantification prefix over a s&t C Var of variables, and
b € Bnd(V) a binding. Then, the dependence-vs-valuation gamg fars overP w.r.t. ¢ andb is

the TPGH(G, s, P, p,b) 2 (A(G, s, p,b), P), where the PA A(G, s, p,b) £ (St, St x DMa.(p),
E, s) has the edge relations defined as follows:

— B 2 {(t,(t,0)) : t € St A6 € DMac(p)};
— Eo 2 {((t,0),7(t,0(v) 0 G)) : t € St A8 € DMac(p) Av € Valao([[p]) }E.

12By go 0 g1 : X — Z we denote the operation ebmpositionof two functionsg; : X — Y; andgs : Yo — Z with
Y1 C Yo
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In the next lemma we state a fundamental relationship betwekependence-
vs-valuation games and their duals. Basically, we provet tifa a player wins
the game then the opposite player can win the dual game, arm wersa.
This represents one of the two crucial steps in our elemiaetss proof.

LEMMA 4.21 (DEPENDENCEVS-VALUATION DUALITY ). LetG be aCGs, s € St one of its
states,P C Pth(s) a set of pathsp € Qut(V) a quantification prefix over a s&f C Var of
variables, and € Bnd(V) a binding. Then, player even wins theG H(G, s, P, p, b) iff player
odd wins the dual PG H(G, s, Pth(s) \ P, %, b).

Now, we are going to give the definition of the important cqicef encasementin-
formally, an encasement is a particular subset of paths inivengCcs that “works
to encase” an elementary dependence map on strategies, einseéhse that it con-
tains all plays obtainable by complete assignments derifredh the evaluation of the
above mentioned dependence map. In our context, this cbrisepsed to summarize all
relevant information needed to verify the elementary Sabdity of a sentence.

Definition4.22 (Encasement LetG be a Gss, s € St one of its statesP C Pth(s) a set
of paths,p € Qut(V) a quantification prefix over a s& C Var of variables, and € Bnd(V)
a binding. ThenP is anencasement.r.t. ¢ andb if there exists an elementary dependence map
6 e EDMgy,(s) () such that, for all assignmenysc Asg([[p]], 5), it holds thatplay(6(x) o ¢, s) € P.

In the next lemma, we give the second of the two crucial stepsur elementariness proof. In
particular, we are able to show a one-to-one relationshipvden the wining in the dependence-
vs-valuation game of player even and the verification of theasement property of the associated
winning set. Moreover, in the case that the latter is a Banediet, by using Martin’s Determinacy
Theorem|[Martin 1975], we obtain a complete charactedzatif the winning concept by means of
that of encasements.

LEMMA 4.23 (ENCASEMENT CHARACTERIZATION). LetG be aCas, s € St one of its states,
P C Pth(s) a set of pathsp € Qnt(V) a quantification prefix over a sdf C Var of variables,
andb € Bnd(V) a binding. Then, the following hold:

(i) player even wing{(G, s, P, p,b) iff P is an encasement w.rg. andb;
(i) if player odd winsH (G, s, P, p,b) thenP is not an encasement w.gt.andb;
(iii) if P is a Borelian set and it is not an encasement wgtand b then player odd wins
H(ga S,P, 5 b)

Finally, we have all technical tools useful to prove the edetariness of the satisfiability for
SL[1g]. Intuitively, we describe a bidirectional reduction of fir®blem of interest to the verification
of the winning in the dependence-vs-valuation game. Tha lokhind this construction resides
in the strong similarity between the statement of Coroll&ry of S strategy quantification and
the definition of the winning condition in a two-player ganiedeed, on one hand, we say that a
sentence is satisfiable iff “there exists a dependence napthat, for all all assignments, it holds
that ...". On the other hand, we say that player even wins aeg#irtthere exists an even scheme
such that, for all odd schemes, it holds that ...". In patéigdor the $ [1c] fragment, we can resolve
the gap between these two formulations, by using the coméegdementary quantification.

THEOREM4.24 (SL[1c] ELEMENTARINESS). LetG be aCaGs, ¢ anSL[1g] formula,s € St a
state, andy € Asg(s) ans-total assignmentwitfree() C dom(x). Then, it holdsthag, x, s = ¢

iff gvXas ':E P

PrRoOFE The proof proceeds by induction on the structure of the tdamFor the sake of suc-
cinctness, we only show the most important inductive caggiotipal subsentencesc psnt(y),
i.e., wheny is of the formgbi, wherep € Qut(V) andb € Bnd(V) are, respectively, a quantifica-
tion and binding prefix over a s& C Var of variables, and is a variable-closed formula.
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[If]. The proof of this direction is practically the same of the ased in Theorem 4.16 ofifnG]
elementary coherence. So, we omit to report it here.

[Only if]. Assume that/, @, s = pbt. Then, itis easy to see that, for all elementary dependence
maps? € EDMg;,(5)($), there is an assignmegte Asg([[©]), s) such thal, 6(x) o ¢, s = ¥. In-
deed, suppose by contradiction that there exists an elemyefépendence mape EDMgy, () (P)
such that, for all assignmengse Asg([¢], s). itholds thaG, 6(x)o(,, s ¥~ ¥, i.e.,G,0(x)o, s =
—1p, and soG, §(x), s | b—p. Then, by Corollary 417 of Sstrategy quantification, we have that
G,9,s Epr, i.e.,G, I, s = —phtp, and soG, &, s |~ pbip, which is impossible.

Now, letP £ {play(x, s) € Pth(s) : x € Asg(Ag,s) A G,x,s [~ }. Then, it is evident that,
for all elementary dependence maps EDMgy, () (%), there is an assignmegtc Asg([[@], s)
such thaplay(6(x) o ¢, s) € P.

At this point, by Definitioi 4.2 of encasement, itis cleaatf is not an encasement w.gtandb.
Moreover, since) describes a regular language, the derivedsstBorelian [Perrin and Pin 2004].
Consequently, by ItemJii of Lemnfa 423 of encasement chiaraation, we have that player odd
wins the TPG H(G, s, P, p,b). Thus, by Lemm&4.21 of dependence-vs-valuation dualiayep
even wins the dual #c (G, s, Pth(s) \ P, p,b). Hence, by Itenlli of Lemm@a4.P3, we have that
Pth(s) \ P is an encasement w.rgh.andb. Finally, again by Definitiof 4.22, there exists an elemen-
tary dependence mapc EDMg,(4) () such that, for all assignmentse Asg([[¢], s), it holds
thatplay(8(x) o ¢, s) € Pth(s) \ P.

Now, it is immediate to observe th&th(s) \ P = {play(x,s) € Pth(s) : x € Asg(Ag,s) A
G,x,s = ¥}. So, by the inductive hypothesis, we have thah(s) \ P = {play(x, s) € Pth(s)

:x € Asg(Ag,s) AG,x,s =e ¢}, from which we derive that there exists an elementary de-
pendence map € EDMg;,(s) () such that, for all assignments € Asg([[¢]], s), it holds that
G,0(x) © ¢, s =e . Consequently, by Definition 4111 ofLBic] elementary semantics, we have
thatg, &, s Ee pbyp. O

As an immediate consequence of the previous theorem, weedine following fundamental
corollary.

COROLLARY 4.25 (SL[1c] ELEMENTARINESS). Let§ be aCGs and ¢ an SL[1g] sentence.
Then,G = ¢ iff G EE «.

It is worth to observe that the elementariness property fdi§ is a crucial difference w.r.t.
SL[Ba], which allows us to obtain an elementary decision procefhurine related model-checking
problem, as described in the last part of the next section.

5. MODEL-CHECKING PROCEDURES

In this section, we study the model-checking problem fora®d show that, in general, it is non-
elementarily decidable, while, in the particular case ofi8] sentences, it is just 2TIME-
COMPLETE, as for ArL*. For the algorithmic procedures, we follow amtomata-theoretic ap-
proach[Kupferman et al. 2000], reducing the decision problem ligrlbgics to the emptiness prob-
lem of an automaton. In particular, we use a bottom-up teghathrough which we recursively
label each state of thed3 of interest by all principal subsentences of the specificathat are
satisfied on it, starting from the innermost subsentencdgemminating with the sentence under
exam. In this way, at a given step of the recursion, sincedtisfaction of all subsentences of the
given principal sentence has already been determined, wassame that the matrix of the latter is
only composed by Boolean combinations and nesting of goatssestemporal part is simplytL.
The procedure we propose here extends that usedrioriA [Alur et al. 2002] by means of a richer
structure of the automata involved in.

The rest of this section is organized as follows. In Subsai.1, we recall the definition of
alternating parity tree automata. Then, in Subsedfiochvie2build an automaton accepting a tree
encoding of a Gs iff this satisfies the formula of interest, which is used toye the main result
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about $ and 3 [Nnc] model checking. Finally, in Subsectibn b.3, we refine thevipies result to
obtain an elementary decision procedure fof1S].

5.1. Alternating tree automata

Nondeterministic tree automatae a generalization to infinite trees of the classieahdetermin-
istic word automataon infinite words (se€_[Thomas 1990], for an introductioflfernating tree
automataare a further generalization of nondeterministic tree muatia [Muller and Schupp 1987].
Intuitively, on visiting a node of the input tree, while thregter sends exactly one copy of itself to
each of the successors of the node, the former can send lseweraopies to the same successor.
Here we use, in particulaglternating parity tree automatavhich are alternating tree automata
along with aparity acceptance conditiofsee [Gradel et al. 2002], for a survey).

We now give the formal definition of alternating tree autoanat

Definition5.1 (Alternating Tree Automaja An alternating tree automato(ATA, for short) is
atupled 2 (X, A, Q, 4, qo, N), whereX, A, andQ are, respectively, non-empty finite setsmut
symbolsdirections andstates¢p € Q is aninitial state, X is anacceptance conditioto be defined
later, ands : Q x ¥ — BT (A x Q) is analternating transition functiorthat maps each pair of
states and input symbols to a positive Boolean combinatiothe set of propositions of the form
(d,q) € A x Q, a.k.amoves

On one side, amondeterministic tree automatdiNTA, for short) is a special case ofTA in
which each conjunction in the transition functiérhas exactly one movéi, q) associated with
each directionl. This means that, for all statese Q and symbolsr € ¥, we have thab(q, o) is
equivalent to a Boolean formula of the forgh, A ;. A (d, ¢:,4). On the other side, aniversal tree
automaton(UTA, for short) is a special case ofTA in which all the Boolean combinations that
appear iy are conjunctions of moves. Thus, we have tat o) = A\;(d;, ¢;), for all states; € Q
and symbolsg € ¥.

The semantics of the®s is given through the following concept of run.

Definition5.2 (ATA Run. A runof an ATA A = (X, A,Q, 4, g0, R) on aX-labeledA-tree
T = (T,v) is a(A x Q)-treeR such that, for all nodes € R, wherez = []_, (d;,¢;) and
y =[], d; with n € [0,w[, it holds that(i) y € T and(ii), there is a set of moves C A x Q
with S |= d(gn, v(y)) such that: - (d,q) € R, forall (d,q) € S.

In the following, we consider #as along with theparity acceptance conditiofAPT, for short)
N2 (Fy,...,Fp) € (29)T with F; C ... C Fy = Q (see[[Kupferman et al. 2000], for more). The
numberk of sets in the tupl® is called thandexof the automaton. We also consideras with the
co-Biichi acceptance conditigAcCT, for short) that is the special parity condition with index

Let R be a run of an AA A on a treeT” andw one of its branches. Then, lyf(w) £ {¢ € Q
:{i e N:3d € A.(w); = (d,q)}| = w} we denote the set of states that occur infinitely often as
the second component of the letters along the brandioreover, we say that satisfies the parity
acceptance condition= (Fy, ..., Fy) if the least index € [1, k] for whichinf(w) NF; # () is even.

At this point, we can define the concept of language accepieah ATA.

Definition5.3 (ATA Acceptance An ATA A = (X, A,Q, 4, g0, X) acceptsa X-labeledA-tree
T iff is there exists a ruR of A on T such that all its infinite branches satisfy the acceptance
conditionX.

By L(A) we denote the language accepted by the A, i.e., the set of tree§ accepted byA.
Moreover, A is said to beemptyif L(A) = (. Theemptiness problerfor A is to decide whether
L(A) =0.

We finally show a simple but useful result about theTAlirection projection. To do this, we first
need to introduce an extra notation. Lfete B(P) be a Boolean formula on a set of propositions
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P. Then, byf[p/q|p € P’] we denote the formula in which all occurrences of the prdjms
p € P’ C Pin f are replaced by the propositigrbelonging to a possibly different set.

THEOREM5.4 (APT DIRECTION PROJECTION. LetA £ (X x A, A, Q,6,qo,R) be anAPT
over a set ofm directions withn states and index. Moreover, letdy, € A be a distinguished
direction. Then, there exists aPT A% 2 (X A Q/, 8, ¢, X') with m, - 20(klogn) states and
index0(k - n - logn) such that, for all¥-labeledA-tree 7 £ (T, v), it holds that7 € L(N ) iff
T' € L(A), whereT" is the(X x A)-labeledA-tree (T, V') such that/(t) = (v(t),Ist(do - t)), for
allteT.

PROOE As first step, we use the well-known nondeterminization cpdure for
ApPTs [Muller and Schupp 1995] in order to transform thee7A A into an equivalent NT
N = (2 x A A, Q7,8 qi,R") with 20(knlogn) states and indek’ = 0(k - n - logn). Then,
we transform the latter into the newPN N 2 (S A Q, 8, gh, X') with m - 20(klogn) states
and same index’, whereQ' = Q" x A, ¢h £ (qlf,do), ¥ = (Fy x A,...,Fp x A) with
N2 (Fy,. . P, andd(4,d),0) £ 67(q, (0, d)[(@.¢)/ (@' (¢, d)|(d,q') € A x Q). for
all (¢,d) € Q' ando € 3. Now, it easy to see that'® satisfies the declared statement

5.2. SL Model Checking

A first step towards our construction of an algorithmic pehae for the solution of the lISmodel-
checking problem is to define, for each possible formylan alternating parity tree automa
that recognizes a tree encodifigof a Ces G, containing the information on an assignmgrun the
free variables/agents gf, iff G is a model ofp undery. The high-level idea at the base of this con-
struction is an evolution and merging of those behind thestegions of QFL and LTL, respectively,
into nondeterministic [Sistla et al. 1987] and alterna{lduller et al. 1988] Blichi automata.

To proceed with the formal description of the model-cheglgrocedure, we have to introduce a
concept of encoding for the assignments of@sC

Definition5.5 (Assignment-State Encoding Let G be a Gss, s € Stg one of its states, and
X € Asgg(V,s) an assignment defined on the $8tC Var U Ag. Then, a(Valac, (V) x Stg)-
labeledStg-treeT £ (T, u), whereT £ {p>; : p € Trkg(s)}, is anassignment-state encodifay
x if it holds thatu(t) £ (Y (s - t),Ist(s - t)), forall t € T.

Observe that there is a unique assignment-state encodirgdéh given assignment.

In the next lemma, we prove the existence of aarAor each GGsand S formula that is able to
recognize all the assignment-state encodings of an a jgii@nh assignment, made the assumption
that the formula is satisfied on thesG under this assignment.

LEMMA 5.6 (SL FORMULA AUTOMATON). LetG be aCcsandy anSL formula. Then, there
exists aPAPT AY £ (Val, (free(y)) x Stg, Stg, Qq, 0y, go,, Ry) such that, for all states € Stg

and assignmentg € Asgg(free(p), s), it holds thatG, x,s |= ¢ iff T € L(AY), whereT is the
assignment-state encoding fpr

PROOFE The construction of the AT Ag is done recursively on the structure of the formula
v, which w.l.o.g. is supposed to be @mnf by using a variation of the transformation, via alternat-
ing tree automata, of thelS and %S logics into nondeterministic Biichi word and tree automata
recognizing all models of the formula of interest [Biichi 28Rabin 1960].

The detailed construction Of(g, by a case analysis gn follows.

—If ¢ € AP, the automaton has to verify if the atomic proposition isalocsatisfied or not. To
do this, we setd? £ (Valac, () x Stg,Stg, {¢},d,, 0, ({¢})), whered, (o, (v, s)) £ t, if

¢ € Ag(s), andd, (g, (v,s)) = f, otherwise. Intuitively,A7 only verifies that the statein the
labeling of the root of the assignment-state encoding oéthpty assignment satisfiesp.
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—The boolean case = —¢’ is treated in the classical way, by simply dualizing the endton
Ag, = (Valac, (free(¢’)) x Stg, Stg, Qur, 0y, qoyr, Xyr) [Muller and Schupp 1987].

—The boolean caseg = 10p o, with Op € {A, V}, are treated in a way that is similar to
the classical one, by simply merging the two automdta = (Vala., (free(y1)) x Stg, Stg,
Q150415 Gog, » Ry, ) @nd .Ag = (Valac, (free(p2)) X Stg, Stg, Qe,, 0pss o, Ny, ) N0 the
automatonAg (ValACg (free( )) X Stg, Stg, Qp, 0e, gy, ), Where the following hold:

_Qw {q()«p} U Q«pl U Q«pw with qoe ¢ Q«pl U Qtpgu

—. (q0<p7(vvs)) £ 6@1((]0@17( free(gal)a )) Op 5«#2(‘]0@27(V[free(gag)vs))i for all (V,S) €
Valac, (free(yp )) x Stg;

_54/7((17 (V,S)) - 6901((1’( [free(p1)» )) if q € Qsal’ ands (Q7 (V S)) - 6902((1’( [free(p2)» S))’
otherwise, for ally € Q,, U Q, and(v, s) € Vala, (free( )) x Stg;

—N, & (Fipy. .., Fry), where()) Ry, = (Fioy, ..., Frig) andRy, £ (Fig,, ..o Fryp, ),
(II) h = min{kl,kg} andk = max{kl,kg}, (III) Figa L Fis&l @] Fis&z’ fori € [1,]1], (IV)
Fip £ Fiy,, fori € [h+ 1,k — 1] with k; = k, and(v) F1, £ Q.

— The case = X ¢’ is solved by running the automatmi, = (Valac, (free(¢’)) x Stg, Stg, Qyr,
d4 5 qoer, V) ON the successor node of the root of the assignment-stadeliegdn the direction
|nd|V|duated by the assignment itself. To do this, we useatttematonAg £ (Valag, (free(p)) x
Stg, Stg, Qu, 4, goe, Xy), Where the following hold:

_Qcp £ {QOcp} U Q«p” with qop 4 Qsa’;

—,(qoy, (v, s)) £ (1g(s,Viag), qogr ), forall (v, s) € Valac, (free(y)) x Stg;

—0,(q, (v, 8)) £ 6 (q, (Vifree(s), 5)), Torall g € Qs and(v, s) € Valac, (free(p)) x Stg;

—N, = (th oo P U {qow}), WhereNW = (th/, . ,ka/).

—To handle the casep = ¢1U 2, we use the automatomg £ (Valac, (free(yp)) x
Stg, Stg, Qu, 04, qoe, Ny) that verifies the truth of the until operator using its onepst
unfolding equivalencep1U s = @2 V 1 A Xp1U o, by appropriately running the
two automata Al = (Valac,(free(1)) x Stg,Stg, Qp,: 00, q0p,, Ry,) and A9, =
(Valacg (free(p2)) X Stg, Stg, Qus, 0wy, Gops, Nyp,) for the inner formulase; and ¢,.
The definitions omg components follows:

_Qw £ {qow} U Qw U szv with qoy 4 Qw U Qsaz;
A
_5tp(QOtpa (V, S)) = 6902 (qosaza (V(free(<p2)a S)) \ 6ga1 (q0g017 (V[free(@l)a 3)) A (TQ(S \ Ag) q0ga) for
all (v, s) € Valac, (free(y)) x Stg;
_5<P(q7 (Vv S)) £ 6901 (Qa (Vrfree(tpl)v 5))1 if q € Qtpu and(snp(‘]v (Vv S)) £ 6902 (Qa (Vrfree(tpg)v S)),
otherwise, forally € Q,, U Q, and(v, s) € Vala, (free(y)) x Stg;
—N, 2 (Figp, ..., Fip), where()) Ry, = (Fipy, .o, Fryp,) @ndRy, 2 (Fig,, ..., Frye,), (i)
h = Inin{kl, /{2} andk = Inax{kl, kQ}, (lll) Fi%’ £ {qOLP} @] Fitpl @] Fikpw fori e [1, h], (lV)
Fip 2 {qop} UFi,, fori € [h + 1,k — 1] with k; = k, and(v) Fy, £ Q.
It is important to observe that the initial stajg, is included in all sets of the parity acceptance
condition, in particular irf';,, in order to avoid its regeneration for an infinite numberiies.
—To handle the casgp = ¢1Ryp,, we use the automato! = (Valsc,(free(p)) X
Stg, Stg, Qu, 04, qoe, Nyp) that verifies the truth of the release operator using its one-
step unfolding equivalence1Ryps = @2 A (01 V Xp1R¢2), by appropriately run-
ning the two automatady = (Valac,(free(p1)) x Stg,Stg, Qu,, 00,00, Ry,) and
AJ, = (Valac, (free(pz)) x Stg, Stg, Quys 0y, Gogs Ry} fOr the inner formulaspy; and ;.

The definitions ong components follows:
_an £ {QOnp} U anl U anQn with qoy ¢ anl U Qtpg;
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— 0o, (V5 8)) = 0a (G0pa s (Vifree(pa)s 8)) A (01 (G015 (Vitree(ior)» )V (76 (5, Viag), doy ), fOr
all (v, s) € Valac, (free(¢)) x Stg;

_5<P(q7 (Vv S)) = 6901 (q’ (VTfree(tﬂlﬁ S))’ if q € Q%@l' andatp(q’ (Vv S)) £ 6902 (Qv (V[free(saz)’ S))'
otherwise, for aly € Q,, U Q,, and(v, s) € Vala, (free(p)) x Stg;

—N, 2 (Figpy ..., Frp), where()) Ry, 2 (Fipy, .o, Frypy) @ndRy, 2 (Fio,, ..., Frye,), (i)
h = Inin{kl, kg} andk = max{kl, kQ}, (lll) th £ Fltpl U F1¢2, (lV) Finp £ {QOLP} @] Fiapl U
Fig,, forie[2,h], (iv) Fip, £ {qo, } UFsy,, fori€ [h+ 1,k — 1] with k; =k, and(v) F1., £ Q.

It is important to observe that, differently from the caset until operator, the initial staig,,

is included in all sets of the parity acceptance conditiorEqy, in order to allow its regeneration

for an infinite number of time.

— The casep = (a, )¢’ is solved by simply transforming the transition functiortieé automaton
Ag/ = (Valac, (free(¢’)) x Stg, Stg, Qur, 047, qoer s Ry ), Dy setting the value of the valuations
in input w.r.t. the agent to the value of the same valuation w.r.t. the variahldhe definitions
of the transition function fotdY £ (Valc, (free(p)) x Stg,Stg, Qpr, 0y, qogrs Ry) follows:
d,(q, (v, 5)) £ d,(q, (V',5)), wherev' = via = V()] free(p), if @ € free(y’), andv' = v,
otherwise, for ally € Q. and(v, s) € Vala, (free(¢)) x Stg.

— To handle the case = ((z))¢’, assuming that € free(¢’), we use the operation of existential
projection for nondeterministic tree automata. To do this have first to nondeterminize theeA
Ai,, by applying the classic transformation [Muller and Sch@pg5]. In this way, we obtain an

equivalent N>T./\/g = (Valac, (free(¢’)) x Stg, Stg, Qur, 0y s qogr, Ny ). Now, we make the pro-
jection, by defining the new NrAg = (Valac, (free(p)) x Stg, Stg, Qur, 0, qoyr s Ryr) Where
5o(q, (v, 8)) = Veeacs 0¢(¢; (v[z = ], 5)), forallg € Q,r and(v, s) € Valac, (free(p)) x Stg.

At this point, it only remains to prove that, for all statese Stg and assignmentg €
Asgg (free(yp), s), it holds thatG, x, s |= ¢ iff T € L(AY), whereT is the assignment-state en-
coding fory. The proof can be developed by a simple induction on the streof the formulap
and is left to the reader as a simple exercige.

We now have the tools to describe the recursive model-chggiiocedure on nested subsen-
tences for & and its fragments under the general semantics.

To proceed, we have first to prove the following theorem teptesents the core of our automata-
theoretic approach.

THEOREMDS.7 (SL SENTENCEAUTOMATON). LetG be aCaGs, s € Stg one of its states, and
¢ an SL sentence. Then, there existsMAT N7 such thalg, @, s = ¢ iff L(NVZ*) # 0.

PROOFE To construct the RT Ng,s we apply Theoreri 514 of AT direction projection with
distinguished direction to the APT Ag derived by Lemma&35]6 of iISformula automaton. In this
way, we can ensure that the state labeling of nodes of thgrament-state encoding is coherent with
the node itself. Observe that, singds a sentence, we have thfate(y) = (), and so, the unique
assignment-state encoding of interest is that relatedterhpty assignmert.

[Only if]. Suppose thaf, @, s = ¢. Then, by LemmA&5l6, we have thate L(Ag), whereT is
the elementary dependence-state encodingsfdilence, by Theorein 5.4, it holds tﬁa{t/\/g=s) #+
0.

[If]. Suppose thalt(]\/gvs) # (. Then, by Theorem$5l.4, there exists(@@} x Stg)-labeledStg-
tree7T such that] ¢ L(Ag). Now, it is immediate to see th&t is the assignment-state encoding
for @. Hence, by Lemmia 5.6, we have ttato, s = . O

ACM Journal Name, Vol. V, No. N, Article A, Publication datéanuary YYYY.



Reasoning About Strategies A:33

Before continuing, we define the lendttg(¢) of an S. formulay as the numbelsub(p)| of its
subformulas. We also introduce a generalization of the Kautouble arrow notation in order to
represents a tower of exponentialstt, 0 = b anda 11, (c + 1) = a1, for all a, b, c € N.

At this point, we prove the main theorem about the non-el¢argrcomplexity of $ model-
checking problem.

THEOREMS5.8 (SL MODEL CHECKING). The model-checking problem fdL is PTIME-
COMPLETEW.I.t. the size of the model amfdONELEMENTARY TIME w.r.t. the size of the specifi-
cation.

ProoF By Theoren{5]7 of § sentence automaton, to verify th@gta, s = ¢, we simply
calculate the emptiness of theDNNgvs having |Stg| - (2 ™, m) states and indef 11, m,
wherem = 0(Ing(y) - logIng(y)). It is well-known that the emptiness problem for such a kind
of automaton withn states and index is solvable in timed(n") [Kupferman and Vardi 1998].
Thus, we get that the time complexity of checking whetfes, s = ¢ is [Stg|?TT=™. Hence,
the membership of the model-checking problem faris PTIME w.r.t. the size of the model and
NONELEMENTARY TIME w.r.t. the size of the specification directly follows. Filyaby getting the
relative lower bound on the model from the same problem for* fAlur et al. 2002], the thesis is
proved. O

Finally, we show a refinement of the previous result, when aresider sentences of the [§c]
fragment.

THEOREMS5.9 (SL[NG] MODEL CHECKING). The model-checking problem fdBL[NG] is
PTIME-COMPLETEW.L.t. the size of the model aifdl+ 1)-EXPTIME w.r.t. the maximum alternation
k of the specification.

ProOOF By Theoreni 517 of §sentence automaton, to verify tHato, s = o1, wherepy is an
SL[NG] principal sentence without proper subsentences, we cagplysitalculate the emptiness of
the NPTNpgj having|Stg|- (2 1., k) states and index 1, k, wherem = 0(Ing(¢) -log Ing(¢))
andk = alt(pv). Thus, we get that the time complexity of checking whetfie®, s = pv is
|Stg|*TT=k. At this point, since we have to do this verification for eadsgible states € Stg
and principal subsentengsy € psnt(p) of the whole $[nG] specificationy, we derive that
the bottom-up model-checking procedure requires tifitg|?" s ¥, wherek = max{alt(p))

: Y € psnt(p)}. Hence, the membership of the model-checking problem fom3 TIME w.r.t.
the size of the model an(k + 1)-ExPTIME w.r.t. the maximum alternatiok of the specifica-
tion directly follows. Finally, by getting the relative I@w bound on the model from the same
problem for ArL* JAlur et al. 2002], the thesis is provedO

5.3. SL[1G] Model Checking

We now show how the concept of elementariness of dependesyge over strategies can be used to
enormously reduce the complexity of the model-checkinggdare for the §1c] fragment. The
idea behind our approachis to avoid the use of projectioed teshandle the strategy quantifications,
by reducing them to action quantifications, which can be rgadéocally on each state of the model
without a tower of exponential blow-ups.

To start with the description of the ad-hoc procedure for[18], we first
prove the existence of a dr for each &Gs and S[lg] goal by that rec-
ognizes all the assignment-state encodings of an a priorvengi assignment,
made the assumption that the goal is satisfied on the uhder this assignment.

LEMMA 5.10 (SL[1G] GOAL AUTOMATON). LetG be aCGsandby an SL[1G] goal without
principal subsentences. Then, there existtarT uﬁp = (Valac, (free(hep)) x Stg, Stg, Qby, dhy,
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@y, Rby) suUch that, for all states € Stg and assignmentg € Asgg(free(be)), s), it holds that
G,x,s Ebpiff T € L(ubg¢)’ whereT is the assignment-state encoding for

PROOF. A first step in the construction of thedd ubgw is to consider the Ow Uy, £ (247, Qy,

0y, Qoy, Ny) Obtained by dualizing the blv resulting from the application of the classic Vardi-
Wolper construction to thetL formula—) [Vardi and Wolper 1986]. Observe thafi4,,) = L(v)),
i.e., Uy, recognizes all infinite words on the alphal2ét’ that satisfy the L formula. Then,

define the components btfw e (Valacg (free(h1p)) x Stg, Stg, Qoy, Oby, Qobes» Noys) @S follows:

— Qvy = {qovyp } U Qu, With qopy & Qui;

— Gy (dovws (v, 9)) & Ageqy, Fu (@ (v, 5)), forall (v, ) € Valac, (free(v))) x Stg;

— Oy (g, (v, 8)) = Nres,(are () (TG (5:v 0 G), q'), forall g€ Qu and(v, s) € Vala, (free(b))) x
Stg;

— Ny 2Ny,

Intuitively, the UcT ufw simply runs the Ww U, on the branch of the encoding individuated
by the assignment in input. Thus, it is easy to see that, fostatess € Stg and assignments

X € Asgg(free(hy)), s), it holds thatG, x, s = by iff T € L(Z/{fw), whereT is the assignment-state
encoding fory. O

Now, to describe our modified technique, we introduce a naveept of encoding regarding the
elementary dependence maps over strategies.

Definition5.11 (Elementary Dependence-State Encoglinget G be a Gss, s € Stg one of its
states, and € EDMgy,(5) () an elementary dependence map over strategies for a quaiidific
prefix o € Qnt(V) over the selV C Var. Then, a(DMa, (p) x Stg)-labeledStg-tree T = (T,

u), whereT = {p>; : p € Trkg(s)}, is anelementary dependence-state encodand if it holds
thatu(t) = (0(s - t),Ist(s - t)), forall t € T.

Observe that there exists a unique elementary dependetesescoding for each elementary de-
pendence map over strategies.

In the next lemma, we show how to handle locally the strateggntjfications on each state
of the model, by simply using a quantification over actioniiclr is modeled by the choice of an
action dependence map. Intuitively, we guess in the lag&limat is the right part of the dependence

map over strategies for each node of the tree and then veaty for all assignments of universal
variables, the corresponding complete assignment sattbieinner formula.

LEMMA 5.12 (SL[1G] SENTENCEAUTOMATON). LetG be aCGsand pby an SL[1g] princi-

pal sentence without principal subsentences. Then, thésesaUcCT L{gbw £ (DMac, () x Stg,

Stg, Qubu Opbyr Qopbys Npvy) SUCh that, for all states € Stg and elementary dependence maps
over strategie$) € EDMgy,,(s) (), it holds thatG, 0(x), s =& by, for all x € Asgg([¢], s), iff

T € L(Z/lgw), where7 is the elementary dependence-state encoding.for

PrROOF By Lemmd5.1ID of §[1c] goal automaton, there is arohiubgw = (Valac, (free(hy))) x
Stg, Stg, Qbys dby, Goveys Npyy) SUCh that, for all statess € Stg and assignmentsy <
Asgg(free(bt)), s), it holds thatG, x,s = by iff T € L(ufw), where7T is the assignment-state
encoding fory.

Now, transformubgw into the new T L{gbw £ (DMac, () X Stg, Stg, Qeoys Sphyss Qopheps
Nepy)s With Qeoy = Qoys Gopby = dovys ANV, = Ny, which is used to handle the quan-
tification prefix atomically, where the transition function is defined asdab: 5, (¢, (¢, s)) =
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reads an action dependence nflagn each node of the input trgelabeled with a state of G and
simulates the execution of the transition functigp(q, (v, s)) of L{fw, for each possible valuation
v = 0(v') onfree(bs)) obtained from¥ by a universal valuation’ € Vala., ([¢]]). It is important

to observe that we cannot move the componenb3ét, ., (¢) from the input alphabet to the states
of ugbw, by making a related guessing of the dependencethiaphe transition function, since we
have to ensure that all states in a given node of the'frgee., in each track of the original model

G, make the same choice for
Finally, it remains to prove that, for all statese Stg and elementary dependence map over

strategie®) € EDMgq,,(s) (), it holds thatG, 0(x), s =g by, for all x € Asgg([[p]],s), iff T €
L(L{gw), whereT is the elementary dependence-state encoding.for
[Only if]. Suppose tha@,6(x),s =& by, for all x € Asgg([[p], s). Sincey does not contain

principal subsentences, we have that(x), s | by. So, due to the property a’)lﬁw it follows
that there exists an assignment-state encoding: L(ubg¢)’ which implies the existence of an
(Stg xQyy)-treeR, thatis an accepting run fmﬁb on7,. Atthis point, letR £ Uyeasgs (To1.5) Bx
be the union of all runs. Then, due to the particular definitdthe transition function dﬂgbw, it

is not hard to see that is an accepting run fdi?, , on 7. Hence T € L(UZ, ).

[If]. Supposethdf € L(L{gw). Then, there exists &iStg x Q,,,)-treeR that is an accepting run
for ugw on7. Now, for eachy € Asgg([¢]], s), letR, be the run fouﬁp on the assignment-state
encodingdT,, for 6(x). Due to the particular definition of the transition functmx‘rl/{gw, itis easy to
see thaRk,, C R. Thus, sincek is accepting, we have thRi, is accepting as well. SG,, € L(ubg¢)-
At this point, due to the property a’ifgw, it follows thatG, 0(x), s = by. Now, sincey does not
contain principal subsentences, we have thal(x), s =g by, for all x € Asgg([[p],s). O

At this point, we can prove the following theorem that is a thase of the elementary model-
checking procedure for.$1a].

THEOREMS5.13 (SL[1G6] SENTENCEAUTOMATON). LetG be aCas, s € Stg one of its states,
and pbt an SL[1g] principal sentence without principal subsentences. Thiggre exists arfNPT

NZi such thalG, @, s | oby) iff LIV # 0.

PROOFE As in the general case of. $entence automaton, we have to ensure that the state label-
ing of nodes of the elementary dependence-state encodeah&rent with the node itself. To do
this, we apply Theorem 5.4 of & direction projection with distinguished directiarto the UrT
Z/{gw derived by Lemma&35.12 of theLBLc] sentence automaton, thus obtaining the required N

NQJ

fpbip”
[Only if]. Suppose that, @, s = gbip. By Corollary[4.25 of $[1c] elementariness, it means that
G, D, s =g phv. Then, by Definitioi 4.1 of §nc] elementary semantics, there exists an elemen-

tary dependence mape EDMg;,, () () such thaig, 0(x), s e by, for all x € Asgg (], s)-
Thus, by Lemma5.12, we have tHat € L(ugw), where7 is the elementary dependence-state
encoding fo. Hence, by Theoref 5.4, it holds tﬁa(t/\/gi;z) # 0.

[Ifl. Suppose thaL(Ngi;j)) # 0. Then, by Theorer 5.4, there exists @Ma, (p) x Stg)-
labeledStg-tree7T such that]” L(ugw). Now, it is immediate to see that there is an elementary

dependence ma € EDMg;,, (s () for which T is the elementary dependence-state encoding.
Thus, by Lemm&5.12, we have thatd(x), s |=e bv, forall x € Asggs([[¢], s). By Definition[4.11
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of SL[NG] elementary semantics, it holds thato, s =g pbt. Hence, by Corollariy4.25 ofi$1a]
elementariness, it means thats, s = pby). O

Finally, we show in the next fundamental theorem the premisaplexity of the model-checking
for SL[1a].

THEOREM5.14 (SL[1c] MODEL CHECKING). The model-checking problem f®L[1g] is
PTIME-COMPLETE W.I.t. the size of the model andE2PTIME-COMPLETE W.I.t. the size of the
specification.

PrOOF By Theoren{5.13 of §1c] sentence automaton, to verify thgt@,s = by, we
simply calculate the emptiness of thePNNpgt;fb. This automaton is obtained by the operation of

direction projection on the Or Z/{gw, which is in turn derived by the or Uﬁp- Now, it is easy

G i oo g,
to see that the number of statesij, and consequently df, . is 20(Ing(v)) So, N(;), has

IStg| - 22" states and index®(ne(¥).
The emptiness problem for such a kind of automaton wisitates and indek is solvable in time
0(n") [Kupferman and Vardi 1998]. Thus, we get that the time comipteof checking whether

G, D, s = @h)is |Stg |2°('"g(w”. At this point, since we have to do this verification for eacisgible
states € Stg and principal subsentengety € psnt(p) of the whole $[1c] specificationp, we

derive that the whole bottom-up model-checking procedeggires timgStg|2” ™. Hence, the
membership of the model-checking problem fa{&s] in PTIME w.r.t. the size of the model and
2EXPTIME w.r.t. the size of the specification directly follows. Filyahe thesis is proved, by getting
the relative lower bounds from the same problem forAAlur et al. 2002]. O

6. CONCLUSION

In this paper, we introduced and studied & a very powerful logic formalism to reasoning about
strategic behaviors of multi-agent concurrent games. ttiqudar, we proved that it subsumes the
classical temporal and game logics not using explicit fikafgo As one of the main results about
SL, we shown that the relative model-checking problem is deaielbut non-elementary hard. As
further and interesting practical results, we investigaveral of its syntactic fragments. The most
appealing one is I91a], which is obtained by restrictingL,Sto deal with one temporal goal at a
time. Interestingly, 8[1g] strictly extends AL*, while maintaining all its positive properties. In
fact, the model-checking problem is ETIME-COMPLETE, hence not harder than the one for
ATL*. Moreover, although for the sake of space it is not repontethis paper, we shown that it
is invariant under bisimulation and decision-unwindingg @onsequently, it has the decision-tree
model property. The main reason why[$c] has all these positive properties is that it satisfies a
special model property, which we nam&lémentariness Informally, this property asserts that all
strategy quantifications in a sentence can be reduced tooh geantifications over actions, which
turn out to be easier to handle. We remark that among lalir&ments we investigated L8]

is the only one that satisfies this property. As far as we kr& g] is the first significant proper
extension of AL* having an elementary model-checking problem, and even ,motte the same
computational complexity. All these positive aspects makstrongly believe thati$1g] is a valid
alternative to AL* to be used in the field of formal verification for multi-ageohcurrent systems.

As another interesting fragment we investigated in thisepawe recall $[sa]. This logic al-
lows us to express important game-theoretic propertiet, as Nash equilibrium, which cannot be
defined in $[1c]. Unfortunately, we do not have an elementary model-checgiocedure for it,
neither we can exclude it. We leave to investigate this agéutork.

Last but not least, from a theoretical point of view, we areweced that our framework can
be used as a unifying basis for logic reasonings about gicaehaviors in multi-agent scenarios
and their relationships. In particular, it can be used ta\stvariations and extensions of Ba]
in a way similar as it has been done in the literature for*AFor example, it could be interest-
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ing to investigate memoryful §1c], by inheriting and extending the “memoryful” concept used
for ATL* and CHP-$% and investigated in [Mogavero et al. 2010b] and [Fisman.61G10], respec-
tively. Also, we recall that this concept implicitly allows deal with backwards temporal modali-
ties. As another example, it would be interesting to ingegé the graded extension of[$c], in

a way similar as it has been done [n [Bianco et al. 2009; Biat@d. 2010/ Bianco et al. 2012]
and [Kupferman et al. 2002;_Bonatti et al. 2008] foriCand pCALCULUS, respectively. We re-
call that graded quantifiers in branching-time temporaidegllow to count how many equivalent
classes of paths satisfy a given property. This conceptLincd would further allow the count-
ing of strategies and so to succinctly check the existeneaaré than one nonequivalent winning
strategy for a given agent, in one shot. We hope to lift to gdafl [1G] questions left open about
graded branching-time temporal logic, such as the preaissfiability complexity of graded full
computation tree logic¢ [Bianco et al. 2012].

A. MATHEMATICAL NOTATION

In this short reference appendix, we report the classicahemaatical notation and some common
definitions that are used along the whole work.

Classic objectsWe considelN as the set ohatural numberand[m,n] £ {k € N:m < k <
n}, m,n[E2{keN:m<k<n}, |mn2{keN:m<k<n},and|m,n[2 {keN:
m < k < n} as itsinterval subsets, withn € N andn € N2NuU {w}, wherew is thenumerable
infinity, i.e., theleast infinite ordinal Given asetX of objects we denote byX| € NuU {0}
the cardinality of X, i.e., the number of its elements, whexe represents anore than countable
cardinality, and b2* £ {Y : Y C X} thepowersebf X, i.e., the set of all its subsets.

Relations.By R C X x Y we denote aelationbetween thelomaindom(R) £ X andcodomain
cod(R) £ Y, whoserangeis indicated byng(R) 2 {y € Y : 3z € X. (v,y) € R}. We use
R & {(y,r) € Y x X : (x,y) € R} to represent thenverseof R itself. Moreover, byS o R,
with R € X x Y andS C Y x Z, we denote the&eompositionof R with §, i.e., the relation
SoR2{(z,2) €eXxZ:3yeY.(r,y) € RA(y,2) € S}. We also use®™ = R"~! o R, with
n € [1,w], to indicate ther-iterationof R C X x Y, whereY C X andR’ = {(y,y) : y € Y} is
theidentityonY. With R+ £ (J=, R" andR* £ R* U R® we denote, respectively, theansitive
andreflexive-transitive closuref R. Finally, for anequivalenceelation R C X x X on X, we
represent Wit{X/R) £ {[z]g : € X}, where[z]g £ {2’ € X : (z,2) € R}, thequotientset of
X w.rt. R, i.e., the set of all related equivalendasses| r.

Functions.We use the symbo¥* C 2%*Y to denote the set dbtal functionsf from X to Y,
i.e., the relation$ C X x Y such that for all: € dom(f) there is exactly one elemente COd(Q
such that(z,y) € f. Often, we writef : X — Y andf : X — Y to indicate, respectively, e Y
andf € Uy cx YX'. Regarding the latter, note that we consifles apartial functionfrom X to
Y, wheredom(f) C X contains all and only the elements for whicts defined. Given a sé, by
fiz 2 fN(Z x Y) we denote theestrictionof f to the seX N Z, i.e., the functiorf;z : XNZ -~ Y
such that, for alle € dom(f) N Z, it holds thatf,z(z) = f(x). Moreover, withe we indicate a
genericempty functioni.e., a function with empty domain. Note th&tn Z = () impliesf,z = @.
Finally, for two partial function$, g : X — Y, we usef U g andf m g to represent, respectively, the
unionandintersectionof these functions defined as followkim (f Wg) = dom(f) Udom(g) \ {z €
dom(f) N dom(g) : f(z) # g(z)}, dom(fMg) £ {z € dom(f) Ndom(g) : f(z) = g(x)},
(fug)(x) = f(z) forx € dom(f U g) N dom(f), (f U g)(z) = g(x) for z € dom(f U g) N dom(g),
and(f mg)(z) = f(x) for z € dom(f m g).

Words.By X", with n € N, we denote the set of all-tuplesof elements fromX, by X* £
Yy p y
Us¥, X" the set ofiinite wordson thealphabetX, by X+ £ X* \ {¢} the set olhon-empty words
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and byX“ the set ofinfinite words where, as usuaf, € X* is theempty word Thelengthof a
wordw € X*® £ X* U XY is represented withw| € N. By (w); we indicate the-th letter of the
finite wordw € X*, with i € [0, |w|[ . Furthermore, byst(w) £ (w)o (resp.lst(w) £ (w),(-1),
we denote thdirst (resp.,last) letter ofw. In addition, by(w)<; (resp.,(w)s;), we indicate the
prefix up to (resp.suffix after) the letter of index of w, i.e., the finite word built by the first
i+ 1 (resp., lasfw| — i — 1) letters(w)o, ..., (w); (resp.,(w)it1,. .., (w)w—1)- We also set,
(U))<0 £ g, (U))<1 £ (’LU)SZ',L (w)ZO £ w, and(w)zi £ (U))>1',1, fori e [1,|’LU|[ . Mutatis
mutandis, the notations éfth letter, first, prefix, and suffix apply to infinite words td€inally, by
pfx(wi,ws) € X we denote thenaximal common prefiaf two different wordsw;, wy € X*°,
i.e., the finite wordw € X* for which there are two worde}, w € X*° such thatw; = w - wj,
wo = w - wh, andfst(w}) # fst(w}). By convention, we seifx(w, w) = w.

Trees.For a setA of objects, calledlirections a A-treeis a sefl' C A* closed under prefix, i.e.,
if t-d e T,withd € A, then alsot € T. We say that it icompleteif it holds thatt - d' € T
whenever - d € T, for alld’ < d, where< C A x A is an a priori fixed strict total order on the
set of directions that is clear from the context. Moreousés, full if T = A*. The elements df are
callednodesand the empty wore is theroot of T. For everyt € T andd € A, thenode -d € T is
asuccessoof ¢ in T. The tree i9-boundedf the maximal numbeb of its successor nodes is finite,
i.e.,b =maxer|{t-d € T:de A}| <w. Abranchof the tree is an infinite word) € A“ such
that(w)<,; € T, for all i € N. For a finite sek of objects, calledymbolsaX-labeledA-treeis a
quadrupleX, A, T, v), whereT is aA-tree andv : T — X is alabeling function WhenA andX
are clear from the context, we cdll', v) simply a (labeled) tree.

B. PROOFS OF SECTION ??

In this appendix, we report the proofs of lemmas needed taeptioe elementariness o Bg].
Before this, we describe two relevant properties that limgiether dependence maps of a given
quantification prefix with those of the dual one. These prig®report, in the dependence maps
framework, what is known to hold, in an equivalent way, fostfeind second order logic. In particu-
lar, they result to be two key points towards a complete wtdading of the strategy quantifications
of our logic.

The first of these properties enlighten the fact that twoteatyi dual dependence mapsindd
always share a common valuationTo better understand this concept, consider for instanee t
functionsd; anddg of the examples illustrated just after Definition]4.5 of degence maps. Then,
it is easy to see that the valuatiore Valp (V) with v(x) = v(y) = 1 andv(z) = 0 resides in both
the ranges of; andfs, i.e.,v € rg(6;) N rmg(fs).

LEMMA B.1 (DEPENDENCEINCIDENCE). Letp € Qnt(V) be a quantification prefix over a
set of variabled/ C Var andD a generic set. Moreover, léte DMp (p) andd € DMp () be two
dependence maps. Then, there exists a valuatioValp (V) such that = 6(v(.) = 0(v[g])-

PrROOFE W.l.o.g., suppose that starts with an existential quantifier. If this is not the ¢abe
_dual prefixpg necessarily satisfies the above requirement, so, we camysaift our reasoning on
it.

The whole proof proceeds by induction on the alternation lmemalt(p) of p. As base case, if
alt(p) = 0, we definev £ (), since[[p] = 0. Obviously, it holds that = 6(v.;) = 0 (vis):
due to the fact that;;,; = @ andv;z; = v. Now, as inductive case, suppose that the statement
is true for all prefixego’ € Qut(V’) with alt(p’) = n, whereV’ C V. Then, we prove that it is
true for all prefixesp € Qnt(V) with alt(p) = n + 1 too. To do this, we have to uniquely split
p = ' - " into the two prefixep’ € Qut(V’') andp” € Qut(V \ V') such thatlt(p’) = n and
alt(p’) = 0. At this point, the following two cases can arise.
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—If n is even, it is immediate to see thép"”) = (. So, consider the dependence mépse
DMD(pI) and 6’ € DMD(H) such that@l(VH[p/]]) = Q(V)[V/ and@(v) = E(V)[V/, for all

valuationss € Valp([[p])) andv € Valp ([¢])) = Valp([¢']])- By the inductive hypothesis, there
exists a valuation” € Valp (V') such that' = 0'(v ;) = @(v’r[[m). So, se £ ?(v’[m).

— If nis odd, it is immediate to see thit”']] = 0. So, consider the dependence méjps DMp (p’)
and® e DMp(¢’) such that’(v) = 6(v);v: and @’ (V) = (%)}, for all valuations
v € Valp([[p])) = Valp([[¢']) andv € Valp([[]]). By the inductive hypothesis, there exists a
valuationv’ € Valp (V') such thav’ = ¢'(viy, ;) = @(v’mm}). So, set £ 0(v)-

Now, it is easy to see that in both cases the valuatisatisfies the thesis, i.e.,= 0(v,[,]) =
0(vifey). O

The second property we are going to prove describes thetfattit all dependence magof a
given prefixp, for a dependent specific universal valuatioshare a given property then there is a
dual dependence mapghat has the same property, for all universal valuatiario have a better
understanding of this idea, consider again the examplesrtembjust after Definitioh 415 and let
P £ {(0,0,1),(0,1,0)} C Valp(V), where the triplél, m, n) stands for the valuation that assigns
[ to x, m toy, andn to z. Then, it is easy to see that all ranges of the dependence fhémsgp
intersectP, i.e., for alli € [0, 3], there isv € Valp ([[¢]]) such tha®;(v) € P. Moreover, consider
the dual dependence masfor i. Then, itis not hard to see that(v) € P, for allv € Valp ([@]).

LEMMA B.2 (DEPENDENCEDUALIZATION). Letp € Qnt(V) be a quantification prefix over
a set of variable$/ C Var, D a generic set, an® C Valp (V) a set of valuations o¥ overD.
Moreover, suppose that, for all dependence ntapsDMp (p), there is a valuatiow € Valp ([p]))
such tha®)(v) € P. Then, there exists a dependence apDMp (%) such that, for all valuations
v € Valp([@]), it holds thatd (V) € P.

PrRoOOFE The proof easily proceeds by induction on the length of tiediy. As base case, when
|p| = 0, we have thaDMp (p) = DMp(p) = {2}, i.e., the only possible dependence maps is the
empty function, which means that the statement is vacuouesified. As inductive case, we have
to distinguish between two cases, as follows.

/

—p= (=) ¢
As first thing, note thaflp]] = [¢’] and, for all elements € D, consider the projectioR.
{v € Valp(V(g')) : V/[z — ¢] € P} of P on the variable: with valuee.

Then, by hypothesis, we can derive that, foreak D and§’ € DMp(y'), there exists’ €
Valp ([[¢']) such that’(v’') € P.. Indeed, let € D and§’ € DMp ('), and build the functio# :

Valp ([p]]) — Valp(V) given by8(v') £ ¢'(v')[z ~ e], for all v/ € Valp([[p]]) = Valp([[¢']).
Itis immediate to see th&tc DMp(p). So, by the hypothesis, therevise Valp([[p]]) such that
6(v") € P, which impliest’ (v')[z — €] € P, and sof’(V') € P..

Now, by the inductive hypothesis, for all elementg D, there exist®’. € DMp(p’) such
that, for allv’ € Valp ([[¢']), it holds tha®#’. (V') € P, i.e.,0.(V/)[x > ¢] € P.

At this point, consider the functiod : Valp([g]) — Valp(V) given by (V) =
03(2) (¥, gy [ = ()], for all v € Valp([©])- Then, itis possible to verify th& € DMp ().
Indeed, for eacly € [p] andv € Valp([]), we have thal (V)(y) = &y (Ve —
v(z)](y). Now, if y = z thenf(v)(y) = V(y). Otherwise, sincd’y(, is a dependence map, it
holds thatd (vV)(y) = &v(x)(V,57) (%) = V57 (%) = V(y)- So, ltentL of Definitio 415 of de-
pendence maps is verified. It only remains to prove [fem 2ylet(p)) andvy, vz € Valp ([¢]),

1>
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With V1 | pep(s.) = V2 1Dep(s, W It is immediate to see that € Dep(p,y), s0,v1(z) = V2 (z),
which implies tha_V1 (z) = 0 vz (z)- At this point, again for the fact thaQ(v(m) is a dependence
map, for eaclv € Valp([p]]), we have that’; (. (Vi )W) = 055 (2) (V2 21777 (). Thus,

i_th0|dS thatd (V1) (y) = 0'v; () (T oy [ = T (@)](9) = O30 (T2l = B2 (2)](y) =
0(v2)(y)- _

Finally, it is enough to observe that, by constructié(y) € P, for allv € Valp([[g]), since
@v(z)(vn[m) € Py(,). Thus, the thesis holds for this case.

J— — €T . /_
5Ve fi[Ls]t] sﬁow that there existse D such that, for alp’ € DMp(g'), there isv’ € Valp([[¢'])
for which#’(v') € P, holds, where the s&,. is defined as above.

To do this, suppose by contradiction that, foralE D, there is &, € DMp(p’) such that,
forall v/ € Valp([[¢']), it holds that, (v') ¢ P.. Also, consider the functiof : Valp ([e]) —
Valp (V) given byf(v) £ 0,y (Vite) [z = v(@)], forall v € Valp([[p])). Then, is possible to
verify thatd € DMp(p). Indeed, for eacly € [[p]] andv € Valp([[g]). we have thab(v)(y) =
QC(I)(V[H@/H)[I — v(z)](y). Now, if y = x thenf(v)(y) = v(y). Otherwise, sincéc(m) is a
dependence map, it holds thév)(y) = Hv(m)( 1) (W) = vipep(y) = v(y). So, ltem(1 of
Definition[4.5 of dependence maps is verified. It only reméingrove lteni 2. Ley € () and

vi,v2 € Valp([[p]]), With Vi pep(p.y) = V2iDep(p,y)- It 1S immediate to see that € Dep(p, y)
s0,v1 (z) = va(z), which implies tha19 () = 04, (- At this point, again for the fact thaf ) is
a dependence map, for eack ValD([[ ), we have that] .\ (v1ge) () = 00, ) (V21 1e) (9)-
Thus, itholds tha(v1)(y) = 0] ., (Vi) [z = vi(@)](y) = 0, ) (varerp) [z — Vz( )](y) =

6(v2)(y). Now, by the contradiction hypothesis, we have that) ¢ P, for all v € Val([g]).
sinceeg(m)(v”[p,ﬂ) ¢ Py(2), which is in evident contradiction with the hypothesis.

At this point, by the inductive hypothesis, there ex@tsc DMp (p’) such that, for all’ €
Valp ([¢’]), it holds that)’ (V') € P, i.e.,0'(V)[z +— €] € P.

Finally, build the functiond : Valp([g]) — Valp(V) given byd(v) = ¢ (V)[z ~ e], for
allv € Valp([g]) = Valp([[¢']). It is immediate to see th#@ € DMp(5). Moreover, for all
valuationsy € Valp ([g]), it holds that? (V) € P. Thus, the thesis holds for this case too.

Hence, we have done with the proof of the lemma.

At this point, we are able to give the proofs of Lemial4.9 ofoadj dependence maps,
Lemmd4.2ll of dependence-vs-valuation duality, and Lem&&df encasement characterization.
LEMMA B.3 (ADJOINT DEPENDENCEMAPS). Letp € Qnt(V) be a quantification prefix over
aset of variable&/ C Var, D andT two generic sets, antl: Valr_p ([p]]) — Valr_p (V) andd :
T — (Valp([p]) — Valp(V)) two functions such thatis the adjoint o). Then g € DMr_,p(p)
iff, for all ¢ € T, it holds thatd (t) € DMp ().

PROOF. To prove the statement, it is enough to show, separataly ltbmnd 1 and]2 of Defini-

tion[4.5 of dependence maps hold foif the §(t) satisfies the same items, for ale T, and vice
versa.

[Item [, if. Assume that(t) satisfies Itenill, for each € T, i.e., 6(t)(v Jiep = V. for all
v € Valp([[p]). Then, we have that(t)(g(t)) = g(t), s0,6(t)(€(t))(z) = &(t)(x), for all
g € Valr_,p([p]) andz € [[¢]. By hypothesis, we have thatg)(z)(t) = 6(¢)(8(t))(z), thus

0(g)(z)(t) = g(t)(x) = g(z)(t), which means that(g) ) = g, forallg € ValTHD([[ ).
[Item(d], only if]. Assume now thaf satisfies Iterll, i.ef(g) ) = g, forallg € Valr_,p([[p]]).

Then, we have thai(g)(z)(t) = g(x)(t), for all z € [[p] andt € T. By hypothesis, we have
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that 0(¢)(g(t))(x) = 0(g)(x)(t), s0,0(t)(g(*))(x) = g(x)(t) = g(t)(x), which means that
0(t)(&(t)) o) = &(t). Now, since for eaclr € Valp([[p]]), there is ang € Valr_.p([[p]) such
thatg(t) = v, we obtain thad(t) ()ep = Vs forallv € Valp([e]) andt € T.

[Item[2, if]. Assume thatl(¢) satisfies Iteni]2, for eache T, i.e.,0(t)(v1)(z) = 0(t)(va)(x),
for all vi,va € Valp([[p])) andz € (p)) such thatvi pep(p.z) = V2iDep(p,z)- ThEN, we have

that (1) (€1 (1) (@) = 0(1)(&(t))(x), for all g1,g2 € Valr_p([p]) such thatg: pey(p..) =

[
821Dep(p.)- BY hypothesis, we have tha(g:)(z)(t) = 0(¢)(&i(1))(x) and (1) (g (1)) (x)
0(g2)(x)(t), thus 0(g.)(x)(t) = 0(g2)(x)(t). Hence,0(g1)(z) = 0(g2)(x), for all g1, g2
ValT%D([[@]]) andx € << >> such thagl IDep(p,z) — 82[Dep(p,z)*
[ltem[2, only if]. Assume tha¥ satisfies Itenil2, i.ef(g:)(xz) = 6(g2)(x), for all g1,g2 €
Valr_,p([[p]) andz € ((p)) suchthali pey(p,z) = 82 Dep(p, 2)° Then, we have th#(g, )(z)(t) =

0(g2)(z)(t), for all t € T. By hypothesis, we have th@t(t)(gl( )(x) = 0(g1)(x)(t) and
0(g2)(2)(t) = O()(&(t)(@), hence@()( (D)) = 0(1)(g2(t))(x). Now, since for each

Vi,Ve € ValD([[ ]]) with V1Dep(p,xz) — V2|Dep(p,z): there areg,gs € ValT:}D([[p]]) such
thatgi (1) = vi andga(t) = vz, With g1 pep(p.2) = 821Dep(p,2), WE Obtain thab (t)(vi)(z) =
0(t)(v2) (), for allvy,va € Valp([]) andz € (p)) such thab pep(p.2) = V2 Dep(p,z)- O

m

LEMMA B.4 (DEPENDENCEVS-VALUATION DUALITY). LetG be aCGs, s € St one of its
states,P C Pth(s) a set of pathsp € Qnt(V) a quantification prefix over a set of variables
V C Var, andb € Bnd(V) a binding. Then, player even wins thec 1 (g, s, P, p,b) iff player
odd wins the dual PG H(G, s, Pth(s) \ P, %,b).

PrROOF. Let A andA be, respectively, the twoPlas A(G, s, p,b) and A(G, s, B, b). It is easy
to observe thaPos. 4 = Pos.; = Trk(s). Moreover, it holds thaPos, 4 = {p - (Ist(p),0) :

p € Trk(s) A 6 € DMac(p)} andPos, = {p - (Ist(p),0) : p € Trk(s) A6 € DMa.(p)}. We
now prove, separately, the two directions of the statement.

[Only if]. Suppose that player even wins thed@H (G, s, P, p,b). Then, there exists an even
schemea, € Sche 4 such that, for all odd schemese Sch, 4, it holds thaimtc 4(se, so) € P. Now,
to prove that odd wins the duaPEB H(G, s, Pth(s) \ P, ®,b), we have to show that there exists an
odd schemg; € Sch, such that, for all even schem&sc Sch., it holds thaimtc (5¢,5,) € P.

To do this, let us first consider a functian: DMa.(p) x DMa.(p) — Valac.(V) such that

2(0,0) = 0(2(6,0)0)) = 0(2(8,0)1z), for all § € DMa.(p) andd € DMa(p). The existence
of such a funcuon Is ensured by Lem@]B 1 on the dependeniteimnce.

Now, define the odd schergg € Sch, in A as followsss (p - (Ist(p),0)) £ 7(Ist(p), z(6,0) o
¢ ), for all p € Trk(s) andd € DMa.(%), whered € DMa.(p) is such thas.(p) = (Ist(p), ).
Moreover, lets; € Sch.4 be a generic even scheme.hand consider the derived odd scheme
So € Sch, 4 in A defined as followss, (p - (Ist(p),0)) = 7(Ist(p),z(0,0) o (), for all p € Trk(s)
andf € DMa.(p), where§ € DM (%) is such thak: (p) = (Ist(p), 0).

At this point, it remains only to prove that = @, wherew £ mtc 4(se,So) and @ £
mtc (5¢,55). To do this, we proceed by induction on the prefixes of the hveici.e., we show that
(w)<; = (W)<i, foralli € N. The base case is immediate by definition of match, since wethat

w)<o = s = (7)<o. Now, as inductive case, suppose thal<; = (%)<, fori € N. By the defi-
nition of match, we have th@to), 1 = so((w)<i-se((w)<i)) and(@);+1 = 56 () <5 (W) <i))-
Moreover, by the inductive hypothesis, it follows that((w)<; - se((w)<i)) = so((TW)<; -
se((%)<i)) At this point, letd € DMa.(p) andd € DMa.(%) be two quantification dependence
maps such that. ((%)<;) = ((F):,0) ands:((@)<:) = ((@)i, ) Consequently, by substitut-
ing the values of the even schemsandse, it holds that(z),+ so((@)<i - ((z)i,0)) and
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(T)it1 = % ((F)<i - ((F)i,0)). Furthermore, by the definition of the odd schemgands;, it
follows thats, (%) <; - ((F):,0)) = 7((F)i,2(6,0) 0 () = 5 ((F)<i - (F):,0)). Thus, we have
that(w);+1 = (@ )z+1. Wh|ch implies(w)<i+1 = () <it1-

[If]. Suppose that player odd wins the dua@d? (g, s, Pth(s) \ P, %,b). Then, there exists an
odd schem&; & Sch, such that, for all even schemgse Sch., it holds thaimtc4(5¢,5,) € P.
Now, to prove that even wins thePG H(G, s, P, p,b), we have to show that there exists an even
schems, € Sch, 4 such that, for all odd schemegse Sch, 4, it holds thatmtc 4 (se, so) € P.

To do this, let us first consider the two functions Trk(s) — 2V21a<(Y) andh : Trk(s) — 25
suchthag(p) £ {6(7) : € € DMac(p)AV € Valac([p])ASs (p- (Ist(p), 0)) = 7(Ist(p), (V) oG,)}
andh(p) £ {55(p- (Ist(p),0)) : & € DMa.()}, for all p € Trk(s). Now, it is easy to see that, for
eachp € Trk(s) andd € DMa.(p), there isv € Vala.([[p])) such that (v) € g(p). Consequently,
by LemmgB.2 on dependence dualization, forgalt Trk(s), there isf, € DMa.(gp) such that,
for eachv € Vala.([[¢]), it holds thatd,(v) € g(p), and soz(Ist(p), Hp(v) 0¢,) € h(p).

Now, define the even schemec Sch, 4 in A as follows:s.(p) = (Ist(p), ,), for all p € Trk(s).
Moreover, lets, € Sche 4 be a generic odd scheme i and consider the derived even scheme
S € Sche in A defined as followss, (p) £ (Ist(p), 8,), forall p € Trk(s), wheref, € DM ()
is such thas,(p - (Ist(p),8,)) = 55 (p - (Ist(p),8,)). The existence of such a dependence map is
ensure by the previous membership of the succesdst(pf in h(p).

At this point, it remains only to prove that = %, wherew £ mtcy(se,s.) and@ 2
mtc4(Se,55). To do this, we proceed by induction on the prefixes of the hestci.e., we show
that (w)<; = (@)<,, for aII i € N. The base case is immediate by definition of match, since
we have that(w)<0 = s = (@)<o. Now, as inductive case, suppose tlfat)<;, = (7)<,
for i € N. By the defmmon of match, we have théto); 1 = so((@)<i - se((w)<i)) and
(@)i+1 =5 ((@)<i -5 ((W)<i)). Moreover, by the inductive hypothesis, it follows thgt(w)<;
se((w)<i)) = so((W@)<i-se((7)<i)). Now, by substituting the values of the even schesgetmdse,

we have thatm) 41 = So((%) < (@), 6m)..,)) aNd(@)i+1 = 55(() < (@), O_,)). Atthis
point, due to the choice of the dependence m@g< , itholds thats, (%) <i - ((F)i,0(=)-,)) =
S ((@)<i - ((F)i,0(=)-,))- Thus, we have thatw);.1 = (F)it1, Which implies(w@)<i41 =
(@ )SH—l a B

LEMMA B.5 (ENCASEMENT CHARACTERIZATION). LetG be aCGs, s € St one of its states,
P C Pth(s) a set of pathsp € Qnt(V) a quantification prefix over a set of variabl® C Var,
andb € Bnd(V) a binding. Then, the following hold:

(i) player evenwing{(g, s, P, p,b) iff P is an encasement w.rg. andb;
(i) if player odd winsH (g, s, P, p,b) thenP is not an encasement w.it.andb;
(iii) if P is a Borelian set and it is not an encasement wgtand b then player odd wins
H(G,s,P,p,b).

ProOOF [ltem[l only if]l. Suppose that player even wins the@# (G, s, P, p,b). Then, there
exists an even schemge Sch, such that, for all odd schemgse Sch,, it holds thaimtc(se, s,) €
P. Now, to prove the statement, we have to show that thereseaiselementary dependence map
6 € EDMgq,(s) () such that, for all assignmentsc Asg([[¢]], s), it holds thatplay(6(x) 0 ¢, s) €
P

To do this, consider the functiow : Trk(s) — DMa.(p) constituting the projection of
se on the second component of its codomain, i.e., forpale Trk(s), it holds thats.(p) =
(Ist(p),w(p)). By LemmdZ4.D on adjoint dependence maps, there exists areptary dependence

mapf € EDMgy,(s)(p) for which w is the adjoint, i.e.w = 6. Moreover, lety € Asg([¢], )
be a generic assignment and consider the derived odd scéerae Sch, defined ad follows:
so(p - (Ist(p),0")) = 7(Ist(p), &' (X(p)) © (), for all p € Trk(s) andd’ € DM (p).
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At this point, it remains only to prove that = w, wherer = play(6(x) o ¢,,s) andw =

mtc(se, So). TO do this, we proceed by induction on the prefixes of bottptag and the match, i.e.,
we show thatr)<; = (w)<;, foralli € N. The base case is immediate by definition, since we have
that(m)<p = s = (w)<o. Now, as inductive case, suppose tha)<; = (w)<;, fori € N. On one
hand, by the definition of match, we have that); ;1 = so((@)<;-se((w)<:)), from which, by sub-

stituting the value of the even schemewe derive(w); 11 = so((@)<i - (@)s,0((w )<i))). Onthe
other hand, by the definition of play, we have tha; ;1 = 7((), 0((7)<s) (X (7)< i))2G), from
which, by using the definition of the odd schesgewe derive(r); 1 = so((7)<; - ((7)s, 0((m)<i)))-
Then, by the inductive hypothesis, we have that),\; = so((@)<i - (@), 0((@)<i))) =

so((m)<i - ()i, 0((7m)<i))) = (m)i11, which implies(w)<iy1 = ()<i1.
[ltem[l if]. Suppose thaP is an encasement w.rg andb. Then, there exists an elementary

dependence map € EDMg,(5) () such that, for all assignmentsc Asg([[¢], s), it holds that
play(6(x) o ¢,,s) € P. Now, to prove the statement, we have to show that thereseaisteven
scheme, € Sch, such that, for all odd schemgse Sch,, it holds thatmtc(se,s,) € P.

To do this, consider the even schemec Sch, defined as followss.(p) £ (Ist(p),8(p)), for
all p € Trk(s). Observe that, by Lemma 4.9 on adjoint dependence mapsegfimition is well-
formed. Moreover, let, € Sch, be a generic odd scheme and consider a derived assignyment
Asg([[p]], s) satisfying the following property% (p) € {v € Valac([¢]) : so(p - (Ist(p), 6(p))) =
7(Ist(p), 0(v) 0 )}, for all p € Trk(s).

At this point, it remains only to prove that = w, wherer = play(6(x) o ¢,,s) andw =
mtc(se, So). TO do this, we proceed by induction on the prefixes of bottpthg and the match, i.e.,
we show that{m)<; = (w)<;, for all i € N. The base case is immediate by definition, since we
have tha(m)<o = s = (w)<o. Now, as inductive case, suppose tha)g = (w)<, fori € N.On
one hand, by the definition of match, we have thadi1 = so((@)<i - se((@)<i)), from which,

)

by the definition of the even schersg we derive(w);+1 = so((@)<i - ((@);, 0 0((w <i))). On the
other hand, by the definition of play, we have tha}; 1 = 7((7), 9((7r)§»)(>?((7r <i))o¢), from
which, by the choice of the assignmepntwe derive(r);+1 = so((7)<; )<i)))- Then,
by the inductive hypothesis, we have tffat);11 = so((@w)<i - (@), 0((w)<i))) = so((m)<i -
((m)i,0((m)<i))) = (m)i+1, Which implies(ww)<iy1 = (7)<is1.

[ltem]. If player odd wins the PG H(G, s, P, p,b), we have that player even does not win the
same game. Consequently, by It8m i, it holds P& not an encasement w.rg.andb.

[ltem[d]. If P is not an encasement w.rgt.andb, by Item[], we have that player even does not

win the TPG H(G, s, P, p,b). Now, sinceP is Borelian, by the determinacy theorem [Martin 1975;
Martin 1985], it holds that player odd wins the same gante.
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