
ar
X

iv
:1

61
1.

08
54

1v
1

 [
cs

.L
O

]
 2

5
N

ov
 2

01
6

REASONING ABOUT STRATEGIES:

ON THE SATISFIABILITY PROBLEM⋆

FABIO MOGAVERO1, ANIELLO MURANO2, GIUSEPPE PERELLI1†, AND MOSHE Y. VARDI3††

1University of Oxford

2Università degli Studi di Napoli Federico II

3Rice University

Abstract. Strategy Logic (SL, for short) has been introduced by Mogavero, Murano, and
Vardi as a useful formalism for reasoning explicitly about strategies, as first-order objects,
in multi-agent concurrent games. This logic turns out to be very powerful, subsuming
all major previously studied modal logics for strategic reasoning, including ATL, ATL⋆,
and the like. Unfortunately, due to its high expressiveness, SL has a non-elementarily
decidable model-checking problem and the satisfiability question is undecidable, specifically
Σ1

1-hard.
In order to obtain a decidable sublogic, we introduce and study here One-Goal Strategy

Logic (SL[1g], for short). This is a syntactic fragment of SL, strictly subsuming ATL⋆,
which encompasses formulas in prenex normal form having a single temporal goal at a
time, for every strategy quantification of agents. We prove that, unlike SL, SL[1g] has
the bounded tree-model property and its satisfiability problem is decidable in 2ExpTime,
thus not harder than the one for ATL⋆.

1998 ACM Subject Classification: F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and
Reasoning about Programs - Specification techniques; F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic - Modal logic; Temporal logic.

Key words and phrases: Strategy Logic, Multi-Agent Games, Strategic Reasonings, Alternating-Time
Temporal Logic, Bounded Tree-Model Property, Satisfiability problem.

⋆This work is partially based on the articles [MMV10a] and [MMPV12] appearing in FST&TCS’10 and
CONCUR’12, respectively.

† The author thanks the support of the ERC Advanced Grant RACE (291528) at Oxford.
†† Work supported in part by NSF grants CCF-1319459 and IIS-1527668, by NSF Expeditions in Com-

puting project ”ExCAPE: Expeditions in Computer Augmented Program Engineering”, and by BSF grant
9800096.

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

© F. Mogavero, A. Murano, G. Perelli, and M.Y. Vardi
Creative Commons

1

http://arxiv.org/abs/1611.08541v1

2 F. MOGAVERO, A. MURANO, G. PERELLI, AND M.Y. VARDI

1. Introduction

In open-system verification [CGP02, KVW01], an important area of research is the study
of modal logics for strategic reasoning in the setting of multi-agent games [AHK02, JvdH04,
Pau02, AGJ07, WvdHW07, BJ14, JM14]. An important contribution in this field has been
the development of Alternating-Time Temporal Logic (ATL⋆, for short), introduced by Alur,
Henzinger, and Kupferman [AHK02]. ATL⋆ allows reasoning about strategic behavior of
agents with temporal goals. Formally, it is obtained as a generalization of the branching-
time temporal logic CTL⋆ [EH86], where the path quantifiers there exists “E” and for all
“A” are replaced with strategic modalities of the form “〈〈A〉〉” and “[[A]]”, for a set A of
agents. Such strategic modalities are used to express cooperation and competition among
agents in order to achieve certain temporal goals. In particular, these modalities express
selective quantifications over those paths that are the results of infinite games between a
coalition and its complement. ATL⋆ formulas are interpreted over concurrent game struc-
tures (CGS, for short) [AHK02], which model interacting processes. Given a CGS G and a
set A of agents, the ATL⋆ formula 〈〈A〉〉ψ holds at a state s of G if there is a set of strategies
for the agents in A such that, no matter which strategies are executed by the agents not in
A, the resulting outcome of the interaction in G satisfies ψ at s. Several decision problems
have been investigated about ATL⋆; both its model-checking and satisfiability problems
are decidable in 2ExpTime [Sch08]. The complexity of the latter is just like the one for
CTL⋆ [EJ88, EJ99].

Despite its powerful expressiveness, ATL⋆ suffers from the strong limitation that strate-
gies are treated only implicitly through modalities that refer to games between competing
coalitions. To overcome this problem, Chatterjee, Henzinger, and Piterman introduced
Strategy Logic (CHP-SL, for short) [CHP07, CHP10], a logic that treats strategies in two-
player turn-based games as first-order objects. The explicit treatment of strategies in this
logic allows the expression of many properties not expressible in ATL⋆. Although the model-
checking problem of CHP-SL is known to be decidable with a non-elementary upper bound,
it is not known whether the satisfiability problem is decidable as well [CHP10]. While the
basic idea exploited in [CHP10] of explicitly quantifying over strategies is powerful and
useful [FKL10], CHP-SL still suffers from various limitations. In particular, it is limited
to two-player turn-based games. Furthermore, CHP-SL does not allow different players
to share the same strategy, suggesting that strategies have yet to become truly first-class
objects in this logic. For example, it is impossible to describe the classic strategy-stealing
argument of combinatorial games such as Hex and the like.

These considerations led us to introduce and investigate a new Strategy Logic, denoted
SL, as a more general framework than CHP-SL, for explicit reasoning about strategies in
multi-agent concurrent games [MMV10a, MMPV14]. Syntactically, SL extends the linear-
time temporal-logic LTL [Pnu77] by means of strategy quantifiers, the existential 〈〈x〉〉 and
the universal [[x]], as well as agent binding (a, x), where a is an agent and x a variable.
Intuitively, these elements can be read as “there exists a strategy x”, “for all strategies x”,
and “bind agent a to the strategy associated with x”, respectively. For example, in a CGS G
with agents α, β, and γ, consider the property “α and β have a common strategy to avoid a
failure”. This property can be expressed by the SL formula 〈〈x〉〉[[y]](α, x)(β, x)(γ, y)(G¬fail).
The variable x is used to select a strategy for the agents α and β, while y is used to se-
lect another one for agent γ such that their composition, after the binding, results in a
play where fail is never met. In [MMPV14] it has been showed that SL is very expressive

REASONING ABOUT STRATEGIES: ON THE SATISFIABILITY PROBLEM 3

and can represent several solution concepts. However, this high expressiveness comes at a
price. Indeed, it has been shown in [MMPV14] that the model-checking problem is non-
elementarily decidable. In particular, this problem is k-ExpSpace-hard in the alternation
number k of quantifications in the specification.

In this paper we investigate the satisfiability problem and some basic model-theoretic
properties for SL. Regarding the former, as main result we show that SL is highly un-
decidable, precisely, Σ1

1-hard. Regarding the latter, we show that SL does not have the
bounded-tree model property.

The contrast between the undecidability of the satisfiability problem for SL and the
elementary decidability of the same problem for ATL⋆, provides motivation for an investi-
gation of decidable fragments of SL that subsume ATL⋆.

We introduce here the syntactic fragment One-Goal Strategy Logic (SL[1g], for short),
which encompasses formulas in a special prenex normal form having a single temporal goal
at a time. For goal we mean an SL formula of the type ♭ψ, where ♭ is a binding prefix of the
form (α1, x), . . . , (αn, xn) containing all the involved agents and ψ is a formula in which
every agent is not bounded to any variable, as for example an LTL specification. With
SL[1g] one can express, for instance, visibility constraints on strategies among agents, i.e.,
only some agents from a coalition have knowledge of the strategies taken by those in the
opponent coalition. Also, one can describe the fact that, in the Hex game, the strategy-
stealing argument does not let the player who adopts it to win. Observe that the above
properties cannot be expressed neither in ATL⋆ nor in CHP-SL.

In [MMPV14], we showed that SL[1g] is strictly more expressive that ATL⋆, yet its
model-checking problem is 2ExpTime-complete, just like the one for ATL⋆, while the
same problem for SL is non-elementarily decidable. Our main result here is that the satisfi-
ability problem for SL[1g] is also 2ExpTime-complete. Thus, in spite of its expressiveness,
SL[1g] has the same computational properties of ATL⋆, which suggests that the one-goal
restriction is the key to the elementary complexity of the latter logic too.

To achieve our main result, we use a fundamental property of the semantics of SL[1g]
called behavioral1, which allows us to simplify reasoning about strategies by reducing it to
a set of reasonings about actions. This intrinsic characteristic of SL[1g] means that, to
choose an existentially quantified strategy, we do not need to know the entire structure of
universally-quantified strategies, as it is the case for SL, but only their values on the histories
of interest. Technically, to formally describe this property, we make use of the machinery of
dependence maps, which is introduced to define a Skolemization procedure for SL, inspired
by the one in first-order logic. By exploiting the behavioral property, one can show that
SL[1g] satisfies the bounded tree-model property2. This allows us to efficiently make use of a
tree automata-theoretic approach [Var96, VW86b] to solve the satisfiability problem. Given
a formula ϕ, we build an alternating co-Büchi tree automaton [KVW00, MS95], whose size
is only exponential in the size of ϕ, accepting all bounded-branching tree models of the for-
mula with a suitable width. Then, together with the complexity of automata-nonemptiness
checking, we get that the satisfiability procedure for SL[1g] is 2ExpTime. We believe that
our proof techniques are of independent interest and applicable to other logics as well.

1We use this term as it has a direct correspondence with the “behavioral” concept used in game theory
[Mye97, MMS13, MMS14].

2In [MMPV12], we indeed make use of a non-trivial proof to show this. In this paper, instead, we avoid
the burden by making use of a recent result proved in [MP15].

4 F. MOGAVERO, A. MURANO, G. PERELLI, AND M.Y. VARDI

Related works. Several works have focused on extensions of ATL and ATL⋆ to incorpo-
rate more powerful strategic constructs. Among them, we recall Alternating-Time µCalculus
(AMuCalculus, for short) and Game Logic (GL, for short) [AHK02], Quantified Decision
Modality µCalculus (QDMuCalculus, for short) [Pin07], Coordination Logic (CL, for
short) [FS10], (ATL with plausibility (ATLP, for short) [BJD08], (ATL with Irrevocable
strategies (IATL, for short) [AGJ07], (Memoryful ATL⋆ (mATL⋆, for short) [MMV10b,
MMV16], Basic Strategy-Interaction Logic (BSIL, for short) [WHY11] Temporal Coopera-
tion Logic (TCL, for short) [HSW13], Alternating-time Temporal Logic with Explicit Actions
(ATLEA, for short) [HLW13] and some extensions of ATL⋆ considered in [BLLM09]. AMu-
Calculus and QDMuCalculus are intrinsically different from SL (as well as from CHP-SL
and ATL⋆) as they are obtained by extending the propositional µ-calculus [Koz83] with
strategic modalities. CL is similar to QDMuCalculus but with LTL temporal operators
instead of explicit fixpoint constructors. GL is strictly included in CHP-SL, in the case of
two-player turn-based games, but it does not use any explicit treatment of strategies, as
well as the extensions of ATL⋆ introduced in [BLLM09], which consider restrictions on the
memory for strategy quantifiers. ATLP enables to express rationality assumptions of intel-
ligent agents in ATL. In IATL, the semantics of the logic ATL is changed in a way that,
in the evaluation of the goal, agents can be forced to keep the strategy they have chosen
in the past in order to reach the state where a goal is evaluated. mATL⋆ enriches ATL⋆

by giving the ability to agents to “relent” and change their goals and strategies depending
on the history of the play. BSIL allows to specify behaviors of a system that can cooperate
with several strategies of the environment for different requirements. TCL extends ATL by
allowing successive definitions of agent strategies, with the aim of using the collaborative
power of groups of agents to enforce different temporal objectives. ATLEA introduces ex-
plicit actions in the logic ATL to reason about abilities of agents under commitments to
play precise actions. Thus, all above logics are different from SL.

At roughly the time we have conceived Strategy Logic, another generalization of ATL⋆,
named ATL⋆ with Strategy Contexts, which turns out to be very expressive but a proper
sublogic of SL, has been considered in [DLM10] (see also [DLM12, TW12, LM13, LM15]
for more recent works). In this logic, a quantification over strategies does not reset the
strategies previously quantified but allows to maintain them in a particular context in order
to be reused. This makes the logic much more expressive than ATL⋆.

Recently, several extensions of SL have been also investigated. Updatable Strategy Logic
(USL, for short) has been considered in [CBC13, CBC15] where, in addition to SL, an agent
can refine its own strategies by means of an ”unbinder” operator, which explicitly deletes
the binding of a strategy to an agent. In [Bel14, ČLMM14], an epistemic extension of
SL with modal operators for individual knowledge has been considered, showing that the
complexity of model checking for this logic is not worse than the one for (non-epistemic) SL.
Last but not least, in [CLM15] a BDD-based model checker for the verification of systems
against specifications expressed in SL[1g] has been introduced (see also [ČLMM14] for an
introduction to the conceived tool).

Finally, worth of mention are the works handling the synthesis question of specifications
expressed in the logic CHP-SL, as well as logics related to SL. Among the others, we report
the works [CDFR14, FKL10, KPV14, GHW14, KPV16].

Outline. In Section 2, we first introduce the syntax of SL, as well as the notion of Concurrent
Game Structure, on which the logic is interpreted. We also provide examples to show useful

REASONING ABOUT STRATEGIES: ON THE SATISFIABILITY PROBLEM 5

applications of the logic in the context of formal verification. In Section 3 we show that
the satisfiability problem for SL is highly undecidable. We do this by first proving that
the logic does not have the bounded-model property and then providing a reduction of
the satisfiability problem from the recurrent domino problem, which has been proved to be
undecidable by Harel in [Har84]. Given this negative result, in Section 4, we investigate on
the theoretical properties that make ATL⋆ decidable. We first recall the definition of two
syntactic fragments of SL, which we call Boolean-Goal Strategy Logic (SL[bg]) and One-
Goal Strategy Logic (SL[1g]), showing that the former retains all the negative properties of
SL, while the latter satisfies a fundamental property, namely the behavioral semantics, that
turns out to be fundamental, in Section 5, to prove that SL[1g] enjoys the bounded-model
property and a decidable satisfiability problem. In order to prove the last result, we employ
an automata-theoretic approach, from which we derive a 2ExpTime procedure.

2. Strategy Logic

Strategy Logic [MMV10a] (SL, for short) is an extension of the classic linear-time temporal
logic LTL [Pnu77] along with the concepts of strategy quantifications and agent binding,
which formalism allows to express strategic plans over temporal goals. The main distinctive
feature of this formalism w.r.t. other logics with the same aim resides in the decoupling
strategy instantiations, done through the quantifications, from their applications, by means
of bindings. Consequently, the logic is not simply propositional but predicative, since we
treat strategies as a first order concept via the use of agents and variables as explicit syn-
tactic elements. This fact allows us to write Boolean combinations and nesting of complex
predicates, each one representing a different temporal goal, linked together by some common
strategic choices.

The section is organized as follows. In Subsection 2.1, we recall the definition of concur-
rent game structure used to interpret SL, whose syntax is reported in Subsection 2.2. Then,
in Subsection 2.3, we give, among the others, the notions of strategy, assignment, and play,
which are finally used to define the semantics of the logic in Subsection 2.4.

2.1. Underlying framework. As semantic framework for SL, we use the graph-based
model for multi-player games named concurrent game structure [AHK02], which is a gen-
eralization of Kripke structures [Kri63] and labeled transition systems [Kel76]. It allows
to model multi-agent systems viewed as extensive form games, in which players perform
concurrent actions to trigger different transitions over the graph.

Definition 2.1 (Concurrent Game Structures). A concurrent game structure (CGS, for

short) is a tuple G ,〈AP,Ag,Ac,St, tr, ap, s〉, where AP and Ag are finite non-empty sets
of atomic propositions and agents, Ac and St are enumerable non-empty sets of actions and
states, s ∈ St is a designated initial state, and ap : St → 2AP is a labeling function that
maps each state to the set of atomic propositions true in that state. Let Dc , AcAg be
the set of decisions, a.k.a. action profiles in the literature, i.e., functions from Ag to Ac
representing the choices of an action for each agent. 3 Then, tr : St×Dc → St is a transition
function mapping a pair of a state and a decision to a state.

3In the following, we use both X → Y and YX to denote the set of functions from the domain X to the
codomain Y.

6 F. MOGAVERO, A. MURANO, G. PERELLI, AND M.Y. VARDI

Remark 2.1. The reader might note that the definition of CGS given here differs to the
one provided in the literature, for example in [AHK02], from the fact that set of actions
is not specified for each agent. On one hand, this has the advantage of simplifying the
notation and the technical development of the results. On the other hand, this looks less
general from the mechanism design point of view, in which the roles of the agents are not
always symmetric, and it turns to be useful to assign a specific set of action per each agent.
However, by means of a suitable mapping of actions, it is not hard to show that the general
case of CGS described in [AHK02] can be accounted in Definition 2.1.

To get familiar with the concept of CGS, we present here some running example of
simple concurrent games.

s

∅

sA

fA

sAj

fA

sj

∅

sAA

fA , fA

sA

fA

sAj

fA

101

100

11∗

011

010

00∗

∗ ∗ ∗

∗ ∗ 0

∗ ∗ 1

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ 0

∗ ∗ 1

Figure 1: The CGS GPPD.

First, we analyze an extended version of the
well-known prisoner’s dilemma [OR94] in which
also the actions of the police are taken into ac-
count.

Example 2.1 (Prisoners and Police’s Dilemma).
In the prisoner’s dilemma (PD, for short), two
accomplices are interrogated in separated rooms
by the police, which offers them the same agree-
ment. If one defects, i.e., testifies for the pros-
ecution against the other, while the other co-
operates, i.e., remains silent, the defector goes
free and the silent accomplice goes to jail. If
both cooperate, they remain free, but will be
surely interrogated in the next future waiting
for a defection. On the other hand, if they both
defect, both go to jail. In the prisoner and po-
lice’s dilemma (PPD, for short), apart from the
classic agreement of the PD, the two accomplices
also know that they can try to gain a better sen-
tence by the judge if one spontaneously defects
without being interrogated by police, since he is
considered a “good willing man”. In this case,
indeed, if the other cooperates, the defector be-
comes definitely free, while the other goes to jail
with the possibility to eventually be released. It
is important, however, that neither of them defects, otherwise the police can subtly act as
they were interrogated. Moreover, differently from the PD, they are not free during the
time in which they can be interrogated. This complex situation, can be modeled by the
CGS GPPD , 〈AP,Ag,Ac,St, tr, ap, s〉 depicted in Figure 1, where there are three agents

in Ag , {A, A, P}, with P being the police, and all of them can execute the two abstract

actions in Ac , {0, 1}. For the accomplices, 0 and 1 have the meaning of “cooperate”
and “defect”. For the police, on the contrary, they mean “wait” and “interrogate” in all
the states but those in which one of the accomplices can eventually be released, where the
meaning is “release” and “maintain”, instead. The set of states for the game is given by
{si, sA , sA , sj , sAj , sAj , sAA}. The idle state si denotes the situation in which the two
prisoners are waiting to be interrogated by police. They can even decide to defect before

REASONING ABOUT STRATEGIES: ON THE SATISFIABILITY PROBLEM 7

interrogation. The states sA and sA denotes the situation in which only one prisoner be-
comes definitely free. Moreover, the states sAj and sAj indicate when one of the prisoners
is free while the other in the jail is waiting for his release. Finally, sAA denotes the state in
which both prisoners have gained definitely the freedom. To represent the different meaning
of these states, we use the atomic propositions fAi to denote that the prisoner Ai is free.
Both the labeling function ap and the transition function tr can be extracted from the figure,
where the agents A, A, and P control the first, second and third components of the triple
actions over the edges, respectively.

In addition to PPD, we model a very simple preemptive scheduling protocol for the
access of processes to a shared resource.

si

∅

s
r

s
r

s,
r, r

s′
1

g
s′
2

g

10∗ 01∗

11∗

00∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ 0 ∗ ∗ 1

01∗

00∗, 111

10∗, 110

10∗

00∗, 111

01∗, 110

Figure 2: The CGS GPS .

Example 2.2 (Preemptive Scheduling). Consider the fol-
lowing preemptive scheduling protocol (PS, for short) de-
scribing the access rules of two processes to a shared re-
source in a preemptive way. When the resource is free and
only one process asks for it, this process directly receives
the grant. Instead, if there is a competition of requests, it
is the scheduler that, in a nondeterministic way, determines
who can access to the resource. Finally, in case one process
owns the resource while the other asks for it, the scheduler
can choose whether to apply a preemption. These rules are
formalized in the CGS GPS , 〈AP,Ag,Ac,St, tr, ap, s〉 of
Figure 2, where the agents “Process-1”, “Process-2” and
“Scheduler” in Ag , {P, P, S} can choose between the two

abstract actions in Ac , {0, 1}. The processes use the ac-
tions 0 to not send any request and 1 to send a request to the
scheduler, while the scheduler uses them in order to decide
who can have the access to the resource in a situation of competition. There are five states
St , {si, s, s, s,, s

′
1, s

′
2} in which the protocol can reside: the idle state si in which the

resource is free; the three states s, s, and s, in which P, P or both are requesting the
resource; the two states s′1 and s′2 in which the resource has been finally granted to P and
P, respectively. To represent all information associated, we use the atomic propositions
in AP , {r, r, g, g}, where ri represents the request of Pi, while gi the fact that the
resource has been granted to Pi.

2.2. Syntax. Strategy Logic (SL, for short) syntactically extends LTL by means of two
strategy quantifiers, the existential 〈〈x〉〉 and the universal [[x]], and the agent binding (a, x),
where a is an agent and x a variable. Intuitively, these new elements can be read as “there
exists a strategy x”, “for all strategies x”, and “bind agent a to the strategy associated with
the variable x”, respectively. The formal syntax of SL follows.

Definition 2.2 (SL Syntax). SL formulas are built inductively from the sets of atomic
propositions AP, variables Vr, and agents Ag, by using the following grammar, where
p ∈ AP, x ∈ Vr, and a ∈ Ag:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕ Uϕ | ϕ Rϕ | 〈〈x〉〉ϕ | [[x]]ϕ | (a, x)ϕ.

SL denotes the infinite set of formulas generated by the above rules.

8 F. MOGAVERO, A. MURANO, G. PERELLI, AND M.Y. VARDI

Observe that, by construction, LTL is a proper syntactic fragment of SL, i.e., LTL ⊂
SL. In order to abbreviate the writing of formulas, we use the boolean values true t and
false f and the well-known temporal operators future Fϕ , t Uϕ and globally Gϕ , f Rϕ.
Moreover, we use the italic letters x, y, z, . . ., possibly with indexes, as meta-variables on
the variables x, y, z, . . . in Vr.

A first classic notion related to the syntax of SL is that of subformula, i.e., a syntactic
expression that is part of an a priori given formula. By sub(ϕ) we formally denote the set
of subformulas of an SL formula ϕ. For instance, consider ϕ = 〈〈x〉〉(α, x)(Fp). Then, it is
immediate to see that sub(ϕ) = {ϕ, (α, x)(Fp), (Fp), p, t}.

Usually, in predicative logics, we need the concepts of free and bound placeholders, to
correctly define the meaning of a formula. In SL, we have two different kind of placeholders:
variables and agents. The former is used in the strategy quantifications, the latter to
commit an agent, by means of bindings, to adhere to a strategy. Consequently, we need to
differentiate the sets of free variables and free agents of an SL formula ϕ. The first contains
the variables that are not in a scope of a quantification. The second, instead, contains the
agents for which there is no related binding in the scope of a temporal operator. A formula
without any free variable (resp., agent) is named variable-closed (resp., agent-closed). A
formula that is both variable- and agent-closed, is named sentence. For a given SL formula
ϕ, by free(ϕ) we denote the set of both free variables and agents occurring in ϕ. The formal
definition of free(·), which we report in the following, has been given in [MMPV14].

Definition 2.3 (SL Free Agents/Variables). The set of free agents/variables of an SL
formula is given by the function free : SL → 2Ag∪Vr defined as follows:

(i) free(p) , ∅, where p ∈ AP;

(ii) free(¬ϕ) , free(ϕ);

(iii) free(ϕ1Opϕ2) , free(ϕ1) ∪ free(ϕ2), where Op∈ {∧,∨};

(iv) free(Xϕ) , Ag ∪ free(ϕ);

(v) free(ϕ1Opϕ2) , Ag ∪ free(ϕ1) ∪ free(ϕ2), where Op∈ {U, R};

(vi) free(Qnϕ) , free(ϕ) \ {x}, where Qn∈ {〈〈x〉〉, [[x]] : x ∈ Vr};

(vii) free((a, x)ϕ) , free(ϕ), if a 6∈ free(ϕ), where a ∈ Ag and x ∈ Vr;

(viii) free((a, x)ϕ) , (free(ϕ) \ {a}) ∪ {x}, if a ∈ free(ϕ), where a ∈ Ag and x ∈ Vr.

Observe that, on one hand, free agents are introduced in Items (iv) and (v) and removed
in Item (viii). On the other hand, free variables are introduced in Item (viii) and removed
in Item (vi).

As an example, let ϕ = 〈〈x〉〉(α, x)(β, y)(Fp) be a formula on the agents Ag = {α, β, γ}.
Then, we have free(ϕ) = {γ, y}, since γ is an agent without any binding after Fp and y has no
quantification at all. Consider also the formulas (α, z)ϕ and (γ, z)ϕ, where the subformula
ϕ is the same as above. Then, we have free((α, z)ϕ) = {γ, y, z} and free((γ, z)ϕ) = {y, z},
since α is not free in ϕ but γ is, i.e., α /∈ free(ϕ) and γ ∈ free(ϕ). So, (γ, z)ϕ is agent-closed
while (α, z)ϕ is not.

In order to practice with the syntax of SL, we now describe few examples of some
game-theoretic properties, which cannot be expressed neither in ATL⋆ nor in CHP-SL.
We clarify this point later in the paper. The interpretation of these formulas is quite
intuitive. Leastwise, the reader can rely on the formal semantics, which is given later in the
paper.

REASONING ABOUT STRATEGIES: ON THE SATISFIABILITY PROBLEM 9

The first we introduce is the well-known concept of Nash Equilibrium in concurrent
infinite games with Boolean payoffs.

Example 2.3 (Nash Equilibrium). Consider the n agents α1, . . . , αn of a game, each of
them having, respectively, a possibly different temporal goal described by one of the LTL
formulas ψ1,. . ., ψn. Then, we can express the existence of a strategy profile (x, . . . , xn)
that is a Nash equilibrium (NE, for short) for α1, . . . , αn w.r.t. ψ1, . . . , ψn by using the SL

sentence ϕNE, 〈〈x〉〉 · · · 〈〈xn〉〉(α1, x) · · · (αn, xn) ψNE, where ψNE,
∧n
i=1(〈〈y〉〉(αi, y)ψi) → ψi

is a variable-closed formula. Informally, this asserts that every agent αi has xi as one of
the best strategy w.r.t. the goal ψi, once all the other strategies of the remaining agents αj,
with j 6= i, have been fixed to xj. Note that here we are only considering equilibria under
deterministic strategies.

In a game in which not all agents are peers, we can have one or more of them that may
vary the payoff of the others, without having a personal aim, i.e., without looking for the
maximization of their own payoffs. Such situations can usually arise when we have games
with arbiters or similar characters, like supervisors or government authorities, that have to
be fair, i.e., they have to lay down an equity governance.

Example 2.4 (Equity Governance). Consider a game similar to the one described in the
previous example, in which there is also a supervisor agent β, which does not have a specific
goal. However, the peers want him to be fair w.r.t. their own goals, i.e., the supervisor has
to use a strategy that must not prefer one agent over another. This concept is called equity
governance (EG, for short). In order to formalize it, we can use the SL sentence ϕEG ,
[[x]] · · · [[xn]](α1, x) · · · (αn, xn)〈〈y〉〉(β, y)ψEG, where ψEG ,

∧n
i,j=1,i<j(〈〈z〉〉(β, z)ψi)∧(〈〈z〉〉(β, z)ψj) →

(ψi ↔ ψj). Informally, the ψEG subformula asserts that, if there are two strategies z and z
for β that allow αi and αj to achieve their own goals ψi and ψj , separately, then the unique
strategy y previously chosen by the supervisor has to ensures the achievement of either
both the goals or none of them. Note that the sentence ϕEG requires the existence of an EG
strategy y for β, in dependence of the strategies x, . . . , xn chosen by the peers. To verify
the existence of a uniform EG, we may use the SL sentence ϕUEG , 〈〈y〉〉(β, y) ψ′

EG, with

ψ′
EG , [[x]] · [[xn]](α1, x) · · · (αn, xn) ψEG, whose difference w.r.t. ϕEG resides only in the al-

ternation of quantifiers. Finally, to verify the existence of a uniform EG that allows also the
existence of an NE for the peers, we can use the SL sentence ϕUEG+NE , 〈〈y〉〉(β, y)(ψ′

EG∧ϕNE).

Usually, the fairness of a supervisor does not ensure that the whole game can advance,
i.e., that the peers can achieve their respective goals. Indeed, there are games like the zero-
sum ones in which the agents have opposite goals that cannot be achieved at the same time.
However, there are different kind of games, as the PPD or the PS of Examples 2.1 and 2.2,
in which a supervisor can try to help all peers in their intent, by applying an advancement
governance.

Example 2.5 (Advancement Governance). Consider the game described in the previous
example of EG. Here, we want to consider an advancement governance (AG, for short)
for the supervisor, i.e., a strategy for β that allows the peers to achieve their own goals,
if they have the will and possibility to do so. Formally, this concept can be expressed
by using the SL sentence ϕAG , [[x]] · [[xn]](α1, x) · · · (αn, xn)〈〈y〉〉(β, y) ψAG, where ψAG ,
(
∧n
i=1(〈〈z〉〉(β, z)ψi) → ψi). Intuitively, the ψAG subformula expresses the fact that, if β has

a strategy z able to force a goal ψi, once the strategies of the peers α1, . . . , αn have been
fixed, then his a priori choice y w.r.t. the goals has to force ψi as well. As in the case of

10 F. MOGAVERO, A. MURANO, G. PERELLI, AND M.Y. VARDI

EG, we can have an uniform version of AG, by using the SL sentence ϕUAG , 〈〈y〉〉(β, y)ψ′
AG,

where ψ′
AG , [[x]] · · · [[xn]](α1, x) · · · (αn, xn) ψAG.

Differently from the previous examples, one can consider the case in which the authority
agent has his own goal to be satisfied, provided the other agents to be in a certain equilibrium.
In the context of system design [PR89], rational synthesis [FKL10, KPV14, KPV16] is a
recent improvement of the classical reactive one. In this setting, the adversarial environment
is not a monolithic block, but a set of agent components, each of them having their own
goal. In the next example, we show that the most typical instances of a rational synthesis
problem can be represented in SL.

Example 2.6 (Rational Synthesis). Consider a solution concept that is representable in
SL by means of a suitable formula ψSC , e.g., NE, and a temporal goal ψβ for the sys-
tem agent. Here, we look for a rational synthesis solution for the players, i.e., a strat-
egy profile (y, x, . . . , xn) such that, if β acts according to y, then ψβ is satisfied and
(x, . . . , xn) is in an equilibrium according to the solution concept considered, i.e., ψSC
is satisfied. Formally, this concept can be expressed by using the SL sentence ϕRS =
〈〈y〉〉〈〈x〉〉 . . . 〈〈xn〉〉(β, y)(a, x) . . . (an, xn)(ψ0 ∧ ψSC). As an example, ψSC can be the for-
mula ψNE of Example 2.3. In this case, we obtain the rational synthesis problem for NE.

2.3. Basic notions. Before continuing with the formal description of SL, we need to in-
troduce some basic notions related to CGSs, such as those of track, path, strategy, and the
like. All these notions have been already introduced in [MMV10b]. However, for the sake
of completeness, as well as for their importance in the definition of SL semantics, we fully
report them in this section.

We start with the notions of track and path. Intuitively, tracks and paths of a CGS
are legal sequences of reachable states that can be respectively seen as partial and complete
descriptions of possible outcomes of the game modeled by the structure itself. Formally,
a track (resp., path) in a CGS G is a finite (resp., an infinite) sequence of states ρ ∈ St∗

(resp., π ∈ Stω) such that, for all i ∈ [0, |ρ| − 1[(resp., i ∈ N), there exists a decision δ ∈ Dc
such that (ρ)i+1 = tr((ρ)i, δ) (resp., (π)i+1 = tr((π)i, δ))

4. A track ρ is non-trivial if it has
non-zero length, i.e., |ρ| > 0 that is ρ 6= ǫ 5. The set Trk ⊆ St+ (resp., Pth ⊆ Stω) contains

all non-trivial tracks (resp., paths). Moreover, Trk(s) , {ρ ∈ Trk : fst(ρ) = s} (resp.,

Pth(s) , {π ∈ Pth : fst(π) = s}) indicates the subsets of tracks (resp., paths) starting at
a state s ∈ St 6. In some cases, to avoid any ambiguity, we use subscripts like TrkG , PthG ,
and so on, to denote the fact that we are referring to the set of tracks, paths, and the like,
in G.

As an example, consider the CGS GPS in Figure 2. Then ρ = si · s · s
′ · s

′ · si and
π = (si · s, · s

′ · si · s, · s
′)ω are a track and a path, respectively. Moreover, we have that

TrkGPS = StGPS
∗ and PthGPS = StGPS

ω.
At this point, we can define the concept of strategy. Intuitively, a strategy is a scheme

for an agent that contains all choices of actions as in dependence of the history of the current
outcome. However, observe that here there is not an a priori connection between a strategy

4The notation (w)i ∈ Σ indicates the element of index i ∈ [0, |w|[of a non-empty sequence w ∈ Σ∞,
where Σ∞ = Σ∗ ∪ Σω.

5The Greek letter ǫ stands for the empty sequence.
6By fst(w) , (w)0 we denote the first element of an infinite sequence w ∈ Σ∞.

REASONING ABOUT STRATEGIES: ON THE SATISFIABILITY PROBLEM 11

and an agent, since the same strategy can be used by more than one agent at the same time.
Formally, a strategy in a CGS G is a function f : Trk → Ac that maps each non-trivial track
to an action. The set Str , Trk → Ac contains all strategies.

An example of strategy in the CGS GPS is given by the function f ∈ Str assigning the
action 0 to all the tracks in which the state si occurs an odd number of times and the action
1, otherwise. Another example of strategy is the function f ∈ Str assigning the action 1 on
all possible tracks of the CGS.

We now introduce the notion of assignment. Intuitively, an assignment gives a valuation
of variables with strategies, where the latter are used to determine the behavior of agents
in the game. With more detail, as in the case of first order logic, we use this concept
as a technical tool to quantify over strategies associated with variables, independently of
agents to which they are related to. So, assignments are used precisely as a way to define
a correspondence between variables and agents via strategies.

Definition 2.4 (Assignments). An assignment in a CGS G is a partial function χ : Vr ∪
Ag ⇀ Str mapping variables and agents in its domain to a strategy. An assignment χ is
complete if it is defined on all agents, i.e., Ag ⊆ dom(χ). The set Asg , Vr ∪ Ag ⇀ Str

contains all assignments. Moreover, Asg(X) , X → Str indicates the subset of X-defined
assignments, i.e., assignments defined on the set X ⊆ Vr ∪Ag.

As an example of assignment, consider the CGS GPS of Example 2.2 in which Ag =
{P, P} and the function χ ∈ Asg in , with dom(χ) = {P, x}, such that χ(P) = f and
χ(x) = f. As another example, consider the assignment χ ∈ Asg in the same CGS, with
dom(χ) = Ag, such that χ(S) = f and χ(P) = χ(P) = f. Note that χ is complete,
while χ is not.

Given an assignment χ ∈ Asg, an agent or variable l ∈ Vr ∪Ag, and a strategy f ∈ Str,
we need to describe the redefinition of χ, i.e., a new assignment equal to the first one
on all elements of its domain but l, on which it assumes the value f. Formally, with
χ[l 7→ f] ∈ Asg we denote the new assignment defined on dom(χ[l 7→ f]) , dom(χ)∪{l} that

returns f on l and is equal to χ on the remaining part of its domain, i.e., χ[l 7→ f](l) , f

and χ[l 7→ f](l′) , χ(l′), for all l′ ∈ dom(χ) \ {l}. Intuitively, if we have to add or update
a strategy that needs to be bound by an agent or variable, we can simply take the old
assignment and redefine it by using the above notation.

Now, we can formalize the concept of play in a game. Intuitively, a play is the unique
outcome of the game determined by all agent strategies participating to it.

Definition 2.5 (Plays). A path π ∈ Pth(s) starting at a state s ∈ St is a play w.r.t.
a complete assignment χ ∈ Asg(s) ((χ, s)-play, for short) if, for all i ∈ N, it holds that

(π)i+1 = tr((π)i, δ), where δ(a) , χ(a)((π)≤i), for each a ∈ Ag 7. The partial function

play : Asg × St ⇀ Pth, with dom(play) , {(χ, s) : Ag ⊆ dom(χ) ∧ χ ∈ Asg(s) ∧ s ∈ St},
returns the (χ, s)-play play(χ, s) ∈ Pth(s), for all pairs (χ, s) in its domain.

As last example, consider again the CGS GPS and the complete assignment χ defined
above. Then, we have that play(χ, s) = (si · s, · s

′ · si · s, · s
′)ω.

Finally, we give the definition of global translation of a complete assignment associated
with a state, which is used to capture, at a certain step of the play, what is the current
state and its updated assignment.

7The notation (w)≤i ∈ Σ∗ indicates the prefix up to index i ∈ [0, |w|] of a non-empty sequence w ∈ Σ∞.

12 F. MOGAVERO, A. MURANO, G. PERELLI, AND M.Y. VARDI

Definition 2.6 (Global Translation). For a given state s ∈ St and a complete assignment
χ ∈ Asg, an i-th global translation of (χ, s), with i ∈ N, is a pair of a complete assignment

and a state (χ, s)i , ((χ)(π)≤i , (π)i), where π = play(χ, s) and (χ)(π)≤i denotes an assignment

such that, for all l ∈ dom(χ), (χ)(π)≤i(l)(ρ) = χ(l)((π)≤i · ρ), for all ρ ∈ dom((χ)(π)≤i (l)).

Intuitively, an i-th global translation of (s, χ) is meant to return a pair of a state
and a complete assignment (χ, s)i for which the play play((χ, s)i) generated corresponds to
play((χ, s))≥i, i.e., the suffix from the i-th element of the play play(s, χ). This property will
be used below to correctly define the semantics of the temporal operators in SL.

2.4. Semantics. As already reported at the beginning of this section, just like ATL⋆ and
differently from CHP-SL, the semantics of SL is defined w.r.t. concurrent game structures.
For an SL formula ϕ, a CGS G, a state s in it, and an assignment χ with free(ϕ) ⊆ dom(χ),
we write G, χ, s |= ϕ to indicate that the formula ϕ holds at s in G under χ. The semantics
of SL formulas involving the atomic propositions, the Boolean connectives ¬, ∧, and ∨,
as well as the temporal operators X, U, and R is defined as usual in LTL. The novel part
resides in the formalization of the meaning of strategy quantifications 〈〈x〉〉 and [[x]] and
agent binding (a, x).

Definition 2.7 (SL Semantics). Given a CGS G, for all SL formulas ϕ, states s ∈ St, and
assignments χ ∈ Asg with free(ϕ) ⊆ dom(χ), the modeling relation G, χ, s |= ϕ is inductively
defined as follows.

(1) G, χ, s |= p if p ∈ ap(s), with p ∈ AP.
(2) For all formulas ϕ, ϕ1, and ϕ2, it holds that:

(a) G, χ, s |= ¬ϕ if not G, χ, s |= ϕ, that is G, χ, s 6|= ϕ;
(b) G, χ, s |= ϕ1 ∧ ϕ2 if G, χ, s |= ϕ1 and G, χ, s |= ϕ2;
(c) G, χ, s |= ϕ1 ∨ ϕ2 if G, χ, s |= ϕ1 or G, χ, s |= ϕ2.

(3) For a variable x ∈ Vr and a formula ϕ, it holds that:
(a) G, χ, s |=〈〈x〉〉ϕ if there is a strategy f ∈ Str such that G, χ[x 7→ f], s |=ϕ;
(b) G, χ, s |= [[x]]ϕ if, for all strategies f ∈ Str, it holds that G, χ[x 7→ f], s |= ϕ.

(4) For an agent a ∈ Ag, a variable x ∈ Vr, and a formula ϕ, it holds that G, χ, s |=
(a, x)ϕ if G, χ[a 7→ χ(x)], s |= ϕ.

(5) Finally, if the assignment χ is complete, for all formulas ϕ, ϕ1, and ϕ2, it holds that:
(a) G, χ, s |= Xϕ if G, (χ, s)1 |= ϕ;
(b) G, χ, s |= ϕ1Uϕ2 if there is an index i ∈ N with k ≤ i such that G, (χ, s)i |= ϕ2

and, for all indexes j ∈ N with k ≤ j < i, it holds that G, (χ, s)j |= ϕ1;
(c) G, χ, s |= ϕ1Rϕ2 if, for all indexes i ∈ N with k ≤ i, it holds that G, (χ, s)i |= ϕ2

or there is an index j ∈ N with k ≤ j < i such that G, (χ, s)j |= ϕ1.

Intuitively, at Items 3a and 3b, respectively, we evaluate the existential 〈〈x〉〉 and uni-
versal [[x]] quantifiers over strategies, by associating them to the variable x. Moreover, at
Item 4, by means of an agent binding (a, x), we commit the agent a to a strategy associated
with the variable x. It is evident that, due to Items 5a, 5b, and 5c, the LTL semantics is
simply embedded into the SL one.

In order to complete the description of the semantics, we now give the classic notions
of model and satisfiability of an SL sentence. We say that a CGS G is a model of an SL
sentence ϕ, in symbols G |= ϕ, if G,∅, s |= ϕ. 8 In general, we also say that G is a model

8The symbol ∅ stands for the empty function.

REASONING ABOUT STRATEGIES: ON THE SATISFIABILITY PROBLEM 13

for ϕ on s ∈ St, in symbols G, s |= ϕ, if G,∅, s |= ϕ. An SL sentence ϕ is satisfiable if there
is a model for it.

It remains to formalize the concepts of implication and equivalence between SL formu-
las, which are useful to describe transformations preserving the meaning of a specification.
Given two SL formulas ϕ1 and ϕ2, with free(ϕ1) = free(ϕ2), we say that ϕ1 implies ϕ2,
in symbols ϕ1 ⇒ ϕ2, if, for all CGSs G, states s ∈ St, and free(ϕ1)-defined assignments
χ ∈ Asg(free(ϕ1), s), it holds that if G, χ, s |= ϕ1 then G, χ, s |= ϕ2. Accordingly, we say
that ϕ1 is equivalent to ϕ2, in symbols ϕ1 ≡ ϕ2, if both ϕ1 ⇒ ϕ2 and ϕ2 ⇒ ϕ1 hold.

In the rest of the paper, especially when we describe a decision procedure, we may
consider formulas in existential normal form (enf , for short) and positive normal form
(pnf , for short), i.e., formulas in which only existential quantifiers appear or, respectively,
the negation is applied solely to atomic propositions. In fact, it is to this aim that we
have considered in the syntax of SL both the Boolean connectives ∧ and ∨, the temporal
operators U, and R, and the strategy quantifiers 〈〈 · 〉〉 and [[·]]. Indeed, all formulas can be
linearly translated in enf and pnf by using De Morgan’s laws together with the following
equivalences, which directly follow from the semantics of the logic: ¬Xϕ ≡ X¬ϕ, ¬(ϕ1Uϕ2) ≡
(¬ϕ1)R(¬ϕ2), ¬〈〈x〉〉ϕ ≡ [[x]]¬ϕ, and ¬(a, x)ϕ ≡ (a, x)¬ϕ.

At this point, in order to better understand the meaning of the SL semantics, we discuss
some examples of formulas interpreted over the CGSs previously described.

Example 2.7 (Law and Order). Consider the CGS GPPD given in Example 2.1. It is easy
to see that Police can ensure at least one prisoner to never be free. Indeed the formula
ϕ1 = 〈〈y〉〉[[x]][[x]](P, y)(A, x)(A, x)((FG¬fA) ∨ (FG¬fA)) is satisfied over GPPD. A way
to see this is to consider the strategy f for P given by f(ρ) = 0, for all ρ ∈ Trk, which
allows agent P to always avoid the state sA,A . On the other hand, the formula ϕ2 =
[[x]][[x]]〈〈y〉〉(P, y)(A, x)(A, x)(FG(¬fA ∧ ¬fA)) is not satisfied over GPPD. Indeed, if
agents A and A use strategies f and f, respectively, such that f(si) = 1− f(si), we have
that, whatever agent P does, at least one of them gains freedom.

Example 2.8 (Fair Scheduler). Consider the CGS GPS of Example 2.2 and suppose
the Scheduler wants to ensure that, whatever process makes a request, the resource is
eventually granted to it. We can represent this specification by means of the formula
ϕ = 〈〈y〉〉[[x]][[x]](S, y)(P, x)(P, x)(G((r → Fg) ∧ (r → Fg))). It is easy to see that
GPS |= ϕ. Indeed, consider the strategy f for S defined as follows. For all tracks of the form
ρ · s′i, we set a possible preemption, i.e., f(ρ · s′i) = 1. For the tracks of the form ρ · s,
we set the action as prescribed in the sequel: (i) if there is no occurrence of s′1 and s′2 or
the last occurrence is s′1, then we release the resource to P, i.e., f(ρ · s,) = 0; (ii) if the
last occurrence in ρ between s′1 and s′2 is s′1, then then we release the resource to P, i.e.,
f(ρ · s,) = 1.

3. Hardness results

In [MMPV14] it has been shown that the model-checking for SL is NonElementary-hard.
Here, we prove that the satisfiability problem is even harder, i.e., undecidable. To do this,
we first introduce a sentence that is satisfiable only on unbounded models. Then, by using
this result, we prove the undecidability result through a reduction of the classic domino
problem [Wan61].

14 F. MOGAVERO, A. MURANO, G. PERELLI, AND M.Y. VARDI

3.1. Unbounded models. We now show that SL does not enjoy the bounded-tree model
property. In general, a classic modal logic satisfies this property if, whenever a formula
is satisfiable, it is so on a model in which all states have a number of successors bounded
by an a priori fixed constant. However, in the case of SL, this condition is not sufficient
to characterize bounded models, since SL has the power of distinguishing among different
ways to reach a given state from another one, and the number of ways might be infinite,
as that of actions can be infinite itself. An example of an unbounded model with a finite
number of states is given in Figure 3. For this reason, we say that a CGS is bounded if
the set of actions AcG is finite. Moreover, a model is finite if it is bounded and the number
of states is also finite. Clearly, if a logic invariant under unwinding enjoys the finite model
property, it enjoys the bounded-tree model property as well. The other direction may not
hold, instead, as exemplified by the µCalculus with backward modalities [Var98, Boj03].
Unfortunately, SL does not enjoy either property.

In order to prove the existence of satisfiable SL formulas with unbounded models only,
we introduce, in the following definition, the sentence ϕord to be used as a counterexample
for the bounded-tree model property.

Definition 3.1 (Ordering Sentence). Let x1 < x2 , 〈〈y〉〉 ϕ(x1, x2, y) be an agent-closed

formula, named partial order, on the sets AP = {p} and Ag = {α, β}, where ϕ(x1, x2, y) ,
((α, x1)(β, y)(Xp)) ∧ ((α, x2)(β, y)(X¬p)). Then, the ordering sentence ϕord , ϕunb ∧ ϕtrn

is the conjunction of the following two sentences, called unboundedness and transitivity
strategy requirements:

(1) ϕunb , [[x1]]〈〈x2〉〉 x1 < x2;

(2) ϕtrn , [[x1]][[x2]][[x3]] (x1 < x2 ∧ x2 < x3) → x1 < x3.

s

∅

s
p

s

∅

P ∗ ∗ \P

∗∗ ∗∗

Figure 3: The CGS G⋆ model of
ϕord.

Intuitively, ϕunb asserts that, for each strategy in x1,
there is a different strategy in x2 that is in relation of <
w.r.t. the first one, i.e., < has no upper bound, due to
the fact that, by the definition of ϕ(x1, x2, y), it is not
reflexive. Moreover, ϕtrn ensures that the relation < is
transitive too. Consequently, ϕord induces a strict partial
pre-order on the strategies.

Obviously, in order to be useful, the sentence ϕord needs to be satisfiable, as reported
in the following lemma.

Lemma 3.1 (Ordering Satisfiability). The sentence ϕord is satisfiable.

Proof. To prove that ϕord is satisfiable, consider the unbounded CGS G⋆ in Figure 3, where
(i) AP , {p}, (ii) Ag , {α, β}, (iii) AcG⋆ , N, (iv) StG⋆ , {s0, s1, s2}, (v) s0G⋆ = s0, (vi)

apG⋆(s0) = apG⋆(s2) , ∅ and apG⋆(s1) , {p}, (vii) P , {δ ∈ DcG⋆ : δ(α) ≤ δ(β)}, and (viii)
trG⋆ is such that if δ ∈ P then trG⋆(s0, δ) = s1 else trG⋆(s0, δ) = s2, and trG⋆(s, δ) = s, for
all s ∈ {s1, s2} and δ ∈ DcG⋆ .

Now, it is easy to see that G⋆ |= ϕunb, since for every strategy fx for x1, consisting of
picking a natural number n = fx(s0) as an action at the initial state, we can reply with a
strategy fx for x2 having fx(s0) > n and a strategy fy for y having fy(s0) = n. Formally, we
have that G⋆, χ, s0 |= ϕ(x1, x2, y) iff χ(x1)(s0) ≤ χ(y)(s0) < χ(x2)(s0), for all assignments
χ ∈ AsgG⋆({x1, x2, y}, s0).

By a similar reasoning, we can see that G⋆ |= ϕtrn. Indeed, consider three strategies fx,
fx , and fx for the variables x1, x2, and x3, respectively, which correspond to picking three

REASONING ABOUT STRATEGIES: ON THE SATISFIABILITY PROBLEM 15

natural numbers n1 = fx(s0), n2 = fx(s0), and n3 = fx(s0). Now, if G⋆, χ, s0 |= x1 < x2
and G⋆, χ, s0 |= x2 < x3, for an assignments χ∈AsgG⋆({x1, x2, x3}, s0) where χ(x1) = fx,
χ(x2) = fx , and χ(x3) = fx, we have that n1 < n2 and n2 < n3. Consequently, n1 < n3.
Hence, by using a strategy fy for y with fy(s0) = fx(s0), we have G

⋆, χy 7→fy , s0 |= ϕ(x1, x3, y)
and thus G⋆, χ, s0 |= x1 < x3.

Next lemmas report two important properties of the sentence ϕord, for the negative
statements we want to show. Namely, they state that, in order to be satisfied, ϕord must
require the existence of strict partial order relations on strategies and actions that do not
admit any maximal element. From this, as stated in Theorem 3.1, we directly derive that
ϕord needs an infinite chain of actions to be satisfied, i.e., it cannot have a bounded model.

Lemma 3.2 (Strategy Order). Let G be a model of ϕord. Moreover, let r< ⊆ StrG×StrG be
a relation between strategies of G such that r<(f1, f2) holds iff G,∅[x1 7→ f1][x2 7→ f2], s0G |=
x1 < x2, for all strategies f1, f2 ∈ StrG . Then, r< is a strict partial order without maximal
element.

Proof. The proof derives from the fact that r< satisfies the following properties:

(1) Irreflexivity : ∀f ∈ StrG . ¬r
<(f, f);

(2) Unboundedness: ∀f1 ∈ StrG ∃f2 ∈ StrG . r
<(f1, f2);

(3) Transitivity : ∀f1, f2, f ∈ StrG . (r
<(f1, f2) ∧ r<(f2, f)) → r<(f1, f).

Indeed, Items (ii) and (iii) are directly derived from the strategy unboundedness and tran-
sitivity requirements. The proof of Item (i) derives, instead, from the following reasoning.
By contradiction, suppose that r< is not a strict order, i.e., there is a strategy f ∈ StrG for
which r<(f, f) holds. This means that, at the initial state s0G of G, there exists an assign-
ment χ ∈ AsgG({x1, x2, y}, s0G) for which G, χ, s0G |= ϕ(x1, x2, y), where χ(x1) = χ(x2) = f.
The last fact implies the existence of a successor of s0G in which both p and ¬p hold, which
is clearly impossible.

Lemma 3.3 (Action Order). Let G be a model of ϕord. Moreover, let s< ⊆ AcG ×AcG be
a relation between actions of G such that s<(c1, c2) holds iff, for all strategies f1, f2 ∈ StrG
with c1 = f1(s0G) and c2 = f2(s0G), it holds that r

<(f1, f2), where c1, c2 ∈ AcG . Then, s
< is

a strict partial order without maximal element.

Proof. The irreflexivity and transitivity of s< are directly derived from the fact that, by
Lemma 3.2, r< is irreflexive and transitive too. The proof of the unboundedness property
derives, instead, from the following reasoning. As first thing, observe that, since the formula
x1 < x2 relies on Xp and X¬p as the only temporal operators, it holds that r<(f1, f2) implies
r<(f ′1, f

′
2), for all strategies f1, f2, f

′
1, f

′
2 ∈ StrG such that f1(s0G) = f ′1(s0G) and f2(s0G) =

f ′2(s0G). Now, suppose by contradiction that s< does not satisfy the unboundedness property,
i.e., there is an action c ∈ AcG such that, for all actions c′ ∈ AcG , it does not hold that
s<(c, c′). Then, by the definition of s< and the previous observation, we derive the existence
of a strategy f ∈ StrG with f(s0G) = c such that r<(f, f ′) does not hold, for any strategy
f ′ ∈ StrG , which is clearly impossible.

Now, we have all tools to prove that SL lacks of the bounded-tree model property,
which hold, instead, for several commonly used multi-agent logics, such as ATL⋆.

Theorem 3.1 (SL Unbounded Model Property). SL does not enjoy the bounded model
property.

16 F. MOGAVERO, A. MURANO, G. PERELLI, AND M.Y. VARDI

Proof. To prove the statement, we show that the sentence ϕord of Definition 3.1 cannot
be satisfied on a bounded CGS. Consider a CGS G such that G |= ϕord. The existence
of such a model is ensured by Lemma 3.1. Now, consider the strict partial order without
maximal element between actions s< described in Lemma 3.3. By a classical result on first
order logic model theory [EF95], the relation s< cannot be defined on a finite set. Hence,
|Ac| = ∞.

3.2. Undecidable satisfiability. We finally show the undecidability of the satisfiability
problem for SL through a reduction from the recurrent domino problem.

The domino problem, proposed for the first time by Wang [Wan61], consists of placing
a given number of tile types on an infinite grid, satisfying a predetermined set of constraints
on adjacent tiles. One of its standard versions asks for a compatible tiling of the whole plane
N× N. The recurrent domino problem further requires the existence of a distinguished tile
type that occurs infinitely often in the first row of the grid. This problem was proved
to be highly undecidable by Harel, and in particular, Σ1

1-complete [Har84]. The formal
definition follows.

Definition 3.2 (Recurrent Domino System). An N× N recurrent domino system D =〈D,
H ,V , t0〉 consists of a finite non-empty set D of domino types, two horizontal and vertical
matching relations H ,V ⊆ D × D, and a distinguished tile type t0 ∈ D. The recurrent
domino problem asks for an admissible tiling of N × N, which is a solution mapping ∂ :
N × N → D such that, for all x, y ∈ N, it holds that (i) (∂(x, y), ∂(x + 1, y)) ∈ H , (ii)
(∂(x, y), ∂(x, y + 1)) ∈ V , and (iii) |{x ∈ N : ∂(x, 0) = t0}| = ω.

Grid specification. Consider the sentence ϕgrd ,
∧
a∈Ag ϕ

ord
a , where ϕorda = ϕunba ∧ ϕtrna

are the order sentences and ϕunba and ϕtrna are the unboundedness and transitivity strategy
requirements for agents α and β defined, similarly to Definition 3.1, as follows:

(1) ϕunba , [[z1]]〈〈z2〉〉 z1 <a z2;
(2) ϕtrna , [[z1]][[z2]][[z3]] (z1 <a z2 ∧ z2 <a z3) → z1 <a z3;

where x1 <α x2 , 〈〈y〉〉ϕα(x1, x2, y) and y1 <β y2 , 〈〈x〉〉ϕβ(y1, y2, x) are the two par-

tial order formulas on strategies of α and β, respectively, with ϕα(x1, x2, y) , (β, y)((α,

x1)(Xp) ∧ (α, x2)(X¬p)) and ϕβ(y1, y2, x) , (α, x)((β, y1)(X¬p) ∧ (β, y2)(Xp)). Intuitively,
<α and <β correspond to the horizontal and vertical ordering of the positions in the grid,
respectively.

It is easy to show that ϕgrd is satisfiable, by using the same candidate model G⋆ (see
Figure 3)and a proof argument similar to that proposed in Lemma 3.1 for the simpler order
sentence.

Lemma 3.4 (Grid Ordering Satisfiability). The sentence ϕgrd is satisfiable.

Proof. Let G⋆ be the model described in Lemma 3.1. On one hand, by using the same
lemma, it is evident that G⋆ |= ϕordα . On the other hand, in order to prove that G⋆ |= ϕordβ ,

first observe that G⋆, χ, s0G⋆ |= ϕβ(y1, y2, x) iff χ(y1)(s0G⋆) < χ(x)(s0G⋆) ≤ χ(y2)(s0G⋆), for
all assignments χ ∈ AsgG⋆({y1, y2, x}, s0G⋆). At this point, the thesis follows by a reasoning
similar to the one proposed in the lemma.

REASONING ABOUT STRATEGIES: ON THE SATISFIABILITY PROBLEM 17

Consider now a model G of ϕgrd and, for all agents a ∈ Ag, the relation r<a ⊆ StrG×StrG
between strategies defined as follows: r<a (f1, f2) holds iff G,∅[z1 7→ f1][z2 7→ f2], s0G |= z1 <a
z2, for all strategies f1, f2 ∈ StrG. By using a proof similar to that of Lemma 3.2, it is
possible to see that r<a is a strict partial order without maximal element on StrG .

Now, to apply the desired reduction, we need to transform r<a into a total order over
strategies, by using the following two lemmas.

Lemma 3.5 (Strategy Equivalence). Let r≡a ⊆ StrG × StrG , with a ∈ Ag, be the relation
between strategies such that r≡a (f1, f2) holds iff neither r<a (f1, f2) nor r

<
a (f2, f1) holds, for all

f1, f2 ∈ StrG . Then r≡a is an equivalence relation.

Proof. It is immediate to see that the relation r≡a is reflexive, since r<a is not reflexive.
Moreover, it is symmetric by definition. Finally, due to the definition of the partial order
formula <a, it is also transitive and, thus, r≡a is an equivalence relation. Indeed, if r≡α (f1, f2)
holds, we have that G, χ, s0G |= [[y]](β, y)((α, x1)(X¬p) ∨ (α, x2)(Xp)) and G, χ, s0G |=
[[y]](β, y)((α, x2)(X¬p) ∨ (α, x1)(Xp)), for all assignments χ ∈ Asg(G, {x1, x2}, s0G) such
that χ(x1) = f1 and χ(x2) = f2. Consequently, G, χ, s0G |= [[y]](β, y)((α, x1)(X¬p) ∨
(α, x2)(Xp))∧((α, x2)(X¬p)∨(α, x1)(Xp)), which is equivalent to G, χ, s0G |= [[y]](β, y)((α, x1)
(Xp)∧ (α, x2)(Xp))∨ ((α, x1)(X¬p)∨ (α, x2)(X¬p)). In other words, for all strategies f, either
G, χ[y 7→ f], s0G |= (β, y)((α, x1)(Xp) ∧ (α, x2)(Xp)) or G, χ[y 7→ f], s0G |= (β, y)((α, x1)(X
¬p) ∧ (α, x2)(X¬p)) holds. Similarly, from r≡α (f2, f3), we can derive that, for all strategies
f and assignments χ ∈ Asg(G, {x2, x3}, s0G) with χ(x2) = f2 and χ(x3) = f3, either
G, χ[y 7→ f], s0G |= (β, y)((α, x2)(Xp) ∧ (α, x3)(Xp)) or G, χ[y 7→ f], s0G |= (β, y)((α, x2)(X
¬p)∧′′ (α, x3)(X¬p)) holds. Therefore, by putting the two deductions together, we have that
either G, χ, s0G |= (β, y)((α, x1)(Xp) ∧ (α, x3)(Xp)) or G, χ, s0G |= (β, y)((α, x1)(X¬p) ∧
(α, x3)(X¬p)) holds, for all assignments χ ∈ Asg(G, {x1, x3, y}, s0G) such that χ(x1) = f1
and χ(x3) = f3. Thus, by following the above reasoning at the reverse, we immediately
derive that r≡α (f1, f3) holds, as well. Obviously, the same reasoning applies to r≡β .

Let Str≡a , (StrG/r
≡
a) be the quotient set of StrG w.r.t. r≡a , for a ∈ Ag, i.e., the set of

the related equivalence classes over strategies. Then, the following holds.

Lemma 3.6 (Strategy Total Order). Let s<a ⊆ Str≡a × Str≡a , with a ∈ Ag, be the relation
between classes of strategies such that s<a (F1,F2) holds iff r<a (f1, f2) holds, for all f1 ∈ F1,
f2 ∈ F2, and F1,F2 ∈ Str≡a . Then s<a is a strict total order with minimal element but no
maximal element.

Proof. The fact that s<a is a strict partial order without maximal element derives directly
from the same property of r<a . In fact, due to the specific definition of the partial order
formula <a, if r

≡
a (f ′, f ′′) and r<a (f ′, f) (resp., r<a (f, f ′)) hold, we obtain that r<a (f ′′, f) (resp.,

r<a (f, f ′′)) holds as well. Indeed, as shown in the proof of Lemma 3.5, r≡α (f ′, f ′′) implies
that, for all assignments χ≡ ∈ Asg(G, {x′, x′′, y}, s0G) with χ≡(x

′) = f ′ and χ≡(x
′′) = f ′′,

either G, χ≡, s0G |= (β, y)((α, x′)(Xp) ∧ (α, x′′)(Xp)) or G, χ≡, s0G |= (β, y)((α, x′)(X¬p) ∧
(α, x′′)(X¬p)) holds. Moreover, r<α (f ′, f) (resp., r<α (f, f ′)) implies that, for all assignments
χ< ∈ Asg(G, {x, x′}, s0G) with χ<(x) = f and χ<(x

′) = f ′, there exists a strategy g

such that G, χ<[y 7→ g], s0G |= (β, y)((α, x′)(X¬p) ∧ (α, x)(Xp)) (resp., G, χ<[y 7→ g], s0G |=
(β, y)((α, x)(X¬p) ∧ (α, x′)(Xp))). Now, by putting the two deductions together w.r.t. the
same strategy g assigned to the variable y, we obtain that G, χ[y 7→ g], s0G |= (β, y)((α, x′′)(X¬p)∧
(α, x)(Xp)) (resp., G, χ[y 7→ g], s0G |= (β, y)((α, x)(X¬p) ∧ (α, x′′)(Xp))), for all assignments
χ ∈ Asg(G, {x, x′′}, s0G) with χ<(x) = f and χ<(x

′′) = f ′′. Hence, r<α (f ′′, f) (resp., r<α (f, f ′′)).

18 F. MOGAVERO, A. MURANO, G. PERELLI, AND M.Y. VARDI

Obviously, the same reasoning applies if we assume a = β instead of a = α. At this point,
if there are f1 ∈ F1 and f2 ∈ F2 such that r<a (f1, f2) holds, we directly obtain that s<a (F1,F2)
holds as well, for all F1,F2 ∈ Str≡a and a ∈ Ag.

Moreover, s<a is total, since r≡a is an equivalence relation that cluster together all
strategies of the agent a that are not in relation w.r.t. either r<a or its inverse (r<a)−1.
Indeed, suppose by contradiction that there are two different classes F1,F2 ∈ Str≡a such
that neither s<a (F1,F2) nor s

<
a (F2,F1) holds. This means that, for all f1 ∈ F1 and f2 ∈ F2,

neither r<a (f1, f2) nor r
<
a (f2, f1) holds and, so, r

≡
a (f1, f2). But, this contradicts the fact that

F1 and F2 are different equivalences classes.
Finally, it is important to note that in Str≡a there is also a minimal element w.r.t. s<a .

Indeed, for a strategy f ∈ StrG for α (resp., for β) that forces the play to reach only nodes
labeled with p (resp., ¬p) as successor of s0G, independently from the strategy of β (resp.,
α), the relation r<α (f ′, f) (resp., r<β (f ′, f)) cannot hold, for any f ′ ∈ StrG.

By a classical result on first-order model theory [EF95], the relation s<a cannot be
defined on a finite set. Hence, |Str≡a | = ω, for all a ∈ Ag. Now, let s≺a ⊆ Str≡a × Str≡a
be the successor relation on Str≡a compatible with the strict total order s<a , i.e., such that
s≺a (F1,F2) holds iff (i) s<a (F1,F2) holds and (ii) there is no F3 ∈ Str≡a for which both
s<a (F1,F3) and s<a (F3,F2) hold, for all F1,F2 ∈ Str≡a . Then, we can represent the two
sets of classes Str≡α and Str≡β , respectively, as the infinite ordered lists {Fα0 ,F

α
1 , . . .} and

{Fβ0 ,F
β
1 , . . .} such that s≺a (F

a
i ,F

a
i+1) holds, for all indexes i ∈ N. Note that Fa0 is the class

of minimal strategies w.r.t the relation s<a .
At this point, we have all the machinery to build an embedding of the plane N×N into

a model G of ϕgrd. Formally, we consider the bijective map ℵ : N × N → Str≡α × Str≡β such

that ℵ(i, j) = (Fαi ,F
β
j), for all i, j ∈ N.

Compatible tiling. Given the grid structure built on the model G of ϕgrd through the
bijective map ℵ, we can express that a tiling of the grid is admissible by making use of the
formula z1 ≺a z2 , (z1 <a z2)∧(¬〈〈z3〉〉z1 <a z3)∧(z3 <a z2) corresponding to the successor
relation s≺a , for all a ∈ Ag. Indeed, it is not hard to see that G, χ, s0G |= z1 ≺a z2 iff χ(z1) ∈
Fai and χ(z2) ∈ Fai+1, for all indexes i ∈ N and assignments χ ∈ AsgG({z1, z2}, s0G). The
idea here is to associate with each domino type t ∈ D a corresponding atomic proposition
t ∈ AP and to express the horizontal and vertical matching conditions via suitable object
labeling. In particular, we can express that the tiling is locally compatible, the horizontal
neighborhoods of a tile satisfy the H or V requirements, respectively. All these constraints
can be formulated through the following three agent-closed formulas:

(1) ϕt,loc(x, y) , (α, x)(β, y)(X(t ∧
∧t′ 6=t
t′∈D ¬t′));

(2) ϕt,hor(x, y) ,
∨

(t,t′)∈H [[x′]](x ≺α x
′ → (α, x′)(β, y)(Xt′));

(3) ϕt,ver(x, y) ,
∨

(t,t′)∈V [[y′]](y ≺β y
′ → (α, x)(β, y′)(Xt′)).

Informally, we have the following: ϕt,loc(x, y) asserts that t is the only domino type labeling
the successors of the root of the model G that can be reached using the strategies related
to the variables x and y; ϕt,hor(x, y) asserts that the tile t′ labeling the successors of the
root reachable through the strategies x′ and y is compatible with t w.r.t. the horizontal
requirement H , for all strategies x′ that immediately follow that related to x w.r.t. the
order r<α ; ϕt,ver(x, y) asserts that the tile t′ labeling the successors of the root reachable

REASONING ABOUT STRATEGIES: ON THE SATISFIABILITY PROBLEM 19

through the strategies x and y′ is compatible with t w.r.t. the vertical requirement V , for
all strategies y′ that immediately follow that related to y w.r.t. the order r<β .

Finally, to express that the whole grid has an admissible tiling, we use the sentence
ϕtil , [[x]][[y]]

∨
t∈D ϕ

t,loc(x, y) ∧ ϕt,hor(x, y) ∧ ϕt,ver(x, y) that asserts the existence of a
domino type t satisfying the three conditions mentioned above, for every point identified by
the strategies x and y.

Recurrent tile. As last task, we impose that the grid embedded into G has the distin-
guished domino type t0 occurring infinitely often in its first row. To do this, we describe
two formulas that determine if a row or a column is the first one w.r.t. the orders s<α and

s<β , respectively. Formally, we use 0a(z) , ¬〈〈z′〉〉 z′ <a z, for a ∈ Ag. One can easily

prove that G, χ, s0G |= 0α(z) iff χ(z) ∈ Fa0, for all assignments χ ∈ AsgG({z}, s0G). Now,
the infinite occurrence requirement on t0 can be expressed with the following sentence:
ϕrec , [[x]][[y]](0β(y) ∧ (0α(x) ∨ (α, x)(β, y)(Xt0))) → 〈〈x′〉〉 x <α x

′ ∧ (α, x′)(β, y)(Xt0). In-
formally, ϕrec asserts that, when we are on the first row identified by the variable y and
at a column pointed by x such that it is the first column or the node of the “intersection”
between x and y is labeled by t0, we have that there exists a greater column identified by
x′ such that its “intersection” with y is labeled by t0 as well.

Construction correctness. At this point, we have all tools to formally prove the correct-
ness of the undecidability reduction, by showing the equivalence between the satisfiability of
the sentence ϕdom , ϕgrd ∧ϕtil ∧ϕrec and finding a solution of the recurrent tiling problem.

s

∅

(p,t)
p, t

(p,t)
p, t

(¬p,t)

t
(p,t)

p, t

00
01

10 11

∗∗ ∗∗

∗∗ ∗∗

Figure 4: Part of the CGS G∂
⋆ model

of ϕdom, where ∂(0, 0) = t,
∂(0, 1) = t, ∂(1, 0) = t,
and ∂(1, 1) = t.

Theorem 3.2 (Satisfiability). The satisfiability
problem for SL is highly undecidable. In partic-
ular, it is Σ1

1-hard.

Proof. For the direct reduction, assume that there
exists a solution mapping ∂ : N × N → D for the
given recurrent domino system D. Then, we can
build a finite CGS G⋆∂ similar to the one used in

Lemma 3.1, which satisfies the sentence ϕdom:

(i) AcG⋆∂ , N;

(ii) there are 2 · |D| + 1 different states StG⋆∂ ,

{s0} ∪ ({p,¬p} × D) such that apG⋆∂
(s0) , ∅,

apG⋆∂
((p, t)) , {p, t}, and apG⋆∂

((¬p, t)) , {t},
for all t ∈ D;

(iii) each state (z, t) ∈ {p,¬p} × D has only self

loops trG⋆∂ ((z, t), δ) , (z, t) and the initial

state s0G⋆∂ , s0 is connected to (z, t) through the decision δ, i.e., trG⋆∂ (s0, δ) , (z, t), iff

(a) t = ∂(δ(α), δ(β)) and
(b) z = p iff δ(α) ≤ δ(β), for all δ ∈ DcG⋆∂ .

By a simple case analysis on the subformulas of ϕdom, it is possible to see that G⋆∂ |=
ϕdom.

Conversely, let G be a model of the sentence ϕdom and ℵ : N × N → Str≡α × Str≡β the
related bijective map built for the grid specification task. As first thing, we have to prove

20 F. MOGAVERO, A. MURANO, G. PERELLI, AND M.Y. VARDI

the existence of a coloring function ð : Str≡α × Str≡β → D such that, for all pairs of classes of

strategies (Fα,Fβ) ∈ Str≡α × Str≡β and assignments χ ∈ AsgG({α, β}, s0G) with χ(α) ∈ Fα

and χ(β) ∈ Fβ, it holds that G, χ, s0G |= Xð(Fα,Fβ). Then, it remains to note that the
solution mapping ∂ = ð ◦ ℵ built as a composition of the bijective map ℵ and the coloring
function ð is an admissible tiling of the plane N× N.

Due to the ϕt,loc formula in the sentence ϕtil, we have that, for all assignments χ ∈
AsgG({α, β}, s0G), there exists just one domino type t ∈ D satisfying the property G, χ,

s0G |= Xt. Let ð̂ : StrG × StrG → D be the function that returns such a type, for all pairs

of strategies of α and β, i.e., such that G, χ, s0G |= Xð̂(χ(α), χ(β)), for all assignments
χ ∈ AsgG({α, β}, s0G). Now, it is not hard to see that, due to the formulas ϕt,hor and ϕt,ver

in the sentence ϕtil, it holds (i) (ð̂(fα, fβ), ð̂(f
′
α, fβ)) ∈ H and (ii) (ð̂(fα, fβ), ð̂(fα, f

′
β)) ∈ V ,

for all fα ∈ Fαi , f
′
α ∈ Fαi+1, fβ ∈ Fβj , f

′
β ∈ Fj+

β, and i, j ∈ N. Moreover, the guess of the

tile type t′ adjacent to t is uniform w.r.t. the choice of the successor strategy. Indeed, the
disjunctions

∨
(t,t′)∈H and

∨
(t,t′)∈V precede the universal quantifications [[x′]] and [[y′]] in

the formulas ϕt,hor and ϕt,ver, respectively. Thus, we have that, for all f ′α, f
′′
α ∈ Fαi and

f ′β, f
′′
β ∈ Fβj with i, j ∈ N and i + j > 0, it holds that ð̂(f ′α, f

′
β) = ð̂(f ′′α, f

′′
β). Note that this

fact is not necessarily true for strategies belonging to the minimal classes Fα0 and Fβ0 , since
the sentence ϕdom does not contain a relative requirement. However, every domino type

ð̂(fα, fβ), with fα ∈ Fα0 and fβ ∈ Fβ0 , can be used to label the origin of the plane N × N in
order to obtain an admissible tiling. So, we can consider a function ð, defined as follows:

(i) ð(Fα0 ,F
β
0) ∈ {ð̂(fα, fβ) : fα ∈ Fα0 ∧ fβ ∈ Fβ0}; (ii) ð(Fαi ,F

β
j) = ð̂(fα, fβ), for all fα ∈ Fαi ,

fβ ∈ Fβj , and i, j ∈ N with i+ j > 0.

Clearly, (i) (ð(Fαi ,F
β
j),ð(F

α
i+1,F

β
j)) ∈ H , (ii) (ð(Fαi ,F

β
j),ð(F

α
i ,Fj+

β)) ∈ V , and (iii)

|{i : ð(Fαi ,F
β
0) = t0}| = ω, for all i, j ∈ N. So, ∂ = ð ◦ ℵ is an admissible tiling.

4. What makes ATL* decidable?

As just shown, SL does not have the bounded model property and its satisfiability problem
is undecidable. On the contrary, it is well-known that the satisfiability problem for ATL⋆

is 2ExpTime-complete [Sch08]. This gap in complexity between SL and ATL⋆ gives
naturally rise to the question of which are the inherent properties of ATL⋆ that make the
problem decidable. In this section, we answer such question by analyzing two syntactic
fragments of SL. The first one, called Boolean-Goal Strategy Logic (SL[bg], for short), still
has an undecidable satisfiability problem . The second one, called One-Goal Strategy Logic
(SL[1g], for short), retains, instead, all positive properties of ATL⋆, such as the decision-
tree model property (see Definition 4.7 and Theorem 4.5) and the bounded model property
(see Theorem 5.2), which allows us to show that its satisfiability problem is 2ExpTime-
complete. A fundamental feature used as a tool to prove the announced properties is the
behavioral satisfiability, described for the first time in [MMPV14].

The section is organized as follows. In Subsection 4.1, we introduce the syntactic frag-
ments of SL mentioned above. Then, in Subsection 4.2, we define the concept of behavioral
satisfiability and recall the corresponding theorem for SL[1g]. Finally, in Subsection 4.3,
we introduce the concept of decision-tree model property and prove that it is enjoyed by
the latter fragment.

REASONING ABOUT STRATEGIES: ON THE SATISFIABILITY PROBLEM 21

4.1. Syntactic fragments. In order to formalize the two syntactic fragments of SL we
want to investigate, we first need to define the concepts of quantification and binding prefixes.
A quantification prefix over a set V ⊆ Vr of variables is a finite word ℘ ∈ {〈〈x〉〉, [[x]] :

x ∈ V}|V| of length |V| such that each variable x ∈ V occurs just once in ℘, i.e., there is
exactly one index i ∈ [0, |V|[such that (℘)i ∈ {〈〈x〉〉, [[x]]}. A binding prefix over a set of
variables V ⊆ Vr is a finite word ♭ ∈ {(a, x) : a ∈ Ag ∧ x ∈ V}|Ag| of length |Ag| such that
each agent a ∈ Ag occurs just once in ♭, i.e., there is exactly one index i ∈ [0, |Ag|[for which
(♭)i ∈ {(a, x) : x ∈ V}. By Vr(℘) and Vr(♭) we denote, respectively, the set of variables on
which the quantification and binding prefixes ℘ and ♭ range. Finally, Qnt(V) ⊆ {〈〈x〉〉, [[x]] :
x ∈ V}|V| and Bnd(V) ⊆ {(a, x) : a ∈ Ag ∧ x ∈ V}|Ag| denote the sets of all quantification
and binding prefixes over the variables in V.

We now have all tools to define the syntactic fragments named Boolean-Goal and One-
Goal Strategy Logic (SL[bg] and SL[1g], for short). For a goal we mean an SL agent-closed
formula of the form ♭ϕ, with Ag ⊆ free(ϕ), being ♭ ∈ Bn(Vr) a binding prefix. The idea
behind SL[bg] is to build sentences having only a Boolean combination of goals in the scope
of a quantification prefix. Moreover, SL[1g] forces the use of a different quantification prefix
for each goal in the formula. The formal syntax of SL[bg] and SL[1g] follows.

Definition 4.1 (SL[bg] and SL[1g] Syntax). SL[bg] formulas are built inductively from
the sets of atomic propositions AP, quantification prefixes Qnt(V) for any V ⊆ Vr, and
binding prefixes Bnd(Vr), by using the following grammar, with p ∈ AP, ℘ ∈ ∪V⊆VrQnt(V),
and ♭ ∈ Bnd(Vr):

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕ Uϕ | ϕ Rϕ | ℘ψ,
ψ ::= ♭ϕ | ¬ψ | ψ ∧ ψ | ψ ∨ ψ,

where in the formation rule of ℘ψ it is ensured that ℘ ∈ Qnt(free(ψ)).
Finally, the simpler SL[1g] formulas are obtained by forcing each goal to be coupled with a
quantification prefix:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕ Uϕ | ϕ Rϕ | ℘♭ϕ,

where in the formation rule ℘♭ϕ it is ensured that ℘ ∈ Qnt(free(♭ϕ)).
SL ⊃ SL[bg] ⊃ SL[1g] denotes the syntactic chain of infinite sets of formulas generated by
the respective grammars with the associated constraints on free variables of goals.

Intuitively, in SL[bg] and SL[1g], we force the writing of formulas to use atomic blocks
of quantifications and bindings, where the related free variables are strictly coupled with
those that are effectively quantified in the prefix just before the binding. In a nutshell, we
can only write formulas by using sentences of the form ℘ψ belonging to a kind of prenex
normal form in which the quantifications contained into the matrix ψ only belong to the
prefixes ℘′ for some inner subsentence ℘′ψ′ ∈ snt(℘ψ).

An SL[bg] sentence φ is principal if it is of the form φ = ℘ψ, where ψ is agent-closed
and ℘ ∈ Qnt(free(ψ)). By psnt(ϕ) ⊆ snt(ϕ) we denote the set of all principal subsentences
of the formula ϕ.

In order to practice with the above fragments, let us consider again the sentence
ϕNE of Example 2.3. It is easy to see that it is not an SL[bg] formula. However, by
rearranging quantifications and bindings we can obtain the equivalent formula ϕ′

NE =
℘
∧n
i=1 ♭iψi → ♭ψi, where ℘ = 〈〈x〉〉 · · · 〈〈xn〉〉[[y]] · · · [[yn]], ♭ = (α1, x) · · · (αn, xn), ♭i =

(α1, x) · · · (αi−1, xi−)(αi, yi)(αi+1, xi+) · · · (αn, xn), and free(ψi) = Ag. Now, it is not hard
to see that ϕ′

NE , as well as the equivalent formulations of ϕEG and ϕAG of Example 2.4
and Example 2.5, respectively, belong to SL[bg] but not to SL[1g].

22 F. MOGAVERO, A. MURANO, G. PERELLI, AND M.Y. VARDI

In Section 3, we prove the undecidability of the satisfiability problem for SL. Now, it is
not hard to see that the formula ϕdom used to reduce the domino problem in Theorem 3.2
actually lies in the SL[bg] fragment. Hence, the satisfiability for this logic is undecidable
too. On the other hand, later in the paper, we prove that the same problem for SL[1g]
is 2ExpTime-complete, thus not harder than the one for ATL⋆. We have the following
theorem.

Theorem 4.1. The satisfiability problem for SL[bg] is highly undecidable. In particular,
it is Σ1

1-hard.

In addition to this, we recall that in [TW12], the authors prove that the satisfiability
problem for a logic called ATL⋆ with strategy context, introduced in [DLM10] is undecidable
also on the class of finite models. It is easy to prove that ATL⋆ with strategy context can
be embedded in SL. This implies the following.

Theorem 4.2. The satisfiability on finite models problem for SL is undecidable.

Remark 4.1. It is important to notice that, since ATL⋆ with strategy context cannot be
embedded in SL[bg], the result provided in [TW12] is not sufficient to prove the undecid-
ability of the satisfiability problem for SL[bg]. Moreover, the result shown here is stronger,
as it proves highly undecidability for SL[bg]. On the contrary, in [MMPV14], we introduce
a fragment called ”Nested-Goal Strategy Logic” (SL[ng], for short), that strictly subsumes
SL[bg] and in which ATL⋆ with strategy context can be embedded. This fragment, then,
is undecidable on finite models and highly undecidable on infinite models. In addition to
this, notice that in [LM13] the authors show that the decidability problem for SL under
turn-based CGSs is decidable. This means that the undecidability under concurrent CGSs
is strict.

4.2. Behavioral semantics. We now recall the fundamental property of behavioral seman-
tics enjoyed by SL[1g]. All concepts and results have been already introduced and fully
investigated in [MMPV14]. We report them here for the sake of completeness.

We first need to describe the concept of Skolem dependence function (Sdf, for short)
and show how any quantification prefix contained into an SL formula can be represented by
an adequate choice of a Sdf over strategies. The main idea here is inspired by the technique
proposed by Skolem for the first-order logic in order to eliminate all existential quantifica-
tions over variables, by substituting them with second order existential quantifications over
functions, whose choice is uniform w.r.t. the universal variables.

We first introduce some notation regarding the quantification prefixes. Let ℘ ∈ Qnt(V)

be a quantification prefix over a set V ⊆ Vr of variables. By 〈〈℘〉〉 , {x ∈ V(℘) : ∃i ∈
[0, |℘|[. (℘)i = 〈〈x〉〉} and [[℘]] , V(℘) \ 〈〈℘〉〉 we denote the sets of existential and universal
variables quantified in ℘, respectively. For two variables x, y ∈ V(℘), we say that x precedes
y in ℘, in symbols x<℘y, if x occurs before y in ℘, i.e., there are two indexes i, j ∈
[0, |℘|[, with i < j, such that (℘)i ∈ {〈〈x〉〉, [[x]]} and (℘)j ∈ {〈〈y〉〉, [[y]]}. Moreover, we say
that y is functional dependent on x, in symbols x ℘y, if x ∈ [[℘]], y ∈ 〈〈℘〉〉, and x<℘y,
i.e., y is existentially quantified after that x is universally quantified, so, there may be a
dependence between a value chosen by x and that chosen by y. This definition induces the
set Dep(℘) , {(x, y) ∈ V(℘) × V(℘) : x ℘y} of dependence pairs and its derived version

Dep(℘, y) , {x ∈ V(℘) : x ℘y} containing all variables from which y depends. Finally, we

REASONING ABOUT STRATEGIES: ON THE SATISFIABILITY PROBLEM 23

use ℘ ∈ Qnt(V(℘)) to indicate the quantification derived from ℘ by dualizing each quantifier
contained in it, i.e., for all indexes i ∈ [0, |℘|[, it holds that (℘)i = 〈〈x〉〉 iff (℘)i = [[x]], with
x ∈ V(℘). It is evident that 〈〈℘〉〉 = [[℘]] and [[℘]] = 〈〈℘〉〉. As an example, let ℘ =
[[x]]〈〈y〉〉〈〈z〉〉[[w]]〈〈v〉〉. Then, we have 〈〈℘〉〉 = {y, z, v}, [[℘]] = {x, w}, Dep(℘, x) = Dep(℘, w) =
∅, Dep(℘, y) = Dep(℘, z) = {x}, Dep(℘, v) = {x, w}, and ℘ = 〈〈x〉〉[[y]][[z]]〈〈w〉〉[[v]].

Finally, we define the notion of valuation of variables over a generic set D, called domain,
i.e., a partial function v : Vr ⇀ D mapping every variable in its domain to an element in
D. By ValD(V) , V → D we denote the set of all valuation functions over D defined on
V ⊆ Vr.

At this point, we give a general high-level semantics for the quantification prefixes by
means of the following definition of Skolem dependence function.

Definition 4.2 (Skolem Dependence Function). Let ℘ ∈ Qnt(V) be a quantification prefix
over a set V ⊆ Vr of variables, and D a set. Then, a Skolem dependence function for ℘ over
D is a function θ : ValD([[℘]]) → ValD(V) satisfying the following two properties:

(1) θ(v)
↾[[℘]]=v, for all v ∈ ValD([[℘]]);

9

(2) θ(v)(x) = θ(v)(x), for all v, v ∈ ValD([[℘]]) and x ∈ 〈〈℘〉〉 such that v↾Dep(℘,x) =
v↾Dep(℘,x).

SFD(℘) denotes the set of all Sdfs for ℘ over D.

Intuitively, Item 1 asserts that θ assumes the same values of its argument w.r.t. the
universal variables in ℘, while Item 2 ensures that the value of θ w.r.t. an existential variable
x in ℘ does not depend on variables not in Dep(℘, x). To get a better insight, note that
a Sdf θ for ℘ can be considered as a set of classical Skolem functions that, given a value
for each variable in [[℘]] returns a possible value for all variables in 〈〈℘〉〉, in a way that is
consistent w.r.t. the order of quantifications. Observe that, each θ ∈ SFD(℘) is injective, so,

|rng(θ)| = |dom(θ)| = |D||[[℘]]|. Moreover, |SFD(℘)| =
∏
x∈〈〈℘〉〉 |D||D||Dep(℘,x)|

. As an example,

let D = {0, 1} and ℘ = [[x]]〈〈y〉〉[[z]] ∈ Qnt(V) be a quantification prefix over V = {x, y, z}.
Then, we have that |SFD(℘)| = 4 and |SFD(℘)| = 8. Moreover, the Sdfs θi ∈ SFD(℘)

with i ∈ [0, 3] and θi ∈ SFD(℘) with i ∈ [0, 7], for a particular fixed order, are such that
θ(v)(y) = 0, θ(v)(y) = v(x), θ(v)(y) = 1 − v(x), and θ(v)(y) = 1, for all v ∈ ValD([[℘]]),

and θi(v)(x) = 0 with i ∈ [0, 3], θi(v)(x) = 1 with i ∈ [4, 7], θ(v)(z) = θ(v)(z) = 0,

θ(v)(z) = θ(v)(z) = v(y), θ(v)(z) = θ(v)(z) = 1− v(y), and θ(v)(z) = θ(v)(z) = 1, for
all v ∈ ValD([[℘]]).

We now report the following fundamental theorem that describes how to eliminate
the strategy quantifications of an SL formula via a choice of a suitable Sdf over strate-
gies [MMPV14]. This procedure can be seen as the equivalent of the Skolemization proce-
dure in first-order logic (see [Hod93], for more details).

Theorem 4.3 (SL Strategy Quantification). Let G be a CGS and ϕ = ℘ψ an SL sentence,
where ψ is agent-closed and ℘ ∈ Qnt(free(ψ)). Then, G |= ϕ iff there exists a Sdf θ ∈
SFStr(℘) such that G, θ(χ), s |= ψ, for all χ ∈ Asg([[℘]], s).

We now restrict our attention to a particular subclass of Sdfs defined on strategies
called behavioral Skolem dependence functions. Intuitively, an Sdf behavioral on strategies
can be split into an infinite set of Sdfs over actions, one per each track in the domains of

9By g↾Z : (X ∩ Z) → Y we denote the restriction of a function g : X → Y to the elements in the set Z.

24 F. MOGAVERO, A. MURANO, G. PERELLI, AND M.Y. VARDI

strategies. As next definition clarifies, not all the Sdfs are behavioral. This means that the
announced simplification applies only under certain conditions.

Definition 4.3 (Adjoint Functions). Let θ : ValStr([[℘]]) → ValStr(Vr) be an Sdf on strate-

gies and let θ̃ : Trk → (ValAc([[℘]]) → ValAc(Vr)) be a function mapping every track into

a Sdf on actions. We say that θ̃ is the adjoint of θ if θ̃(ρ)(χ̂(ρ))(x) = θ(χ)(x)(ρ), for all
χ ∈ AsgStr([[℘]]), x ∈ Vr, and ρ ∈ Trk 10.

Intuitively, θ̃ is the adjoint of θ if the dependence from tracks in Trk in both domain
and codomain of the latter function can be extracted and put as a common factor of the
former function. This implies also that, for every pair of functions χ, χ ∈ AsgStr([[℘]])
such that χ̂(ρ) = χ̂(ρ) for some ρ ∈ Trk, it holds that θ(χ)(x)(ρ) = θ(χ)(x)(ρ), for all
variables x ∈ Vr. It is immediate to observe that if a function has an adjoint then that
adjoint is unique. At the same way, from an adjoint function it is possible to determine the
original function without any ambiguity. Thus, it is established a one-to-one correspondence
between functions admitting an adjoint and the adjoints themselves.

We have the following definition.

Definition 4.4. An Sdf is called behavioral if it admits the adjoint function. Moreover, by
BSFStr(℘) we denote the set of behavioral Sdfs for ℘ over the set of strategies Str

It is proved in [MMPV14] that a necessary and sufficient condition for a function θ̃ to

be an adjoint of a certain Sdf θ ∈ SFStr(℘) is that θ̃(ρ) is in SFAc(℘), for all ρ ∈ Trk.
Unfortunately, not every Sdf has an adjoint function. An easy way to prove this, it is

to the number of Sdfs and adjoints. Indeed, we have that

|SFStr(℘)| =
∏

x∈〈〈℘〉〉

|Ac||Trk|·|Ac||Trk|·|Dep(℘,x)|

,

which is doubly exponential in the set Trk of tracks, while

|Trk → SFAc(℘)| =
∏

x∈〈〈℘〉〉

|Ac||Trk|·|Ac||Dep(℘,x)|

,

which is only singly exponential in the same set Trk.

Definition 4.5 (SL[bg] Behavioral Semantics [MMPV14]). Let G be a CGS, s ∈ St one
of its states, and ℘ψ an SL[bg] formula, where ψ is agent-closed and ℘ ∈ Qnt(free(ψ)).
Then G, s |=B ℘ψ if there exists a behavioral Sdf θ ∈ BSFStr(℘) for ℘ over Str such that
G, θ(χ), s |=B ψ, for all χ ∈ Asg([[℘]], s).

Clearly, from the previous definition and Theorem 4.3, we have that G |=B ϕ implies
G |= ϕ. In [MMPV14] it has been shown that the converse may not hold in general, i.e.,
there exists a CGS G and a SL[bg] formula ϕ such that G |= ϕ but G 6|=B ϕ. However, as
a fundamental result for the SL[1g] fragment, in [MMPV14] it has also been proved that
the behavioral semantics is equivalent to the classic one. This fact is derived by means of a
reduction from the verification problem of a SL[1g] sentence against a CGS to the wining
problem of a Borelian two-player game.

Theorem 4.4 (SL[1g] Behavioral [MMPV14]). Let G be a CGS and ϕ an SL[1g] sentence.
Then, G |= ϕ iff G |=B ϕ.

10By ĝ : Y → X → Z we denote the operation of flipping of a function g : X → Y → Z.

REASONING ABOUT STRATEGIES: ON THE SATISFIABILITY PROBLEM 25

It is important to note that the behavioral property of SL[1g] is fundamental in proving
many positive properties of the logic, as the bounded model property, which lead to a
decidable procedure for the satisfiability problem, as we show later in the paper.

4.3. Tree-model property. The satisfiability procedure we propose later in the paper is
based on the use of alternating tree automata. Consequently, we need to establish a kind of
tree model property, which is based on a special sub-class of CGSs, namely, the concurrent
game-trees (CGT, for short), whose structure of the underlying graph is a tree.

Definition 4.6 (Concurrent Game Trees). A concurrent game tree (CGT, for short) is a

CGS T ,〈AP,Ag,Ac,St, tr, ap, s〉, where (i) St ⊆ Dir∗ is a Dir-tree for a given set Dir of
directions and (ii) if t · e ∈ St then there is a decision δ ∈ Dc such that tr(t, δ) = t · e, for all
t ∈ St and e ∈ Dir. Furthermore, T is a decision tree (DT, for short) if (i) St = Dc∗ and
(ii) if t · δ ∈ St then tr(t, δ) = t · δ, for all t ∈ St and δ ∈ Dc.

Intuitively, CGTs are CGSs having a transition relation with a tree shape and DTs
have, in addition, the states that uniquely determine the history of the computation leading
to them. Observe that, for each non trivial track ρ (resp., path π) of a CGT, there exists a
unique finite (resp., infinite) sequence of decisions δ ·. . .·δ|ρ|− ∈ Dc∗ (resp., δ ·δ ·. . . ∈ Dcω)
such that ρ(i+) = tr(ρ(i), δi) (resp., π(i+) = tr(π(i), δi)), for all i ∈ [0, |ρ| − 1[(resp., i ∈ N).

We now define a generalization for CGSs of the classic concept of unwinding of labeled
transition systems, namely the decision-unwinding (see Figure 5, for an example), that
allows to show that SL[1g] enjoys the decision-tree model property.

s

∅

s

∅

s
p

s

∅

∗∗

0∗ 1∗

∗∗ ∗∗

ǫ

∅

01

∅
00

∅
10

∅
11

∅

00·11

∅
00·10

∅
00·01
p

00·00
p

· · ·

11·00
p

11·01
p

11·10

∅
11·11

∅

00 01 10 11

00 01 10 11 00 01 10 11

Figure 5: A CGS and part of its decision-unwinding.

Definition 4.7 (Decision-Unwinding). Let G =〈AP,Ag,Ac,St, tr, ap, s〉 be a CGS. Then,

the decision-unwinding of G is the DT GDU , 〈AP,Ag,Ac,Dc∗, ap′, tr′, ε〉 for which there
is a surjective function unw : Dc∗ → St such that (i) unw(ε) = s, (ii) unw(tr′(t, δ)) =
tr(unw(t), δ), and (iii) ap′(t) = ap(unw(t)), for all t ∈ Dc∗ and δ ∈ Dc.

Observe that, due to its construction, each CGS G has a unique associated decision-
unwinding GDU .

We are now able to prove that SL[1g] satisfies the decision-tree model property.

Theorem 4.5 (SL[1g] Decision-Tree Model Property). Let ϕ be a satisfiable SL[1g] sen-
tence. Then, there exists a DT T such that T |= ϕ.

Proof. The proof proceeds by structural induction on the sentence SL[1g]. For the Boolean
combination of principal sentences, the induction is trivial. For the case of a principal
sentence ϕ of the form ℘♭ψ, by Theorem 4.4, we derive that there exists a behavioral
Sdf θ ∈ BSFStrG (℘) such that G |=θ ℘♭ψ. Furthermore, there exists the adjoint function

26 F. MOGAVERO, A. MURANO, G. PERELLI, AND M.Y. VARDI

tracking θ̃ into θ. Now, consider the decision unwinding T = GDU of G and the lifting
Γ : TrkT → TrkG of the unwinding function unw such that Γ(ρ) = unw(ρ) · . . . unw(ρ|ρ|−),

for all ρ ∈ TrkT . At this point, consider the function θ̃′ such that θ̃′(ρ′) , θ̃(Γ(ρ′)), for all

ρ′ ∈ TrkT . Clearly, since θ̃ is a Sdf over actions, so θ̃′ is as well. Then, consider the Sdf θ′

for which the function θ̃′ is its adjoint. By induction on the nesting of principal subsentences
in ϕ = ℘♭ψ, we now prove that T |=θ′ ℘♭ψ. As base case, i.e., when ψ is an LTL formula,
consider an assignment χ′ ∈ AsgT ([[℘]], ε) and the induced play π′ = play(θ′(χ′) ◦ ♭, ε)
over T . Moreover, consider an assignment χ ∈ AsgG([[℘]], s) such that, for all placeholders
l ∈ dom(χ) and tracks ρ′ ∈ TrkT , it holds that χ(l)(Γ(ρ

′)) = χ′(l)(ρ′). From the satisfiability
of ϕ on G, we derive that π |= ψ, where π = play(θ(χ) ◦ ♭, s). Indeed, assume for a while

that (π)≤k = Γ((π)
′

≤k). Then, from the definition of the labeling in the decision-tree

unwinding, it easily follows that ap((π)k) = ap′((π′)k), and, so we derive π′ |= ψ, from
π |= ψ. Consequently, this holds for all χ′ ∈ AsgStrT ([[♭]]) and, so, we have that T |=θ′ ℘♭ψ.
The inductive case, i.e., when ψ contains some subsentence, easily follows by considering
the principal subsentences as fresh atomic propositions.

It remains to prove, by induction on k, that (π)≤k = Γ((π′)≤k), for all k ∈ N. As base
case, we have that (π)0 = s = Γ(ε) = (π′)0. As inductive case, assume that (π)≤k =

Γ((π
′
)≤k). Then, in particular, we have that (π)k = Γ((π

′
)k) = unw((π

′
)k). By definition

of play, it holds that (π)k+1 = tr((π)k, (θ̃((π)≤k))(χ̂))◦ ♭), which is, by inductive hypothesis,

equal to tr(unw((π′)k), (θ̃(Γ((π)≤k)))(χ̂)) ◦ ♭). Now, by the definition of θ̃′ and χ, we obtain

tr(unw((π′)k), (θ̃(Γ((π)≤k)))(χ̂)) ◦ ♭) = tr(Γ((π′)k), (θ̃′((π
′)≤k))(χ̂′)) ◦ ♭). Finally, by the

definition of unw and Γ, we have that tr(Γ((π′)k), (θ̃′((π
′)≤k))(χ̂′)) ◦ ♭) = Γ(π′)k+1.

5. Decidability of SL[1G]

In this section, we finally provide a 2ExpTime-complete procedure for the SL[1g] satisfi-
ability problem. Before doing this, we have to prove the bounded-tree model property, which
results to be crucial for the automata-theoretic approach later described.

5.1. Bounded model property. In order to prove the bounded-tree model property for
SL[1g], we first need to introduce the new concept of disjoint satisfiability, which concerns
the verification of different instances of the same subsentence of the original specification.
Intuitively, it asserts that either these instances can be checked on disjoint subtrees of the
tree model or, if two instances use part of the same subtree, they are forced to use the same
dependence map as well. This notion is a reformulation of the notion of explicit model
introduced for ATL⋆ in [Sch08]. This intrinsic characteristic of SL[1g] is fundamental for
the building of a unique automaton that checks the truth of all subsentences, by simply
merging their respective automata, without using a projection operation to eliminate their
own alphabets, which otherwise may be in conflict. In this way, we are also able to avoid
an exponential blow-up. A deeper discussion on this point is reported later in the paper.

Definition 5.1 (Disjoint Satisfiability). Let T be a DT and ϕ = ℘♭ψ be a SL[1g] principal

sentence. Moreover, let S , {s ∈ StT : T , s |= ϕ}. Then, T satisfies ϕ disjointly over S
if there exist two functions head : S → SFAc(℘) and body : Trk(ε) → SFAc(℘) such that,

REASONING ABOUT STRATEGIES: ON THE SATISFIABILITY PROBLEM 27

for all s ∈ S and χ ∈ AsgStr([[℘]]) it holds that T , θ(χ), s |= ♭ψ, where the behavioral Sdf
θ ∈ BSFStr is defined, by means of its adjoint, as follows:

(i) θ̃(s) , head(s);

(ii) θ̃(ρ) , body(ρ′ · ρ), for all ρ ∈ Trk(s) with |ρ| > 1, where ρ′ ∈ Trk(ε) is the unique
track such that ρ′ · ρ ∈ Trk(ε) 11.

The disjoint satisfiability holds for all SL[1g] formulas. To prove this fact, we first
introduce the preliminary definition of twin decision-tree. Intuitively, in such a kind of tree,
each action is flanked by a twin one having the same purpose of the original. This allows to
satisfy two sentences requiring the same actions in a given state in two different branches
of the tree itself, which is what the disjoint satisfiability precisely requires.

Definition 5.2 (Twin Decision Tree). Let T = 〈AP,Ag,Ac,St, tr, ap, ε〉 be a DT. Then,

the twin decision tree of T is the DT T ′ , 〈AP,Ag,Ac′,St′, tr′, ap′, ε′〉 with Ac′ = Ac ×
{new, cont} and ε′ = (ε, new). The labeling and the transition function are defined by
means of a set of projection functions introduced below:

• the function prjAc : Ac
′ → Ac returns the first component of the action in Ac′, i.e.,

prj((c, ι)) = c, for all (c, ι) ∈ Ac′;
• the function prjDc : Dc′ → Dc projects out the flags on all the actions in the
decision, returning a corresponding decision in T , i.e., prjDc(δ

′)(a) = prjAc(δ
′(a)),

for all δ′ ∈ Dc′ and a ∈ Ag;
• the function prjSt : St

′ → St returns the corresponding state in T , according to the
projection made on the decisions, i.e., prjSt(ε

′) = ε and prjSt(s
′ · δ′) = prjSt(s

′) ·
prjDc(δ

′), for all s′ ∈ St′ and δ′ ∈ Dc′;
• analogously, the function prjTrk : Trk′ → Trk, returns the concatenation of the
projected states, i.e., prjTrk(s

′) = prjSt(s
′), for all s′ ∈ St′, and prjTrk(ρ

′ · s′) =
prjTrk(ρ

′) · prjSt(s
′), for all ρ′ ∈ Trk′ and s′ ∈ St′.

Then, ap′(s′) , ap(prjSt(s
′)).

Observe that prjSt(tr
′(s′, δ′)) = tr(prjSt(s

′), prjDc(δ
′)), for all s′ ∈ St′ and δ′ ∈ Dc′. We

can now prove the disjoint satisfiability property for SL[1g].

Theorem 5.1 (Disjoint Satisfiability). Let ϕ = ℘♭ψ be an SL[1g] principal sentence and

T = 〈AP,Ag,Ac,St, tr, ap, ε〉 a DT. Moreover, let S , {s ∈ St : T , s |= ϕ}. Then the twin

decision tree T ′ of T disjointly satisfies ϕ over S′ , {s′ ∈ St′ : prj(s′) ∈ S}.

Proof idea. Starting from the fact that T , s |= ϕ, for all s ∈ S, by means of Theorem 4.4, we
derive the existence of a behavioral Sdf θs. Such a θs is used to define a behavioral Sdf θs

′

in T ′ in which the existential agents suitably select either new or cont as second component,
in order to guarantee the satisfaction of different instances over different branches of the
twin decision tree. Indeed, it allows to properly define the two functions head and body

and, consequently, the behavioral Sdf θ′ for which we finally prove that T ′, s′ |= ϕ, for all
s′ ∈ S′. Since θ′ has been built from the head and body functions, the disjoint satisfiability
is immediately derived.

11Existence and uniqueness of ρ′ is guaranteed by the fact that T is a DT.

28 F. MOGAVERO, A. MURANO, G. PERELLI, AND M.Y. VARDI

Proof. Let s ∈ S be one of the states on which ϕ is satisfied. Since T , s |= ϕ, by Theo-
rem 4.4, we have that there exists θs ∈ BSFStr(℘) such that T , θs(χ), s |= ♭ψ, for all states

assignments χ ∈ AsgStrT ([[℘]]). Then, consider the adjoint function θ̃s
′
: Trk′ ⇀ SFAc′(℘)

defined, for all states s′ ∈ St′, decisions δ′ ∈ Dc′, and tracks ρ′ ∈ Trk′ as follows:

• θ̃s
′
(s′)(δ′)(x) = (θ̃s(prjSt(s

′))(prjDc(δ
′))(x), new), if prjSt(s

′) = s;

• θ̃s
′
(ρ′)(δ′)(x) = (θ̃s(prjTrk(ρ

′))(prjDc(δ
′))(x), cont), otherwise.

At this point, we assume the function head : St′ → SFAc′(℘) to be defined as follows:

head(s′) , θ̃s
′
(s′). Moreover, we set the function body : Trk′(ε) → SFAc′(℘) in such a way

that it agrees with θ̃s
′
on all tracks ρ′ = s

′ · . . . ·sn
′ for which there is an index i ∈ {0, . . . , n}

such that, for all agents a ∈ Ag with ♭(a) ∈ 〈〈℘〉〉, it holds that:

• lst((ρ′)i)(a) = (ca, new), for some ca ∈ Ac, and
• lst((ρ′)j)(a) = (ca, cont), for all j ∈ {i+ 1, . . . , n} and for some ca ∈ Ac.

Note that the tracks of this form are such that the players bound to an existentially
quantified variable have selected an action flagged by new on the i-th step of the game
and then keep playing with the cont flag. Intuitively, they are starting the verification of a
subsentence right in the i-th state of the track, by keeping it separated from the verification
of the other subsentences, which are addressed with the cont flag.

For all the other tracks ρ′, instead, the value of body(ρ′) may be arbitrary.
Now, consider the behavioral Sdf θ′ ∈ BSFStr(℘) defined by means of the functions

head and body as prescribed by Definition 5.1. It remains to prove that T ′, s′ |=θ′ ℘♭ψ,
for all s′ ∈ S′. We proceed by induction on the nesting of the principal subsentences of
ϕ. As base case, assume that such nesting is 0. This means that ψ is an LTL formula.
Now, let χ′ ∈ AsgStr′([[℘]]). By construction, it is not hard to see that there exists an

assignment χ ∈ AsgStr([[℘]]) for which the play π′ , play′(θ′(χ′) ◦ ♭, s′) satisfies the equality
prjPth(π

′) = play(θ(χ) ◦ ♭, prj(s′)) = π 12. Thus, since T , s |=θ ℘♭ψ, we have that π |= ψ.
Moreover, it holds that ap′((π′)i) = ap((π)i), for all i ∈ N, which implies that π′ |= ψ.
Consequently, we can conclude that T ′, s′ |=θ′ ℘♭ψ. The inductive case, easily follows by
considering the inner principal subsentences as fresh atomic propositions.

We now have all tools to prove the bounded model property of SL[1g].

Theorem 5.2 (Bounded Model Property of SL[1g]). Let ϕ be a SL[1g] sentence and T be
a DT such that T |= ϕ. Then, there exists a bounded DT T ′ such that T ′ |= ϕ.

The proof makes use of some instruments and formalisms for First-Order Logic (FOL,
for short) that are introduced in [MP15]. For the sake of completeness, here we give an
informal discussion of such object. A language signature is a tuple L = 〈Ar,Rl, ar〉 in
which Ar and Rl are two finite non-empty sets of arguments and relations, respectively,
and ar : Rl → 2Ar \ {∅} is a function mapping each relation in Rl to its non-empty set of
arguments. Language signatures are used to reformulate FOL syntax in terms of binding
forms, which are a way to associate variables to relations by means of bindings. The
interpretation of FOL formulas is given on relational structures, which are tuples R =〈Dm,
rl〉 with Dm being a non-empty domain and where rl(r) ⊆ ar(r) → Dm is a set of functions,
representing the tuples on which the relation r ∈ Rl is interpreted as true.

12By prjPth we are denoting the natural lifting of the function prjTrk to paths.

REASONING ABOUT STRATEGIES: ON THE SATISFIABILITY PROBLEM 29

Proof Idea. The key idea used to prove the theorem is based on the finite model property
of the One-Binding fragment of FOL (FOL[1b], for short), proved in [MP15], which allows
to define a bounded-tree model T ′, which preserves the satisfiability of ϕ. In particular, for
each state s∗ of a tree T satisfying ϕ, we build a first-order structure and a FOL[1b] formula
ηs∗ that characterizes the topology of the successors of s∗ in T . Then, since FOL[1b] enjoys
the finite model property, we are able to build a finite first-order structure for ηs∗ from
which we can build the bounded model T ′ of ϕ. Such a construction is based on both the
disjoint and behavioral satisfiability of SL[1g]. For each state s∗ in T , we consider a set
given by pairs of subsentences η of ϕ and states s, on which it holds that T , s |=θ η, where
such satisfaction is forced to pass through s∗ for at least one universal assignment fed to
θ. This means that at least one play used to satisfy η passes through s∗. By the disjoint
satisfiability, we have to cope with at most two Sdfs for each subsentence η, those given
by headη and bodyη, implying that the total number of Sdfs to take into account, for all
s∗, is finite. From that, we define a related FOL[1b] sentence ηs∗, having a model derived
from the topology of the successors of s∗ whose elements are constituted by the actions of
T . Now, by applying the finite model property to ηs∗ , we derive the existence of a model
for the formula ηs∗ with a finite domain Ac′η,s∗ . Exploiting the finite model built for all
states s∗, we are able to define the labeling of T ′ and a behavioral Sdf θ′ in such a way that
T ′, ε |=θ′ ϕ.

Proof of Theorem 5.2. We give the proof for the case of ϕ = ℘♭ψ, since the Boolean com-
bination of principal sentences easily follows from this one. Given a tree-model T for ϕ,
derived by the tree-model property of SL[1g] of Theorem 4.5, for each state s∗ ∈ St, con-
sider the set Φs∗ ⊆ St × psnt(ϕ) of states of T and principal subsentences of ϕ such that
(s, η) ∈ Φs∗ iff (i) T , s |= η and (ii) there exists an assignment χ ∈ AsgStr([[℘η]]) such that

s∗ = (play(θs
∗

(s,η)(χ)) ◦ ♭η, s)n, for some n ∈ N, where the behavioral Sdf θs
∗

(s,η) is defined by

means of its adjoint, which is in its turn built from the functions headη and bodyη, given by
Theorem 5.1, applied on η = ℘♭ψη . Observe that, for a fixed η, if s, s ∈ St, with s 6= s∗

and s 6= s∗, θ̃s
∗

(s,η)(ρs) = headη(ρ
′

s · ρs) = headη(ρ
′

s · ρs) = θ̃s
∗

(s,η)(ρs), where ρs and ρs

are the unique tracks ending in s∗ and starting in s and s, respectively, while ρ
′

s and ρ
′

s

are the unique tracks such that ρ
′

s · ρs and ρ
′

s · ρs start from ε. Now, for a given Sdf

over Actions θ̃ ∈ SFAc(℘) and a given state s ∈ St, define the set Succϑ,♭(s) , {s′ ∈ St

: ∃v ∈ Ac[[℘]].tr(s, ϑ(v) ◦ ♭) = s′}, where ϑ ∈ Ac[[℘]] → AcVr(℘) is a Sdf for ℘ over actions.
Intuitively, the set Succϑ,♭(s) defines the set of states that can be reached in one step from
s by prescribing the agents that are bound by ♭ to an existential variable to move according
to the Sdf ϑ.

At this point, consider the language signature L = 〈Ar,Rl, ar〉 = 〈Ag,AP, ar〉 with
ar(p) = Ag, for all p ∈ AP, where each atomic proposition is viewed as a relation having the
agents as arguments and, so, the decisions as elements of its interpretation. Moreover, for
all sets P ⊆ AP, let maskP =

∧
p∈P p ∧

∧
q∈AP\P ¬q be the FOL[1b] formula asserting that

only the relations in P hold. Finally, for all (s, η) ∈ Φs∗, consider the FOL[1b] sentence

η∗s = ℘η♭η
∨
s∈Succ

θs
∗

(s,η))
(trk(s∗),♭η

maskap(s) 13. Clearly, by definition, each η∗s is satisfied by

the relational structure Rs∗ = 〈Ac, rls∗〉 with rls∗(p) , {δ ∈ Dc : p ∈ ap(tr(s∗, δ)}, where a

13By trk(s) we are denoting the unique track starting from ε and ending in s.

30 F. MOGAVERO, A. MURANO, G. PERELLI, AND M.Y. VARDI

relation p is interpreted as true on all decisions that allow s∗ to reach a state in which p holds.

Indeed, for each partial valuation v ∈ Ac[[℘η]], it holds that either s′ = tr(s, headη(s)(v)) ∈
Succheadη(s),♭η (s) or s

′′ = tr(s, bodyη(trk(s))(v)) ∈ Succbodyη(trk(s)),♭η (s), which implies that

eitherRs∗ , headη(s)(v) |= maskap(s
′) orRs∗ , bodyη(trk(s))(v) |= maskap(s

′′). Hence, we have
that Rs∗ |= η∗s and, since this is true for all (s, η) ∈ Φs∗, we derive that Rs∗ |=

∧
(s,η)∈Φs∗

η∗s .

At this point, from the finite model property of FOL[1b], we derive that there exists

a finite relational structure R
′

s∗ = 〈Dm
′

s∗ , rl
′

s∗〉 such that R
′

s∗ |=
∧

(s,η)∈Φs∗
η∗s . Moreover,

we define θ̃
′s∗

(s,η) to be such that R
′

s∗ |=˜
θ
′s∗

(s,η)

η∗s . Observe that, in the proof of finite model

property for FOL[1b] [MP15], the bound on Dm
′

s∗ only depends on the quantification and

binding prefixes given in the formulas η∗s , which all occur in ϕ. Thus, the size of Dm
′

s∗

does not depend on η and, w.l.o.g., we can assume that Dm
′

s∗ = Ac′ for all s∗ ∈ St.
Moreover, again from the finite model property proof of FOL[1b], there exists a function

Ms∗ : Dc′ → Dc, with Dc′ = Ac′Ag, such that, for all (s, η) ∈ Φs∗ and δ′ ∈ rng(θ̃
′s∗

(s,η)
), we

have that Ms∗(δ
′) ∈ rng(θ̃s

∗

(s,η)), where θ̃
s∗

(s,η) is the Sdf used to satisfy η∗s on R. At this point,

we define a DT T ′ having Ac′ as set of actions. In order to define the labeling function ap′,
first consider the mapping Γ : St′ → St recursively defined as follows:

• Γ(ε) = ε;
• Γ(s′ · δ′) = Γ(s′) ·MΓ(s′)(δ

′).

By means of Γ, define ap′(s′) , ap(Γ(s′)) for all s′ ∈ St′. It remains to prove that

T ′ |= ϕ. We do this by using a Sdf θ′ ∈ SFStr′(℘) defined from the adjoint θ̃′ introduced in
the following.

Let ρ′ be a track in T ′ and consider s′ = lst(ρ′). If (ε, ϕ) ∈ ΦΓ(s′), define θ̃′(ρ
′) = θ′s

∗

(s,η).

For all other tracks, the value of θ̃′ may be arbitrary. We now show that T ,∅, ε |=θ′ ϕ, by
induction on the nesting of principal subsentences. As base case, suppose that ϕ has nesting
0. This implies that it is of the form ℘♭ψ with ψ being an LTL formula. Then, consider a
universal assignment χ′ ∈ AsgStr′([[℘]]) and then the assignment θ′(χ′). This determines a
play π′ = play(θ′(χ′), ε). Now, consider a universal assignment χ ∈ AsgStr([[℘]]) such that,
for all x ∈ [[℘]] and ρ′ ∈ Trk′(ε), it holds that χ′(x)(ρ′) = χ(x)(Γ(ρ′)), where Γ is the lifting
over tracks of the mapping over states defined above, i.e., by Γ(ρ′) is the track in T obtained
from ρ′ by mapping each state s′ in ρ′ into s = Γ(s′). It holds that π = play(θ(χ) ◦ ♭, ε) is
such that, for all i ∈ N, (π)≤i = Γ((π′)≤i). Indeed, by induction on i, as base case, we have
that (π)≤0 = ε = Γ(ε) = (π′)≤0. As inductive case, suppose that (π)≤i = Γ((π′)≤i). Then,

(π)i+1 = tr((π)i, θ̃((π)≤i) ◦ ♭) = tr(Γ((π′)i), θ̃(Γ((π
′)≤i)) ◦ ♭) = Γ(tr′((π′)i, θ̃′((π

′)≤i) ◦ ♭)) =
Γ((π′)i+1). Thus, according to the definition of ap′, we have that ap′((π′)i) = ap((π)i),
for all i ∈ N. Since π |= ψ, we derive that π′ |= ψ. This holds for all possible universal
assignments χ′ ∈ AsgStr′([[℘]]). Hence, it holds that T

′ |=θ′ ℘♭ψ. The inductive case follows
by considering the principal subsentences of ϕ as fresh atomic propositions.

5.2. Alternating tree automata. Nondeterministic tree automata are a generalization to
infinite trees of the classical nondeterministic word automata on infinite words (see [Tho90],

REASONING ABOUT STRATEGIES: ON THE SATISFIABILITY PROBLEM 31

for an introduction). Alternating tree automata are a further generalization of nondeter-
ministic tree automata [MS87]. Intuitively, on visiting a node of the input tree, while the
latter sends exactly one copy of itself to each of the successors of the node, the former can
send several own copies to the same successor. Here we use, in particular, alternating parity
tree automata, which are alternating tree automata along with a parity acceptance condition
(see [GTW02], for a survey).

We now give the formal definition of alternating tree automata.

Definition 5.3 (Alternating Tree Automata). An alternating tree automaton (Ata, for

short) is a tuple A , 〈Σ,Dir,Q, δ, q0,ℵ〉, where Σ, Dir, and Q are, respectively, non-empty
finite sets of input symbols, directions, and states, q ∈ Q is an initial state, ℵ is an acceptance
condition to be defined later, and δ : Q × Σ → B+(Dir × Q) is an alternating transition
function that maps each pair of states and input symbols to a positive Boolean combination
on the set of propositions of the form (d, q) ∈ Dir×Q, a.k.a. moves.

On one hand, a nondeterministic tree automaton (Nta, for short) is a special case
of Ata in which each conjunction in the transition function δ has exactly one move (d, q)
associated with each direction d. This means that, for all states q ∈ Q and symbols σ ∈ Σ,
we have that δ(q, σ) is equivalent to a Boolean formula of the form

∨
i

∧
d∈Dir(d, qi,d). On

the other hand, a universal tree automaton (Uta, for short) is a special case of Ata in
which all the Boolean combinations that appear in δ are conjunctions of moves. Thus, we
have that δ(q, σ) =

∧
i(di, qi), for all states q ∈ Q and symbols σ ∈ Σ.

The semantics of the Atas is given through the following concept of run.

Definition 5.4 (Ata Run). A run of an Ata A = 〈Σ,Dir,Q, δ, q0,ℵ〉 on a Σ-labeled Dir-
tree T = 〈T, v〉 is a (Dir × Q)-tree R such that, for all nodes x ∈ R, where x =

∏n
i=1(di, qi)

and y ,
∏n
i=1 di with n ∈ [0, ω[, it holds that (i) y ∈ T and (ii), there is a set of moves

S ⊆ Dir×Q with S |= δ(qn, v(y)) such that x · (d, q) ∈ R, for all (d, q) ∈ S.

In the following, we consider Atas along with the parity acceptance condition (Apt,

for short) ℵ , (F1, . . . ,Fk) ∈ (2Q)+ with F1 ⊆ . . . ⊆ Fk = Q (see [KVW00], for more). The
number k of sets in the tuple ℵ is called the index of the automaton. We also consider Atas
with the co-Büchi acceptance condition (Act, for short) that is the special parity condition
with index 2.

Let R be a run of an Ata A on a tree T and w one of its branches. Then, by inf(w) ,
{q ∈ Q : |{i ∈ N : ∃d ∈ Dir.(w)i = (d, q)}| = ω} we denote the set of states that occur
infinitely often as the second component of the letters along the branch w. Moreover, we
say that w satisfies the parity acceptance condition ℵ=(F1, . . . ,Fk) if the least index i∈ [1, k]
for which inf(w) ∩ Fi 6= ∅ is even.

At this point, we can define the concept of language accepted by an Ata.

Definition 5.5 (Ata Acceptance). An Ata A = 〈Σ,Dir,Q, δ, q0,ℵ〉 accepts a Σ-labeled
Dir-tree T iff is there exists a run R of A on T such that all its infinite branches satisfy the
acceptance condition ℵ.

By L(A) we denote the language accepted by the Ata A, i.e., the set of trees T accepted
by A. Moreover, A is said to be empty if L(A) = ∅. The emptiness problem for A is to
decide whether L(A) = ∅.

32 F. MOGAVERO, A. MURANO, G. PERELLI, AND M.Y. VARDI

5.3. Satisfiability procedure. We finally solve the satisfiability problem for SL[1g] and
show that it is 2ExpTime-complete, as for ATL⋆. The algorithmic procedures is based
on an automata-theoretic approach, which reduces the decision problem for the logic to the
emptiness problem of a suitable universal Co-Büchi tree automaton (Uct, for short) [GTW02].
From an high-level point of view, the automaton construction seems similar to what was
proposed the in literature for CTL⋆ [KVW00] and ATL⋆ [Sch08]. However, our technique
is completely new, since it is based on the novel notions of behavioral semantics and disjoint
satisfiability.
Principal sentences. To proceed, we first have to introduce the concept of encoding for
an assignment and the labeling of a DT.

Definition 5.6 (Assignment-Labeling Encoding). Let T be a DT, t ∈ StT one of its states,
and χ ∈ AsgT (V, t) an assignment defined on the set V ⊆ Vr. A (ValAcT (V)× 2AP)-labeled

DcT -tree T ′ , 〈StT , u〉 is an assignment-labeling encoding for χ on T if u(lst((ρ)≥1)) =
(χ̂(ρ), apT (lst(ρ))), for all ρ ∈ TrkT (t)

14.

Observe that there is a unique assignment-labeling encoding for each assignment over a
given DT.

Now, we prove the existence of a Uct UAc
♭ψ for each SL[1g] goal ♭ψ having no principal

subsentences. The UAc
♭ψ recognizes all the assignment-labeling encodings T ′ of an a priori

given assignment χ over a generic DT T , whenever the goal is satisfied on T under χ.
Intuitively, we start with a Ucw, recognizing all infinite words on the alphabet 2AP that
satisfy the LTL formula ψ, obtained by a simple variation of the Vardi-Wolper construc-
tion [VW86a]. Then, we run it on the encoding tree T ′ by following the directions identified
by the assignment in its labeling.

Lemma 5.1 (SL[1g] Goal Automaton). Let ♭ψ an SL[1g] goal without principal subsen-

tences and Ac a finite set of actions. Then, there exists anUct UAc
♭ψ ,〈ValAc(free(♭ψ))×2AP,

Dc,Q♭ψ, δ♭ψ , q0♭ψ,ℵ♭ψ〉 such that, for all DT s T with AcT = Ac, states t ∈ StT , and t-total

assignments χ ∈ AsgT (free(♭ψ), t), it holds that T , χ, t |= ♭ψ iff T ′ ∈ L(UAc
♭ψ), where T ′ is

the assignment-labeling encoding for χ on T .

Proof. A first step in the construction of the Uct UAc
♭ψ , is to consider the Ucw Uψ ,〈2AP,

Qψ, δψ ,Qψ,ℵψ〉 obtained by dualizing the Nbw resulting from the application of the classic
Vardi-Wolper construction to the LTL formula ¬ψ [VW86a]. Observe that L(Uψ) = L(ψ),

i.e., this automaton recognizes all infinite words on the alphabet 2AP that satisfy the LTL
formula ψ. Then, define the components of UAc

♭ψ ,〈ValAc(free(♭ψ))× 2AP,Dc,Q♭ψ, δ♭ψ , q♭ψ ,

ℵ♭ψ〉, as follows:

• Q♭ψ , {q♭ψ} ∪Qψ, with q♭ψ 6∈ Qψ;

• δ♭ψ(q♭ψ , (v, σ)) ,
∧
q∈Qψ

δ♭ψ(q, (v, σ)), for all (v, σ) ∈ ValAc(free(♭ψ)) × 2AP;

• δ♭ψ(q, (v, σ)),
∧
q′∈δψ(q,σ)

(v ◦ ♭, q′), for all q∈Qψ and (v, σ) ∈ ValAc(free(♭ψ)) × 2AP;

• ℵ♭ψ , ℵψ.

Intuitively, the Uct UAc
♭ψ simply runs the Ucw Uψ on the branch of the encoding individ-

uated by the assignment in input. Thus, it is easy to see that, for all states t ∈ StT and
t-total assignments χ ∈ AsgT (free(♭ψ), t), it holds that T , χ, t |= ♭ψ iff T ′ ∈ L(UAc

♭ψ), where

T ′ is the assignment-labeling encoding for χ on T .

14Note that lst(ε) = ε.

REASONING ABOUT STRATEGIES: ON THE SATISFIABILITY PROBLEM 33

We now introduce a new concept of encoding regarding the behavioral dependence maps
over strategies.

Definition 5.7 (Behavioral Dependence-Labeling Encoding). Let T be a DT, t ∈ StT
one of its states, and θ ∈ BSFStrT (℘) a behavioral dependence map over strategies for a
quantification prefix ℘ ∈ Qnt(V) over the set V ⊆ Vr. A (SFAcT (℘) × 2AP)-labeled Dir-

tree T ′ , 〈StT , u〉 is a behavioral dependence-labeling encoding for θ on T if u(lst((ρ)≥1))=

(θ̃(ρ), apT (lst(ρ))), for all ρ∈TrkT (t).

Observe that also in this case there exists a unique behavioral dependence-labeling encoding
for each behavioral dependence map over strategies.

Finally, in the next lemma, we show how to locally handle the strategy quantifications
on each state of the model, by simply using a quantification over actions modeled by the
choice of an action dependence map. Intuitively, we guess in the labeling what is the right
part of the dependence map over strategies for each node of the tree and then verify that,
for all assignments of universal variables, the corresponding complete assignment satisfies
the inner formula.

Lemma 5.2 (SL[1g] Sentence Automaton). Let ℘♭ψ be an SL[1g] principal sentence with-
out principal subsentences and Ac a finite set of actions. Then, there exists an Uct
UAc
℘♭ψ ,〈SFAc(℘)×2AP,Dc,Q℘♭ψ, δ℘♭ψ , q℘♭ψ,ℵ℘♭ψ〉 such that, for all DT s T with AcT = Ac,

states t ∈ StT , and behavioral dependence maps over strategies θ ∈ BSFStrT (℘), it holds
that T , θ(χ), t |=B ♭ψ, for all χ ∈ AsgT ([[℘]], t), iff T ′ ∈ L(UAc

♭ψ), where T ′ is the behavioral

dependence-labeling encoding for θ on T .

Proof. By Lemma 5.1 of SL[1g] goal automaton, there is an Uct UAc
♭ψ ,〈ValAc(free(♭ψ))×

2AP,Dc,Q♭ψ , δ♭ψ , q0♭ψ,ℵ♭ψ〉 such that, for all DTs T with AcT = Ac, states t ∈ StT , and

assignments χ ∈ AsgT (free(♭ψ), t), it holds that T , χ, t |= ♭ψ iff T ′ ∈ L(UAc
♭ψ), where T ′ is

the assignment-labeling encoding for χ on T .
Now, transform UAc

♭ψ into the new Uct UAc
♭ψ , 〈SFAc(℘) × 2AP,Dc,Q℘♭ψ, δ℘♭ψ , q0℘♭ψ,

ℵ℘♭ψ〉, with Q℘♭ψ , Q♭ψ, q℘♭ψ , q♭ψ, and ℵ℘♭ψ , ℵ♭ψ, which is used to handle the quantifi-

cation prefix ℘ atomically, where the transition function is defined as follows: δ℘♭ψ(q, (θ, σ)) ,∧
v∈ValAc([[℘]])

δ♭ψ(q, (θ(v), σ)), for all q ∈ Q℘♭ψ and (θ, σ) ∈ SFAc(℘)× 2AP. Intuitively, UAc
℘♭ψ

reads an action dependence map θ on each node of the input tree T ′ labeled with a set of
atomic propositions σ and simulates the execution of the transition function δ♭ψ(q, (v, σ))

of UAc
♭ψ , for each possible valuation v = θ(v′) on free(♭ψ) obtained from θ via a universal

valuation v′ ∈ ValAc([[℘]]). It is worth observing that we cannot move the component set
SFAc(℘) from the input alphabet to the states of UAc

℘♭ψ by making a related guessing of the

dependence map θ in the transition function, since the automaton is universal and we have
to ensure that all states in a given node of the tree T ′, i.e., in each track of the original
model T , make the same choice for θ.

Finally, it remains to prove that, for all states t ∈ StT and behavioral dependence maps
over strategies θ ∈ BSFStrT t(℘), it holds that T , θ(χ), t |=B ♭ψ, for all χ ∈ AsgT ([[℘]], t), iff
T ′ ∈ L(UAc

℘♭ψ), where T ′ is the behavioral dependence-labeling encoding for θ on T .

[Only if]. Suppose that T , θ(χ), t |=B ♭ψ, for all χ ∈ AsgT ([[℘]], t). Since ψ does not
contain principal subsentences, we have that T , θ(χ), t |= ♭ψ. So, due to the property of UAc

♭ψ ,

it follows that there exists an assignment-labeling encoding T
′

χ ∈ L(UAc
♭ψ), which implies the

34 F. MOGAVERO, A. MURANO, G. PERELLI, AND M.Y. VARDI

existence of a (Dc×Q♭ψ)-tree Rχ that is an accepting run for UAc
♭ψ on T

′

χ. At this point, let

R ,
⋃
χ∈AsgT ([[℘]],t)Rχ be the union of all runs. Then, due to the particular definition of

the transition function of UAc
℘♭ψ, it is not hard to see that R is an accepting run for UAc

℘♭ψ on

T ′ defined as above. Hence, T ′ ∈ L(UAc
℘♭ψ).

[If]. Suppose that T ′ ∈ L(UAc
℘♭ψ). Then, there exists a (Dc × Q℘♭ψ)-tree R that is an

accepting run for UAc
℘♭ψ on T ′. Now, for each χ ∈ AsgT ([[℘]], t), let Rχ be the run for UAc

♭ψ

on the assignment-state encoding T
′

χ for θ(χ) on T . Due to the particular definition of the

transition function of UAc
℘♭ψ, it is not hard to see that Rχ ⊆ R. Thus, since R is accepting,

we have that Rχ is accepting as well. So, T
′

χ ∈ L(UAc
♭ψ). At this point, due to the property

of UAc
♭ψ , it follows that T , θ(χ), t |= ♭ψ. Since ψ does not contain principal subsentences, we

have that T , θ(χ), t |=B ♭ψ, for all χ∈AsgT ([[℘]], t).

Full sentences. By summing up all previous results, we are now able to solve the satisfia-
bility problem for the full SL[1g] fragment.

To construct the automaton for a given SL[1g] sentence ϕ, we first consider all Uct UAc
φ ,

for an assigned bounded set Ac, previously described for the principal sentences φ ∈ psnt(ϕ),
in which the inner subsentences are considered as atomic propositions. Then, thanks to the
disjoint satisfiability property of Definition 5.1, we can merge them into a unique Uct
Uϕ that supplies the dependence map labeling of internal components UAc

φ , by using the
two functions head and body contained into its labeling. Moreover, observe that the final
automaton runs on a b-bounded decision tree, where b is obtained from Theorem 5.2 on the
bounded-tree model property.

Theorem 5.3 (SL[1g] Automaton). Let ϕ be an SL[1g] sentence. Then, there exists an
Uct Uϕ such that ϕ is satisfiable iff L(Uϕ) 6= ∅.

Finally, by a simple calculation of the size of Uϕ and the complexity of the related
emptiness problem, we state in the next theorem the precise computational complexity of
the satisfiability problem for SL[1g].

Theorem 5.4 (SL[1g] Satisfiability). The satisfiability problem for SL[1g] is 2ExpTime-
complete.

Proof. By Theorem 5.3 of SL[1g] automaton, to verify whether an SL[1g] sentence ϕ is
satisfiable we can calculate the emptiness of the Upt Uϕ. This automaton is obtained by
merging all Ucts UAc

φ , with φ = ℘♭ψ ∈ psnt(ϕ), which in turn are based on the Ucts UAc
♭ψ

that embed the Ucws Uψ. By a simple calculation, it is easy to see that Uϕ has 2O(|ϕ|)

states. Indeed, by the Vardi-Wolper construction, all the Ucws Uψ are of size bouded by

2|ψ|. Consequently, due to Lemma 5.1, also the Ucws U♭ψ have the same bound on the
state space. Therefore, due to the construction of Lemma 5.2, the cardinality of the state
space of the Ucws U℘♭ψ is O(2|℘♭ψ|). Finally, since the all the ℘♭ψ occur into ϕ, we obtain

that the size of the Ucw Uϕ is bounded by 2|ϕ|.
Now, by using a well-known nondeterminization procedure for Apts [MS95], we obtain

an equivalent Npt Nϕ with 22
O(|ϕ|)

states and index 2O(|ϕ|).
The emptiness problem for such a kind of automaton with n states and index h is

solvable in time O(nh).Thus, we get that the time complexity of checking whether ϕ is

satisfiable is 22
O(|ϕ|)

. Hence, the membership of the satisfiability problem for SL[1g] in

REASONING ABOUT STRATEGIES: ON THE SATISFIABILITY PROBLEM 35

2ExpTime directly follows. Finally the thesis is proved, by getting the relative lower bound
from the same problem for CTL⋆ [VS85].

References

[AGJ07] T. Agotnes, V. Goranko, and W. Jamroga. Alternating-Time Temporal Logics with Irrevocable
Strategies. In Proceedings of the 11th Conference on Theoretical Aspects of Rationality and
Knowledge (TARK-2007), Brussels, Belgium, June 25-27, 2007, pages 15–24, 2007.

[AHK02] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-Time Temporal Logic. Journal of
the ACM, 49(5):672–713, 2002.

[Bel14] Francesco Belardinelli. Reasoning about Knowledge and Strategies: Epistemic Strategy Logic.
In Proceedings 2nd International Workshop on Strategic Reasoning, SR 2014, Grenoble, France,
April 5-6, 2014., pages 27–33, 2014.

[BJ14] N. Bulling and W. Jamroga. Comparing variants of strategic ability: how uncertainty and
memory influence general properties of games. Autonomous Agents and Multi-Agent Systems,
28(3):474–518, 2014.

[BJD08] Nils Bulling, Wojciech Jamroga, and Jürgen Dix. Reasoning about temporal properties of
rational play. Ann. Math. Artif. Intell., 53(1-4):51–114, 2008.

[BLLM09] T. Brihaye, A.D.C. Lopes, F. Laroussinie, and N. Markey. ATL with Strategy Contexts and
Bounded Memory. In Symposium on Logical Foundations of Computer Science’09, LNCS 5407,
pages 92–106. Springer, 2009.

[Boj03] M. Bojańczyk. The Finite Graph Problem for Two-Way Alternating Automata. Theoretical
Computer Science, 3(298):511–528, 2003.

[CBC13] C. Chareton, J. Brunel, and D. Chemouil. Towards an Updatable Strategy Logic. In Fabio Mo-
gavero, Aniello Murano, and Moshe Y. Vardi, editors, Proceedings 1st International Workshop
on Strategic Reasoning (SR 2013), pages 91–98, 2013.

[CBC15] Christophe Chareton, Julien Brunel, and David Chemouil. A logic with revocable and refinable
strategies. Information and Computation, 242:157–182, 2015.

[CDFR14] K. Chatterjee, L. Doyen, E. Filiot, and J. F. Raskin. Doomsday Equilibria for omega-Regular
Games. In VMCAI 2014, pages 78–97. Springer, 2014.

[CGP02] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 2002.
[CHP07] K. Chatterjee, T.A. Henzinger, and N. Piterman. Strategy Logic. In International Conference

on Concurrency Theory’07, LNCS 4703, pages 59–73. Springer, 2007.
[CHP10] K. Chatterjee, T.A. Henzinger, and N. Piterman. Strategy Logic. Information and Computa-

tion, 208(6):677–693, 2010.
[CLM15] P. Cermák, A. Lomuscio, and A. Murano. Verifying and Synthesising Multi-Agent Systems

against One-Goal Strategy Logic Specifications. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA., pages 2038–
2044. AAAI Press, 2015.

[ČLMM14] P. Čermák, A. Lomuscio, F. Mogavero, and A. Murano. MCMAS-SLK: A Model Checker for
the Verification of Strategy Logic Specifications. In Computer Aided Verification’14, LNCS
8559, pages 524–531. Springer, 2014.

[DLM10] A. Da Costa, F. Laroussinie, and N. Markey. ATL with Strategy Contexts: Expressiveness and
Model Checking. In IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science’10, LIPIcs 8, pages 120–132, 2010.

[DLM12] A. Da Costa, F. Laroussinie, and N. Markey. Quantified CTL: Expressiveness and model check-
ing - (extended abstract). In CONCUR, volume 7454 of Lecture Notes in Computer Science,
pages 177–192. Springer, 2012.

[EF95] H.D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, 1995.
[EH86] E.A. Emerson and J.Y. Halpern. “Sometimes” and “Not Never” Revisited: On Branching

Versus Linear Time. Journal of the ACM, 33(1):151–178, 1986.
[EJ88] E.A. Emerson and C.S. Jutla. The Complexity of Tree Automata and Logics of Programs

(Extended Abstract). In Foundation of Computer Science’88, pages 328–337, 1988.
[EJ99] E.A. Emerson and C.S. Jutla. The Complexity of Tree Automata and Logics of Programs.

SIAM Journal on Computing, 29(1):132–158, 1999.

36 F. MOGAVERO, A. MURANO, G. PERELLI, AND M.Y. VARDI

[FKL10] D. Fisman, O. Kupferman, and Y. Lustig. Rational Synthesis. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems’10, LNCS 6015, pages
190–204. Springer, 2010.

[FS10] B. Finkbeiner and S. Schewe. Coordination Logic. In EACSL Annual Conference on Computer
Science Logic’10, LNCS 6247, pages 305–319. Springer, 2010.

[GHW14] J. Gutierrez, P. Harrenstein, and M. Wooldridge. Reasoning about Equilibria in Game-Like
Concurrent Systems. In 14, pages 408–417. AAAI Press, 2014.

[GTW02] E. Grädel, W. Thomas, and T. Wilke. Automata, Logics, and Infinite Games: A Guide to
Current Research. LNCS 2500. Springer-Verlag, 2002.

[Har84] D. Harel. A Simple Highly Undecidable Domino Problem. In Logic and Computation Confer-
ence’84, 1984.

[HLW13] A. Herzig, E. Lorini, and D. Walther. Reasoning about Actions Meets Strategic Logics. In Logic,
Rationality, and Interaction - 4th International Workshop, LORI 2013, Hangzhou, China, Oc-
tober 9-12, 2013, Proceedings, pages 162–175. Springer, 2013.

[Hod93] W. Hodges. Model Theory. Encyclopedia of Mathematics and its Applications. Cambridge
University Press, 1993.

[HSW13] C. Huang, S. Schewe, and F. Wang. Model-Checking Iterated Games. In Tools and Algorithms
for the Construction and Analysis of Systems - 19th International Conference, TACAS 2013,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2013, Rome, Italy, March 16-24, 2013. Proceedings, pages 154–168. Springer, 2013.

[JM14] W. Jamroga and A. Murano. On Module Checking and Strategies. In AAMAS’14, pages 701–
708. International conference on Autonomous Agents and Multi-Agent Systems, AAMAS ’14,
Paris, France, May 5-9, 2014, 2014.

[JvdH04] W. Jamroga and W. van der Hoek. Agents that Know How to Play. Fundamenta Informaticae,
63(2-3):185–219, 2004.

[Kel76] R.M. Keller. Formal Verification of Parallel Programs. Communication of the ACM, 19(7):371–
384, 1976.

[Koz83] D. Kozen. Results on the Propositional mu-Calculus. Theoretical Computer Science, 27(3):333–
354, 1983.

[KPV14] O. Kupferman, G. Perelli, and M.Y. Vardi. Synthesis with Rational Environments. In EUMAS
14, LNCS 8953, pages 219–235, 2014.

[KPV16] O. Kupferman, G. Perelli, and M.Y. Vardi. Synthesis with Rational Environments. Ann. Math.
Artif. Intell., 78(1):3–20, 2016.

[Kri63] S.A. Kripke. Semantical Considerations on Modal Logic. Acta Philosophica Fennica, 16:83–94,
1963.

[KVW00] O. Kupferman, M.Y. Vardi, and P. Wolper. An Automata Theoretic Approach to Branching-
Time Model Checking. Journal of the ACM, 47(2):312–360, 2000.

[KVW01] O. Kupferman, M.Y. Vardi, and P. Wolper. Module Checking. Information and Computation,
164(2):322–344, 2001.

[LM13] F. Laroussinie and N. Markey. Satisfiability of ATL with Strategy Contexts. In GandALF,
volume 119 of EPTCS, pages 208–223, 2013.

[LM15] F. Laroussinie and N. Markey. Augmenting with strategy contexts. Information and Compu-
tation, 245:98–123, 2015.

[MMPV12] Fabio Mogavero, Aniello Murano, Giuseppe Perelli, and Moshe Y. Vardi. What Makes ATL*
Decidable? A Decidable Fragment of Strategy Logic. In CONCUR, pages 193–208, 2012.

[MMPV14] F. Mogavero, A. Murano, G. Perelli, and M.Y. Vardi. Reasoning About Strategies: On the
Model-Checking Problem. ACM Transactions On Computational Logic, 15(4):34:1–42, 2014.

[MMS13] F. Mogavero, A. Murano, and L. Sauro. On the Boundary of Behavioral Strategies. In IEEE
Symposium on Logic in Computer Science’13, pages 263–272, 2013.

[MMS14] F. Mogavero, A. Murano, and L. Sauro. A Behavioral Hierarchy of Strategy Logic. In CLIMA
XV, LNCS 8624. Springer, 2014. To appear.

[MMV10a] F. Mogavero, A. Murano, and M.Y. Vardi. Reasoning About Strategies. In IARCS Annual Con-
ference on Foundations of Software Technology and Theoretical Computer Science’10, LIPIcs
8, pages 133–144, 2010.

REASONING ABOUT STRATEGIES: ON THE SATISFIABILITY PROBLEM 37

[MMV10b] F. Mogavero, A. Murano, and M.Y. Vardi. Relentful Strategic Reasoning in Alternating-Time
Temporal Logic. In International Conference on Logic for Programming Artificial Intelligence
and Reasoning’10, LNAI 6355, pages 371–387. Springer, 2010.

[MMV16] F. Mogavero, A. Murano, and M. Y. Vardi. Relentful Strategic Reasoning in Alternating-Time
Temporal Logic. J. Log. Comput., 26(5):1663–1695, 2016.

[MP15] F. Mogavero and G. Perelli. Binding Forms in First-Order Logic. In EACSL Annual Conference
on Computer Science Logic’15, LIPIcs 41, pages 648–665, 2015.

[MS87] D.E. Muller and P.E. Schupp. Alternating Automata on Infinite Trees. Theoretical Computer
Science, 54(2-3):267–276, 1987.

[MS95] D.E. Muller and P.E. Schupp. Simulating Alternating Tree Automata by Nondeterministic
Automata: New Results and New Proofs of Theorems of Rabin, McNaughton, and Safra.
Theoretical Computer Science, 141(1-2):69–107, 1995.

[Mye97] R.B. Myerson. Game Theory: Analysis of Conflict. Harvard University Press, 1997.
[OR94] M.J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, 1994.
[Pau02] M. Pauly. A Modal Logic for Coalitional Power in Games. Journal of Logic and Computation,

12(1):149–166, 2002.
[Pin07] S. Pinchinat. A Generic Constructive Solution for Concurrent Games with Expressive Con-

straints on Strategies. In International Symposium on Automated Technology for Verification
and Analysis’07, LNCS 4762, pages 253–267. Springer, 2007.

[Pnu77] A. Pnueli. The Temporal Logic of Programs. In Foundation of Computer Science’77, pages
46–57, 1977.

[PR89] A. Pnueli and R. Rosner. On the Synthesis of a Reactive Module. In ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages’89, pages 179–190. Association for Com-
puting Machinery, 1989.

[Sch08] S. Schewe. ATL* Satisfiability is 2ExpTime-Complete. In International Colloquium on Au-
tomata, Languages and Programming’08, LNCS 5126, pages 373–385. Springer, 2008.

[Tho90] W. Thomas. Automata on Infinite Objects. In Handbook of Theoretical Computer Science (vol.
B), pages 133–191. MIT Press, 1990.

[TW12] N. Troquard and D. Walther. On Satisfiability in ATL with Strategy Contexts. In Logics in
Artificial Intelligence - 13th European Conference, JELIA 2012, Toulouse, France, September
26-28, 2012. Proceedings, pages 398–410, 2012.

[Var96] M.Y. Vardi. Why is Modal Logic So Robustly Decidable? In Descriptive Complexity and Finite
Models’96, pages 149–184. American Mathematical Society, 1996.

[Var98] M.Y. Vardi. Reasoning about The Past with Two-Way Automata. In International Colloquium
on Automata, Languages and Programming’98, LNCS 1443, pages 628–641. Springer, 1998.

[VS85] M.Y. Vardi and L.J. Stockmeyer. Improved Upper and Lower Bounds for Modal Logics of
Programs: Preliminary Report. In ACM Symposium on Theory of Computing’85, pages 240–
251, 1985.

[VW86a] M.Y. Vardi and P. Wolper. An Automata-Theoretic Approach to Automatic Program Verifica-
tion. In IEEE Symposium on Logic in Computer Science’86, pages 332–344. IEEE Computer
Society, 1986.

[VW86b] M.Y. Vardi and P. Wolper. Automata-Theoretic Techniques for Modal Logics of Programs.
Journal of Computer and System Science, 32(2):183–221, 1986.

[Wan61] H. Wang. Proving Theorems by Pattern Recognition II. Bell System Technical Journal, 40:1–41,
1961.

[WHY11] F. Wang, C. Huang, and F. Yu. A Temporal Logic for the Interaction of Strategies. In CONCUR
2011, pages 466–481. Springer, 2011.

[WvdHW07] Dirk Walther, Wiebe van der Hoek, and Michael Wooldridge. Alternating-Time Temporal
Logic with Explicit Strategies. In TARK, pages 269–278, 2007.

	1. Introduction
	2. Strategy Logic
	2.1. Underlying framework
	2.2. Syntax
	2.3. Basic notions
	2.4. Semantics

	3. Hardness results
	3.1. Unbounded models
	3.2. Undecidable satisfiability

	4. What makes ATL* decidable?
	4.1. Syntactic fragments
	4.2. Behavioral semantics
	4.3. Tree-model property

	5. Decidability of SL[1G]
	5.1. Bounded model property
	5.2. Alternating tree automata
	5.3. Satisfiability procedure

	References

