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In open systems verification, to formally check for reliability, one needs an appropriate formalism to

model the interaction between agents and express the correctness of the system no matter how the envi-

ronment behaves. An important contribution in this context is given by modal logics for strategic ability,

in the setting of multi-agent games, such as Atl, Atl∗, and the like. Recently, Chatterjee, Henzinger, and

Piterman introduced Strategy Logic, which we denote here by CHP-Sl, with the aim of getting a powerful

framework for reasoning explicitly about strategies. CHP-Sl is obtained by using first-order quantifications

over strategies and has been investigated in the very specific setting of two-agents turned-based games,

where a non-elementary model-checking algorithm has been provided. While CHP-Sl is a very expressive

logic, we claim that it does not fully capture the strategic aspects of multi-agent systems.

In this paper, we introduce and study a more general strategy logic, denoted Sl, for reasoning about

strategies in multi-agent concurrent games. We prove that Sl includes CHP-Sl, while maintaining a decid-

able model-checking problem. In particular, the algorithm we propose is computationally not harder than

the best one known for CHP-Sl. Moreover, we prove that such a problem for Sl is NonElementarySpace-

hard. This negative result has spurred us to investigate here syntactic fragments of Sl, strictly subsuming

Atl∗, with the hope of obtaining an elementary model-checking problem. Among the others, we study the

sublogics Sl[NG], Sl[BG], and Sl[1G]. They encompass formulas in a special prenex normal form having,

respectively, nested temporal goals, Boolean combinations of goals and, a single goal at a time. About these

logics, we prove that the model-checking problem for Sl[1G] is 2ExpTime-complete, thus not harder than

the one for Atl∗. In contrast, Sl[NG] turns out to be NonElementarySpace-hard, strengthening the

corresponding result for Sl. Finally, we observe that Sl[BG] includes CHP-Sl, while its model-checking

problem relies between NonElementaryTime and 2ExpTime.
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1. INTRODUCTION

In system design,model checkingis a well-established formal method that allows to automat-
ically check for global system correctness [Clarke and Emerson 1981; Queille and Sifakis 1981;
Clarke et al. 2002]. In such a framework, in order to check whether a system satisfies a re-
quired property, we describe its structure in a mathematical model (such asKripke struc-
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tures [Kripke 1963] or labeled transition systems[Keller 1976]), specify the property with a
formula of a temporal logic (such as LTL [Pnueli 1977], CTL [Clarke and Emerson 1981], or
CTL∗ [Emerson and Halpern 1986]), and check formally that the model satisfies the formula. In
the last decade, interest has arisen in analyzing the behavior of individual components or sets of
them in systems with several entities. This interest has started in reactive systems, which are sys-
tems that interact continually with their environments. Inmodule checking[Kupferman et al. 2001],
the system is modeled as a module that interacts with its environment and correctness means that a
desired property holds with respect to all such interactions.

Starting from the study of module checking, researchers have looked for logics focus-
ing on the strategic behavior of agents in multi-agent systems [Alur et al. 2002; Pauly 2002;
Jamroga and van der Hoek 2004]. One of the most important development in this field is
Alternating-Time Temporal Logic(ATL∗, for short), introduced by Alur, Henzinger, and Kupfer-
man [Alur et al. 2002]. ATL∗ allows reasoning about strategies of agents with temporal goals. For-
mally, it is obtained as a generalization of CTL∗ in which the path quantifiers,there exists“E” and
for all “A”, are replaced withstrategic modalitiesof the form “〈〈A〉〉” and “[[A]]”, whereA is a set
of agents(a.k.a.players). Strategic modalities over agent sets are used to express cooperation and
competition among them in order to achieve certain goals. Inparticular, these modalities express
selective quantifications over those paths that are the result of infinite games between a coalition
and its complement.

ATL∗ formulas are interpreted overconcurrent game structures(CGS, for short) [Alur et al. 2002],
which model interacting processes. Given a CGSG and a setA of agents, the ATL∗ formula〈〈A〉〉ψ
is satisfied at a states of G if there is a set of strategies for agents inA such that, no matter strate-
gies are executed by agents not inA, the resulting outcome of the interaction inG satisfiesψ at
s. Thus, ATL∗ can express properties related to the interaction among components, while CTL∗ can
only express property of the global system. As an example, consider the property “processesα and
β cooperate to ensure that a system (having more than two processes) never enters a failure state”.
This can be expressed by the ATL∗ formula〈〈{α, β}〉〉G ¬fail , whereG is the classical LTL tempo-
ral operators “globally”. CTL∗, in contrast, cannot express this property [Alur et al. 2002]. Indeed,
it can only assert whether the set of all agents may or may not prevent the system from entering a
failure state.

The price that one has to pay for the greater expressiveness of ATL∗ is the increased complexity
of model checking. Indeed, both its model-checking and satisfiability problems are 2EXPTIME-
COMPLETE [Alur et al. 2002; Schewe 2008].

Despite its powerful expressiveness, ATL∗ suffers from a strong limitation, due to the fact that
strategies are treated only implicitly, through modalities that refer to games between competing
coalitions. To overcome this problem, Chatterjee, Henzinger, and Piterman introducedStrategy
Logic (CHP-SL, for short) [Chatterjee et al. 2007], a logic that treats strategies intwo-player turn-
based gamesas explicitfirst-order objects. In CHP-SL, the ATL∗ formula 〈〈{α}〉〉ψ, for a system
modeled by a CGS with agentsα andβ, becomes∃x.∀y.ψ(x, y), i.e., “there exists a player-α strat-
egy x such that for all player-β strategiesy, the unique infinite path resulting from the two play-
ers following the strategiesx andy satisfies the propertyψ”. The explicit treatment of strategies
in this logic allows to state many properties not expressible in ATL∗. In particular, it is shown
in [Chatterjee et al. 2007] that ATL∗, in the restricted case of two-agent turn-based games, corre-
sponds to a proper one-alternation fragment of CHP-SL. The authors of that work have also shown
that the model-checking problem for CHP-SL is decidable, although only a non-elementary algo-
rithm for it, both in the size of system and formula, has been provided, leaving as open question
whether an algorithm with a better complexity exists or not.The complementary question about the
decidability of the satisfiability problem for CHP-SL was also left open and, as far as we known, it
is not addressed in other papers apart our preliminary work [Mogavero et al. 2010a].

While the basic idea exploited in [Chatterjee et al. 2007] toquantify over strategies and then
to commit agents explicitly to certain of these strategies turns to be very powerful and use-
ful [Fisman et al. 2010], CHP-SL still presents severe limitations. Among the others, it needs to
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be extended to the more general concurrent multi-agent setting. Also, the specific syntax considered
there allows only a weak kind of strategy commitment. For example, CHP-SL does not allow dif-
ferent players to share the same strategy, suggesting that strategies have yet to become first-class
objects in this logic. Moreover, an agent cannot change his strategy during a play without forcing
the other to do the same.

These considerations, as well as all questions left open about decision problems, led us to intro-
duce and investigate a newStrategy Logic, denoted SL, as a more general framework than CHP-SL,
for explicit reasoning about strategies inmulti-agent concurrent games. Syntactically, SL extends
LTL by means of twostrategy quantifiers, the existential〈〈x〉〉 and the universal[[x]], as well asagent
binding(a, x), wherea is an agent andx a variable. Intuitively, these elements can be respectively
read as“there exists a strategyx” , “for all strategiesx” , and“bind agenta to the strategy asso-
ciated withx” . For example, in a CGS with the three agentsα, β, γ, the previous ATL∗ formula
〈〈{α, β}〉〉G ¬fail can be translated in the SL formula 〈〈x〉〉〈〈y〉〉[[z]](α, x)(β, y)(γ, z)(G ¬fail ). The
variablesx andy are used to select two strategies for the agentsα andβ, respectively, whilez is used
to select one for the agentγ such that their composition, after the binding, results in aplay where
fail is never met. Note that we can also require, by means of an appropriate choice of agent bindings,
that agentsα andβ share the same strategy, using the formula〈〈x〉〉[[z]](α, x)(β, x)(γ, z)(G ¬fail ).
Furthermore, we may vary the structure of the game by changing the way the quantifiers alternate,
as in the formula〈〈x〉〉[[z]]〈〈y〉〉(α, x)(β, y)(α, z)(G ¬fail ). In this case,x remains uniform w.r.t.z,
but y becomes dependent on it. Finally, we can change the strategythat one agent uses during the
play without changing those of the other agents, by simply using nested bindings, as in the formula
〈〈x〉〉〈〈y〉〉[[z]]〈〈w〉〉(α, x)(β, y)(γ, z)(G (γ,w)G ¬fail ). The last examples intuitively show that SL is
a extension of both ATL∗ and CHP-SL. It is worth noting that the pattern of modal quantifications
over strategies and binding to agents can be extended to other linear-time temporal logics than LTL,
such as the linearµCALCULUS [Vardi 1988]. In fact, the use of LTL here is only a matter of sim-
plicity in presenting our framework, and changing the embedded temporal logic only involves few
side-changes in proofs and decision procedures.

As one of the main results in this paper about SL, we show that the model-checking
problem is non-elementarily decidable. To gain this, we usean automata-theoretic ap-
proach [Kupferman et al. 2000]. Precisely, we reduce the decision problem for our logic to the
emptiness problem of a suitablealternating parity tree automaton, which is an alternating
tree automaton(see [Grädel et al. 2002], for a survey) along with aparity acceptance condi-
tion [Muller and Schupp 1995]. Due to the operations of projection required by the elimination
of quantifications on strategies, which induce at any step anexponential blow-up, the overall size
of the required automaton is non-elementary in the size of the formula, while it is only polyno-
mial in the size of the model. Thus, together with the complexity of the automata-nonemptiness
calculation, we obtain that the model checking problem is inPTIME, w.r.t. the size of the model,
and NONELEMENTARYTIME, w.r.t. the size of the specification. Hence, the algorithm we propose
is computationally not harder than the best one known for CHP-SL and even a non-elementary
improvement with respect to the model. This fact allows for practical applications of SL in the
field of system verification just as those done for the monadicsecond-order logic on infinite ob-
jects [Elgaard et al. 1998]. Moreover, we prove that our problem has a non-elementary lower bound.
Specifically, it isk-EXPSPACE-HARD in the alternation numberk of quantifications in the specifi-
cation.

The contrast between the high complexity of the model-checking problem for our logic and the
elementary one for ATL∗ has spurred us to investigate syntactic fragments of SL, strictly subsuming
ATL∗, with a better complexity. In particular, by means of these sublogics, we would like to under-
stand why SL is computationally more difficult than ATL∗.

The main fragments we study here areNested-Goal, Boolean-Goal, andOne-Goal Strategy Logic,
respectively denoted by SL[NG], SL[BG], and SL[1G]. Note that the last, differently from the first
two, was introduced in [Mogavero et al. 2012]. They encompass formulas in a special prenex nor-
mal form having nested temporal goals, Boolean combinations of goals, and a single goal at a time,
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respectively. For goal we mean an SL formula of the type♭ψ, where♭ is a binding prefix of the form
(α1, x1), . . . , (αn, xn) containing all the involved agents andψ is an agent-full formula. With more
detail, the idea behind SL[NG] is that, when inψ there is a quantification over a variable, then there
are quantifications of all free variables contained in the inner subformulas. So, a subgoal ofψ that
has a variable quantified inψ itself cannot use other variables quantified out of this formula. Thus,
goals can be only nested or combined with Boolean and temporal operators. SL[BG] and SL[1G]
further restrict the use of goals. In particular, in SL[1G], each temporal formulaψ is prefixed by
a quantification-binding prefix℘♭ that quantifies over a tuple of strategies and binds them to all
agents.

As main results about these fragments, we prove that the model-checking problem for SL[1G]
is 2EXPTIME-COMPLETE, thus not harder than the one for ATL∗. On the contrary, for SL[NG], it
is both NONELEMENTARYTIME and NONELEMENTARYSPACE-HARD and thus we enforce the
corresponding result for SL. Finally, we observe that SL[BG] includes CHP-SL, while the relative
model-checking problem relies between 2EXPTIME and NONELEMENTARYTIME.

To achieve all positive results about SL[1G], we use a fundamental property of the semantics of
this logic, calledelementariness, which allows us to strongly simplify the reasoning about strategies
by reducing it to a set of reasonings about actions. This intrinsic characteristic of SL[1G], which un-
fortunately is not shared by the other fragments, asserts that, in a determined history of the play, the
value of an existential quantified strategy depends only on the values of strategies, from which the
first depends, on the same history. This means that, to choosean existential strategy, we do not need
to know the entire structure of universal strategies, as forSL, but only their values on the histories
of interest. Technically, to describe this property, we make use of the machinery ofdependence map,
which defines a Skolemization procedure for SL, inspired by the one in first order logic.

By means of elementariness, we can modify the SL model-checking procedure via alternating
tree automata in such a way that we avoid the projection operations by using a dedicated automaton
that makes an action quantification for each node of the tree model. Consequently, the resulting
automaton is only exponential in the size of the formula, independently from its alternation num-
ber. Thus, together with the complexity of the automata-nonemptiness calculation, we get that the
model-checking procedure for SL[1G] is 2EXPTIME. Clearly, the elementariness property also holds
for ATL∗, as it is included in SL[1G]. In particular, although it has not been explicitly stated,this
property is crucial for most of the results achieved in literature about ATL∗ by means of automata
(see [Schewe 2008], as an example). Moreover, we believe that our proof techniques are of indepen-
dent interest and applicable to other logics as well.

Related works. Several works have focused on extensions of ATL∗ to incorporate
more powerful strategic constructs. Among them, we recallAlternating-TimeµCALCULUS
(AµCALCULUS, for short) [Alur et al. 2002],Game Logic (GL, for short) [Alur et al. 2002],
Quantified Decision ModalityµCALCULUS (QDµ, for short) [Pinchinat 2007],Coordination
Logic (CL, for short) [Finkbeiner and Schewe 2010], and some extensions of ATL∗ considered
in [Brihaye et al. 2009]. AµCALCULUS andQDµ are intrinsically different from SL (as well as from
CHP-SL and ATL∗) as they are obtained by extending the propositionalµ-calculus [Kozen 1983]
with strategic modalities. CL is similar to QDµ but with LTL temporal operators instead of ex-
plicit fixpoint constructors. GL is strictly included in CHP-SL, in the case of two-player turn-based
games, but it does not use any explicit treatment of strategies, neither it does the extensions of ATL∗

introduced in [Brihaye et al. 2009]. In particular, the latter work consider restrictions on the mem-
ory for strategy quantifiers. Thus, all above logics are different from SL, which we recall it aims
to be a minimal but powerful logic to reason about strategic behavior in multi-agent systems. A
very recent generalization of ATL∗, which results to be expressive but a proper sublogic of SL, is
also proposed in [Costa et al. 2010a]. In this logic, a quantification over strategies does not reset the
strategies previously quantified but allows to maintain them in a particular context in order to be
reused. This makes the logic much more expressive than ATL∗. On the other hand, as it does not al-
low agents to share the same strategy, it is not comparable with the fragments we have considered in
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this paper. Finally, we want to remark that our non-elementary hardness proof about the SL model-
checking problem is inspired by and improves a proof proposed for their logic and communicated
to us [Costa et al. 2010b] by the authors of [Costa et al. 2010a].

Note on [Mogavero et al. 2010a].Preliminary results on SL appeared in [Mogavero et al. 2010a].
We presented there a 2EXPTIME algorithm for the model-checking problem. The described proce-
dure applies only to the SL[1G] fragment, as model checking for full SL is non-elementary.

Outline. The remaining part of this work is structured as follows. In Section 2, we recall the
semantic framework based on concurrent game structures andintroduce syntax and semantics of
SL. Then, in Section 3, we show the non-elementary lower bound for the model-checking problem.
After this, in Section 4, we start the study of few syntactic and semantic SL fragments and introduce
the concepts of dependence map and elementary satisfiability. Finally, in Section 5, we describe
the model-checking automata-theoretic procedures for allSL fragments. Note that, in the accom-
panying Appendix A, we recall standard mathematical notation and some basic definitions that are
used in the paper. However, for the sake of a simpler understanding of the technical part, we make
a reminder, by means of footnotes, for each first use of a non trivial or immediate mathematical
concept. The paper is self contained. All missing proofs in the main body of the work are reported
in appendix.

2. STRATEGY LOGIC

In this section, we introduceStrategy Logic, an extension of the classic linear-time temporal
logic LTL [Pnueli 1977] along with the concepts of strategy quantifications and agent binding.
Our aim is to define a formalism that allows to express strategic plans over temporal goals in
a way that separates the part related to the strategic reasoning from that concerning the tacti-
cal one. This distinctive feature is achieved by decouplingthe instantiation of strategies, done
through the quantifications, from their application by means of bindings. Our proposal, on the
line marked by its precursor CHP-SL [Chatterjee et al. 2007; Chatterjee et al. 2010] and differ-
ently from classical temporal logics [Emerson 1990], turnsin a logic that is not simply propo-
sitional but predicative, since we treat strategies as a first order concept via the use of agents
and variables as explicit syntactic elements. This fact letus to write Boolean combinations and
nesting of complex predicates, linked together by some common strategic choice, which may
represent each one a different temporal goal. However, it isworth noting that the technical ap-
proach we follow here is quite different from that used for the definition of CHP-SL, which is
based, on the syntactic side, on the CTL∗ formula framework [Emerson and Halpern 1986] and,
on the semantic one, on the two-player turn-based game model[Perrin and Pin 2004].

The section is organized as follows. In Subsection 2.1, we recall the definition of concurrent game
structure used to interpret Strategy Logic, whose syntax isintroduced in Subsection 2.2. Then, in
Subsection 2.3, we give, among the others, the notions of strategy and play, which are finally used,
in Subsection 2.4, to define the semantics of the logic.

2.1. Underlying framework

As semantic framework for our logic language, we use agraph-based modelfor multi-player
gamesnamedconcurrent game structure[Alur et al. 2002]. Intuitively, this mathematical for-
malism provides a generalization ofKripke structures[Kripke 1963] andlabeled transition sys-
tems[Keller 1976], modelingmulti-agent systemsviewed as games, in which players performcon-
current actionschosen strategically as a function on the history of the play.

Definition2.1 (Concurrent Game Structures). A concurrent game structure(CGS, for short)
is a tupleG , 〈AP,Ag,Ac, St, λ, τ, s0〉, whereAP andAg are finite non-empty sets ofatomic
propositionsandagents, Ac andSt are enumerable non-empty sets ofactionsandstates, s0 ∈ St
is a designatedinitial state, andλ : St → 2AP is a labeling functionthat maps each state to the
set of atomic propositions true in that state. LetDc , AcAg be the set ofdecisions, i.e., functions
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fromAg to Ac representing the choices of an action for each agent.1 Then,τ : St ×Dc → St is a
transition functionmapping a pair of a state and a decision to a state.

Observe that elements inSt are not global states of the system, but states of the environment in
which the agents operate. Thus, they can be viewed as states of the game, which do not include
the local states of the agents. From a practical point of view, this means that all agents have per-
fect information on the whole game, since local states are not taken into account in the choice of
actions [Fagin et al. 1995]. Observe also that, differentlyfrom other similar formalizations, each
agent has the same set of possible executable actions, independently of the current state and of
choices made by other agents. However, as already reported in literature [Pinchinat 2007], this sim-
plifying choice does not result in a limitation of our semantics framework and allow us to give a
simpler and clearer explanation of all formal definitions and techniques we work on.

From now on, apart from the examples and if not differently stated, all CGSs are defined on
the same sets of atomic propositionsAP and agentsAg, so, when we introduce a new struc-
ture in our reasonings, we do not make explicit their definition anymore. In addition, we use
the italic lettersp, a, c, and s, possibly with indexes, as meta-variables on, respectively, the
atomic propositionsp, q, . . . in AP, the agentsα, β, γ, . . . in Ag, the actions0, 1, . . . in Ac,
and the statess, . . . in St. Finally, we use the name of a CGS as a subscript to extract the
components from its tuple-structure. Accordingly, ifG = 〈AP,Ag,Ac, St, λ, τ, s0〉, we have
that AcG = Ac, λG = λ, s0G = s0, and so on. Furthermore, we use the same nota-
tional concept to make explicit to which CGS the setDc of decisions is related to. Note that,
we omit the subscripts if the structure can be unambiguouslyindividuated from the context.

si

∅

sA
wA

sB
wB

DA DB

Di

∗∗ ∗∗

Fig. 1: The CGSGPRS .

Now, to get attitude to the introduced semantic framework, let
us describe two running examples of simple concurrent games. In
particular, we start by modeling thepaper, rock, and scissorgame.

Example2.2 (Paper, Rock, and Scissor). Consider the classic
two-player concurrent gamepaper, rock, and scissor(PRS, for short)
as represented in Figure 1, where a play continues until one of the
participants catches the move of the other. Vertexes are states of the
game and labels on edges represent decisions of agents or sets of
them, where the symbol∗ is used in place of every possible action. In
this specific case, since there are only two agents, the pair of symbols
∗∗ indicates the whole setDc of decisions. The agents “Alice” and “Bob” inAg , {A,B} have
as possible actions those in the setAc , {P,R, S}, which stand for “paper”, “rock”, and “scissor”,
respectively. During the play, the game can stay in one of thethree states inSt , {si, sA, sB},
which represent, respectively, the waiting moment, namedidle, and the two winner positions.
The latter ones are labeled with one of the atomic propositions in AP , {wA,wB}, in order to
represent who is the winner. The catch of one action over another is described by the relation
C , {(P,R), (R, S), (S,P)} ⊆ Ac×Ac. We can now define the CGSGPRS , 〈AP,Ag,Ac, St, λ,
τ, si〉 for the PRS game, with the labeling given byλ(si) , ∅, λ(sA) , {wA}, andλ(sB) , {wB}
and the transition function set as follows, whereDA , {d ∈ DcGPRS : (d(A), d(B)) ∈ C} and
DB , {d ∈ DcGPRS : (d(B), d(A)) ∈ C} are the sets of winning decisions for the two agents: if
s = si andd ∈ DA thenτ(s, d) , sA, else ifs = si andd ∈ DB thenτ(s, d) , sB, otherwise
τ(s, d) , s. Note that, when none of the two agents catches the action of the other, i.e., the used
decision is inDi , DcGPRS \ (DA ∪ DB), the play remains in the idle state to allow another try,
otherwise it is stuck in a winning position forever.

1In the following, we use bothX → Y andYX to denote the set of functions from the domainX to the codomainY.
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si
fA1

, fA2

sA1
fA1

sj

∅

sA2
fA2

DC

DD

CD

CC

∗∗

∗∗

∗∗

Fig. 2: The CGSGPD.

We now describe a non-classic qualitative version of the well-
knownprisoner’s dilemma.

Example2.3 (Prisoner’s Dilemma). In the prisoner’s dilemma
(PD, for short), two accomplices are interrogated in separated rooms
by the police, which offers them the same agreement. If one defects,
i.e., testifies for the prosecution against the other, whilethe other co-
operates, i.e., remains silent, the defector goes free and the silent ac-
complice goes to jail. If both cooperate, they remain free, but will
be surely interrogated in the next future waiting for a defection. On
the other hand, if every one defects, both go to jail. It is ensured
that no one will know about the choice made by the other. This
tricky situation can be modeled by the CGS GPD , 〈AP,Ag,Ac, St, λ, τ, si〉 depicted in Figure 2,
where the agents “Accomplice-1” and “Accomplice-2” inAg , {A1,A2} can chose an action in
Ac , {C,D}, which stand for “cooperation” and “defection”, respectively. There are four states in
St , {si, sA1 , sA2 , sj}. In the idle statesi the agents are waiting for the interrogation, whilesj rep-
resents the jail for both of them. The remaining statessA1 andsA2 indicate, instead, the situations in
which only one of the agents become definitely free. To characterize the different meaning of these
states, we use the atomic propositions inAP , {fA1 , fA2}, which denote who is “free”, by defining
the following labeling:λ(si) , {fA1 , fA2}, λ(sA1) , {fA1}, λ(sA2) , {fA2}, andλ(sj) , ∅. The
transition functionτ can be easily deduced by the figure.

2.2. Syntax

Strategy Logic(SL, for short) syntactically extends LTL by means of twostrategy quantifiers, the
existential〈〈x〉〉 and the universal[[x]], andagent binding(a, x), wherea is an agent andx a variable.
Intuitively, these new elements can be respectively read as“there exists a strategyx” , “for all
strategiesx” , and“bind agenta to the strategy associated with the variablex” . The formal syntax
of SL follows.

Definition2.4 (SL Syntax). SL formulasare built inductively from the sets of atomic proposi-
tionsAP, variablesVar, and agentsAg, by using the following grammar, wherep ∈ AP, x ∈ Var,
anda ∈ Ag:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | X ϕ | ϕ U ϕ | ϕ R ϕ | 〈〈x〉〉ϕ | [[x]]ϕ | (a, x)ϕ.

SL denotes the infinite set of formulas generated by the above rules.

Observe that, by construction, LTL is a proper syntactic fragment of SL, i.e., LTL ⊂ SL. In order to
abbreviate the writing of formulas, we use the boolean values truet and falsef and the well-known
temporal operators futureF ϕ , tU ϕ and globallyG ϕ , fR ϕ. Moreover, we use the italic letters
x, y, z, . . ., possibly with indexes, as meta-variables on the variablesx, y, z, . . . in Var.

A first classic notation related to the SL syntax that we need to introduce is that ofsubformula,
i.e., a syntactic expression that is part of an a priori givenformula. Bysub : SL → 2SL we formally
denote the function returning the set of subformulas of an SL formula. For instance, considerϕ =
〈〈x〉〉(α, x)(F p). Then, it is immediate to see thatsub(ϕ) = {ϕ, (α, x)(F p), (F p), p, t}.

Normally, predicative logics need the concepts of free and boundplaceholdersin order to for-
mally define the meaning of their formulas. The placeholdersare used to represent particular po-
sitions in syntactic expressions that have to be highlighted, since they have a crucial role in the
definition of the semantics. In first order logic, for instance, there is only one type of placeholders,
which is represented by the variables. In SL, instead, we have both agents and variables as placehold-
ers, as it can be noted by its syntax, in order to distinguish between the quantification of a strategy
and its application by an agent. Consequently, we need a way to differentiate if an agent has an
associated strategy via a variable and if a variable is quantified. To do this, we use the set offree
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agents/variablesas the subset ofAg ∪ Var containing(i) all agents for which there is no binding
after the occurrence of a temporal operator and(ii) all variables for which there is a binding but no
quantifications.

Definition2.5 (SL Free Agents/Variables). The set offree agents/variablesof an SL formula is
given by the functionfree : SL → 2Ag∪Var defined as follows:

(i) free(p) , ∅, wherep ∈ AP;

(ii) free(¬ϕ) , free(ϕ);

(iii) free(ϕ1Op ϕ2) , free(ϕ1) ∪ free(ϕ2), whereOp ∈ {∧,∨};

(iv) free(X ϕ) , Ag ∪ free(ϕ);

(v) free(ϕ1Op ϕ2) , Ag ∪ free(ϕ1) ∪ free(ϕ2), whereOp ∈ {U,R};

(vi) free(Qn ϕ) , free(ϕ) \ {x}, whereQn ∈ {〈〈x〉〉, [[x]] : x ∈ Var};

(vii) free((a, x)ϕ) , free(ϕ), if a 6∈ free(ϕ), wherea ∈ Ag andx ∈ Var;

(viii) free((a, x)ϕ) , (free(ϕ) \ {a}) ∪ {x}, if a ∈ free(ϕ), wherea ∈ Ag andx ∈ Var.

A formulaϕwithout free agents (resp., variables), i.e., withfree(ϕ)∩Ag = ∅ (resp.,free(ϕ)∩Var =
∅), is namedagent-closed(resp.,variable-closed). If ϕ is both agent- and variable-closed, it is
referred to as asentence. The functionsnt : SL → 2SL returns the set ofsubsentencessnt(ϕ) ,
{φ ∈ sub(ϕ) : free(φ) = ∅} for each SL formulaϕ.

Observe that, on one hand, free agents are introduced in Items iv and v and removed in Item viii.
On the other hand, free variables are introduced in Item viiiand removed in Item vi. As an example,
letϕ = 〈〈x〉〉(α, x)(β, y)(F p) be a formula on the agentsAg = {α, β, γ}. Then, we havefree(ϕ) =
{γ, y}, sinceγ is an agent without any binding afterF p andy has no quantification at all. Consider
also the formulas(α, z)ϕ and(γ, z)ϕ, where the subformulaϕ is the same as above. Then, we have
free((α, z)ϕ) = free(ϕ) andfree((γ, z)ϕ) = {y, z}, sinceα is not free inϕ butγ is, i.e.,α /∈ free(ϕ)
andγ ∈ free(ϕ). So,(γ, z)ϕ is agent-closed while(α, z)ϕ is not.

Similarly to the case of first order logic, another importantconcept that characterizes the syn-
tax of SL is that of thealternation numberof quantifiers, i.e., the maximum number of quantifier
switches〈〈·〉〉[[·]], [[·]]〈〈·〉〉, 〈〈·〉〉¬〈〈·〉〉, or [[·]]¬[[·]] that bind a variable in a subformula that is not a
sentence. The constraint on the kind of subformulas that areconsidered here means that, when we
evaluate the number of such switches, we consider each possible subsentence as an atomic propo-
sition, hence, its quantifiers are not taken into account. Moreover, it is important to observe that
vacuous quantifications, i.e., quantifications on variablethat are not free in the immediate inner
subformula, need to be not considered at all in the counting of quantifier switches. This value is
crucial when we want to analyze the complexity of the decision problems of fragments of our logic,
since higher alternation can usually mean higher complexity. By alt : SL → N we formally de-
note the function returning the alternation number of an SL formula. Furthermore, the fragment
SL[k-alt] , {ϕ ∈ SL : ∀ϕ′ ∈ sub(ϕ) . alt(ϕ′) ≤ k} of SL, for k ∈ N, denotes the subset of
formulas having all subformulas with alternation number bounded byk. For instance, consider the
sentenceϕ = [[x]]〈〈y〉〉(α, x)(β, y)(F ϕ′) with ϕ′ = [[x]]〈〈y〉〉(α, x)(β, y)(X p), on the set of agents
Ag = {α, β}. Then, the alternation numberalt(ϕ) is 1 and not3, as one can think at a first glance,
sinceϕ′ is a sentence. Moreover, it holds thatalt(ϕ′) = 1. Hence,ϕ ∈ SL[1-alt]. On the other hand,
if we substituteϕ′ with ϕ′′ = [[x]](α, x)(X p), we have thatalt(ϕ) = 2, sinceϕ′′ is not a sentence.
Thus, it holds thatϕ 6∈ SL[1-alt] butϕ ∈ SL[2-alt].

At this point, in order to practice with the syntax of our logic by expressing game-theoretic
concepts through formulas, we describe two examples of important properties that are possible to
write in SL, but neither in ATL∗ [Alur et al. 2002] nor in CHP-SL. This is clarified later in the
paper. The first concept we introduce is the well-known deterministic concurrent multi-playerNash
equilibriumfor Boolean valued payoffs.
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Example2.6 (Nash Equilibrium). Consider then agentsα1, . . . , αn of a game, each of them
having, respectively, a possibly different temporal goal described by one of the LTL formulas
ψ1,. . ., ψn. Then, we can express the existence of a strategy profile(x1, . . . , xn) that is aNash
equilibrium(NE, for short) forα1, . . . , αn w.r.t.ψ1, . . . , ψn by using the SL[1-alt] sentenceϕNE ,
〈〈x1〉〉(α1, x1) · · · 〈〈xn〉〉(αn, xn) ψNE, whereψNE ,

∧n
i=1(〈〈y〉〉(αi, y)ψi) → ψi is a variable-closed

formula. Informally, this asserts that every agentαi hasxi as one of the best strategy w.r.t. the goal
ψi, once all the other strategies of the remaining agentsαj , with j 6= i, have been fixed toxj . Note
that here we are only considering equilibria under deterministic strategies.

As in physics, also in game theory an equilibrium is not always stable. Indeed, there are games
like the PD of Example 2.3 on page 7 having Nash equilibria that are instable. One of the simplest
concepts of stability that is possible to think is calledstability profile.

Example2.7 (Stability Profile). Think about the same situation of the above example on NE.
Then, astability profile (SP, for short) is a strategy profile(x1, . . . , xn) for α1, . . . , αn w.r.t.
ψ1, . . . , ψn such that there is no agentαi that can choose a different strategy fromxi without chang-
ing its own payoff and penalizing the payoff of another agentαj , with j 6= i. To represent the exis-
tence of such a profile, we can use the SL[1-alt] sentenceϕSP , 〈〈x1〉〉(α1, x1) · · · 〈〈xn〉〉(αn, xn)ψSP ,
whereψSP ,

∧n
i,j=1,i6=j ψj → [[y]]((ψi ↔ (αi, y)ψi) → (αi, y)ψj). Informally, with theψSP

subformula, we assert that, ifαj is able to achieve his goalψj , all strategiesy of αi that left
unchanged the payoff related toψi, also letαj to maintain his achieved goal. At this point, it
is very easy to ensure the existence of an NE that is also an SP,by using the SL[1-alt] sentence
ϕSNE , 〈〈x1〉〉(α1, x1) · · · 〈〈xn〉〉(αn, xn) ψSP ∧ ψNE.

2.3. Basic concepts

Before continuing with the description of our logic, we haveto introduce some basic concepts, re-
garding a generic CGS, that are at the base of the semantics formalization. Remindthat a description
of used mathematical notation is reported in Appendix A.

We start with the notions oftrack andpath. Intuitively, tracks and paths of a CGS G are legal
sequences of reachable states inG that can be respectively seen as partial and complete descriptions
of possible outcomes of the game modeled byG itself.

Definition2.8 (Tracks and Paths). A track (resp.,path) in a CGSG is a finite (resp., an infinite)
sequence of statesρ ∈ St∗ (resp.,π ∈ Stω) such that, for alli ∈ [0, |ρ| − 1[ (resp.,i ∈ N),
there exists a decisiond ∈ Dc such that(ρ)i+1 = τ((ρ)i, d) (resp.,(π)i+1 = τ((π)i, d)). 2 A
track ρ is non-trivial if it has non-zero length, i.e.,|ρ| > 0 that isρ 6= ε. 3 The setTrk ⊆ St+

(resp.,Pth ⊆ Stω) contains all non-trivial tracks (resp., paths). Moreover, Trk(s) , {ρ ∈ Trk :

fst(ρ) = s} (resp.,Pth(s) , {π ∈ Pth : fst(π) = s}) indicates the subsets of tracks (resp., paths)
starting at a states ∈ St. 4

For instance, consider the PRS game of Example 2.2 on page 6. Then,ρ = si · sA ∈ St+ and
π = si

ω ∈ Stω are, respectively, a track and a path in the CGS GPRS . Moreover, it holds that
Trk = si

+ + si
∗ · (sA+ + sB

+) andPth = si
ω + si

∗ · (sAω + sB
ω).

At this point, we can define the concept ofstrategy. Intuitively, a strategy is a scheme for an agent
that contains all choices of actions as a function of the history of the current outcome. However,
observe that here we do not set an a priori connection betweena strategy and an agent, since the
same strategy can be used by more than one agent at the same time.

2The notation(w)i ∈ Σ indicates theelementof indexi ∈ [0, |w|[ of a non-empty sequencew ∈ Σ∞.
3The Greek letterε stands for theempty sequence.
4By fst(w) , (w)0 it is denoted thefirst elementof a non-empty sequencew ∈ Σ∞.
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Definition2.9 (Strategies). A strategyin a CGSG is a partial functionf : Trk⇀ Ac that maps
each non-trivial track in its domain to an action. For a states ∈ St, a strategyf is saids-total if
it is defined on all tracks starting ins, i.e., dom(f) = Trk(s). The setStr , Trk ⇀ Ac (resp.,
Str(s) , Trk(s) → Ac) contains all (resp.,s-total) strategies.

An example of strategy in the CGS GPRS is the functionf1 ∈ Str(si) that maps each track having
length multiple of3 to the actionP, the tracks whose remainder of length modulo3 is 1 to the action
R, and the remaining tracks to the actionS. A different strategy is given by the functionf2 ∈ Str(si)
that returns the actionP, if the tracks ends insA or sB or if its length is neither a second nor a third
power of a positive number, the actionR, if the length is a square power, and the actionS, otherwise.

An important operation on strategies is that oftranslationalong a given track, which is used to
determine which part of a strategy has yet to be used in the game.

Definition2.10 (Strategy Translation). Let f ∈ Str be a strategy andρ ∈ dom(f) a track in its
domain. Then,(f)ρ ∈ Str denotes thetranslationof f alongρ, i.e., the strategy withdom((f)ρ) ,

{ρ′ ∈ Trk(lst(ρ)) : ρ · ρ′≥1 ∈ dom(f)} such that(f)ρ(ρ′) , f(ρ · ρ′≥1), for all ρ′ ∈ dom((f)ρ). 5 6

Intuitively, the translation(f)ρ is the update of the strategyf, once the history of the game becomes
ρ. It is important to observe that, iff is a fst(ρ)-total strategy then(f)ρ is lst(ρ)-total. For instance,
consider the two tracksρ1 = si

4 ∈ Trk(si) andρ2 = si
4 · sA2 ∈ Trk(si) in the CGSGPRS and the

strategyf1 ∈ Str(si) previously described. Then, we have that(f1)ρ1 = f1, while (f1)ρ2 ∈ Str(sA)
maps each track having length multiple of3 to the actionS, each track whose remainder of length
modulo3 is 1 to the actionP, and the remaining tracks to the actionR.

We now introduce the notion ofassignment. Intuitively, an assignment gives a val-
uation of variables with strategies, where the latter are used to determine the behav-
ior of agents in the game. With more detail, as in the case of first order logic,
we use this concept as a technical tool to quantify over strategies associated with
variables, independently of agents to which they are related to. So, assignments are
used precisely as a way to define a correspondence between variables and agents via strategies.

Definition2.11 (Assignments). An assignmentin a CGSG is a partial functionχ : Var∪Ag ⇀
Str mapping variables and agents in its domain to a strategy. An assignmentχ is completeif it
is defined on all agents, i.e.,Ag ⊆ dom(χ). For a states ∈ St, it is said thatχ is s-total if all
strategiesχ(l) ares-total, for l ∈ dom(χ). The setAsg , Var ∪ Ag ⇀ Str (resp.,Asg(s) ,
Var∪Ag ⇀ Str(s)) contains all (resp.,s-total) assignments. Moreover,Asg(X) , X → Str (resp.,
Asg(X, s) , X → Str(s)) indicates the subset ofX-defined(resp.,s-total) assignments, i.e., (resp.,
s-total) assignments defined on the setX ⊆ Var ∪ Ag.

As an example of assignment, let us consider the functionχ1 ∈ Asg in the CGS GPRS , defined
on the set{A, x}, whose values aref1 on A and f2 on x, where the strategiesf1, f2 ∈ Str(si) are
those described above. Another examples is given by the assignmentχ2 ∈ Asg, defined on the set
{A,B}, such thatχ2(A) = χ1(x) andχ2(B) = χ1(A). Note that both aresi-total and the latter is
also complete while the former is not.

As in the case of strategies, it is useful to define the operation of translationalong a given track
for assignments too.

Definition2.12 (Assignment Translation). For a given states ∈ St, let χ ∈ Asg(s) be ans-
total assignment andρ ∈ Trk(s) a track. Then,(χ)ρ ∈ Asg(lst(ρ)) denotes thetranslationof χ
alongρ, i.e., thelst(ρ)-total assignment, withdom((χ)ρ) , dom(χ), such that(χ)ρ(l) , (χ(l))ρ,
for all l ∈ dom(χ).

5By lst(w) , (w)|w|−1 it is denoted thelast elementof a finite non-empty sequencew ∈ Σ∗.
6The notation(w)≥i ∈ Σ∞ indicates thesuffixfrom indexi ∈ [0, |w|] inwards of a non-empty sequencew ∈ Σ∞.
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Intuitively, the translation(χ)ρ is the simultaneous update of all strategiesχ(l) defined by the as-
signmentχ, once the history of the game becomesρ.

Given an assignmentχ, an agent or variablel, and a strategyf, it is important to define a notation
to represent theredefinitionof χ, i.e., a new assignment equal to the first on all elements of its
domain butl, on which it assumes the valuef.

Definition2.13 (Assignment Redefinition). Let χ ∈ Asg be an assignment,f ∈ Str a strategy
andl ∈ Var ∪ Ag either an agent or a variable. Then,χ[l 7→ f] ∈ Asg denotes the new assignment
defined ondom(χ[l 7→ f]) , dom(χ) ∪ {l} that returnsf on l and is equal toχ on the remaining
part of its domain, i.e.,χ[l 7→ f](l) , f andχ[l 7→ f](l′) , χ(l′), for all l′ ∈ dom(χ) \ {l}.

Intuitively, if we have to add or update a strategy that needsto be bound by an agent or variable,
we can simply take the old assignment and redefine it by using the above notation. It is worth to
observe that, ifχ andf ares-total thenχ[l 7→ f] is s-total too.

Now, we can introduce the concept ofplay in a game. Intuitively, a play is the unique outcome of
the game determined by all agent strategies participating to it.

Definition2.14 (Plays). A pathπ ∈ Pth(s) starting at a states ∈ St is aplayw.r.t. a complete
s-total assignmentχ ∈ Asg(s) ((χ, s)-play, for short) if, for all i ∈ N, it holds that(π)i+1 =

τ((π)i, d), whered(a) , χ(a)((π)≤i), for eacha ∈ Ag. 7 The partial functionplay : Asg × St ⇀

Pth, with dom(play) , {(χ, s) : Ag ⊆ dom(χ) ∧ χ ∈ Asg(s) ∧ s ∈ St}, returns the(χ, s)-play
play(χ, s) ∈ Pth(s), for all pairs(χ, s) in its domain.

As a last example, consider again the completesi-total assignmentχ2 previously described for the
CGSGPRS , which returns the strategiesf2 andf1 on the agentsA andB, respectively. Then, we have
thatplay(χ2, si) = si

3 · sBω. This means that the play is won by the agentB.
Finally, we give the definition of global translation of a complete assignment together with a

related state, which is used to calculate, at a certain step of the play, what is the current state and its
updated assignment.

Definition2.15 (Global Translation). For a given states ∈ St and a completes-total assign-
mentχ ∈ Asg(s), the i-th global translationof (χ, s), with i ∈ N, is the pair of a complete
assignment and a state(χ, s)i , ((χ)(π)≤i , (π)i), whereπ = play(χ, s).

In order to avoid any ambiguity of interpretation of the described notions, we may use the name
of a CGS as a subscript of the sets and functions just introduced to clarify to which structure they
are related to, as in the case of components in the tuple-structure of the CGS itself.

2.4. Semantics

As already reported at the beginning of this section, just like ATL∗ and differently from CHP-SL,
the semantics of SL is defined w.r.t. concurrent game structures. For a CGSG, one of its statess, and
ans-total assignmentχ with free(ϕ) ⊆ dom(χ), we writeG, χ, s |= ϕ to indicate that the formula
ϕ holds ats in G underχ. The semantics of SL formulas involving the atomic propositions, the
Boolean connectives¬, ∧, and∨, as well as the temporal operatorsX, U, andR is defined as usual
in LTL. The novel part resides in the formalization of the meaning of strategy quantifications〈〈x〉〉
and[[x]] and agent binding(a, x).

Definition2.16 (SL Semantics). Given a CGS G, for all SL formulasϕ, statess ∈ St, and
s-total assignmentsχ ∈ Asg(s) with free(ϕ) ⊆ dom(χ), the modeling relationG, χ, s |= ϕ is
inductively defined as follows.

(1) G, χ, s |= p if p ∈ λ(s), with p ∈ AP.
(2) For all formulasϕ, ϕ1, andϕ2, it holds that:

7The notation(w)≤i ∈ Σ∗ indicates theprefixup to indexi ∈ [0, |w|] of a non-empty sequencew ∈ Σ∞.
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(a) G, χ, s |= ¬ϕ if not G, χ, s |= ϕ, that isG, χ, s 6|= ϕ;
(b) G, χ, s |= ϕ1 ∧ ϕ2 if G, χ, s |= ϕ1 andG, χ, s |= ϕ2;
(c) G, χ, s |= ϕ1 ∨ ϕ2 if G, χ, s |= ϕ1 or G, χ, s |= ϕ2.

(3) For a variablex ∈ Var and a formulaϕ, it holds that:
(a) G, χ, s |= 〈〈x〉〉ϕ if there exists ans-total strategyf ∈ Str(s) such thatG, χ[x 7→ f], s |= ϕ;
(b) G, χ, s |= [[x]]ϕ if for all s-total strategiesf ∈ Str(s) it holds thatG, χ[x 7→ f], s |= ϕ.

(4) For an agenta ∈ Ag, a variablex ∈ Var, and a formulaϕ, it holds thatG, χ, s |= (a, x)ϕ if
G, χ[a 7→ χ(x)], s |= ϕ.

(5) Finally, if the assignmentχ is also complete, for all formulasϕ, ϕ1, andϕ2, it holds that:
(a) G, χ, s |= X ϕ if G, (χ, s)1 |= ϕ;
(b) G, χ, s |= ϕ1U ϕ2 if there is an indexi ∈ N with k ≤ i such thatG, (χ, s)i |= ϕ2 and, for

all indexesj ∈ N with k ≤ j < i, it holds thatG, (χ, s)j |= ϕ1;
(c) G, χ, s |= ϕ1R ϕ2 if, for all indexesi ∈ N with k ≤ i, it holds thatG, (χ, s)i |= ϕ2 or there

is an indexj ∈ N with k ≤ j < i such thatG, (χ, s)j |= ϕ1.

Intuitively, at Items 3a and 3b, respectively, we evaluate the existential〈〈x〉〉 and universal[[x]] quan-
tifiers over strategies, by associating them to the variablex. Moreover, at Item 4, by means of an
agent binding(a, x), we commit the agenta to a strategy associated with the variablex. It is evident
that, due to Items 5a, 5b, and 5c, the LTL semantics is simply embedded into the SL one.

In order to complete the description of the semantics, we nowgive the classic notions ofmodel
andsatisfiabilityof an SL sentence.

Definition2.17 (SL Satisfiability). We say that a CGS G is a modelof an SL sentenceϕ, in
symbolsG |= ϕ, if G,∅, s0 |= ϕ. 8 In general, we also say thatG is amodelfor ϕ on s ∈ St, in
symbolsG, s |= ϕ, if G,∅, s |= ϕ. An SL sentenceϕ is satisfiableif there is a model for it.

It remains to introduce the concepts ofimplicationandequivalencebetween SL formulas, which
are useful to describe transformations preserving the meaning of a specification.

Definition2.18 (SL Implication and Equivalence). Given two SL formulasϕ1 andϕ2 with
free(ϕ1) = free(ϕ2), we say thatϕ1 impliesϕ2, in symbolsϕ1 ⇒ ϕ2, if, for all CGSs G, states
s ∈ St, andfree(ϕ1)-defineds-total assignmentsχ ∈ Asg(free(ϕ1), s), it holds that ifG, χ, s |= ϕ1

thenG, χ, s |= ϕ2. Accordingly, we say thatϕ1 is equivalentto ϕ2, in symbolsϕ1 ≡ ϕ2, if both
ϕ1 ⇒ ϕ2 andϕ2 ⇒ ϕ1 hold.

In the rest of the paper, especially when we describe a decision procedure, we may consider
formulas inexistential normal form(enf, for short) andpositive normal form(pnf, for short), i.e.,
formulas in which only existential quantifiers appear or in which the negation is applied only to
atomic propositions. In fact, it is to this aim that we have considered in the syntax of SL both the
Boolean connectives∧ and∨, the temporal operatorsU, andR, and the strategy quantifiers〈〈·〉〉 and
[[·]]. Indeed, all formulas can be linearly translated inpnf by using De Morgan’s laws together with
the following equivalences, which directly follow from thesemantics of the logic:¬X ϕ ≡ X ¬ϕ,
¬(ϕ1U ϕ2) ≡ (¬ϕ1)R (¬ϕ2), ¬〈〈x〉〉ϕ ≡ [[x]]¬ϕ, and¬(a, x)ϕ ≡ (a, x)¬ϕ.

s0
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p, q
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Fig. 3: The CGSGSV .

At this point, in order to better understand the meaning of our
logic, we discuss two examples in which we describe the evaluation
of the semantics of some formula w.r.t. the a priori given CGSs. We
start by explaining how a strategy can be shared by differentagents.

Example2.19 (Shared Variable). Consider the SL[2-alt] sen-
tenceϕ = 〈〈x〉〉[[y]]〈〈z〉〉((α, x)(β, y)(X p) ∧ (α, y)(β, z)(X q)). It
is immediate to note that both agentsα andβ use the strategy asso-
ciated withy to achieve simultaneously the LTL temporal goalsX p

8The symbol∅ stands for the empty function.
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andX q. A model forϕ is given by the CGSGSV , 〈{p, q}, {α, β},
{0, 1}, {s0, s1, s2, s3}, λ, τ, s0〉, whereλ(s0) , ∅, λ(s1) , {p}, λ(s2) , {p, q}, λ(s3) , {q},
τ(s0, (0, 0)) , s1, τ(s0, (0, 1)) , s2, τ(s0, (1, 0)) , s3, and all the remaining transitions (with any
decision) go tos0. In Figure 3 on the facing page, we report a graphical representation of the struc-
ture. Clearly,GSV |= ϕ by letting, ons0, the variablesx to chose action0 (the goal(α, x)(β, y)(X p)
is satisfied for any choice ofy, since we can move froms0 to eithers1 or s2, both labeled withp)
andz to choose action1 wheny has action0 and, vice versa,0 wheny has1 (in both cases, the goal
(α, y)(β, z)(X q) is satisfied, since one can move froms0 to eithers2 or s3, both labeled withq).

We now discuss an application of the concepts of Nash equilibrium and stability profile to both
the prisoner’s dilemma and the paper, rock, and scissor game.

Example2.20 (Equilibrium Profiles). Let us first to consider the CGS GPD of the prisoner’s
dilemma described in the Example 2.3 on page 7. Intuitively,each of the two accomplicesA1 and
A2 want to avoid the prison. These goals can be, respectively, represented by the LTL formulas
ψA1 , G fA1 andψA2 , G fA2 . The existence of a Nash equilibrium inGPD for the two accomplices
w.r.t. the above goals can be written asφNE , 〈〈x1〉〉(A1, x1)〈〈x2〉〉(A2, x2) ψNE, whereψNE ,
((〈〈y〉〉(A1, y)ψA1 ) → ψA1) ∧ ((〈〈y〉〉(A2, y)ψA2) → ψA2), which results to be an instantiation of the
general sentenceϕNE of Example 2.6 on page 9. In the same way, the existence of a stable Nash
equilibrium can be represented with the sentenceφSNE , 〈〈x1〉〉(A1, x1)〈〈x2〉〉(A2, x2) ψNE ∧ ψSP ,
whereψSP , (ψ1 → [[y]]((ψ2 ↔ (A2, y)ψ2) → (A2, y)ψ1)) ∧ (ψ2 → [[y]]((ψ1 ↔ (A1, y)ψ1) →
(A1, y)ψ2)), which is a particular case of the sentenceϕSNE of Example 2.7 on page 9. Now, it is
easy to see thatGPD |= φSNE and, so,GPD |= φNE. Indeed, an assignmentχ ∈ AsgGPD (Ag, si), for
whichχ(A1)(si) = χ(A2)(si) = D, is a stable equilibrium profile, i.e., it is such thatGPD, χ, si |=
ψNE ∧ ψSP . This is due to the fact that, if an agentAk, for k ∈ {1, 2}, choses another strategy
f ∈ StrGPD (si), he is still unable to achieve his goalψk, i.e.,GPD, χ[Ak 7→ f], si 6|= ψk, so, he cannot
improve his payoff. Moreover, this equilibrium is stable, since the payoff of an agent cannot be made
worse by the changing of the strategy of the other agent. However, it is interesting to note that there
are instable equilibria too. One of these is represented by the assignmentχ′ ∈ AsgGPD (Ag, si), for
whichχ′(A1)(si

j) = χ′(A2)(si
j) = C, for all j ∈ N. Indeed, we have thatGPD, χ′, si |= ψNE , since

GPD, χ′, si |= ψ1 andGPD, χ′, si |= ψ2, butGPD, χ′, si 6|= ψSP . The latter property holds because,
if one of the agentsAk, for k ∈ {1, 2}, choses a different strategyf′ ∈ StrGPD (si) for which there
is aj ∈ N such thatf′(sij) = D, he cannot improve his payoff but makes surely worse the payoff of
the other agent, i.e.,GPD, χ′[Ak 7→ f′], si |= ψk butGPD, χ′[Ak 7→ f′], si 6|= ψ3−k. Finally, consider
the CGSGPRS of the paper, rock, and scissor game described in the Example2.2 on page 6 together
with the associated formula for the Nash equilibriumφNE , 〈〈x1〉〉(A, x1)〈〈x2〉〉(B, x2) ψNE, where
ψNE , ((〈〈y〉〉(A, y)ψA) → ψA) ∧ ((〈〈y〉〉(B, y)ψB) → ψB) with ψA , F wA andψB , F wB

representing the LTL temporal goals for Alice and Bob, respectively. Then, it is not hard to see that
GPRS 6|= φNE , i.e., there are no Nash equilibria in this game, since thereis necessarily an agent that
can improve his/her payoff by changing his/her strategy.

Finally, we want to remark that our semantics framework, based on concurrent game structures,
is enough expressive to describe turn-based features in themulti-agent case too. This is possible by
simply allowing the transition function to depend only on the choice of actions of an a priori given
agent for each state.

Definition2.21 (Turn-Based Game Structures). A CGS G is turn-basedif there exists a func-
tion η : St → Ag, namedowner function, such that, for all statess ∈ St and decisionsd1, d2 ∈ Dc,
it holds that ifd1(η(s)) = d2(η(s)) thenτ(s, d1) = τ(s, d2).

Intuitively, a CGS is turn-based if it is possible to associate with each state an agent, i.e., the owner
of the state, which is responsible for the choice of the successor of that state. It is immediate to
observe thatη introduces a partitioning of the set of states into|rng(η)| components, each one ruled
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by a single agent. Moreover, observe that a CGS having just one agent is trivially turn-based, since
this agent is the only possible owner of all states.

In the following, as one can expect, we also consider the casein which SL has its semantics
defined on turn-based CGS only. In such an eventuality, we name the resulting semanticfragment
Turn-based Strategy Logic(TB-SL, for short) and refer to the related satisfiability concept as turn-
based satisfiability.

3. MODEL-CHECKING HARDNESS

In this section, we show the non-elementary lower bound for the model-checking problem of SL.
Precisely, we prove that, for sentences having alternationnumberk, this problem isk-EXPSPACE-
HARD. To this aim, in Subsection 3.1, we first recall syntax and semantics of QPTL [Sistla 1983].
Then, in Subsection 3.2, we give a reduction from the satisfiability problem for this logic to the
model-checking problem for SL.

3.1. Quantified propositional temporal logic

Quantified Propositional Temporal Logic(QPTL, for short) syntactically extends the old-style tem-
poral logic with thefutureF andglobalG operators by means of twoproposition quantifiers, the
existential∃q. and the universal∀q., whereq is an atomic proposition. Intuitively, these elements
can be respectively read as“there exists an evaluation ofq” and “for all evaluations ofq” . The
formal syntax of QPTL follows.

Definition3.1 (QPTL Syntax). QPTL formulasare built inductively from the sets of atomic
propositionsAP, by using the following grammar, wherep ∈ AP:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | X ϕ | F ϕ | G ϕ | ∃p.ϕ | ∀p.ϕ.

QPTL denotes the infinite set of formulas generated by the above grammar.

Similarly to SL, we use the concepts of subformula, free atomic proposition, sentence, and alter-
nation number, together with the QPTL syntactic fragment of bounded alternation QPTL[k-alt], with
k ∈ N.

In order to define the semantics of QPTL, we have first to introduce the concepts of truth evalua-
tions used to interpret the meaning of atomic propositions at the passing of time.

Definition3.2 (Truth Evaluations). A temporal truth evaluationis a functiontte : N → {f, t}
that maps each natural number to a Boolean value. Moreover, apropositional truth evaluationis a
partial functionpte : AP ⇀ TTE mapping every atomic proposition in its domain to a temporal
truth evaluation. The setsTTE , N → {f, t} andPTE , AP ⇀ TTE contain, respectively, all
temporal and propositional truth evaluations.

At this point, we have the tool to define the interpretation ofQPTL formulas. For a propositional
truth evaluationpte with free(ϕ) ⊆ dom(pte) and a numberk, we writepte, k |= ϕ to indicate that
the formulaϕ holds at thek-th position of thepte.

Definition3.3 (QPTL Semantics). For all QPTL formulasϕ, propositional truth evaluation
pte ∈ PTE with free(ϕ) ⊆ dom(pte), and numbersk ∈ N, the modeling relationpte, k |= ϕ
is inductively defined as follows.

(1) pte, k |= p iff pte(p)(k) = t, with p ∈ AP.
(2) For all formulasϕ, ϕ1, andϕ2, it holds that:

(a) pte, k |= ¬ϕ iff not pte, k |= ϕ, that ispte, k 6|= ϕ;
(b) pte, k |= ϕ1 ∧ ϕ2 iff pte, k |= ϕ1 andpte, k |= ϕ2;
(c) pte, k |= ϕ1 ∨ ϕ2 iff pte, k |= ϕ1 or pte, k |= ϕ2;
(d) pte, k |= X ϕ iff pte, k + 1 |= ϕ;
(e) pte, k |= F ϕ iff there is an indexi ∈ N with k ≤ i such thatpte, i |= ϕ;
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(f) pte, k |= G ϕ iff, for all indexesi ∈ N with k ≤ i, it holds thatpte, i |= ϕ.
(3) For an atomic propositionq ∈ AP and a formulaϕ, it holds that:

(a) pte, k |= ∃q.ϕ iff there exists a temporal truth evaluationtte ∈ TTE such thatpte[q 7→
tte], k |= ϕ;

(b) pte, k |= ∀q.ϕ iff for all temporal truth evaluationstte ∈ TTE it holds thatpte[q 7→
tte], k |= ϕ.

Obviously, a QPTL sentenceϕ is satisfiableif ∅, 0 |= ϕ. Observe that the described semantics is
slightly different but completely equivalent to that proposed and used in [Sistla et al. 1987] to prove
the non-elementary hardness result for the satisfiability problem.

3.2. Non-elementary lower-bound

We can show how the solution of QPTL satisfiability problem can be reduced to that of the model-
checking problem for SL, over a turn-based constant size CGS with a unique atomic proposition.

s0
∅

s1
p

t

f

f

t

Fig. 4: The CGSGRdc.

In order to do this, we first prove the following auxiliary lemma,
which actually represents the main step of the above mentioned reduc-
tion.

LEMMA 3.4 (QPTL REDUCTION). There is a one-agentCGSGRdc
such that, for eachQPTL[k-alt] sentenceϕ, with k ∈ N, there exists
an TB-SL[k-alt] variable-closed formulaϕ such thatϕ is satisfiable iffGRdc, χ, s0 |= ϕ, for all
complete assignmentsχ ∈ Asg(Ag, s0).

PROOF. Consider the one-agent CGS GRdc , 〈{p}, {α}, {f, t}, {s0, s1}, λ, τ, s0〉 depicted in
Figure 4, where the two actions are the Boolean values false and true and where the labeling and
transition functionsλ and τ are set as follows:λ(s0) , ∅, λ(s1) , {p}, andτ(s, d) = s0 iff
d(α) = f, for all s ∈ St andd ∈ Dc. It is evident thatGRdc is a turn-based CGS. Moreover, consider
the transformation function· : QPTL → SL inductively defined as follows:

— q , (α, xq)X p, for q ∈ AP;
— ∃q.ϕ , 〈〈xq〉〉ϕ;
— ∀q.ϕ , [[xq]]ϕ;
—Op ϕ , Op ϕ, whereOp ∈ {¬,X,F,G};
—ϕ1Op ϕ2 , ϕ1Op ϕ2 , whereOp ∈ {∧,∨}.

It is not hard to see that a QPTL formulaϕ is a sentence iffϕ is variable-closed. Furthermore, we
have thatalt(ϕ) = alt(ϕ).

At this point, it remains to prove that, a QPTL sentenceϕ is satisfiable iffGRdc, χ, s0 |= ϕ, for
all total assignmentsχ ∈ Asg({α}, s0). To do this by induction on the structure ofϕ, we actually
show a stronger result asserting that, for all subformulasψ ∈ sub(ϕ), propositional truth evaluations
pte ∈ PTE, andi ∈ N, it holds thatpte, i |= ψ iff GRdc, (χ, s0)i |= ψ , for each total assignment
χ ∈ Asg({α} ∪ {xq ∈ Var : q ∈ free(ψ)}, s0) such thatχ(xq)((π)≤n) = pte(q)(n), where
π , play(χ, s0), for all q ∈ free(ψ) andn ∈ [i, ω[ .

Here, we only show the base case of atomic propositions and the two inductive cases regarding
the proposition quantifiers. The remaining cases of Booleanconnectives and temporal operators are
straightforward and left to the reader as a simple exercise.

—ψ = q.
By Item 1 of Definition 3.3 of QPTL semantics, we have thatpte, i |= q iff pte(q)(i) = t. Thus,

due to the above constraint on the assignment, it follows that pte, i |= q iff χ(xq)((π)≤i) = t. Now,
by applying Items 4 and 5a of Definition 2.16 of SL semantics, we have thatGRdc, (χ, s0)i |=
(α, xq)X p iff GRdc, (χ′[α 7→ χ′(xq)], s

′)1 |= p, where(χ′, s′) = (χ, s0)
i. At this point, due to the

particular structure of the CGSGRdc, we have thatGRdc, (χ′[α 7→ χ′(xq)], s
′)1 |= p iff (π′)1 = s1,
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whereπ′ , play(χ′[α 7→ χ′(xq)], s
′), which in turn is equivalent toχ′(xq)((π

′)≤0) = t. So,
GRdc, (χ, s0)i |= (α, xq)X p iff χ′(xq)((π

′)≤0) = t. Now, by observing that(π′)≤0 = (π)i and
using the above definition ofχ′, we obtain thatχ′(xq)((π

′)≤0) = χ(xq)((π)≤i). Hence,pte, i |= q
iff pte(q)(i) = χ(xq)((π)≤i) = t = χ′(xq)((π

′)≤0) iff GRdc, (χ, s0)i |= (α, xq)X p.
— ψ = ∃q.ψ′.

[Only if]. If pte, i |= ∃q.ψ′, by Item 3a of Definition 3.3, there exists a temporal truth evaluation
tte ∈ TTE such thatpte[q 7→ tte], i |= ψ′. Now, consider a strategyf ∈ Str(s0) such that
f((π)≤n) = tte(n), for all n ∈ [i, ω[ . Then, it is evident thatχ[xq 7→ f](xq′ )((π)≤n) = pte[q 7→
tte](q′)(n), for all q′ ∈ free(ψ) andn ∈ [i, ω[ . So, by the inductive hypothesis, it follows that
GRdc, (χ[xq 7→ f], s0)

i |= ψ′ . Thus, we have thatGRdc, (χ, s0)i |= 〈〈xq〉〉ψ′ .
[If]. If GRdc, (χ, s0)i |= 〈〈xq〉〉ψ′ , there exists a strategyf ∈ Str(s0) such thatGRdc, (χ[xq 7→

f], s0)
i |= ψ′ . Now, consider a temporal truth evaluationtte ∈ TTE such thattte(n) = f((π)≤n),

for all n ∈ [i, ω[ . Then, it is evident thatχ[xq 7→ f](xq′ )((π)≤n) = pte[q 7→ tte](q′)(n), for all
q′ ∈ free(ψ) andn ∈ [i, ω[ . So, by the inductive hypothesis, it follows thatpte[q 7→ tte], i |= ψ′.
Thus, by Item 3a of Definition 3.3, we have thatpte, i |= ∃q.ψ′.

— ψ = ∀q.ψ′.
[Only if]. For each strategyf ∈ Str(s0), consider a temporal truth evaluationtte ∈ TTE

such thattte(n) = f((π)≤n), for all n ∈ [i, ω[ . It is evident thatχ[xq 7→ f](xq′)((π)≤n) =
pte[q 7→ tte](q′)(n), for all q′ ∈ free(ψ) and n ∈ [i, ω[ . Now, sincepte, i |= ∀q.ψ′, by
Item 3b of Definition 3.3, it follows thatpte[q 7→ tte], i |= ψ′. So, by the inductive hypothe-
sis, for each strategyf ∈ Str(s0), it holds thatGRdc, (χ[xq 7→ f], s0)

i |= ψ′ . Thus, we have that
GRdc, (χ, s0)i |= [[xq]]ψ′ .

[If]. For each temporal truth evaluationtte ∈ TTE, consider a strategyf ∈ Str(s0) such
that f((π)≤n) = tte(n), for all n ∈ [i, ω[ . It is evident thatχ[xq 7→ f](xq′ )((π)≤n) = pte[q 7→
tte](q′)(n), for all q′ ∈ free(ψ) andn ∈ [i, ω[ . Now, sinceGRdc, (χ, s0)i |= [[xq]]ψ′ , it follows that
GRdc, (χ[xq 7→ f], s0)

i |= ψ′ . So, by the inductive hypothesis, for each temporal truth evaluation
tte ∈ TTE, it holds thatpte[q 7→ tte], i |= ψ′. Thus, by Item 3b of Definition 3.3, we have that
pte, i |= ∀q.ψ′.

Thus, we are done with the proof.

Now, we can show the full reduction that allows us to state theexistence of a non-elementary
lower-bound for the model-checking problem of TB-SL and, thus, of SL.

THEOREM 3.5 (TB-SL MODEL-CHECKING HARDNESS). The model-checking problem for
TB-SL[k-alt] is k-EXPSPACE-HARD.

PROOF. Let ϕ be a QPTL[k-alt] sentence,ϕ the related TB-SL[k-alt] variable-closed formula,
andGRdc the turn-based CGSof Lemma 3.4 of QPTL reduction. Then, by applying the previous men-
tioned lemma, it is easy to see thatϕ is satisfiable iffGRdc |= [[x]](α, x)ϕ iff GRdc |= 〈〈x〉〉(α, x)ϕ.
Thus, the satisfiability problem for QPTL can be reduced to the model-checking problem for TB-SL.
Now, since the satisfiability problem for QPTL[k-alt] is k-EXPSPACE-HARD [Sistla et al. 1987], we
have that the model-checking problem for TB-SL[k-alt] is k-EXPSPACE-HARD as well.

The following corollary is an immediate consequence of the previous theorem.

COROLLARY 3.6 (SL MODEL-CHECKING HARDNESS). The model-checking problem for
SL[k-alt] is k-EXPSPACE-HARD.

4. STRATEGY QUANTIFICATIONS

Since model checking for SL is non-elementary hard while the same problem for ATL∗ is only
2EXPTIME-COMPLETE, a question that naturally arises is whether there are proper fragments of
SL of practical interest, still strictly subsuming ATL∗, that reside in such a complexity gap. In this
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section, we answer positively to this question and go even further. Precisely, we enlighten a funda-
mental property that, if satisfied, allows to retain a 2EXPTIME-COMPLETEmodel-checking problem.
We refer to such a property aselementariness. To formally introduce this concept, we use the notion
of dependence mapas a machinery.

The remaining part of this section is organized as follows. In Subsection 4.1, we describe three
syntactic fragments of SL, named SL[NG], SL[BG], and SL[1G], having the peculiarity to use strategy
quantifications grouped in atomic blocks. Then, in Subsection 4.2, we define the notion of depen-
dence map, which is used, in Subsection 4.3, to introduce theconcept of elementariness. Finally,
in Subsection 4.4, we prove a fundamental result, which is atthe base of our elementary model-
checking procedure for SL[1G].

4.1. Syntactic fragments

In order to formalize the syntactic fragments of SL we want to investigate, we first need to define
the concepts ofquantificationandbinding prefixes.

Definition4.1 (Prefixes). A quantification prefixover a setV ⊆ Var of variables is a finite
word℘ ∈ {〈〈x〉〉, [[x]] : x ∈ V}|V| of length|V| such that each variablex ∈ V occurs just once in
℘, i.e., there is exactly one indexi ∈ [0, |V|[ such that(℘)i ∈ {〈〈x〉〉, [[x]]}. A binding prefixover
a set of variablesV ⊆ Var is a finite word♭ ∈ {(a, x) : a ∈ Ag ∧ x ∈ V}|Ag| of length |Ag|
such that each agenta ∈ Ag occurs just once in♭, i.e., there is exactly one indexi ∈ [0, |Ag|[ for
which (♭)i ∈ {(a, x) : x ∈ V}. Finally,Qnt(V) ⊆ {〈〈x〉〉, [[x]] : x ∈ V}|V| andBnd(V) ⊆ {(a, x)
: a ∈ Ag ∧ x ∈ V}|Ag| denote, respectively, the sets of all quantification and binding prefixes over
variables inV.

We now have all tools to define the syntactic fragments we wantto analyze, which we name, re-
spectively,Nested-Goal, Boolean-Goal, andOne-Goal Strategy Logic(SL[NG], SL[BG], and SL[1G],
for short). Forgoalwe mean an SL agent-closed formula of the kind♭ϕ, with Ag ⊆ free(ϕ), being
♭ ∈ Bnd(Var) a binding prefix. The idea behind SL[NG] is that, when there is a quantification over a
variable used in a goal, we are forced to quantify over all free variables of the inner subformula con-
taining the goal itself, by using a quantification prefix. In this way, the subformula is build only by
nesting and Boolean combinations of goals. In addition, with SL[BG] we avoid nested goals sharing
the variables of a same quantification prefix, but allow theirBoolean combinations. Finally, SL[1G]
forces the use of a different quantification prefix for each single goal in the formula. The formal
syntax of SL[NG], SL[BG], and SL[1G] follows.

Definition4.2 (SL[NG], SL[BG], andSL[1G] Syntax). SL[NG] formulas are built inductively
from the sets of atomic propositionsAP, quantification prefixesQnt(V) for anyV ⊆ Var, and
binding prefixesBnd(Var), by using the following grammar, withp ∈ AP, ℘ ∈ ∪V⊆VarQnt(V),
and♭ ∈ Bnd(Var):

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | X ϕ | ϕ U ϕ | ϕ R ϕ | ℘ϕ | ♭ϕ,

where in the formation rule℘ϕ it is ensured thatϕ is agent-closed and℘ ∈ Qnt(free(ϕ)).
In addition, SL[BG] formulas are determined by splitting the above syntactic class in two different
parts, of which the second is dedicated to build the Boolean combinations of goals avoiding their
nesting:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | X ϕ | ϕ U ϕ | ϕ R ϕ | ℘ψ,
ψ ::= ♭ϕ | ¬ψ | ψ ∧ ψ | ψ ∨ ψ,

where in the formation rule℘ψ it is ensured that℘ ∈ Qnt(free(ψ)).
Finally, the simpler SL[1G] formulas are obtained by forcing each goal to be coupled witha quan-
tification prefix:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | X ϕ | ϕ U ϕ | ϕ R ϕ | ℘♭ϕ,
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where in the formation rule℘♭ϕ it is ensured that℘ ∈ Qnt(free(♭ϕ)).
SL ⊃ SL[NG] ⊃ SL[BG] ⊃ SL[1G] denotes the syntactic chain of infinite sets of formulas generated
by the respective grammars with the associated constraintson free variables of goals.

Intuitively, in SL[NG], SL[BG], and SL[1G], we force the writing of formulas to use atomic blocks
of quantifications and bindings, where the related free variables are strictly coupled with those that
are effectively quantified in the prefix just before the binding. In a nutshell, we can only write
formulas by using sentences of the form℘ψ belonging to a kind ofprenex normal formin which the
quantifications contained into thematrixψ only belong to the prefixes℘′ of some inner subsentence
℘′ψ′ ∈ snt(℘ψ).

An SL[NG] sentenceφ is principal if it is of the form φ = ℘ψ, whereψ is agent-closed and
℘ ∈ Qnt(free(ψ)). By psnt(ϕ) ⊆ snt(ϕ) we denote the set of all principal subsentences of the
formulaϕ.

We now introduce other two general restrictions in which thenumbers|Ag| of agents and|Var| of
variables that are used to write a formula are fixed to the a priori valuesn,m ∈ [1, ω[ , respectively.
Moreover, we can also forbid the sharing of variables, i.e.,each variable is binded to one agent only,
so, we cannot force two agents to use the same strategy. We name these three fragments SL[n-ag],
SL[m-var], and SL[fvs], respectively. Note that, in the one agent fragment, the restriction on the
sharing of variables between agents, naturally, does not act, i.e., SL[1-ag, fvs]= SL[1-ag].

To start to practice with the above fragments, consider again the sentenceϕ of Exam-
ple 2.19 on page 12. It is easy to see that it actually belongs to SL[BG, 2-ag, 3-var, 2-alt], and so,
to SL[NG], but not to SL[1G], since it is of the form℘(♭1X p ∧ ♭2X q), where the quantification
prefix is ℘ = 〈〈x〉〉[[y]]〈〈z〉〉 and the binding prefixes of the two goals are♭1 = (α, x)(β, y) and
♭2 = (α, y)(β, z).

Along the paper, sometimes we assert that a given formulaϕ belongs to an SL syntactic frag-
ment also if its syntax does not precisely correspond to whatis described by the relative gram-
mar. We do this in order to make easier the reading and interpretation of the formulaϕ itself
and only in the case that it is simple to translate it into an equivalent formula that effectively be-
longs to the intended logic, by means of a simple generalization of classic rules used to put a
formula of first order logic in the prenex normal form. For example, consider the sentenceϕNE
of Example 2.6 on page 9 representing the existence of a Nash equilibrium. This formula is con-
sidered to belong to SL[BG, n-ag, 2n-var, fvs, 1-alt], since it can be easily translated in the form
φNE = ℘

∧n
i=1 ♭iψi → ♭ψi, where℘ = 〈〈x1〉〉 · · · 〈〈xn〉〉[[y1]] · · · [[yn]], ♭ = (α1, x1) · · · (αn, xn),

♭i = (α1, x1) · · · (αi−1, xi−1)(αi, yi)(αi+1, xi+1) · · · (αn, xn), andfree(ψi) = Ag. As another ex-
ample, consider the sentenceϕSP of Example 2.7 on page 9 representing the existence of a stability
profile. Also this formula is considered to belong to SL[BG, n-ag,2n-var, fvs,1-alt], since it is equiv-
alent toφSP = ℘

∧n
i,j=1,i6=j ♭ψj → ((♭ψi ↔ ♭iψi) → ♭iψj). Note that bothφNE andφSP are

principal sentences.
Now, it is interesting to observe that CTL∗ and ATL∗ are exactly equivalent to SL[1G, fvs, 0-alt]

and SL[1G, fvs, 1-alt], respectively. Moreover, GL [Alur et al. 2002] is the very simple fragment of
SL[BG, fvs, 1-alt] that forces all goals in a formula to have a common part containing all variables
quantified before the unique possible alternation of the quantification prefix. Finally, we have that
CHP-SL is the TB-SL[BG, 2-ag, fvs]fragment.

Remark4.3 (TB-SL[NG] Model-Checking Hardness). It is well-known that the non-elementary
hardness result for the satisfiability problem of QPTL [Sistla et al. 1987] already holds for formulas
in prenex normal form. Now, it is not hard to see that the transformation described in Lemma 3.4
of QPTL reduction puts QPTL[k-alt] sentencesϕ in prenex normal form into TB-SL[NG, 1-ag,k-alt]
variable-closed formulasϕ = ℘ψ. Moreover, the derived TB-SL[1-ag,k-alt] sentence〈〈x〉〉(α, x)℘ψ
used in Theorem 3.5 of TB-SL model-checking hardness is equivalent to the TB-SL[NG, 1-ag, k-
alt] principal sentence〈〈x〉〉℘(α, x)ψ, sincex is not used in the quantification prefix℘. Thus, the
hardness result for the model-checking problem holds for TB-SL[NG, 1-ag,k-alt] and, consequently,
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for SL[NG, 1-ag,k-alt] as well. However, it is important to observe that, unfortunately, it is not know
if such an hardness result holds for TB-SL[BG] or SL[BG] and, in particular, for CHP-SL. We leave
this problem open here.

s0
∅

s1
p

s2
∅

D1 DcG1
\D1

∗ ∗ ∗ ∗ ∗ ∗

(a) CGSG1.

s0
∅

s1
p

s2
∅

D2 DcG2
\D2

∗ ∗ ∗ ∗ ∗ ∗

(b) CGSG2.

Fig. 5: Alternation-2 non-equivalent CGSs.

At this point, we prove that ATL∗ is strictly less expressive than SL[1G] and, consequently, than
SL[BG] and SL[NG]. To do this, we show the existence of two structures that result to be equivalent
only w.r.t. sentences having alternation number bounded by1. It can be interesting to note that,
we use an ad-hoc technique based on a brute-force check to verify that all ATL∗ formulas cannot
distinguish between the two structures. A possible future line of research is to study variants of
the Ehrenfeucht-Fraïssé game [Ebbinghaus and Flum 1995; Hodges 1993] for SL, which allow to
determine whether two structures are or not equivalent w.r.t. a particular SL fragment.

THEOREM 4.4 (SL[1G] VS ATL∗ EXPRESSIVENESS). There exists anSL[1G, 3-ag, fvs, 2-alt]
sentence having noATL∗ equivalent.

PROOF. Consider the two CGSs G1 , 〈{p}, {α, β, γ}, {0, 1}, {s0, s1, s2}, λ, τ1, s0〉 andG2 ,

〈{p}, {α, β, γ}, {0, 1, 2}, {s0, s1, s2}, λ, τ2, s0〉 depicted in Figure 5, whereλ(s0) = λ(s2) , ∅,
λ(s1) , {p}, D1 , {00∗, 11∗}, andD2 , {00∗, 11∗, 12∗, 200, 202, 211}. Moreover, consider the
SL[1G, 3-ag, fvs,2-alt] sentenceϕ∗ , ℘∗♭∗X p, where℘∗ , [[x]]〈〈y〉〉[[z]] and♭∗ , (α, x)(β, y)(γ, z).
Then, it is easy to see thatG1 |= ϕ∗ but G2 6|= ϕ∗. Indeed,G1, χ1, s0 |= ♭∗X p, for all
χ1 ∈ AsgG1

({x, y, z}, s0) such thatχ1(y)(s0) = χ1(x)(s0), andG2, χ2, s0 |= ♭∗X ¬p, for all
χ2 ∈ AsgG2

({x, y, z}, s0) such thatχ2(x)(s0) = 2 andχ2(z)(s0) = (χ2(y)(s0) + 1) mod 3.
Now, due to the particular structure of the CGSs Gi under exam, withi ∈ {1, 2}, for each path

π ∈ PthGi(s0), we have that eitherλ((π)j) = {p} or λ((π)j) = ∅, for all j ∈ [1, ω[ , i.e., apart
from the initial state, the path is completely labeled either with {p} or with ∅. Thus, it is easy to see
that, for each ATL∗ formula℘♭ψ, there is a literallψ ∈ {p,¬p} such thatGi |= ℘♭ψ iff Gi |= ℘♭Xlψ,
for all i ∈ {1, 2}. W.l.o.g., we can suppose that♭ = ♭∗, since we are always able to uniformly
rename the variables of the quantification and binding prefixes without changing the meaning of the
sentence.

At this point, it is easy to see that there exists an indexk ∈ {1, 2, 3} for which it holds that either
℘k♭

∗Xlψ ⇒ ℘♭∗Xlψ or ℘♭∗Xlψ ⇒ ℘k ♭
∗Xlψ, where℘1 , [[x]][[z]]〈〈y〉〉, ℘2 , 〈〈x〉〉〈〈y〉〉[[z]], and

℘3 , [[y]][[z]]〈〈x〉〉. Thus, to prove that every ATL∗ formula cannot distinguish betweenG1 andG2,
we can simply show that the sentences℘k♭

∗Xl, with k ∈ {1, 2, 3} andl ∈ {p,¬p}, do the same. In
fact, it holds thatGi |= ℘k♭

∗Xl, for all i ∈ {1, 2}, k ∈ {1, 2, 3}, andl ∈ {p,¬p}. Hence, the thesis
holds. The check of the latter fact is trivial and left to the reader as an exercise.

4.2. Dependence Maps

We now introduce the concept of dependence map of a quantification and show how any quantifica-
tion prefix contained into an SL formula can be represented by an adequate choice of a dependence
map over strategies. The main idea here is inspired by what Skolem proposed for the first order
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logic in order to eliminate each existential quantificationover variables, by substituting them with
second order existential quantifications over functions, whose choice is uniform w.r.t. the universal
variables.

First, we introduce some notation regarding quantificationprefixes. Let℘ ∈ Qnt(V) be a quan-
tification prefix over a setV(℘) , V ⊆ Var of variables. By〈〈℘〉〉 , {x ∈ V(℘) : ∃i ∈ [0,

|℘|[ . (℘)i = 〈〈x〉〉} and [[℘]] , V(℘) \ 〈〈℘〉〉 we denote, respectively, the sets ofexistentialand
universal variablesquantified in℘. For two variablesx, y ∈ V(℘), we say thatx precedesy in ℘, in
symbolsx<℘y, if x occurs beforey in ℘, i.e., there are two indexesi, j ∈ [0, |℘|[, with i < j, such
that (℘)i ∈ {〈〈x〉〉, [[x]]} and(℘)j ∈ {〈〈y〉〉, [[y]]}. Moreover, we say thaty is functional dependent
onx, in symbolsx ℘y, if x ∈ [[℘]], y ∈ 〈〈℘〉〉, andx<℘y, i.e.,y is existentially quantified after that
x is universally quantified, so, there may be a dependence between a value chosen byx and that
chosen byy. This definition induces the setDep(℘) , {(x, y) ∈ V(℘)×V(℘) : x ℘y} of depen-
dence pairsand its derived versionDep(℘, y) , {x ∈ V(℘) : x ℘y} containing all variables from
whichy depends. Finally, we use℘ ∈ Qnt(V(℘)) to indicate the quantification derived from℘ by
dualizingeach quantifier contained in it, i.e., for all indexesi ∈ [0, |℘|[, it holds that(℘)i = 〈〈x〉〉 iff
(℘)i = [[x]], with x ∈ V(℘). It is evident that〈〈℘〉〉 = [[℘]] and[[℘]] = 〈〈℘〉〉. As an example, let℘ =
[[x]]〈〈y〉〉〈〈z〉〉[[w]]〈〈v〉〉. Then, we have〈〈℘〉〉 = {y, z, v}, [[℘]] = {x,w}, Dep(℘, x) = Dep(℘,w) = ∅,
Dep(℘, y) = Dep(℘, z) = {x}, Dep(℘, v) = {x,w}, and℘ = 〈〈x〉〉[[y]][[z]]〈〈w〉〉[[v]].

Finally, we define the notion ofvaluationof variables over a generic setD, calleddomain, i.e.,
a partial functionv : Var ⇀ D mapping every variable in its domain to an element inD. By
ValD(V) , V → D we denote the set of all valuation functions overD defined onV ⊆ Var.

At this point, we give a general high-level semantics for thequantification prefixes by means of
the following main definition ofdependence map.

Definition4.5 (Dependence Maps). Let℘ ∈ Qnt(V) be a quantification prefix over a setV ⊆
Var of variables, andD a set. Then, adependence mapfor ℘ overD is a functionθ : ValD([[℘]]) →
ValD(V) satisfying the following properties:

(1) θ(v)↾[[℘]]=v, for all v ∈ ValD([[℘]]); 9

(2) θ(v1)(x)=θ(v2)(x), for all v1, v2∈ValD([[℘]]) andx∈〈〈℘〉〉 such thatv1↾Dep(℘,x)=v2↾Dep(℘,x).

DMD(℘) denotes the set of all dependence maps for℘ overD.

Intuitively, Item 1 asserts thatθ takes the same values of its argument w.r.t. the universal variables
in ℘ and Item 2 ensures that the value ofθ w.r.t. an existential variablex in ℘ does not depend
on variables not inDep(℘, x). To get a better insight into this definition, a dependence map θ for
℘ can be considered as a set ofSkolem functionsthat, given a value for each variable inV(℘)
that is universally quantified in℘, returns a possible value for all the existential variablesin ℘,
in a way that is consistent w.r.t. the order of quantifications. Observe that, eachθ ∈ DMD(℘) is

injective, so,|rng(θ)| = |dom(θ)| = |D||[[℘]]|. Moreover,|DMD(℘)| =
∏
x∈〈〈℘〉〉 |D||D||Dep(℘,x)|

.
As an example, letD = {0, 1} and℘ = [[x]]〈〈y〉〉[[z]] ∈ Qnt(V) be a quantification prefix over
V = {x, y, z}. Then, we have that|DMD(℘)| = 4 and|DMD(℘)| = 8. Moreover, the dependence
mapsθi ∈ DMD(℘) with i ∈ [0, 3] andθi ∈ DMD(℘) with i ∈ [0, 7], for a particular fixed order,
are such thatθ0(v)(y) = 0, θ1(v)(y) = v(x), θ2(v)(y) = 1 − v(x), andθ3(v)(y) = 1, for all v ∈
ValD([[℘]]), andθi(v)(x) = 0 with i ∈ [0, 3], θi(v)(x) = 1 with i ∈ [4, 7], θ0(v)(z) = θ4(v)(z) = 0,
θ1(v)(z) = θ5(v)(z) = v(y), θ2(v)(z) = θ6(v)(z) = 1 − v(y), andθ3(v)(z) = θ7(v)(z) = 1, for
all v ∈ ValD([[℘]]).

We now prove the following fundamental theorem that describes how to eliminate the strategy
quantifications of an SL formula via a choice of a suitable dependence map over strategies. This

9By g↾Z : (X ∩ Z) → Y we denote therestrictionof a functiong : X → Y to the elements in the setZ.
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procedure can be seen as the equivalent ofSkolemizationin first order logic (see [Hodges 1993], for
more details).

THEOREM 4.6 (SL STRATEGY QUANTIFICATION ). Let G be aCGS andϕ = ℘ψ an SL for-
mula, being℘ ∈ Qnt(V) a quantification prefix over a setV ⊆ free(ψ) ∩ Var of variables. Then,
for all assignmentsχ ∈ Asg(free(ϕ), s0), the following holds:G, χ, s0 |= ϕ iff there exists a depen-
dence mapθ ∈ DMStr(s0)(℘) such thatG, χ ⋒ θ(χ′), s0 |= ψ, for all χ′ ∈ Asg([[℘]], s0). 10

PROOF. The proof proceeds by induction on the length of the quantification prefix℘. For
the base case|℘| = 0, the thesis immediately follows, since[[℘]] = ∅ and, consequently, both
DMStr(s0)(℘) andAsg([[℘]], s0) contain the empty function only (we are assuming, by convention,
that∅(∅) , ∅).

We now prove, separately, the two directions of the inductive case.
[Only if]. Suppose thatG, χ, s0 |= ϕ, where℘ = Qn · ℘′. Then, two possible cases arise: either

Qn = 〈〈x〉〉 orQn = [[x]].

—Qn = 〈〈x〉〉.
By Item 3a of Definition 2.16 of SL semantics, there is a strategyf ∈ Str(s0) such thatG, χ[x 7→
f], s0 |= ℘′ψ. Note that[[℘]] = [[℘′]]. By the inductive hypothesis, we have that there exists
a dependence mapθ ∈ DMStr(s0)(℘

′) such thatG, χ[x 7→ f] ⋒ θ(χ′), s0 |= ψ, for all χ′ ∈

Asg([[℘′]], s0). Now, consider the functionθ′ : Asg([[℘]], s0) → Asg(V, s0) defined byθ′(χ′) ,
θ(χ′)[x 7→ f], for all χ′ ∈ Asg([[℘]], s0). It is easy to check thatθ′ is a dependence map for℘ over
Str(s0), i.e.,θ′ ∈ DMStr(s0)(℘). Moreover,χ[x 7→ f] ⋒ θ(χ′) = χ ⋒ θ(χ′)[x 7→ f] = χ ⋒ θ′(χ′),
for χ′ ∈ Asg([[℘]], s0). Hence,G, χ ⋒ θ′(χ′), s0 |= ψ, for all χ′ ∈ Asg([[℘]], s0).

—Qn = [[x]].
By Item 3b of Definition 2.16, we have that, for all strategiesf ∈ Str(s0), it holds thatG, χ[x 7→
f], s0 |= ℘′ψ. Note that[[℘]] = [[℘′]]∪{x}. By the inductive hypothesis, we derive that, for eachf ∈
Str(s0), there exists a dependence mapθf ∈ DMStr(s0)(℘

′) such thatG, χ[x 7→ f] ⋒ θf(χ
′), s0 |=

ψ, for all χ′ ∈ Asg([[℘′]], s0). Now, consider the functionθ′ : Asg([[℘]], s0) → Asg(V, s0)

defined byθ′(χ′) , θχ′(x)(χ
′
↾[[℘′]])[x 7→ χ′(x)], for all χ′ ∈ Asg([[℘]], s0). It is evident thatθ′ is

a dependence map for℘ overStr(s0), i.e.,θ′ ∈ DMStr(s0)(℘). Moreover,χ[x 7→ f] ⋒ θf(χ
′) =

χ ⋒ θf(χ
′)[x 7→ f] = χ ⋒ θ′(χ′[x 7→ f]), for f ∈ Str(s0) andχ′ ∈ Asg([[℘′]], s0). Hence,

G, χ ⋒ θ′(χ′), s0 |= ψ, for all χ′ ∈ Asg([[℘]], s0).

[If]. Suppose that there exists a dependence mapθ ∈ DMStr(s0)(℘) such thatG, χ ⋒ θ(χ′), s0 |=
ψ, for all χ′ ∈ Asg([[℘]], s0), where℘ = Qn ·℘′. Then, two possible cases arise: eitherQn = 〈〈x〉〉
orQn = [[x]].

—Qn = 〈〈x〉〉.
There is a strategyf ∈ Str(s0) such thatf = θ(χ′)(x), for all χ′ ∈ Asg([[℘]], s0). Note that
[[℘]] = [[℘′]]. Consider the functionθ′ : Asg([[℘′]], s0) → Asg(V \ {x}, s0) defined byθ′(χ′) ,
θ(χ′)↾(V\{x}), for all χ′ ∈ Asg([[℘′]], s0). It is easy to check thatθ′ is a dependence map for℘′

overStr(s0), i.e., θ′ ∈ DMStr(s0)(℘
′). Moreover,χ ⋒ θ(χ′) = χ ⋒ θ′(χ′)[x 7→ f] = χ[x 7→

f] ⋒ θ′(χ′), for χ′ ∈ Asg([[℘′]], s0). Then, it is evident thatG, χ[x → f] ⋒ θ′(χ′), s0 |= ψ, for all
χ′ ∈ Asg([[℘′]], s0). By the inductive hypothesis, we derive thatG, χ[x 7→ f], s0 |= ℘′ψ, which
means thatG, χ, s0 |= ϕ, by Item 3a of Definition 2.16 of SL semantics.

—Qn = [[x]].
First note that[[℘]] = [[℘′]] ∪ {x}. Also, consider the functionsθ′f : Asg([[℘′]], s0) → Asg(V \

{x}, s0) defined byθ′f(χ
′) , θ(χ′[x 7→ f])↾(V\{x}), for eachf ∈ Str(s0) andχ′ ∈ Asg([[℘′]], s0).

10By g1 ⋒ g2 : (X1 ∪ X2) → (Y1 ∪ Y2) we denote the operation ofunion of two functionsg1 : X1 → Y1 and
g2 : X2 → Y2 defined on disjoint domains, i.e.,X1 ∩ X2 = ∅.
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It is easy to see that everyθ′f is a dependence map for℘′ overStr(s0), i.e.,θ′f ∈ DMStr(s0)(℘
′).

Moreover,χ ⋒ θ(χ′) = χ ⋒ θ′χ′(x)(χ
′
↾[[℘′]])[x 7→ χ′(x)] = χ[x 7→ χ′(x)] ⋒ θ′χ′(x)(χ

′
↾[[℘′]]), for

χ′ ∈ Asg([[℘]], s0). Then, it is evident thatG, χ[x → f] ⋒ θ′f(χ
′), s0 |= ψ, for all f ∈ Str(s0) and

χ′ ∈ Asg([[℘′]], s0). By the inductive hypothesis, we derive thatG, χ[x 7→ f], s0 |= ℘′ψ, for all
f ∈ Str(s0), which means thatG, χ, s0 |= ϕ, by Item 3b of Definition 2.16.

Thus, the thesis of the theorem holds.

As an immediate consequence of the previous result, we derive the following corollary.

COROLLARY 4.7 (SL STRATEGY QUANTIFICATION ). Let G be a CGS andϕ = ℘ψ an SL
sentence, whereψ is agent-closed and℘ ∈ Qnt(free(ψ)). Then,G |= ϕ iff there exists a dependence
mapθ ∈ DMStr(s0)(℘) such thatG, θ(χ), s0 |= ψ, for all χ ∈ Asg([[℘]], s0).

4.3. Elementary quantifications

We now have all tools we need to introduce the property of elementariness for a particular class of
dependence maps. Intuitively, a dependence map over functions from a setT to a setD is elementary
if it can be split into a set of dependence maps overD, one for each element ofT. This idea
allows us to enormously simplify the reasoning about strategy quantifications, since we can reduce
them to a set of quantifications over actions, one for each track in their domains. This means that,
under certain conditions, we can transform a dependence mapθ ∈ DMStr(s)(℘) over strategies in a

functionθ̃ : Trk(s) → DMAc(℘) that associates with each track a dependence map over actions.
To formally develop the above idea, we have first to introducethe generic concept of adjoint

function and state an auxiliary lemma.

Definition4.8 (Adjoint Functions). Let D, T, U, andV be four sets, andm : (T → D)U →
(T → D)V and m̃ : T → (DU → DV) two functions. Then,m̃ is the adjoint of m if
m̃(t)(ĝ(t))(x) = m(g)(x)(t), for all g ∈ (T → D)U, x ∈ V, andt ∈ T 11

Intuitively, m̃ is the adjoint ofm if the dependence from the setT in both domain and codomain
of the latter can be extracted and put as a common factor of thefunctor given by the former. This
means also that, for every pair of functionsg1, g2 ∈ (T → D)U such thatĝ1(t) = ĝ2(t) for some
t ∈ T, it holds thatm(g1)(x)(t) = m(g2)(x)(t), for all x ∈ V. It is immediate to observe that if a
function has an adjoint then this adjoint is unique. At the same way, if one has an adjoint function
then it is possible to determine the original function without any ambiguity. Thus, it is established a
one-to-one correspondence between functions admitting anadjoint and the adjoint itself.

Next lemma formally states the property briefly described above, i.e., that each dependence map
over a setT → D, admitting an adjoint function, can be represented as a function, withT as domain,
which returns dependence maps overD as values.

LEMMA 4.9 (ADJOINT DEPENDENCEMAPS). Let℘ ∈ Qnt(V) be a quantification prefix over
a setV ⊆ Var of variables,D andT two sets, andθ : ValT→D([[℘]]) → ValT→D(V) and θ̃ : T →

(ValD([[℘]]) → ValD(V)) two functions such that̃θ is the adjoint ofθ. Then,θ ∈ DMT→D(℘) iff,
for all t ∈ T, it holds thatθ̃(t) ∈ DMD(℘).

We now define the formal meaning of the elementariness of a dependence map over functions.

Definition4.10 (Elementary Dependence Maps). Let ℘ ∈ Qnt(V) be a quantification pre-
fix over a setV ⊆ Var of variables,D andT two sets, andθ ∈ DMT→D(℘) a dependence
map for℘ over T → D. Then,θ is elementaryif it admits an adjoint function.EDMT→D(℘)
denotes the set of all elementary dependence maps for℘ overT → D.

11By ĝ : Y → X → Z we denote the operation offlipping of a functiong : X → Y → Z.
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It is important to observe that, unfortunately, there are dependence maps that are not elemen-
tary. To easily understand why this is actually the case, it is enough to count both the number
of dependence mapsDMT→D(℘) and of adjoint functionsT → DMD(℘), where |D| > 1,
|T| > 1 and℘ is such that there is anx ∈ 〈〈℘〉〉 for which Dep(℘, x) 6= ∅. Indeed, it holds that

|DMT→D(℘)| =
∏
x∈〈〈℘〉〉 |D||T|·|D||T|·|Dep(℘,x)|

>
∏
x∈〈〈℘〉〉 |D||T|·|D||Dep(℘,x)|

= |T → DMD(℘)|.
So, there are much more dependence maps, a number double exponential in|T|, than possible ad-
joint functions, whose number is only exponential in this value. Furthermore, observe that the simple
setQnt∃∗∀∗(V) , {℘ ∈ Qnt(V) : ∃i ∈ [0, |℘|] . [[(℘)<i]] = ∅ ∧ 〈〈(℘)≥i〉〉 = ∅}, for V ⊆ Var,
is the maximal class of quantification prefixes that admits only elementary dependence maps over
T → D, i.e., it is such that eachθ ∈ DMT→D(℘) is elementary, for all℘ ∈ Qnt∃∗∀∗(V). This is
due to the fact that there are no functional dependences between variables, i.e., for eachx ∈ 〈〈℘〉〉,
it holds thatDep(℘, x) = ∅.

Finally, we can introduce a new very important semantics forSL syntactic fragments, which is
based on the concept of elementary dependence map over strategies, and we refer to the related
satisfiability concept aselementary satisfiability, in symbols|=E. Intuitively, such a semantics has
the peculiarity that a strategy, used in an existential quantification in order to satisfy a formula, is
only chosen between those that are elementary w.r.t. the universal quantifications. In this way, when
we have to decide what is its valuec on a given trackρ, we do it only in dependence of the values
on the same track of the strategies so far quantified, but not on their whole structure, as it is the
case instead of the classic semantics. This means thatc does not depend on the values of the other
strategies on tracksρ′ that extendρ, i.e., it does not depend on future choices made onρ′. In addition,
we have thatc does not depend on values on parallel tracksρ′ that only share a prefix withρ, i.e.,
it is independent on choices made on the possibly alternative futuresρ′. The elementary semantics
of SL[NG] formulas involving atomic propositions, Boolean connectives, temporal operators, and
agent bindings is defined as for the classic one, where the modeling relation|= is substituted with
|=E, and we omit to report it here. In the following definition, weonly describe the part concerning
the quantification prefixes.

Definition4.11 (SL[NG] Elementary Semantics). Let G be a CGS, s ∈ St one of its states, and
℘ψ an SL[NG] formula, whereψ is agent-closed and℘ ∈ Qnt(free(ψ)). ThenG,∅, s |=E ℘ψ
if there is an elementary dependence mapθ ∈ EDMStr(s)(℘) for ℘ over Str(s) such that
G, θ(χ), s |=E ψ, for all χ ∈ Asg([[℘]], s).

It is immediate to see a strong similarity between the statement of Corollary 4.7 of SL strategy quan-
tification and the previous definition. The only crucial difference resides in the choice of the kind of
dependence map. Moreover, observe that, differently from the classic semantics, the quantifications
in the prefix are not treated individually but as an atomic block. This is due to the necessity of having
a strict correlation between the point-wise structure of the quantified strategies.

Remark4.12 (SL Elementary Semantics). It can be interesting to know that we do not define
an elementary semantics for the whole SL, since we are not able, at the moment, to easily use the
concept of elementary dependence map, when the quantifications are not necessarily grouped in pre-
fixes, i.e., when the formula is not in prenex normal form. In fact, this may represent a challenging
problem, whose solution is left to future works.

Due to the new semantics of SL[NG], we have to redefine the related concepts of model and
satisfiability, in order to differentiate between the classic relation |= and the elementary one|=E.
Indeed, as we show later, there are sentences that are satisfiable but not elementary satisfiable and
vice versa.

Definition4.13 (SL[NG] Elementary Satisfiability). We say that a CGS G is an elementary
modelof an SL[NG] sentenceϕ, in symbolsG |=E ϕ, if G,∅, s0 |=E ϕ. In general, we also say
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thatG is aelementary modelfor ϕ on s ∈ St, in symbolsG, s |=E ϕ, if G,∅, s |=E ϕ. An SL[NG]
sentenceϕ is elementarily satisfiableif there is an elementary model for it.

We have to modify the concepts of implication and equivalence, as well. Indeed, also in this case
we can have pairs of equivalent formulas that are not elementarily equivalent, and vice versa. Thus,
we have to be careful when we use natural transformation between formulas, since it can be the case
that they preserve the meaning only under the classic semantics. An example of this problem can
arise when one want to put a formula inpnf.

Definition4.14 (SL[NG] Elementary Implication and Equivalence). Given two SL[NG] formu-
las ϕ1 and ϕ2 with free(ϕ1) = free(ϕ2), we say thatϕ1 elementarily impliesϕ2, in sym-
bols ϕ1 ⇒E ϕ2, if, for all CGSs G, statess ∈ St, and free(ϕ1)-defineds-total assignments
χ ∈ Asg(free(ϕ1), s), it holds that ifG, χ, s |=E ϕ1 thenG, χ, s |=E ϕ2. Accordingly, we say
thatϕ1 is elementarily equivalentto ϕ2, in symbolsϕ1 ≡E ϕ2, if both ϕ1 ⇒E ϕ2 andϕ2 ⇒E ϕ1

hold.

4.4. Elementariness and non-elementariness

Finally, we show that the introduced concept of elementary satisfiability is relevant to the context
of our logic, as its applicability represents a demarcationline between “easy” and “hard” fragments
of SL. Moreover, we believe that it is because of this fundamentalproperty that several well-known
temporal logics are so robustly decidable [Vardi 1996].

Remark4.15 (SL[NG, 0-alt] Elementariness). It is interesting to observe that, for every CGS G
and SL[NG, 0-alt] sentenceϕ, it holds thatG |= ϕ iff G |=E ϕ. This is an immediate consequence of
the fact that all quantification prefixes℘ used inϕ belong toQnt∃∗∀∗(V), for a given setV ⊆ Var of
variables. Thus, as already mentioned, the related dependence maps on strategiesθ ∈ DMStr(s0)(℘)
are necessarily elementary.

By Corollary 4.7 of SL strategy quantification, it is easy to see that the followingcoherence
property about the elementariness of the SL[NG] satisfiability holds. Intuitively, it asserts that every
elementarily satisfiable sentence inpnf is satisfiable too.

THEOREM 4.16 (SL[NG] ELEMENTARY COHERENCE). Let G be a CGS, s ∈ St one of its
states,ϕ an SL[NG] formula in pnf, andχ ∈ Asg(s) ans-total assignment withfree(ϕ) ⊆ dom(χ).
Then, it holds thatG, χ, s |=E ϕ impliesG, χ, s |= ϕ.

PROOF. The proof proceeds by induction on the structure of the formula. For the sake of suc-
cinctness, we only show the crucial case of principal subsentencesφ ∈ psnt(ϕ), i.e., whenφ is of
the form℘ψ, where℘ ∈ Qnt(free(ψ)) is a quantification prefix, andψ is an agent-closed formula.

Suppose thatG,∅, s |=E ℘ψ. Then, by Definition 4.11 of SL[NG] elementary semantics, there is
an elementary dependence mapθ ∈ EDMStr(s)(℘) such that, for all assignmentsχ ∈ Asg([[℘]], s),
it holds thatG, θ(χ), s |=E ψ. Now, by the inductive hypothesis, there is a dependence mapθ ∈
DMStr(s)(℘) such that, for all assignmentsχ ∈ Asg([[℘]], s), it holds thatG, θ(χ), s |= ψ. Hence,
by Corollary 4.7 of SL strategy quantification, we have thatG,∅, s |= ℘ψ.

However, it is worth noting that the converse property may not hold, as we show in the next
theorem, i.e., there are sentences inpnf that are satisfiable but not elementarily satisfiable. Note that
the following results already holds for CHP-SL.

THEOREM 4.17 (TB-SL[BG] NON-ELEMENTARINESS). There exists a satisfiableTB-
SL[BG, 1-ag,2-var,1-alt] sentence in pnf that is not elementarily satisfiable.

PROOF. Consider the TB-SL[BG, 1-ag, 2-var, 1-alt] sentenceϕ , ϕ1 ∧ ϕ2 in pnf where
ϕ1 , ℘(ψ1 ∧ ψ2), with ℘ , [[x]]〈〈y〉〉, ψ1 , (α, x)X p ↔ (α, y)X ¬p, andψ2 , (α, x)X X p ↔
(α, y)X X p, andϕ2 , [[x]](α, x)X ((〈〈x〉〉(α, x)X p) ∧ (〈〈x〉〉(α, x)X ¬p)). Moreover, note that the
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TB-SL[1G, 1-ag,1-var, 0-alt] sentenceϕ2 is equivalent to the CTL formulaAX ((EX p) ∧ (EX ¬p)).
Then, it is easy to see that the turn-based CGS GRdc of Figure 4 on page 15 satisfiesϕ. Indeed,
GRdc, θ(χ), s0 |= ψ1 ∧ ψ2, for all assignmentsχ ∈ Asg({x}, s0), where the non-elementary de-
pendence mapθ ∈ DMStr(s0)(℘) is such thatθ(χ)(y)(s0) = ¬χ(x)(s0) andθ(χ)(y)(s0 · si) =
χ(x)(s0 · s1−i), for all i ∈ {0, 1}.

Now, let G be a generic CGS. If G 6|= ϕ, by Theorem 4.16 of SL[NG] elementary co-
herence, it holds thatG 6|=E ϕ. Otherwise, we have thatG |= ϕ and, in particular,G |=
ϕ1, which means thatG |= ℘(ψ1 ∧ ψ2). At this point, to prove thatG 6|=E ϕ, we show
that, for all elementary dependence mapsθ ∈ EDMStr(s0)(℘), there exists an assignment
χ ∈ Asg({x}, s0) such thatG, θ(χ), s0 6|=E ψ1 ∧ ψ2. To do this, let us fix an elementary
dependence mapθ and an assignmentχ. Also, assumes1 , τ(s0, ∅[α 7→ χ(x)(s0)]) and
s2 , τ(s0, ∅[α 7→ θ(χ)(y)(s0)]). Now, we distinguish between two cases.

— p ∈ λ(s1) iff p ∈ λ(s2). In this case, we can easily observe thatG, θ(χ), s0 6|= ψ1 and conse-
quently, by Theorem 4.16, it holds thatG, θ(χ), s0 6|=E ψ1 ∧ ψ2. So, we are done.

— p ∈ λ(s1) iff p 6∈ λ(s2). If G, θ(χ), s0 6|= ψ2 then, by Theorem 4.16, it holds thatG, θ(χ), s0 6|=E

ψ1 ∧ψ2. So, we are done. Otherwise, lets3 , τ(s1, ∅[α 7→ χ(x)(s0 · s1)]) ands4 , τ(s2, ∅[α 7→
θ(χ)(y)(s0 · s2)]). Then, it holds thatp ∈ λ(s3) iff p ∈ λ(s4). Now, consider a new assignment
χ′ ∈ Asg({x}, s0) such thatχ′(x)(s0 · s2) = χ(x)(s0 · s2) and p ∈ λ(s3

′) iff p 6∈ λ(s4),
wheres3′ , τ(s1, ∅[α 7→ χ′(x)(s0 · s1)]). Observe that the existence of such an assignment, with
particular reference to the second condition, is ensured bythe fact thatG |= ϕ2. At this point, due
to the elementariness of the dependence mapθ, we have thatθ(χ′)(y)(s0 · s2) = θ(χ)(y)(s0 · s2).
Consequently, it holds thats4 = τ(s2, ∅[α 7→ θ(χ′)(y)(s0 · s2)]). Thus,G, θ(χ′), s0 6|= ψ2, which
implies, by Theorem 4.16, thatG, θ(χ′), s0 6|=E ψ1 ∧ ψ2. So, we are done.

Thus, the thesis of the theorem holds.

The following corollary is an immediate consequence of the previous theorem. It is interesting
to note that, at the moment, we do not know if such a result can be extended to the simpler GL
fragment.

COROLLARY 4.18 (SL[BG] NON-ELEMENTARINESS). There exists a satisfiableSL[BG, 1-ag,
2-var,1-alt] sentence in pnf that is not elementarily satisfiable.

Remark4.19 (Kinds of Non-Elementariness). It is worth remarking that the kind of non-
elementariness of the sentenceϕ shown in the above theorem can be calledessential, i.e.,
it cannot be eliminated, due to the fact thatϕ is satisfiable but not elementarily satisfiable.
However, there are different sentences, such as the conjunct ϕ1 in ϕ, having both models on
which they are elementarily satisfiable and models, like theCGS GRdc, on which they are
only non-elementarily satisfiable. Such a kind of non-elementariness can be callednon-essential,
since it can be eliminated by an opportune choice of the underlying model. Note that a sim-
ilar reasoning can be done for the dual concept of elementariness, which we callessential
if all models satisfying a given sentence elementarily satisfy it as well.

Before continuing, we want to show the reason why we have redefined the concepts of implica-
tion and equivalence in the context of elementary semantics. Consider the SL[BG, 1-ag,2-var, 1-alt]
sentenceϕ1 used in Theorem 4.17 of TB-SL[BG] non-elementariness. It is not hard to see that it is
equivalent to the SL[1G, 1-ag,1-var,0-alt] ϕ′ , (〈〈x〉〉(α, x)ψ1 ↔ 〈〈x〉〉(α, x)ψ2) ∧ (〈〈x〉〉(α, x)ψ3 ↔
〈〈x〉〉(α, x)ψ4), whereψ1 , X (p∧X p),ψ2 , X (¬p∧X p), ψ3 , X (p∧X ¬p), andψ4 , X (¬p∧
X ¬p). Note thatϕ′ is in turn equivalent to the CTL∗ formula(Eψ1 ↔ Eψ2) ∧ (Eψ3 ↔ Eψ4). How-
ever,ϕ1 andϕ′ are not elementarily equivalent, since we have thatGRdc 6|=E ϕ1 butGRdc |=E ϕ

′,
whereGRdc is the CGS of Figure 4 on page 15.
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At this point, we can proceed with the proof of the elementariness of satisfiability for SL[1G].
It is important to note that there is no gap, in our knowledge,between the logics that are elemen-
tarily satisfiable and those that are not, since the fragmentSL[BG, 1-ag,2-var, 1-alt] used in the pre-
vious theorem cannot be further reduced, due to the fact thatotherwise it collapses into SL[1G].
Before starting, we have to describe some notation regarding classic two-player games on infinite
words [Perrin and Pin 2004], which are used here as a technical tool. Note that we introduce the
names of scheme and match in place of the more usual strategy and play, in order to avoid confu-
sion between the concepts related to a CGS and those related to the tool.

A two-player arena(TPA, for short) is a tupleA , 〈Ne,No,E , n0〉, whereNe andNo are non-
empty non-intersecting sets ofnodesfor playerevenandodd, respectively,E , Ee ∪ Eo , with
Ee ⊆ Ne×No andEo ⊆ No×Ne, is theedge relationbetween nodes, andn0 ∈ No is a designated
initial node.

An even positionin A is a finite non-empty sequence of nodes̺ ∈ Ne
+ such that(̺)0 = n0

and, for all i ∈ [0, |̺| − 1[ , there exists a noden ∈ No for which ((̺)i, n) ∈ Ee and
(n, (̺)i+1) ∈ Eo hold. In addition, anodd positionin A is a finite non-empty sequence of nodes
̺ = ̺′ · n ∈ Ne

+ · No, with n ∈ No, such that̺ ′ is an even position and(lst(̺′), n) ∈ Ee .
By Pose andPoso we denote, respectively, the sets of even and odd positions.

An even(resp.,odd) schemein A is a functionse : Pose → No (resp.,so : Poso → Ne) that maps
each even (resp., odd) position to an odd (resp., even) node in a way that is compatible with the edge
relationEe (resp.,Eo), i.e., for all̺ ∈ Pose (resp.,̺ ∈ Poso), it holds that(lst(̺), se(̺)) ∈ Ee

(resp.,(lst(̺), so(̺)) ∈ Eo). By Sche (resp.,Scho) we indicate the sets of even (resp., odd) schemes.
A matchin A is an infinite sequence of nodes̟∈ Ne

ω such that(̟)0 = n0 and, for alli ∈ N,
there exists a noden ∈ No such that((̟)i, n) ∈ Ee and(n, (̟)i+1) ∈ Eo . By Mtc we denote the
set of all matches. Amatch mapmtc : Sche × Scho → Mtc is a function that, given two schemes
se ∈ Sche andso ∈ Scho, returns the unique match̟ = mtc(se, so) such that, for alli ∈ N, it holds
that(̟)i+1 = so((̟)≤i · se((̟)≤i)).

A two-player game(TPG, for short) is a tupleH , 〈A,Win〉, whereA is a TPA andWin ⊆ Mtc.
On one hand, we say that player even winsH if there exists an even schemese ∈ Sche such that, for
all odd schemesso ∈ Scho, it holds thatmtc(se, so) ∈ Win. On the other hand, we say that player
odd winsH if there exists an odd schemeso ∈ Scho such that, for all even schemesse ∈ Sche, it
holds thatmtc(se, so) 6∈ Win.

In the following, for a given binding prefix♭ ∈ Bnd(V) with V ⊆ Var, we denote byζ♭ : Ag →
V the function associating with each agent the related variable in ♭, i.e., for all a ∈ Ag, there is
i ∈ [0, |♭|[ such that(♭)i = (a, ζ♭(a)).

As first step towards the proof of the elementariness of SL[1G], we have to give a construction of
a two-player game, based on an a priori chosen CGS, in which the players are explicitly viewed one
as a dependence map and the other as a valuation, both over actions. This construction results to be
a deep technical evolution of the proof method used for the dualization of alternating automata on
infinite objects [Muller and Schupp 1987].

Definition4.20 (Dependence-vs-Valuation Game). Let G be a CGS, s ∈ St one of its states,
P ⊆ Pth(s) a set of paths,℘ ∈ Qnt(V) a quantification prefix over a setV ⊆ Var of variables, and
♭ ∈ Bnd(V) a binding. Then, the dependence-vs-valuation game forG in s overP w.r.t.℘ and♭ is
the TPGH(G, s,P, ℘, ♭) , 〈A(G, s, ℘, ♭),P〉, where the TPA A(G, s, ℘, ♭) , 〈St, St × DMAc(℘),
E , s〉 has the edge relations defined as follows:

— Ee , {(t, (t, θ)) : t ∈ St ∧ θ ∈ DMAc(℘)};
— Eo , {((t, θ), τ(t, θ(v) ◦ ζ♭)) : t ∈ St ∧ θ ∈ DMAc(℘) ∧ v ∈ ValAc([[℘]])}

12.

12By g2 ◦ g1 : X → Z we denote the operation ofcompositionof two functionsg1 : X → Y1 andg2 : Y2 → Z with
Y1 ⊆ Y2.
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In the next lemma we state a fundamental relationship between dependence-
vs-valuation games and their duals. Basically, we prove that if a player wins
the game then the opposite player can win the dual game, and vice versa.
This represents one of the two crucial steps in our elementariness proof.

LEMMA 4.21 (DEPENDENCE-VS-VALUATION DUALITY ). LetG be aCGS, s ∈ St one of its
states,P ⊆ Pth(s) a set of paths,℘ ∈ Qnt(V) a quantification prefix over a setV ⊆ Var of
variables, and♭ ∈ Bnd(V) a binding. Then, player even wins theTPG H(G, s,P, ℘, ♭) iff player
odd wins the dualTPGH(G, s,Pth(s) \ P, ℘, ♭).

Now, we are going to give the definition of the important concept of encasement. In-
formally, an encasement is a particular subset of paths in a given CGS that “works
to encase” an elementary dependence map on strategies, in the sense that it con-
tains all plays obtainable by complete assignments derivedfrom the evaluation of the
above mentioned dependence map. In our context, this concept is used to summarize all
relevant information needed to verify the elementary satisfiability of a sentence.

Definition4.22 (Encasement). Let G be a CGS, s ∈ St one of its states,P ⊆ Pth(s) a set
of paths,℘ ∈ Qnt(V) a quantification prefix over a setV ⊆ Var of variables, and♭ ∈ Bnd(V)
a binding. Then,P is anencasementw.r.t. ℘ and♭ if there exists an elementary dependence map
θ∈EDMStr(s)(℘) such that, for all assignmentsχ∈Asg([[℘]], s), it holds thatplay(θ(χ)◦ ζ♭, s)∈P.

In the next lemma, we give the second of the two crucial steps in our elementariness proof. In
particular, we are able to show a one-to-one relationship between the wining in the dependence-
vs-valuation game of player even and the verification of the encasement property of the associated
winning set. Moreover, in the case that the latter is a Borelian set, by using Martin’s Determinacy
Theorem [Martin 1975], we obtain a complete characterization of the winning concept by means of
that of encasements.

LEMMA 4.23 (ENCASEMENT CHARACTERIZATION). LetG be aCGS, s ∈ St one of its states,
P ⊆ Pth(s) a set of paths,℘ ∈ Qnt(V) a quantification prefix over a setV ⊆ Var of variables,
and♭ ∈ Bnd(V) a binding. Then, the following hold:

(i) player even winsH(G, s,P, ℘, ♭) iff P is an encasement w.r.t.℘ and♭;
(ii) if player odd winsH(G, s,P, ℘, ♭) thenP is not an encasement w.r.t.℘ and♭;
(iii) if P is a Borelian set and it is not an encasement w.r.t.℘ and ♭ then player odd wins

H(G, s,P, ℘, ♭).

Finally, we have all technical tools useful to prove the elementariness of the satisfiability for
SL[1G]. Intuitively, we describe a bidirectional reduction of theproblem of interest to the verification
of the winning in the dependence-vs-valuation game. The idea behind this construction resides
in the strong similarity between the statement of Corollary4.7 of SL strategy quantification and
the definition of the winning condition in a two-player game.Indeed, on one hand, we say that a
sentence is satisfiable iff “there exists a dependence map such that, for all all assignments, it holds
that ...”. On the other hand, we say that player even wins a game iff “there exists an even scheme
such that, for all odd schemes, it holds that ...”. In particular, for the SL[1G] fragment, we can resolve
the gap between these two formulations, by using the conceptof elementary quantification.

THEOREM 4.24 (SL[1G] ELEMENTARINESS). LetG be aCGS, ϕ an SL[1G] formula,s ∈ St a
state, andχ ∈ Asg(s) ans-total assignment withfree(ϕ) ⊆ dom(χ). Then, it holds thatG, χ, s |= ϕ
iff G, χ, s |=E ϕ.

PROOF. The proof proceeds by induction on the structure of the formula. For the sake of suc-
cinctness, we only show the most important inductive case ofprincipal subsentencesφ ∈ psnt(ϕ),
i.e., whenφ is of the form℘♭ψ, where℘ ∈ Qnt(V) and♭ ∈ Bnd(V) are, respectively, a quantifica-
tion and binding prefix over a setV ⊆ Var of variables, andψ is a variable-closed formula.
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[If]. The proof of this direction is practically the same of the oneused in Theorem 4.16 of SL[NG]
elementary coherence. So, we omit to report it here.

[Only if]. Assume thatG,∅, s |= ℘♭ψ. Then, it is easy to see that, for all elementary dependence
mapsθ ∈ EDMStr(s)(℘), there is an assignmentχ ∈ Asg([[℘]], s) such thatG, θ(χ) ◦ ζ♭, s |= ψ. In-
deed, suppose by contradiction that there exists an elementary dependence mapθ ∈ EDMStr(s)(℘)
such that, for all assignmentsχ ∈ Asg([[℘]], s), it holds thatG, θ(χ)◦ζ♭, s 6|= ψ, i.e.,G, θ(χ)◦ζ♭, s |=
¬ψ, and soG, θ(χ), s |= ♭¬ψ. Then, by Corollary 4.7 of SL strategy quantification, we have that
G,∅, s |= ℘♭¬ψ, i.e.,G,∅, s |= ¬℘♭ψ, and soG,∅, s 6|= ℘♭ψ, which is impossible.

Now, letP , {play(χ, s) ∈ Pth(s) : χ ∈ Asg(Ag, s) ∧ G, χ, s 6|= ψ}. Then, it is evident that,
for all elementary dependence mapsθ ∈ EDMStr(s)(℘), there is an assignmentχ ∈ Asg([[℘]], s)
such thatplay(θ(χ) ◦ ζ♭, s) 6∈ P.

At this point, by Definition 4.22 of encasement, it is clear thatP is not an encasement w.r.t.℘ and♭.
Moreover, sinceψ describes a regular language, the derived setP is Borelian [Perrin and Pin 2004].
Consequently, by Item iii of Lemma 4.23 of encasement characterization, we have that player odd
wins the TPG H(G, s,P, ℘, ♭). Thus, by Lemma 4.21 of dependence-vs-valuation duality, player
even wins the dual TPGH(G, s,Pth(s) \ P, ℘, ♭). Hence, by Item i of Lemma 4.23, we have that
Pth(s) \P is an encasement w.r.t.℘ and♭. Finally, again by Definition 4.22, there exists an elemen-
tary dependence mapθ ∈ EDMStr(s)(℘) such that, for all assignmentsχ ∈ Asg([[℘]], s), it holds
thatplay(θ(χ) ◦ ζ♭, s) ∈ Pth(s) \ P.

Now, it is immediate to observe thatPth(s) \ P = {play(χ, s) ∈ Pth(s) : χ ∈ Asg(Ag, s) ∧
G, χ, s |= ψ}. So, by the inductive hypothesis, we have thatPth(s) \ P = {play(χ, s) ∈ Pth(s)
: χ ∈ Asg(Ag, s) ∧ G, χ, s |=E ψ}, from which we derive that there exists an elementary de-
pendence mapθ ∈ EDMStr(s)(℘) such that, for all assignmentsχ ∈ Asg([[℘]], s), it holds that
G, θ(χ) ◦ ζ♭, s |=E ψ. Consequently, by Definition 4.11 of SL[NG] elementary semantics, we have
thatG,∅, s |=E ℘♭ψ.

As an immediate consequence of the previous theorem, we derive the following fundamental
corollary.

COROLLARY 4.25 (SL[1G] ELEMENTARINESS). Let G be a CGS andϕ an SL[1G] sentence.
Then,G |= ϕ iff G |=E ϕ.

It is worth to observe that the elementariness property for SL[1G] is a crucial difference w.r.t.
SL[BG], which allows us to obtain an elementary decision procedurefor the related model-checking
problem, as described in the last part of the next section.

5. MODEL-CHECKING PROCEDURES

In this section, we study the model-checking problem for SL and show that, in general, it is non-
elementarily decidable, while, in the particular case of SL[1G] sentences, it is just 2EXPTIME-
COMPLETE, as for ATL∗. For the algorithmic procedures, we follow anautomata-theoretic ap-
proach[Kupferman et al. 2000], reducing the decision problem for the logics to the emptiness prob-
lem of an automaton. In particular, we use a bottom-up technique through which we recursively
label each state of the CGS of interest by all principal subsentences of the specification that are
satisfied on it, starting from the innermost subsentences and terminating with the sentence under
exam. In this way, at a given step of the recursion, since the satisfaction of all subsentences of the
given principal sentence has already been determined, we can assume that the matrix of the latter is
only composed by Boolean combinations and nesting of goals whose temporal part is simply LTL.
The procedure we propose here extends that used for ATL∗ in [Alur et al. 2002] by means of a richer
structure of the automata involved in.

The rest of this section is organized as follows. In Subsection 5.1, we recall the definition of
alternating parity tree automata. Then, in Subsection 5.2,we build an automaton accepting a tree
encoding of a CGS iff this satisfies the formula of interest, which is used to prove the main result
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about SL and SL[NG] model checking. Finally, in Subsection 5.3, we refine the previous result to
obtain an elementary decision procedure for SL[1G].

5.1. Alternating tree automata

Nondeterministic tree automataare a generalization to infinite trees of the classicalnondetermin-
istic word automataon infinite words (see [Thomas 1990], for an introduction).Alternating tree
automataare a further generalization of nondeterministic tree automata [Muller and Schupp 1987].
Intuitively, on visiting a node of the input tree, while the latter sends exactly one copy of itself to
each of the successors of the node, the former can send several own copies to the same successor.
Here we use, in particular,alternating parity tree automata, which are alternating tree automata
along with aparity acceptance condition(see [Grädel et al. 2002], for a survey).

We now give the formal definition of alternating tree automata.

Definition5.1 (Alternating Tree Automata). An alternating tree automaton(ATA, for short) is
a tupleA , 〈Σ,∆,Q, δ, q0,ℵ〉, whereΣ, ∆, andQ are, respectively, non-empty finite sets ofinput
symbols, directions, andstates, q0 ∈ Q is aninitial state, ℵ is anacceptance conditionto be defined
later, andδ : Q × Σ → B

+(∆ × Q) is analternating transition functionthat maps each pair of
states and input symbols to a positive Boolean combination on the set of propositions of the form
(d, q) ∈ ∆×Q, a.k.a.moves.

On one side, anondeterministic tree automaton(NTA, for short) is a special case of ATA in
which each conjunction in the transition functionδ has exactly one move(d, q) associated with
each directiond. This means that, for all statesq ∈ Q and symbolsσ ∈ Σ, we have thatδ(q, σ) is
equivalent to a Boolean formula of the form

∨
i

∧
d∈∆(d, qi,d). On the other side, auniversal tree

automaton(UTA, for short) is a special case of ATA in which all the Boolean combinations that
appear inδ are conjunctions of moves. Thus, we have thatδ(q, σ) =

∧
i(di, qi), for all statesq ∈ Q

and symbolsσ ∈ Σ.
The semantics of the ATAs is given through the following concept of run.

Definition5.2 (ATA Run). A run of an ATA A = 〈Σ,∆,Q, δ, q0,ℵ〉 on aΣ-labeled∆-tree
T = 〈T, v〉 is a (∆ × Q)-treeR such that, for all nodesx ∈ R, wherex =

∏n
i=1(di, qi) and

y ,
∏n
i=1 di with n ∈ [0, ω[ , it holds that(i) y ∈ T and(ii) , there is a set of movesS ⊆ ∆ × Q

with S |= δ(qn, v(y)) such thatx · (d, q) ∈ R, for all (d, q) ∈ S.

In the following, we consider ATAs along with theparity acceptance condition(APT, for short)
ℵ , (F1, . . . ,Fk) ∈ (2Q)+ with F1 ⊆ . . . ⊆ Fk = Q (see [Kupferman et al. 2000], for more). The
numberk of sets in the tupleℵ is called theindexof the automaton. We also consider ATAs with the
co-Büchi acceptance condition(ACT, for short) that is the special parity condition with index2.

Let R be a run of an ATA A on a treeT andw one of its branches. Then, byinf(w) , {q ∈ Q
: |{i ∈ N : ∃d ∈ ∆.(w)i = (d, q)}| = ω} we denote the set of states that occur infinitely often as
the second component of the letters along the branchw. Moreover, we say thatw satisfies the parity
acceptance conditionℵ=(F1, . . . ,Fk) if the least indexi∈ [1, k] for which inf(w)∩Fi 6= ∅ is even.

At this point, we can define the concept of language accepted by an ATA.

Definition5.3 (ATA Acceptance). An ATA A = 〈Σ,∆,Q, δ, q0,ℵ〉 acceptsaΣ-labeled∆-tree
T iff is there exists a runR of A on T such that all its infinite branches satisfy the acceptance
conditionℵ.

By L(A) we denote the language accepted by the ATA A, i.e., the set of treesT accepted byA.
Moreover,A is said to beemptyif L(A) = ∅. Theemptiness problemfor A is to decide whether
L(A) = ∅.

We finally show a simple but useful result about the APT direction projection. To do this, we first
need to introduce an extra notation. Letf ∈ B(P) be a Boolean formula on a set of propositions
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P. Then, byf [p/q |p ∈ P′] we denote the formula in which all occurrences of the propositions
p ∈ P′ ⊆ P in f are replaced by the propositionq belonging to a possibly different set.

THEOREM 5.4 (APT DIRECTION PROJECTION). LetA , 〈Σ ×∆,∆,Q, δ, q0,ℵ〉 be anAPT
over a set ofm directions withn states and indexk. Moreover, letd0 ∈ ∆ be a distinguished
direction. Then, there exists anNPT N d0 , 〈Σ,∆,Q′, δ′, q′0,ℵ

′〉 with m · 2O(k·n·logn) states and
indexO(k · n · logn) such that, for allΣ-labeled∆-treeT , 〈T, v〉, it holds thatT ∈ L(N d0) iff
T ′ ∈ L(A), whereT ′ is the(Σ×∆)-labeled∆-tree〈T, v′〉 such thatv′(t) , (v(t), lst(d0 · t)), for
all t ∈ T.

PROOF. As first step, we use the well-known nondeterminization procedure for
APTs [Muller and Schupp 1995] in order to transform the APT A into an equivalent NPT

N = 〈Σ × ∆,∆,Q′′, δ′′, q′′0 ,ℵ
′′〉 with 2O(k·n·logn) states and indexk′ = O(k · n · logn). Then,

we transform the latter into the new NPT N d0 , 〈Σ,∆,Q′, δ′, q′0,ℵ
′〉 with m · 2O(k·n·logn) states

and same indexk′, whereQ′ , Q′′ × ∆, q′0 , (q′′0 , d0), ℵ
′ , (F1 × ∆, . . . ,Fk′ × ∆) with

ℵ′′ , (F1, . . . ,Fk′), andδ′((q, d), σ) , δ′′(q, (σ, d))[(d′, q′)/(d′, (q′, d′))|(d′, q′) ∈ ∆× Q′′], for
all (q, d) ∈ Q′ andσ ∈ Σ. Now, it easy to see thatN d0 satisfies the declared statement.

5.2. SL Model Checking

A first step towards our construction of an algorithmic procedure for the solution of the SL model-
checking problem is to define, for each possible formulaϕ, an alternating parity tree automatonAG

ϕ

that recognizes a tree encodingT of a CGSG, containing the information on an assignmentχ on the
free variables/agents ofϕ, iff G is a model ofϕ underχ. The high-level idea at the base of this con-
struction is an evolution and merging of those behind the translations of QPTL and LTL, respectively,
into nondeterministic [Sistla et al. 1987] and alternating[Muller et al. 1988] Büchi automata.

To proceed with the formal description of the model-checking procedure, we have to introduce a
concept of encoding for the assignments of a CGS.

Definition5.5 (Assignment-State Encoding). Let G be a CGS, s ∈ StG one of its states, and
χ ∈ AsgG(V, s) an assignment defined on the setV ⊆ Var ∪ Ag. Then, a(ValAcG (V) × StG)-
labeledStG-treeT , 〈T, u〉, whereT , {ρ≥1 : ρ ∈ TrkG(s)}, is anassignment-state encodingfor
χ if it holds thatu(t) , (χ̂(s · t), lst(s · t)), for all t ∈ T.

Observe that there is a unique assignment-state encoding for each given assignment.
In the next lemma, we prove the existence of an APT for each CGS and SL formula that is able to

recognize all the assignment-state encodings of an a priorigiven assignment, made the assumption
that the formula is satisfied on the CGS under this assignment.

LEMMA 5.6 (SL FORMULA AUTOMATON). LetG be aCGSandϕ anSL formula. Then, there
exists anAPTAG

ϕ , 〈ValAcG (free(ϕ))×StG , StG ,Qϕ, δϕ, q0ϕ,ℵϕ〉 such that, for all statess ∈ StG
and assignmentsχ ∈ AsgG(free(ϕ), s), it holds thatG, χ, s |= ϕ iff T ∈ L(AG

ϕ), whereT is the
assignment-state encoding forχ.

PROOF. The construction of the APT AG
ϕ is done recursively on the structure of the formula

ϕ, which w.l.o.g. is supposed to be inenf, by using a variation of the transformation, via alternat-
ing tree automata, of the S1S and SkS logics into nondeterministic Büchi word and tree automata
recognizing all models of the formula of interest [Büchi 1962; Rabin 1969].

The detailed construction ofAG
ϕ, by a case analysis onϕ, follows.

— If ϕ ∈ AP, the automaton has to verify if the atomic proposition is locally satisfied or not. To
do this, we setAG

ϕ , 〈ValAcG (∅) × StG , StG , {ϕ}, δϕ, ϕ, ({ϕ})〉, whereδϕ(ϕ, (v, s)) , t, if

ϕ ∈ λG(s), andδϕ(ϕ, (v, s)) , f, otherwise. Intuitively,AG
ϕ only verifies that the states in the

labeling of the root of the assignment-state encoding of theempty assignment∅ satisfiesϕ.
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— The boolean caseϕ = ¬ϕ′ is treated in the classical way, by simply dualizing the automaton
AG
ϕ′ = 〈ValAcG (free(ϕ

′))× StG , StG ,Qϕ′ , δϕ′ , q0ϕ′ ,ℵϕ′〉 [Muller and Schupp 1987].
— The boolean casesϕ = ϕ1Op ϕ2, with Op ∈ {∧,∨}, are treated in a way that is similar to

the classical one, by simply merging the two automataAG
ϕ1

= 〈ValAcG (free(ϕ1)) × StG , StG ,

Qϕ1 , δϕ1 , q0ϕ1 ,ℵϕ1〉 andAG
ϕ2

= 〈ValAcG (free(ϕ2)) × StG , StG ,Qϕ2 , δϕ2 , q0ϕ2 ,ℵϕ2〉 into the

automatonAG
ϕ , 〈ValAcG (free(ϕ))× StG , StG ,Qϕ, δϕ, q0ϕ,ℵϕ〉, where the following hold:

—Qϕ , {q0ϕ} ∪Qϕ1 ∪Qϕ2, with q0ϕ 6∈ Qϕ1 ∪Qϕ2;
— δϕ(q0ϕ, (v, s)) , δϕ1(q0ϕ1 , (v↾free(ϕ1), s)) Op δϕ2(q0ϕ2 , (v↾free(ϕ2), s)), for all (v, s) ∈

ValAcG (free(ϕ)) × StG ;
— δϕ(q, (v, s)) , δϕ1(q, (v↾free(ϕ1), s)), if q ∈ Qϕ1, andδϕ(q, (v, s)) , δϕ2(q, (v↾free(ϕ2), s)),

otherwise, for allq ∈ Qϕ1 ∪Qϕ2 and(v, s) ∈ ValAcG (free(ϕ))× StG ;
— ℵϕ , (F1ϕ, . . . ,Fkϕ), where(i) ℵϕ1 , (F1ϕ1 , . . . ,Fk1ϕ1) andℵϕ2 , (F1ϕ2 , . . . ,Fk2ϕ2),

(ii) h = min{k1, k2} andk = max{k1, k2}, (iii) Fiϕ , Fiϕ1 ∪ Fiϕ2 , for i ∈ [1, h], (iv)
Fiϕ , Fiϕj , for i ∈ [h+ 1, k − 1] with kj = k, and(v)Fkϕ , Qϕ.

— The caseϕ = X ϕ′ is solved by running the automatonAG
ϕ′ = 〈ValAcG (free(ϕ

′))×StG , StG ,Qϕ′ ,

δϕ′ , q0ϕ′ ,ℵϕ′〉 on the successor node of the root of the assignment-state encoding in the direction
individuated by the assignment itself. To do this, we use theautomatonAG

ϕ , 〈ValAcG (free(ϕ))×
StG , StG ,Qϕ, δϕ, q0ϕ,ℵϕ〉, where the following hold:
—Qϕ , {q0ϕ} ∪Qϕ′ , with q0ϕ 6∈ Qϕ′ ;
— δϕ(q0ϕ, (v, s)) , (τG(s, v↾Ag), q0ϕ′), for all (v, s) ∈ ValAcG (free(ϕ)) × StG ;
— δϕ(q, (v, s)) , δϕ′(q, (v↾free(ϕ′), s)), for all q ∈ Qϕ′ and(v, s) ∈ ValAcG (free(ϕ))× StG ;
— ℵϕ , (F1ϕ′ , . . . ,Fkϕ′ ∪ {q0ϕ}), whereℵϕ′ , (F1ϕ′ , . . . ,Fkϕ′).

— To handle the caseϕ = ϕ1U ϕ2, we use the automatonAG
ϕ , 〈ValAcG (free(ϕ)) ×

StG , StG ,Qϕ, δϕ, q0ϕ,ℵϕ〉 that verifies the truth of the until operator using its one-step
unfolding equivalenceϕ1U ϕ2 ≡ ϕ2 ∨ ϕ1 ∧ X ϕ1U ϕ2, by appropriately running the
two automataAG

ϕ1
= 〈ValAcG (free(ϕ1)) × StG , StG ,Qϕ1 , δϕ1 , q0ϕ1 ,ℵϕ1〉 and AG

ϕ2
=

〈ValAcG (free(ϕ2)) × StG , StG ,Qϕ2 , δϕ2 , q0ϕ2 ,ℵϕ2〉 for the inner formulasϕ1 and ϕ2.
The definitions ofAG

ϕ components follows:

—Qϕ , {q0ϕ} ∪Qϕ1 ∪Qϕ2, with q0ϕ 6∈ Qϕ1 ∪Qϕ2;
— δϕ(q0ϕ, (v, s)) , δϕ2(q0ϕ2 , (v↾free(ϕ2), s)) ∨ δϕ1(q0ϕ1 , (v↾free(ϕ1), s)) ∧ (τG(s, v↾Ag), q0ϕ), for

all (v, s) ∈ ValAcG (free(ϕ)) × StG ;
— δϕ(q, (v, s)) , δϕ1(q, (v↾free(ϕ1), s)), if q ∈ Qϕ1, andδϕ(q, (v, s)) , δϕ2(q, (v↾free(ϕ2), s)),

otherwise, for allq ∈ Qϕ1 ∪Qϕ2 and(v, s) ∈ ValAcG (free(ϕ))× StG ;
— ℵϕ , (F1ϕ, . . . ,Fkϕ), where(i) ℵϕ1 , (F1ϕ1 , . . . ,Fk1ϕ1) andℵϕ2 , (F1ϕ2 , . . . ,Fk2ϕ2), (ii)
h = min{k1, k2} andk = max{k1, k2}, (iii) Fiϕ , {q0ϕ} ∪ Fiϕ1 ∪ Fiϕ2 , for i ∈ [1, h], (iv)
Fiϕ , {q0ϕ} ∪ Fiϕj , for i ∈ [h+ 1, k − 1] with kj = k, and(v)Fkϕ , Qϕ.

It is important to observe that the initial stateq0ϕ is included in all sets of the parity acceptance
condition, in particular inF1ϕ, in order to avoid its regeneration for an infinite number of times.

— To handle the caseϕ = ϕ1R ϕ2, we use the automatonAG
ϕ , 〈ValAcG (free(ϕ)) ×

StG , StG ,Qϕ, δϕ, q0ϕ,ℵϕ〉 that verifies the truth of the release operator using its one-
step unfolding equivalenceϕ1R ϕ2 ≡ ϕ2 ∧ (ϕ1 ∨ X ϕ1R ϕ2), by appropriately run-
ning the two automataAG

ϕ1
= 〈ValAcG (free(ϕ1)) × StG , StG ,Qϕ1, δϕ1 , q0ϕ1 ,ℵϕ1〉 and

AG
ϕ2

= 〈ValAcG (free(ϕ2)) × StG , StG ,Qϕ2 , δϕ2 , q0ϕ2 ,ℵϕ2〉 for the inner formulasϕ1 andϕ2.
The definitions ofAG

ϕ components follows:

—Qϕ , {q0ϕ} ∪Qϕ1 ∪Qϕ2, with q0ϕ 6∈ Qϕ1 ∪Qϕ2;
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— δϕ(q0ϕ, (v, s)) , δϕ2(q0ϕ2 , (v↾free(ϕ2), s))∧(δϕ1 (q0ϕ1 , (v↾free(ϕ1), s))∨(τG (s, v↾Ag), q0ϕ)), for
all (v, s) ∈ ValAcG (free(ϕ))× StG ;

— δϕ(q, (v, s)) , δϕ1(q, (v↾free(ϕ1), s)), if q ∈ Qϕ1 , andδϕ(q, (v, s)) , δϕ2(q, (v↾free(ϕ2), s)),
otherwise, for allq ∈ Qϕ1 ∪Qϕ2 and(v, s) ∈ ValAcG (free(ϕ)) × StG ;

— ℵϕ , (F1ϕ, . . . ,Fkϕ), where(i) ℵϕ1 , (F1ϕ1 , . . . ,Fk1ϕ1) andℵϕ2 , (F1ϕ2 , . . . ,Fk2ϕ2), (ii)
h = min{k1, k2} andk = max{k1, k2}, (iii) F1ϕ , F1ϕ1 ∪ F1ϕ2 , (iv) Fiϕ , {q0ϕ} ∪ Fiϕ1 ∪

Fiϕ2 , for i∈ [2, h], (iv) Fiϕ,{q0ϕ}∪Fiϕj , for i∈ [h+1, k− 1] with kj=k, and(v)Fkϕ,Qϕ.
It is important to observe that, differently from the case ofthe until operator, the initial stateq0ϕ
is included in all sets of the parity acceptance condition but F1ϕ, in order to allow its regeneration
for an infinite number of time.

— The caseϕ = (a, x)ϕ′ is solved by simply transforming the transition function ofthe automaton
AG
ϕ′ = 〈ValAcG (free(ϕ

′)) × StG , StG ,Qϕ′ , δϕ′ , q0ϕ′ ,ℵϕ′〉, by setting the value of the valuations
in input w.r.t. the agenta to the value of the same valuation w.r.t. the variablex. The definitions
of the transition function forAG

ϕ , 〈ValAcG (free(ϕ)) × StG , StG ,Qϕ′ , δϕ, q0ϕ′ ,ℵϕ′〉 follows:

δϕ(q, (v, s)) , δϕ′(q, (v′, s)), wherev′ = v[a 7→ v(x)]↾free(ϕ′), if a ∈ free(ϕ′), andv′ = v,
otherwise, for allq ∈ Qϕ′ and(v, s) ∈ ValAcG (free(ϕ)) × StG .

— To handle the caseϕ = 〈〈x〉〉ϕ′, assuming thatx ∈ free(ϕ′), we use the operation of existential
projection for nondeterministic tree automata. To do this,we have first to nondeterminize the APT

AG
ϕ′ , by applying the classic transformation [Muller and Schupp1995]. In this way, we obtain an

equivalent NPTNG
ϕ′ = 〈ValAcG (free(ϕ

′))×StG , StG ,Qϕ′ , δϕ′ , q0ϕ′ ,ℵϕ′〉. Now, we make the pro-

jection, by defining the new NPT AG
ϕ , 〈ValAcG (free(ϕ)) × StG , StG ,Qϕ′, δϕ, q0ϕ′ ,ℵϕ′〉 where

δϕ(q, (v, s)) ,
∨
c∈AcG

δϕ′(q, (v[x 7→ c], s)), for all q ∈ Qϕ′ and(v, s) ∈ ValAcG (free(ϕ))×StG .

At this point, it only remains to prove that, for all statess ∈ StG and assignmentsχ ∈
AsgG(free(ϕ), s), it holds thatG, χ, s |= ϕ iff T ∈ L(AG

ϕ), whereT is the assignment-state en-
coding forχ. The proof can be developed by a simple induction on the structure of the formulaϕ
and is left to the reader as a simple exercise.

We now have the tools to describe the recursive model-checking procedure on nested subsen-
tences for SL and its fragments under the general semantics.

To proceed, we have first to prove the following theorem that represents the core of our automata-
theoretic approach.

THEOREM 5.7 (SL SENTENCE AUTOMATON). LetG be aCGS, s ∈ StG one of its states, and
ϕ an SL sentence. Then, there exists anNPT NG,s

ϕ such thatG,∅, s |= ϕ iff L(NG,s
ϕ ) 6= ∅.

PROOF. To construct the NPT NG,s
ϕ we apply Theorem 5.4 of APT direction projection with

distinguished directions to the APT AG
ϕ derived by Lemma 5.6 of SL formula automaton. In this

way, we can ensure that the state labeling of nodes of the assignment-state encoding is coherent with
the node itself. Observe that, sinceϕ is a sentence, we have thatfree(ϕ) = ∅, and so, the unique
assignment-state encoding of interest is that related to the empty assignment∅.

[Only if]. Suppose thatG,∅, s |= ϕ. Then, by Lemma 5.6, we have thatT ∈ L(AG
ϕ), whereT is

the elementary dependence-state encoding for∅. Hence, by Theorem 5.4, it holds thatL(NG,s
ϕ ) 6=

∅.
[If]. Suppose thatL(NG,s

ϕ ) 6= ∅. Then, by Theorem 5.4, there exists an({∅}×StG)-labeledStG-
treeT such thatT ∈ L(AG

ϕ). Now, it is immediate to see thatT is the assignment-state encoding
for ∅. Hence, by Lemma 5.6, we have thatG,∅, s |= ϕ.
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Before continuing, we define the lengthlng(ϕ) of an SL formulaϕ as the number|sub(ϕ)| of its
subformulas. We also introduce a generalization of the Knuth’s double arrow notation in order to
represents a tower of exponentials:a ↑↑b 0 , b anda ↑↑b (c+ 1) , aa↑↑bc, for all a, b, c ∈ N.

At this point, we prove the main theorem about the non-elementary complexity of SL model-
checking problem.

THEOREM 5.8 (SL MODEL CHECKING). The model-checking problem forSL is PTIME-
COMPLETE w.r.t. the size of the model andNONELEMENTARYTIME w.r.t. the size of the specifi-
cation.

PROOF. By Theorem 5.7 of SL sentence automaton, to verify thatG,∅, s |= ϕ, we simply
calculate the emptiness of the NPT NG,s

ϕ having |StG | · (2 ↑↑m m) states and index2 ↑↑m m,
wherem = O(lng(ϕ) · log lng(ϕ)). It is well-known that the emptiness problem for such a kind
of automaton withn states and indexh is solvable in timeO(nh) [Kupferman and Vardi 1998].
Thus, we get that the time complexity of checking whetherG,∅, s |= ϕ is |StG |2↑↑mm. Hence,
the membership of the model-checking problem for SL in PTIME w.r.t. the size of the model and
NONELEMENTARYTIME w.r.t. the size of the specification directly follows. Finally, by getting the
relative lower bound on the model from the same problem for ATL∗ [Alur et al. 2002], the thesis is
proved.

Finally, we show a refinement of the previous result, when we consider sentences of the SL[NG]
fragment.

THEOREM 5.9 (SL[NG] MODEL CHECKING). The model-checking problem forSL[NG] is
PTIME-COMPLETEw.r.t. the size of the model and(k+1)-EXPTIME w.r.t. the maximum alternation
k of the specification.

PROOF. By Theorem 5.7 of SL sentence automaton, to verify thatG,∅, s |= ℘ψ, where℘ψ is an
SL[NG] principal sentence without proper subsentences, we can simply calculate the emptiness of
the NPTNG,s

℘ψ having|StG | · (2 ↑↑m k) states and index2 ↑↑m k, wherem = O(lng(ψ) · log lng(ψ))

andk = alt(℘ψ). Thus, we get that the time complexity of checking whetherG,∅, s |= ℘ψ is
|StG |2↑↑mk. At this point, since we have to do this verification for each possible states ∈ StG
and principal subsentence℘ψ ∈ psnt(ϕ) of the whole SL[NG] specificationϕ, we derive that
the bottom-up model-checking procedure requires time|StG |2↑↑lng(ϕ)k, wherek = max{alt(℘ψ)
: ℘ψ ∈ psnt(ϕ)}. Hence, the membership of the model-checking problem for SL in PTIME w.r.t.
the size of the model and(k + 1)-EXPTIME w.r.t. the maximum alternationk of the specifica-
tion directly follows. Finally, by getting the relative lower bound on the model from the same
problem for ATL∗ [Alur et al. 2002], the thesis is proved.

5.3. SL[1G] Model Checking

We now show how the concept of elementariness of dependence maps over strategies can be used to
enormously reduce the complexity of the model-checking procedure for the SL[1G] fragment. The
idea behind our approach is to avoid the use of projections used to handle the strategy quantifications,
by reducing them to action quantifications, which can be managed locally on each state of the model
without a tower of exponential blow-ups.

To start with the description of the ad-hoc procedure for SL[1G], we first
prove the existence of a UCT for each CGS and SL[1G] goal ♭ψ that rec-
ognizes all the assignment-state encodings of an a priori given assignment,
made the assumption that the goal is satisfied on the CGS under this assignment.

LEMMA 5.10 (SL[1G] GOAL AUTOMATON). LetG be aCGS and♭ψ an SL[1G] goal without
principal subsentences. Then, there exists anUCT UG

♭ψ , 〈ValAcG (free(♭ψ)) × StG , StG ,Q♭ψ, δ♭ψ,
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q♭ψ,ℵ♭ψ〉 such that, for all statess ∈ StG and assignmentsχ ∈ AsgG(free(♭ψ), s), it holds that
G, χ, s |= ♭ψ iff T ∈ L(UG

♭ψ), whereT is the assignment-state encoding forχ.

PROOF. A first step in the construction of the UCT UG
♭ψ is to consider the UCW Uψ , 〈2AP,Qψ,

δψ,Q0ψ,ℵψ〉 obtained by dualizing the NBW resulting from the application of the classic Vardi-
Wolper construction to the LTL formula¬ψ [Vardi and Wolper 1986]. Observe thatL(Uψ) = L(ψ),
i.e., Uψ recognizes all infinite words on the alphabet2AP that satisfy the LTL formulaψ. Then,
define the components ofUG

♭ψ , 〈ValAcG (free(♭ψ))× StG , StG ,Q♭ψ, δ♭ψ, q0♭ψ,ℵ♭ψ〉 as follows:

— Q♭ψ , {q0♭ψ} ∪Qψ, with q0♭ψ 6∈ Qψ;
— δ♭ψ(q0♭ψ, (v, s)) ,

∧
q∈Q0ψ

δ♭ψ(q, (v, s)), for all (v, s) ∈ ValAcG (free(♭ψ)) × StG ;

— δ♭ψ(q, (v, s)),
∧
q′∈δψ(q,λG(s))(τG(s, v ◦ ζ♭), q

′), for all q ∈Qψ and(v, s) ∈ValAcG (free(♭ψ)) ×

StG ;
— ℵ♭ψ , ℵψ.

Intuitively, the UCT UG
♭ψ simply runs the UCW Uψ on the branch of the encoding individuated

by the assignment in input. Thus, it is easy to see that, for all statess ∈ StG and assignments
χ ∈ AsgG(free(♭ψ), s), it holds thatG, χ, s |= ♭ψ iff T ∈ L(UG

♭ψ), whereT is the assignment-state
encoding forχ.

Now, to describe our modified technique, we introduce a new concept of encoding regarding the
elementary dependence maps over strategies.

Definition5.11 (Elementary Dependence-State Encoding). LetG be a CGS, s ∈ StG one of its
states, andθ ∈ EDMStrG(s)(℘) an elementary dependence map over strategies for a quantification
prefix℘ ∈ Qnt(V) over the setV ⊆ Var. Then, a(DMAcG (℘) × StG)-labeledStG-treeT , 〈T,

u〉, whereT , {ρ≥1 : ρ ∈ TrkG(s)}, is anelementary dependence-state encodingfor θ if it holds
thatu(t) , (θ̃(s · t), lst(s · t)), for all t ∈ T.

Observe that there exists a unique elementary dependence-state encoding for each elementary de-
pendence map over strategies.

In the next lemma, we show how to handle locally the strategy quantifications on each state
of the model, by simply using a quantification over actions, which is modeled by the choice of an
action dependence map. Intuitively, we guess in the labeling what is the right part of the dependence
map over strategies for each node of the tree and then verify that, for all assignments of universal
variables, the corresponding complete assignment satisfies the inner formula.

LEMMA 5.12 (SL[1G] SENTENCEAUTOMATON). LetG be aCGS and℘♭ψ an SL[1G] princi-
pal sentence without principal subsentences. Then, there exists aUCT UG

℘♭ψ , 〈DMAcG (℘)× StG ,

StG ,Q℘♭ψ, δ℘♭ψ, q0℘♭ψ,ℵ℘♭ψ〉 such that, for all statess ∈ StG and elementary dependence maps
over strategiesθ ∈ EDMStrG(s)(℘), it holds thatG, θ(χ), s |=E ♭ψ, for all χ ∈ AsgG([[℘]], s), iff
T ∈ L(UG

℘♭ψ
), whereT is the elementary dependence-state encoding forθ.

PROOF. By Lemma 5.10 of SL[1G] goal automaton, there is an UCT UG
♭ψ = 〈ValAcG (free(♭ψ))×

StG , StG ,Q♭ψ, δ♭ψ, q0♭ψ,ℵ♭ψ〉 such that, for all statess ∈ StG and assignmentsχ ∈

AsgG(free(♭ψ), s), it holds thatG, χ, s |= ♭ψ iff T ∈ L(UG
♭ψ
), whereT is the assignment-state

encoding forχ.
Now, transformUG

♭ψ into the new UCT UG
℘♭ψ , 〈DMAcG (℘) × StG , StG ,Q℘♭ψ, δ℘♭ψ, q0℘♭ψ,

ℵ℘♭ψ〉, with Q℘♭ψ , Q♭ψ, q0℘♭ψ , q0♭ψ , andℵ℘♭ψ , ℵ♭ψ, which is used to handle the quan-
tification prefix℘ atomically, where the transition function is defined as follows:δ℘♭ψ(q, (θ, s)) ,
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∧
v∈ValAcG

([[℘]]) δ♭ψ(q, (θ(v), s)), for all q ∈ Q℘♭ψ and(θ, s) ∈ DMAcG (℘)× StG . Intuitively,UG
℘♭ψ

reads an action dependence mapθ on each node of the input treeT labeled with a states of G and
simulates the execution of the transition functionδ♭ψ(q, (v, s)) of UG

♭ψ
, for each possible valuation

v = θ(v′) on free(♭ψ) obtained fromθ by a universal valuationv′ ∈ ValAcG ([[℘]]). It is important
to observe that we cannot move the component setDMAcG (℘) from the input alphabet to the states
of UG

℘♭ψ , by making a related guessing of the dependence mapθ in the transition function, since we
have to ensure that all states in a given node of the treeT , i.e., in each track of the original model
G, make the same choice forθ.

Finally, it remains to prove that, for all statess ∈ StG and elementary dependence map over
strategiesθ ∈ EDMStrG(s)(℘), it holds thatG, θ(χ), s |=E ♭ψ, for all χ ∈ AsgG([[℘]], s), iff T ∈

L(UG
℘♭ψ), whereT is the elementary dependence-state encoding forθ.

[Only if]. Suppose thatG, θ(χ), s |=E ♭ψ, for all χ ∈ AsgG([[℘]], s). Sinceψ does not contain
principal subsentences, we have thatG, θ(χ), s |= ♭ψ. So, due to the property ofUG

♭ψ, it follows

that there exists an assignment-state encodingTχ ∈ L(UG
♭ψ), which implies the existence of an

(StG×Q♭ψ)-treeRχ that is an accepting run forUG
♭ψ onTχ. At this point, letR ,

⋃
χ∈AsgG([[℘]],s) Rχ

be the union of all runs. Then, due to the particular definition of the transition function ofUG
℘♭ψ

, it

is not hard to see thatR is an accepting run forUG
℘♭ψ onT . Hence,T ∈ L(UG

℘♭ψ).

[If]. Suppose thatT ∈ L(UG
℘♭ψ). Then, there exists an(StG×Q℘♭ψ)-treeR that is an accepting run

for UG
℘♭ψ onT . Now, for eachχ ∈ AsgG([[℘]], s), letRχ be the run forUG

♭ψ on the assignment-state

encodingTχ for θ(χ). Due to the particular definition of the transition functionof UG
℘♭ψ, it is easy to

see thatRχ ⊆ R. Thus, sinceR is accepting, we have thatRχ is accepting as well. So,Tχ ∈ L(UG
♭ψ).

At this point, due to the property ofUG
♭ψ

, it follows thatG, θ(χ), s |= ♭ψ. Now, sinceψ does not
contain principal subsentences, we have thatG, θ(χ), s |=E ♭ψ, for all χ ∈ AsgG([[℘]], s).

At this point, we can prove the following theorem that is at the base of the elementary model-
checking procedure for SL[1G].

THEOREM 5.13 (SL[1G] SENTENCE AUTOMATON). LetG be aCGS, s ∈ StG one of its states,
and℘♭ψ an SL[1G] principal sentence without principal subsentences. Then,there exists anNPT

NG,s
℘♭ψ such thatG,∅, s |= ℘♭ψ iff L(NG,s

℘♭ψ) 6= ∅.

PROOF. As in the general case of SL sentence automaton, we have to ensure that the state label-
ing of nodes of the elementary dependence-state encoding iscoherent with the node itself. To do
this, we apply Theorem 5.4 of APT direction projection with distinguished directions to the UPT

UG
℘♭ψ

derived by Lemma 5.12 of the SL[1G] sentence automaton, thus obtaining the required NPT

NG,s
℘♭ψ.
[Only if]. Suppose thatG,∅, s |= ℘♭ψ. By Corollary 4.25 of SL[1G] elementariness, it means that

G,∅, s |=E ℘♭ψ. Then, by Definition 4.11 of SL[NG] elementary semantics, there exists an elemen-
tary dependence mapθ ∈ EDMStrG(s)(℘) such thatG, θ(χ), s |=E ♭ψ, for all χ ∈ AsgG([[℘]], s).
Thus, by Lemma 5.12, we have thatT ∈ L(UG

℘♭ψ
), whereT is the elementary dependence-state

encoding forθ. Hence, by Theorem 5.4, it holds thatL(NG,s
℘♭ψ) 6= ∅.

[If]. Suppose thatL(NG,s
℘♭ψ

) 6= ∅. Then, by Theorem 5.4, there exists an(DMAcG (℘) × StG)-

labeledStG-treeT such thatT ∈ L(UG
℘♭ψ). Now, it is immediate to see that there is an elementary

dependence mapθ ∈ EDMStrG(s)(℘) for which T is the elementary dependence-state encoding.
Thus, by Lemma 5.12, we have thatG, θ(χ), s |=E ♭ψ, for all χ ∈ AsgG([[℘]], s). By Definition 4.11
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of SL[NG] elementary semantics, it holds thatG,∅, s |=E ℘♭ψ. Hence, by Corollary 4.25 of SL[1G]
elementariness, it means thatG,∅, s |= ℘♭ψ.

Finally, we show in the next fundamental theorem the precisecomplexity of the model-checking
for SL[1G].

THEOREM 5.14 (SL[1G] MODEL CHECKING). The model-checking problem forSL[1G] is
PTIME-COMPLETE w.r.t. the size of the model and 2EXPTIME-COMPLETE w.r.t. the size of the
specification.

PROOF. By Theorem 5.13 of SL[1G] sentence automaton, to verify thatG,∅, s |= ℘♭ψ, we
simply calculate the emptiness of the NPT NG,s

℘♭ψ
. This automaton is obtained by the operation of

direction projection on the UCT UG
℘♭ψ

, which is in turn derived by the UCT UG
♭ψ

. Now, it is easy

to see that the number of states ofUG
♭ψ, and consequently ofUG

℘♭ψ, is 2O(lng(ψ)). So,NG,s
℘♭ψ has

|StG | · 22
O(lng(ψ))

states and index2O(lng(ψ)).
The emptiness problem for such a kind of automaton withn states and indexh is solvable in time

O(nh) [Kupferman and Vardi 1998]. Thus, we get that the time complexity of checking whether
G,∅, s |= ℘♭ψ is |StG |2

O(lng(ψ))

. At this point, since we have to do this verification for each possible
states ∈ StG and principal subsentence℘♭ψ ∈ psnt(ϕ) of the whole SL[1G] specificationϕ, we

derive that the whole bottom-up model-checking procedure requires time|StG |2
O(lng(ϕ))

. Hence, the
membership of the model-checking problem for SL[1G] in PTIME w.r.t. the size of the model and
2EXPTIME w.r.t. the size of the specification directly follows. Finally the thesis is proved, by getting
the relative lower bounds from the same problem for ATL∗ [Alur et al. 2002].

6. CONCLUSION

In this paper, we introduced and studied SL as a very powerful logic formalism to reasoning about
strategic behaviors of multi-agent concurrent games. In particular, we proved that it subsumes the
classical temporal and game logics not using explicit fix-points. As one of the main results about
SL, we shown that the relative model-checking problem is decidable but non-elementary hard. As
further and interesting practical results, we investigated several of its syntactic fragments. The most
appealing one is SL[1G], which is obtained by restricting SL to deal with one temporal goal at a
time. Interestingly, SL[1G] strictly extends ATL∗, while maintaining all its positive properties. In
fact, the model-checking problem is 2EXPTIME-COMPLETE, hence not harder than the one for
ATL∗. Moreover, although for the sake of space it is not reported in this paper, we shown that it
is invariant under bisimulation and decision-unwinding, and consequently, it has the decision-tree
model property. The main reason why SL[1G] has all these positive properties is that it satisfies a
special model property, which we name “elementariness”. Informally, this property asserts that all
strategy quantifications in a sentence can be reduced to a setof quantifications over actions, which
turn out to be easier to handle. We remark that among all SL fragments we investigated, SL[1G]
is the only one that satisfies this property. As far as we know,SL[1G] is the first significant proper
extension of ATL∗ having an elementary model-checking problem, and even more, with the same
computational complexity. All these positive aspects makeus strongly believe that SL[1G] is a valid
alternative to ATL∗ to be used in the field of formal verification for multi-agent concurrent systems.

As another interesting fragment we investigated in this paper, we recall SL[BG]. This logic al-
lows us to express important game-theoretic properties, such as Nash equilibrium, which cannot be
defined in SL[1G]. Unfortunately, we do not have an elementary model-checking procedure for it,
neither we can exclude it. We leave to investigate this as future work.

Last but not least, from a theoretical point of view, we are convinced that our framework can
be used as a unifying basis for logic reasonings about strategic behaviors in multi-agent scenarios
and their relationships. In particular, it can be used to study variations and extensions of SL[1G]
in a way similar as it has been done in the literature for ATL∗. For example, it could be interest-
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ing to investigate memoryful SL[1G], by inheriting and extending the “memoryful” concept used
for ATL∗ and CHP-SL and investigated in [Mogavero et al. 2010b] and [Fisman et al. 2010], respec-
tively. Also, we recall that this concept implicitly allowsto deal with backwards temporal modali-
ties. As another example, it would be interesting to investigate the graded extension of SL[1G], in
a way similar as it has been done in [Bianco et al. 2009; Biancoet al. 2010; Bianco et al. 2012]
and [Kupferman et al. 2002; Bonatti et al. 2008] for CTL andµCALCULUS, respectively. We re-
call that graded quantifiers in branching-time temporal logics allow to count how many equivalent
classes of paths satisfy a given property. This concept in SL[1G] would further allow the count-
ing of strategies and so to succinctly check the existence ofmore than one nonequivalent winning
strategy for a given agent, in one shot. We hope to lift to graded SL[1G] questions left open about
graded branching-time temporal logic, such as the precise satisfiability complexity of graded full
computation tree logic [Bianco et al. 2012].

A. MATHEMATICAL NOTATION

In this short reference appendix, we report the classical mathematical notation and some common
definitions that are used along the whole work.

Classic objects.We considerN as the set ofnatural numbersand[m,n] , {k ∈ N : m ≤ k ≤
n}, [m,n[ , {k ∈ N : m ≤ k < n}, ]m,n] , {k ∈ N : m < k ≤ n}, and ]m,n[ , {k ∈ N :

m < k < n} as itsintervalsubsets, withm ∈ N andn ∈ N̂ , N ∪ {ω}, whereω is thenumerable
infinity, i.e., theleast infinite ordinal. Given asetX of objects, we denote by|X| ∈ N̂ ∪ {∞}
the cardinality of X, i.e., the number of its elements, where∞ represents amore than countable
cardinality, and by2X , {Y : Y ⊆ X} thepowersetof X, i.e., the set of all its subsets.

Relations.By R ⊆ X×Y we denote arelationbetween thedomaindom(R) , X andcodomain
cod(R) , Y, whoserange is indicated byrng(R) , {y ∈ Y : ∃x ∈ X. (x, y) ∈ R}. We use
R−1 , {(y, x) ∈ Y × X : (x, y) ∈ R} to represent theinverseof R itself. Moreover, byS ◦ R,
with R ⊆ X × Y andS ⊆ Y × Z, we denote thecompositionof R with S , i.e., the relation
S ◦ R , {(x, z) ∈ X× Z : ∃y ∈ Y. (x, y) ∈ R ∧ (y, z) ∈ S}. We also useRn , Rn−1 ◦ R, with
n ∈ [1, ω[, to indicate then-iteration of R ⊆ X× Y, whereY ⊆ X andR0 , {(y, y) : y ∈ Y} is
theidentityonY. With R+ ,

⋃<ω
n=1 R

n andR∗ , R+ ∪R0 we denote, respectively, thetransitive
and reflexive-transitive closureof R. Finally, for anequivalencerelationR ⊆ X × X on X, we
represent with(X/R) , {[x]R : x ∈ X}, where[x]R , {x′ ∈ X : (x, x′) ∈ R}, thequotientset of
X w.r.t.R, i.e., the set of all related equivalenceclasses[·]R.

Functions.We use the symbolYX ⊆ 2X×Y to denote the set oftotal functionsf from X to Y,
i.e., the relationsf ⊆ X × Y such that for allx ∈ dom(f) there is exactly one elementy ∈ cod(f)
such that(x, y) ∈ f. Often, we writef : X → Y andf : X ⇀ Y to indicate, respectively,f ∈ YX

andf ∈
⋃

X′⊆X YX′

. Regarding the latter, note that we considerf as apartial functionfrom X to
Y, wheredom(f) ⊆ X contains all and only the elements for whichf is defined. Given a setZ, by
f↾Z , f ∩ (Z×Y) we denote therestrictionof f to the setX ∩ Z, i.e., the functionf↾Z : X∩ Z⇀ Y
such that, for allx ∈ dom(f) ∩ Z, it holds thatf↾Z(x) = f(x). Moreover, with∅ we indicate a
genericempty function, i.e., a function with empty domain. Note thatX ∩ Z = ∅ implies f↾Z = ∅.
Finally, for two partial functionsf, g : X⇀ Y, we usef ⋒ g andf ⋓ g to represent, respectively, the
unionandintersectionof these functions defined as follows:dom(f ⋒g) , dom(f)∪dom(g)\{x ∈
dom(f) ∩ dom(g) : f(x) 6= g(x)}, dom(f ⋓ g) , {x ∈ dom(f) ∩ dom(g) : f(x) = g(x)},
(f ⋒ g)(x) = f(x) for x ∈ dom(f ⋒ g) ∩ dom(f), (f ⋒ g)(x) = g(x) for x ∈ dom(f ⋒ g) ∩ dom(g),
and(f ⋓ g)(x) = f(x) for x ∈ dom(f ⋓ g).

Words.By Xn, with n ∈ N, we denote the set of alln-tuplesof elements fromX, by X∗ ,⋃<ω
n=0 X

n the set offinite wordson thealphabetX, byX+ , X∗ \ {ε} the set ofnon-empty words,
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and byXω the set ofinfinite words, where, as usual,ε ∈ X∗ is theempty word. The lengthof a
wordw ∈ X∞ , X∗ ∪ Xω is represented with|w| ∈ N̂. By (w)i we indicate thei-th letterof the
finite wordw ∈ X+, with i ∈ [0, |w|[ . Furthermore, byfst(w) , (w)0 (resp.,lst(w) , (w)|w|−1),
we denote thefirst (resp.,last) letter ofw. In addition, by(w)≤i (resp.,(w)>i), we indicate the
prefix up to (resp.,suffix after) the letter of indexi of w, i.e., the finite word built by the first
i + 1 (resp., last|w| − i − 1) letters(w)0, . . . , (w)i (resp.,(w)i+1, . . . , (w)|w|−1). We also set,
(w)<0 , ε, (w)<i , (w)≤i−1, (w)≥0 , w, and(w)≥i , (w)>i−1, for i ∈ [1, |w|[ . Mutatis
mutandis, the notations ofi-th letter, first, prefix, and suffix apply to infinite words too. Finally, by
pfx(w1, w2) ∈ X∞ we denote themaximal common prefixof two different wordsw1, w2 ∈ X∞,
i.e., the finite wordw ∈ X∗ for which there are two wordsw′

1, w
′
2 ∈ X∞ such thatw1 = w · w′

1,
w2 = w · w′

2, andfst(w′
1) 6= fst(w′

2). By convention, we setpfx(w,w) , w.

Trees.For a set∆ of objects, calleddirections, a∆-tree is a setT ⊆ ∆∗ closed under prefix, i.e.,
if t · d ∈ T, with d ∈ ∆, then alsot ∈ T. We say that it iscompleteif it holds thatt · d′ ∈ T
whenevert · d ∈ T, for all d′ < d, where< ⊆ ∆ ×∆ is an a priori fixed strict total order on the
set of directions that is clear from the context. Moreover, it is full if T = ∆∗. The elements ofT are
callednodesand the empty wordε is theroot of T. For everyt ∈ T andd ∈ ∆, the nodet ·d ∈ T is
asuccessorof t in T. The tree isb-boundedif the maximal numberb of its successor nodes is finite,
i.e.,b = maxt∈T |{t · d ∈ T : d ∈ ∆}| < ω. A branchof the tree is an infinite wordw ∈ ∆ω such
that(w)≤i ∈ T, for all i ∈ N. For a finite setΣ of objects, calledsymbols, aΣ-labeled∆-tree is a
quadruple〈Σ,∆,T, v〉, whereT is a∆-tree andv : T → Σ is a labeling function. When∆ andΣ
are clear from the context, we call〈T, v〉 simply a (labeled) tree.

B. PROOFS OF SECTION ??

In this appendix, we report the proofs of lemmas needed to prove the elementariness of SL[1G].
Before this, we describe two relevant properties that link together dependence maps of a given
quantification prefix with those of the dual one. These properties report, in the dependence maps
framework, what is known to hold, in an equivalent way, for first and second order logic. In particu-
lar, they result to be two key points towards a complete understanding of the strategy quantifications
of our logic.

The first of these properties enlighten the fact that two arbitrary dual dependence mapsθ andθ
always share a common valuationv. To better understand this concept, consider for instance the
functionsθ1 andθ6 of the examples illustrated just after Definition 4.5 of dependence maps. Then,
it is easy to see that the valuationv ∈ ValD(V) with v(x) = v(y) = 1 andv(z) = 0 resides in both
the ranges ofθ1 andθ6, i.e.,v ∈ rng(θ1) ∩ rng(θ6).

LEMMA B.1 (DEPENDENCEINCIDENCE). Let℘ ∈ Qnt(V) be a quantification prefix over a
set of variablesV ⊆ Var andD a generic set. Moreover, letθ ∈ DMD(℘) andθ ∈ DMD(℘) be two
dependence maps. Then, there exists a valuationv ∈ ValD(V) such thatv = θ(v↾[[℘]]) = θ(v↾[[℘]]).

PROOF. W.l.o.g., suppose that℘ starts with an existential quantifier. If this is not the case, the
dual prefix℘ necessarily satisfies the above requirement, so, we can simply shift our reasoning on
it.

The whole proof proceeds by induction on the alternation numberalt(℘) of ℘. As base case, if
alt(℘) = 0, we definev , θ(∅), since[[℘]] = ∅. Obviously, it holds thatv = θ(v↾[[℘]]) = θ(v↾[[℘]]),
due to the fact thatv↾[[℘]] = ∅ andv↾[[℘]] = v. Now, as inductive case, suppose that the statement
is true for all prefixes℘′ ∈ Qnt(V′) with alt(℘′) = n, whereV′ ⊂ V. Then, we prove that it is
true for all prefixes℘ ∈ Qnt(V) with alt(℘) = n + 1 too. To do this, we have to uniquely split
℘ = ℘′ · ℘′′ into the two prefixes℘′ ∈ Qnt(V′) and℘′′ ∈ Qnt(V \ V′) such thatalt(℘′) = n and
alt(℘′′) = 0. At this point, the following two cases can arise.
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— If n is even, it is immediate to see that〈〈℘′′〉〉 = ∅. So, consider the dependence mapsθ′ ∈
DMD(℘

′) and θ′ ∈ DMD(℘′) such thatθ′(v↾[[℘′]]) = θ(v)↾V′ and θ′(v) = θ(v)↾V′ , for all
valuationsv ∈ ValD([[℘]]) andv ∈ ValD([[℘]]) = ValD([[℘′ ]]). By the inductive hypothesis, there
exists a valuationv′ ∈ ValD(V

′) such thatv′ = θ′(v′
↾[[℘′]]) = θ′(v′

↾[[℘′ ]]
). So, setv , θ(v′

↾[[℘]]).

— If n is odd, it is immediate to see that[[℘′′]] = ∅. So, consider the dependence mapsθ′ ∈ DMD(℘
′)

and θ′ ∈ DMD(℘′) such thatθ′(v) = θ(v)↾V′ and θ′(v↾[[℘′ ]]) = θ(v)↾V′ , for all valuations
v ∈ ValD([[℘]]) = ValD([[℘

′]]) andv ∈ ValD([[℘]]). By the inductive hypothesis, there exists a
valuationv′ ∈ ValD(V

′) such thatv′ = θ′(v′
↾[[℘′ ]]) = θ′(v′

↾[[℘′ ]]
). So, setv , θ(v′

↾[[℘]]).

Now, it is easy to see that in both cases the valuationv satisfies the thesis, i.e.,v = θ(v↾[[℘]]) =

θ(v↾[[℘]]).

The second property we are going to prove describes the fact that, if all dependence mapsθ of a
given prefix℘, for a dependent specific universal valuationv, share a given property then there is a
dual dependence mapsθ that has the same property, for all universal valuationsv. To have a better
understanding of this idea, consider again the examples reported just after Definition 4.5 and let
P , {(0, 0, 1), (0, 1, 0)} ⊂ ValD(V), where the triple(l,m, n) stands for the valuation that assigns
l to x, m to y, andn to z. Then, it is easy to see that all ranges of the dependence mapsθi for ℘
intersectP, i.e., for all i ∈ [0, 3], there isv ∈ ValD([[℘]]) such thatθi(v) ∈ P. Moreover, consider
the dual dependence mapsθ2 for ℘. Then, it is not hard to see thatθ2(v) ∈ P, for all v ∈ ValD([[℘]]).

LEMMA B.2 (DEPENDENCEDUALIZATION ). Let℘ ∈ Qnt(V) be a quantification prefix over
a set of variablesV ⊆ Var, D a generic set, andP ⊆ ValD(V) a set of valuations ofV overD.
Moreover, suppose that, for all dependence mapsθ ∈ DMD(℘), there is a valuationv ∈ ValD([[℘]])
such thatθ(v) ∈ P. Then, there exists a dependence mapθ ∈ DMD(℘) such that, for all valuations
v ∈ ValD([[℘]]), it holds thatθ(v) ∈ P.

PROOF. The proof easily proceeds by induction on the length of the prefix℘. As base case, when
|℘| = 0, we have thatDMD(℘) = DMD(℘) = {∅}, i.e., the only possible dependence maps is the
empty function, which means that the statement is vacuouslyverified. As inductive case, we have
to distinguish between two cases, as follows.

— ℘ = 〈〈x〉〉 · ℘′.
As first thing, note that[[℘]] = [[℘′]] and, for all elementse ∈ D, consider the projectionPe ,
{v′ ∈ ValD(V(℘

′)) : v′[x 7→ e] ∈ P} of P on the variablex with valuee.
Then, by hypothesis, we can derive that, for alle ∈ D andθ′ ∈ DMD(℘

′), there existsv′ ∈
ValD([[℘

′]]) such thatθ′(v′) ∈ Pe. Indeed, lete ∈ D andθ′ ∈ DMD(℘
′), and build the functionθ :

ValD([[℘]]) → ValD(V) given byθ(v′) , θ′(v′)[x 7→ e], for all v′ ∈ ValD([[℘]]) = ValD([[℘
′]]).

It is immediate to see thatθ ∈ DMD(℘). So, by the hypothesis, there isv′ ∈ ValD([[℘]]) such that
θ(v′) ∈ P, which impliesθ′(v′)[x 7→ e] ∈ P, and so,θ′(v′) ∈ Pe.

Now, by the inductive hypothesis, for all elementse ∈ D, there existsθ′e ∈ DMD(℘′) such
that, for allv′ ∈ ValD([[℘′ ]]), it holds thatθ′e(v′) ∈ Pe, i.e.,θ′e(v′)[x 7→ e] ∈ P.

At this point, consider the functionθ : ValD([[℘]]) → ValD(V) given by θ(v) ,
θ′v(x)(v↾[[℘′ ]])[x 7→ v(x)], for all v ∈ ValD([[℘]]). Then, it is possible to verify thatθ ∈ DMD(℘).

Indeed, for eachy ∈ [[℘]] and v ∈ ValD([[℘]]), we have thatθ(v)(y) = θ′v(x)(v↾[[℘′ ]])[x 7→

v(x)](y). Now, if y = x thenθ(v)(y) = v(y). Otherwise, sinceθ′v(x) is a dependence map, it
holds thatθ(v)(y) = θ′v(x)(v↾[[℘′ ]])(y) = v↾[[℘′ ]](y) = v(y). So, Item 1 of Definition 4.5 of de-
pendence maps is verified. It only remains to prove Item 2. Lety ∈ 〈〈℘〉〉 andv1 , v2 ∈ ValD([[℘]]),
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with v1 ↾Dep(℘,y) = v2 ↾Dep(℘,y). It is immediate to see thatx ∈ Dep(℘, y), so,v1(x) = v2(x),

which implies thatθ′v1 (x) = θ′v2 (x). At this point, again for the fact thatθ′v(x) is a dependence
map, for eachv ∈ ValD([[℘]]), we have thatθ′v1 (x)(v1 ↾[[℘′ ]])(y) = θ′v2 (x)(v2 ↾[[℘′ ]])(y). Thus,

it holds thatθ(v1)(y) = θ′v1 (x)(v1 ↾[[℘′ ]])[x 7→ v1(x)](y) = θ′v2 (x)(v2 ↾[[℘′ ]])[x 7→ v2(x)](y) =

θ(v2)(y).
Finally, it is enough to observe that, by construction,θ(v) ∈ P, for all v ∈ ValD([[℘]]), since

θ′v(x)(v↾[[℘′ ]]) ∈ Pv(x). Thus, the thesis holds for this case.
— ℘ = [[x]] · ℘′.

We first show that there existse ∈ D such that, for allθ′ ∈ DMD(℘
′), there isv′ ∈ ValD([[℘

′]])
for whichθ′(v′) ∈ Pe holds, where the setPe is defined as above.

To do this, suppose by contradiction that, for alle ∈ D, there is aθ′e ∈ DMD(℘
′) such that,

for all v′ ∈ ValD([[℘
′]]), it holds thatθ′e(v

′) 6∈ Pe. Also, consider the functionθ : ValD([[℘]]) →
ValD(V) given byθ(v) , θ′

v(x)(v↾[[℘′]])[x 7→ v(x)], for all v ∈ ValD([[℘]]). Then, is possible to
verify thatθ ∈ DMD(℘). Indeed, for eachy ∈ [[℘]] andv ∈ ValD([[℘]]), we have thatθ(v)(y) =
θ′
v(x)(v↾[[℘′]])[x 7→ v(x)](y). Now, if y = x thenθ(v)(y) = v(y). Otherwise, sinceθ′

v(x) is a
dependence map, it holds thatθ(v)(y) = θ′

v(x)(v↾[[℘′]])(y) = v↾[[℘′]](y) = v(y). So, Item 1 of
Definition 4.5 of dependence maps is verified. It only remainsto prove Item 2. Lety ∈ 〈〈℘〉〉 and
v1, v2 ∈ ValD([[℘]]), with v1↾Dep(℘,y) = v2↾Dep(℘,y). It is immediate to see thatx ∈ Dep(℘, y),
so,v1(x) = v2(x), which implies thatθ′

v1(x)
= θ′

v2(x)
. At this point, again for the fact thatθ′

v(x) is
a dependence map, for eachv ∈ ValD([[℘]]), we have thatθ′

v1(x)
(v1↾[[℘′]])(y) = θ′

v2(x)
(v2↾[[℘′]])(y).

Thus, it holds thatθ(v1)(y) = θ′
v1(x)

(v1↾[[℘′]])[x 7→ v1(x)](y) = θ′
v2(x)

(v2↾[[℘′]])[x 7→ v2(x)](y) =

θ(v2)(y). Now, by the contradiction hypothesis, we have thatθ(v) 6∈ P, for all v ∈ Val([[℘]]),
sinceθ′

v(x)(v↾[[℘′]]) 6∈ Pv(x), which is in evident contradiction with the hypothesis.

At this point, by the inductive hypothesis, there existsθ′ ∈ DMD(℘′) such that, for allv′ ∈
ValD([[℘′ ]]), it holds thatθ′(v′) ∈ Pe, i.e.,θ′(v′)[x 7→ e] ∈ P.

Finally, build the functionθ : ValD([[℘]]) → ValD(V) given byθ(v) , θ′(v)[x 7→ e], for
all v ∈ ValD([[℘]]) = ValD([[℘′ ]]). It is immediate to see thatθ ∈ DMD(℘). Moreover, for all
valuationsv ∈ ValD([[℘]]), it holds thatθ(v) ∈ P. Thus, the thesis holds for this case too.

Hence, we have done with the proof of the lemma.

At this point, we are able to give the proofs of Lemma 4.9 of adjoint dependence maps,
Lemma 4.21 of dependence-vs-valuation duality, and Lemma 4.23 of encasement characterization.

LEMMA B.3 (ADJOINT DEPENDENCEMAPS). Let℘ ∈ Qnt(V) be a quantification prefix over
a set of variablesV ⊆ Var,D andT two generic sets, andθ : ValT→D([[℘]]) → ValT→D(V) andθ̃ :

T → (ValD([[℘]]) → ValD(V)) two functions such that̃θ is the adjoint ofθ. Then,θ ∈ DMT→D(℘)

iff, for all t ∈ T, it holds thatθ̃(t) ∈ DMD(℘).

PROOF. To prove the statement, it is enough to show, separately, that Items 1 and 2 of Defini-
tion 4.5 of dependence maps hold forθ if the θ̃(t) satisfies the same items, for allt ∈ T, and vice
versa.

[Item 1, if]. Assume that̃θ(t) satisfies Item 1, for eacht ∈ T, i.e., θ̃(t)(v)↾[[℘]] = v, for all

v ∈ ValD([[℘]]). Then, we have that̃θ(t)(ĝ(t)) = ĝ(t), so, θ̃(t)(ĝ(t))(x) = ĝ(t)(x), for all
g ∈ ValT→D([[℘]]) andx ∈ [[℘]]. By hypothesis, we have thatθ(g)(x)(t) = θ̃(t)(ĝ(t))(x), thus
θ(g)(x)(t) = ĝ(t)(x) = g(x)(t), which means thatθ(g)↾[[℘]] = g, for all g ∈ ValT→D([[℘]]).

[Item 1, only if].Assume now thatθ satisfies Item 1, i.e.,θ(g)↾[[℘]] = g, for all g ∈ ValT→D([[℘]]).
Then, we have thatθ(g)(x)(t) = g(x)(t), for all x ∈ [[℘]] and t ∈ T. By hypothesis, we have
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that θ̃(t)(ĝ(t))(x) = θ(g)(x)(t), so, θ̃(t)(ĝ(t))(x) = g(x)(t) = ĝ(t)(x), which means that
θ̃(t)(ĝ(t))↾[[℘]] = ĝ(t). Now, since for eachv ∈ ValD([[℘]]), there is ang ∈ ValT→D([[℘]]) such

thatĝ(t) = v, we obtain that̃θ(t)(v)↾[[℘]] = v, for all v ∈ ValD([[℘]]) andt ∈ T.

[Item 2, if]. Assume that̃θ(t) satisfies Item 2, for eacht ∈ T, i.e., θ̃(t)(v1)(x) = θ̃(t)(v2)(x),
for all v1, v2 ∈ ValD([[℘]]) andx ∈ 〈〈℘〉〉 such thatv1↾Dep(℘,x) = v2↾Dep(℘,x). Then, we have

that θ̃(t)(ĝ1(t))(x) = θ̃(t)(ĝ2(t))(x), for all g1, g2 ∈ ValT→D([[℘]]) such thatg1↾Dep(℘,x) =

g2↾Dep(℘,x). By hypothesis, we have thatθ(g1)(x)(t) = θ̃(t)(ĝ1(t))(x) and θ̃(t)(ĝ2(t))(x) =

θ(g2)(x)(t), thus θ(g1)(x)(t) = θ(g2)(x)(t). Hence,θ(g1)(x) = θ(g2)(x), for all g1, g2 ∈
ValT→D([[℘]]) andx ∈ 〈〈℘〉〉 such thatg1↾Dep(℘,x) = g2↾Dep(℘,x).

[Item 2, only if]. Assume thatθ satisfies Item 2, i.e.,θ(g1)(x) = θ(g2)(x), for all g1, g2 ∈
ValT→D([[℘]]) andx ∈ 〈〈℘〉〉 such thatg1↾Dep(℘,x) = g2↾Dep(℘,x). Then, we have thatθ(g1)(x)(t) =

θ(g2)(x)(t), for all t ∈ T. By hypothesis, we have that̃θ(t)(ĝ1(t))(x) = θ(g1)(x)(t) and
θ(g2)(x)(t) = θ̃(t)(ĝ2(t))(x), henceθ̃(t)(ĝ1(t))(x) = θ̃(t)(ĝ2(t))(x). Now, since for each
v1, v2 ∈ ValD([[℘]]), with v1↾Dep(℘,x) = v2↾Dep(℘,x), there areg1, g2 ∈ ValT→D([[℘]]) such

that ĝ1(t) = v1 and ĝ2(t) = v2, with g1↾Dep(℘,x) = g2↾Dep(℘,x), we obtain that̃θ(t)(v1)(x) =

θ̃(t)(v2)(x), for all v1, v2 ∈ ValD([[℘]]) andx ∈ 〈〈℘〉〉 such thatv1↾Dep(℘,x) = v2↾Dep(℘,x).

LEMMA B.4 (DEPENDENCE-VS-VALUATION DUALITY ). Let G be aCGS, s ∈ St one of its
states,P ⊆ Pth(s) a set of paths,℘ ∈ Qnt(V) a quantification prefix over a set of variables
V ⊆ Var, and♭ ∈ Bnd(V) a binding. Then, player even wins theTPG H(G, s,P, ℘, ♭) iff player
odd wins the dualTPGH(G, s,Pth(s) \ P, ℘, ♭).

PROOF. Let A andA be, respectively, the two TPAs A(G, s, ℘, ♭) andA(G, s, ℘, ♭). It is easy
to observe thatPoseA = PoseA = Trk(s). Moreover, it holds thatPosoA = {ρ · (lst(ρ), θ) :

ρ ∈ Trk(s) ∧ θ ∈ DMAc(℘)} andPosoA = {ρ · (lst(ρ), θ) : ρ ∈ Trk(s) ∧ θ ∈ DMAc(℘)}. We
now prove, separately, the two directions of the statement.

[Only if]. Suppose that player even wins the TPG H(G, s,P, ℘, ♭). Then, there exists an even
schemese ∈ ScheA such that, for all odd schemesso ∈ SchoA, it holds thatmtcA(se, so) ∈ P. Now,
to prove that odd wins the dual TPGH(G, s,Pth(s) \ P, ℘, ♭), we have to show that there exists an
odd schemeso ∈ SchoA such that, for all even schemesse ∈ ScheA , it holds thatmtcA(se , so) ∈ P.

To do this, let us first consider a functionz : DMAc(℘) × DMAc(℘) → ValAc(V) such that
z(θ, θ) = θ(z(θ, θ)↾[[℘]]) = θ(z(θ, θ)↾[[℘]]), for all θ ∈ DMAc(℘) andθ ∈ DMAc(℘). The existence
of such a function is ensured by Lemma B.1 on the dependence incidence.

Now, define the odd schemeso ∈ SchoA in A as follows:so(ρ · (lst(ρ), θ)) , τ(lst(ρ), z(θ, θ) ◦

ζ♭), for all ρ ∈ Trk(s) andθ ∈ DMAc(℘), whereθ ∈ DMAc(℘) is such thatse(ρ) = (lst(ρ), θ).
Moreover, letse ∈ ScheA be a generic even scheme inA and consider the derived odd scheme

so ∈ SchoA in A defined as follows:so(ρ · (lst(ρ), θ)) , τ(lst(ρ), z(θ, θ) ◦ ζ♭), for all ρ ∈ Trk(s)
andθ ∈ DMAc(℘), whereθ ∈ DMAc(℘) is such thatse(ρ) = (lst(ρ), θ).

At this point, it remains only to prove that̟ = ̟ , where̟ , mtcA(se, so) and̟ ,
mtcA(se , so). To do this, we proceed by induction on the prefixes of the matches, i.e., we show that
(̟)≤i = (̟)≤i, for all i ∈ N. The base case is immediate by definition of match, since we have that
(̟)≤0 = s = (̟)≤0. Now, as inductive case, suppose that(̟)≤i = (̟)≤i, for i ∈ N. By the defi-
nition of match, we have that(̟)i+1 = so((̟)≤i·se((̟)≤i)) and(̟)i+1 = so((̟)≤i·se((̟)≤i)).
Moreover, by the inductive hypothesis, it follows thatso((̟)≤i · se((̟)≤i)) = so((̟)≤i ·
se((̟)≤i)). At this point, letθ ∈ DMAc(℘) andθ ∈ DMAc(℘) be two quantification dependence
maps such thatse((̟)≤i) = ((̟)i, θ) and se((̟)≤i) = ((̟)i, θ). Consequently, by substitut-
ing the values of the even schemesse andse , it holds that(̟)i+1 = so((̟)≤i · ((̟)i, θ)) and
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(̟)i+1 = so((̟)≤i · ((̟)i, θ)). Furthermore, by the definition of the odd schemesso andso , it
follows thatso((̟)≤i · ((̟)i, θ)) = τ((̟)i, z(θ, θ) ◦ ζ♭) = so((̟)≤i · ((̟)i, θ)). Thus, we have
that(̟)i+1 = (̟)i+1, which implies(̟)≤i+1 = (̟)≤i+1.

[If]. Suppose that player odd wins the dual TPGH(G, s,Pth(s) \ P, ℘, ♭). Then, there exists an
odd schemeso ∈ SchoA such that, for all even schemesse ∈ ScheA , it holds thatmtcA(se , so) ∈ P.
Now, to prove that even wins the TPG H(G, s,P, ℘, ♭), we have to show that there exists an even
schemese ∈ ScheA such that, for all odd schemesso ∈ SchoA, it holds thatmtcA(se, so) ∈ P.

To do this, let us first consider the two functionsg : Trk(s) → 2ValAc(V) andh : Trk(s) → 2St

such thatg(ρ) , {θ(v) : θ ∈ DMAc(℘)∧v ∈ ValAc([[℘]])∧so(ρ·(lst(ρ), θ)) = τ(lst(ρ), θ(v)◦ζ♭)}
andh(ρ) , {so(ρ · (lst(ρ), θ)) : θ ∈ DMAc(℘)}, for all ρ ∈ Trk(s). Now, it is easy to see that, for
eachρ ∈ Trk(s) andθ ∈ DMAc(℘), there isv ∈ ValAc([[℘]]) such thatθ(v) ∈ g(ρ). Consequently,
by Lemma B.2 on dependence dualization, for allρ ∈ Trk(s), there isθρ ∈ DMAc(℘) such that,
for eachv ∈ ValAc([[℘]]), it holds thatθρ(v) ∈ g(ρ), and so,τ(lst(ρ), θρ(v) ◦ ζ♭) ∈ h(ρ).

Now, define the even schemese ∈ ScheA in A as follows:se(ρ) , (lst(ρ), θρ), for all ρ ∈ Trk(s).
Moreover, letso ∈ ScheA be a generic odd scheme inA and consider the derived even scheme
se ∈ ScheA in A defined as follows:se(ρ) , (lst(ρ), θρ), for all ρ ∈ Trk(s), whereθρ ∈ DMAc(℘)

is such thatso(ρ · (lst(ρ), θρ)) = so(ρ · (lst(ρ), θρ)). The existence of such a dependence map is
ensure by the previous membership of the successor oflst(ρ) in h(ρ).

At this point, it remains only to prove that̟ = ̟, where̟ , mtcA(se, so) and̟ ,
mtcA(se , so). To do this, we proceed by induction on the prefixes of the matches, i.e., we show
that (̟)≤i = (̟)≤i, for all i ∈ N. The base case is immediate by definition of match, since
we have that(̟)≤0 = s = (̟)≤0. Now, as inductive case, suppose that(̟)≤i = (̟)≤i,
for i ∈ N. By the definition of match, we have that(̟)i+1 = so((̟)≤i · se((̟)≤i)) and
(̟)i+1 = so((̟)≤i · se((̟)≤i)). Moreover, by the inductive hypothesis, it follows thatso((̟)≤i ·
se((̟)≤i)) = so((̟)≤i ·se((̟)≤i)). Now, by substituting the values of the even schemesse andse ,
we have that(̟)i+1 = so((̟)≤i ·((̟)i, θ(̟)≤i)) and(̟)i+1 = so((̟)≤i ·((̟)i, θ̟≤i

)). At this

point, due to the choice of the dependence mapθ(̟)≤i , it holds thatso((̟)≤i · ((̟)i, θ(̟)≤i)) =

so((̟)≤i · ((̟)i, θ(̟)≤i)). Thus, we have that(̟)i+1 = (̟)i+1, which implies(̟)≤i+1 =

(̟)≤i+1.

LEMMA B.5 (ENCASEMENT CHARACTERIZATION). LetG be aCGS, s ∈ St one of its states,
P ⊆ Pth(s) a set of paths,℘ ∈ Qnt(V) a quantification prefix over a set of variablesV ⊆ Var,
and♭ ∈ Bnd(V) a binding. Then, the following hold:

(i) player even winsH(G, s,P, ℘, ♭) iff P is an encasement w.r.t.℘ and♭;
(ii) if player odd winsH(G, s,P, ℘, ♭) thenP is not an encasement w.r.t.℘ and♭;
(iii) if P is a Borelian set and it is not an encasement w.r.t.℘ and ♭ then player odd wins

H(G, s,P, ℘, ♭).

PROOF. [Item i, only if]. Suppose that player even wins the TPG H(G, s,P, ℘, ♭). Then, there
exists an even schemese ∈ Sche such that, for all odd schemesso ∈ Scho, it holds thatmtc(se, so) ∈
P. Now, to prove the statement, we have to show that there exists an elementary dependence map
θ ∈ EDMStr(s)(℘) such that, for all assignmentsχ ∈ Asg([[℘]], s), it holds thatplay(θ(χ) ◦ ζ♭, s) ∈
P.

To do this, consider the functionw : Trk(s) → DMAc(℘) constituting the projection of
se on the second component of its codomain, i.e., for allρ ∈ Trk(s), it holds thatse(ρ) =
(lst(ρ),w(ρ)). By Lemma 4.9 on adjoint dependence maps, there exists an elementary dependence
mapθ ∈ EDMStr(s)(℘) for which w is the adjoint, i.e.,w = θ̃. Moreover, letχ ∈ Asg([[℘]], s)
be a generic assignment and consider the derived odd schemeso ∈ Scho defined ad follows:
so(ρ · (lst(ρ), θ′)) = τ(lst(ρ), θ′(χ̂(ρ)) ◦ ζ♭), for all ρ ∈ Trk(s) andθ′ ∈ DMAc(℘).
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At this point, it remains only to prove thatπ = ̟, whereπ , play(θ(χ) ◦ ζ♭, s) and̟ ,
mtc(se, so). To do this, we proceed by induction on the prefixes of both theplay and the match, i.e.,
we show that(π)≤i = (̟)≤i, for all i ∈ N. The base case is immediate by definition, since we have
that(π)≤0 = s = (̟)≤0. Now, as inductive case, suppose that(π)≤i = (̟)≤i, for i ∈ N. On one
hand, by the definition of match, we have that(̟)i+1 = so((̟)≤i ·se((̟)≤i)), from which, by sub-
stituting the value of the even schemese, we derive(̟)i+1 = so((̟)≤i · ((̟)i, θ̃((̟)≤i))). On the
other hand, by the definition of play, we have that(π)i+1 = τ((π)i, θ̃((π)≤i)(χ̂((π)≤i))◦ ζ♭), from
which, by using the definition of the odd schemeso, we derive(π)i+1 = so((π)≤i ·((π)i, θ̃((π)≤i))).
Then, by the inductive hypothesis, we have that(̟)i+1 = so((̟)≤i · ((̟)i, θ̃((̟)≤i))) =

so((π)≤i · ((π)i, θ̃((π)≤i))) = (π)i+1, which implies(̟)≤i+1 = (π)≤i+1.
[Item i, if]. Suppose thatP is an encasement w.r.t.℘ and ♭. Then, there exists an elementary

dependence mapθ ∈ EDMStr(s)(℘) such that, for all assignmentsχ ∈ Asg([[℘]], s), it holds that
play(θ(χ) ◦ ζ♭, s) ∈ P. Now, to prove the statement, we have to show that there exists an even
schemese ∈ Sche such that, for all odd schemesso ∈ Scho, it holds thatmtc(se, so) ∈ P.

To do this, consider the even schemese ∈ Sche defined as follows:se(ρ) , (lst(ρ), θ̃(ρ)), for
all ρ ∈ Trk(s). Observe that, by Lemma 4.9 on adjoint dependence maps, the definition is well-
formed. Moreover, letso ∈ Scho be a generic odd scheme and consider a derived assignmentχ ∈

Asg([[℘]], s) satisfying the following property:̂χ(ρ) ∈ {v ∈ ValAc([[℘]]) : so(ρ · (lst(ρ), θ̃(ρ))) =

τ(lst(ρ), θ̃(v) ◦ ζ♭)}, for all ρ ∈ Trk(s).
At this point, it remains only to prove thatπ = ̟, whereπ , play(θ(χ) ◦ ζ♭, s) and̟ ,

mtc(se, so). To do this, we proceed by induction on the prefixes of both theplay and the match, i.e.,
we show that(π)≤i = (̟)≤i, for all i ∈ N. The base case is immediate by definition, since we
have that(π)≤0 = s = (̟)≤0. Now, as inductive case, suppose that(π)≤i = (̟)≤i, for i ∈ N. On
one hand, by the definition of match, we have that(̟)i+1 = so((̟)≤i · se((̟)≤i)), from which,
by the definition of the even schemese, we derive(̟)i+1 = so((̟)≤i · ((̟)i, θ̃((̟)≤i))). On the
other hand, by the definition of play, we have that(π)i+1 = τ((π)i, θ̃((π)≤i)(χ̂((π)≤i))◦ ζ♭), from
which, by the choice of the assignmentχ, we derive(π)i+1 = so((π)≤i · ((π)i, θ̃((π)≤i))). Then,
by the inductive hypothesis, we have that(̟)i+1 = so((̟)≤i · ((̟)i, θ̃((̟)≤i))) = so((π)≤i ·

((π)i, θ̃((π)≤i))) = (π)i+1, which implies(̟)≤i+1 = (π)≤i+1.
[Item ii]. If player odd wins the TPGH(G, s,P, ℘, ♭), we have that player even does not win the

same game. Consequently, by Item i, it holds thatP is not an encasement w.r.t.℘ and♭.
[Item iii]. If P is not an encasement w.r.t.℘ and♭, by Item i, we have that player even does not

win the TPGH(G, s,P, ℘, ♭). Now, sinceP is Borelian, by the determinacy theorem [Martin 1975;
Martin 1985], it holds that player odd wins the same game.
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