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Abstract. We introduce and discuss basic concepts, ideas, and logical
formalisms used for reasoning about strategic abilities in multi-player
games. In particular, we present concurrent game models and the alter-
nating time temporal logic ATL∗ and its fragment ATL. We discuss vari-
ations of the language and semantics of ATL∗ that take into account
the limitations and complications arising from incomplete information,
perfect or imperfect memory of players, reasoning within dynamically
changing strategy contexts, or using stronger, constructive concepts of
strategy. Finally, we briefly summarize some technical results regarding
decision problems for some variants of ATL.

Keywords: Logics · Game theory · Strategic reasoning · Strategic
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1 Introduction: Strategic Reasoning

Strategic reasoning is ubiquitous in the modern world. Our entire lives comprise
a complex flux of diverse yet interleaved games that we play in different social
contexts with different sets of other players, different rules, objectives and pref-
erences. The outcomes of these games determine not only our sense of success
(winning) or failure (losing) in life but also what games we engage to play fur-
ther, and how. In this process we adopt, consciously or not, and follow, commit,
abandon, modify and re-commit again to a stream of local strategies. Thus, we
are gradually composing and building a big strategy which, together with all
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that happens in the surrounding environment and the ‘butterfly effects’ coming
from the rest of the world, determines a unique play called Life . . .1

After this lyrical-philosophical overture, let us make some more analytic
introductory notes on our view of strategic reasoning.

To begin with, one can distinguish two, related yet different, perspectives on
strategic reasoning depending on the position of the reasoner2:

– Reasoning of the agents (players) from within the game on what strategy to
adopt in order to best achieve their objectives. This starts with ‘zero-order’
reasoning from the player’s own perspective, but not taking into account the
other players’ strategic reasoning. Then it evolves into ‘first-order’ reasoning
by only taking into account the other players’ zero-order strategic reasoning;
then likewise second-, third-, etc. higher-order strategic reasoning, eventually
converging to the concept of ‘common belief/knowledge of rationality’, funda-
mental in game theory.

– Reasoning of an external observer, from outside the game, on what strategies
the playing agents can objectively adopt in trying to achieve their objectives.
This reasoning can again be stratified into conceptual layers by taking into
account the players’ observational, informational, memory, and reasoning lim-
itations in the game, but also their knowledge or ignorance about the other
players’ limitations, their objectives, etc. Eventually, a complex hierarchy of
levels of ‘objective’ or ‘external’ strategic reasoning emerges, that essentially
embeds the ‘internal’ one above.

One can also distinguish different threads of strategic reasoning depending on
the rationality assumptions, both for the proponents and the opponents. As we
noted, the game-theoretic tradition emphasizes reasoning about rational players’
strategic behaviour under the assumption of common belief or knowledge of ratio-
nality. Depending on how this assumption is perceived various solution concepts
emerge, describing or prescribing the players’ rational strategic behaviour. For
the epistemic and doxastic foundations of strategic behaviour of rational agents,
focusing on the internal perspective of strategic reasoning, we refer to other chap-
ters in this volume: Bonanno [18], Perea [74] and Pacuit [68]. Another active and
promising direction of current research on strategic reasoning, presented in this
chapter, does not consider players taking into account any assumptions about
the rationality of the other players but analyzes, from an external observer’s
perspective, the players’ objective abilities to adopt and to apply strategies that
guarantee the achievement of their goals regardless of the rationality level and
strategic behaviour of the opponents. Thus, when assessing objectively the strate-
gic abilities of individual players or coalitions of players – generically called the
‘proponents’ – to achieve a specific goal we essentially assume that the remaining

1 While ‘strategy’ is commonly defined as a complete conditional plan, we cannot
resist noting here John Lennon’s famous quote: “Life is what happens while you are
busy making other plans”.

2 Roughly corresponding to ‘first-person deliberation’ vs. ‘third-person assessment of
strategic action in games’ in van Benthem [16].
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players – the ‘opponents’ – play a collective adversary in a strictly competitive
game between the proponents and the opponents.

One can also regard the framework presented in this chapter as analyzing
the objective strategic abilities of players – possibly impaired by imperfect or
incomplete knowledge about the game – to achieve qualitative goals using zero-
order reasoning only in concurrent extended multi-player games3.

2 Concurrent Game Models and Strategic Abilities

Logics of strategic reasoning build upon several fundamental concepts from game
theory, the most important being that of a ‘strategy’. The notion of strategy
adopted in this chapter is classical: a conditional plan that prescribes what
action a given agent (or, a coalition of agents) should take in every possible
situation that may arise in the system (game) in which they act. This notion
will be made mathematically more precise in this chapter, where strategies will
be used to provide formal logical semantics.

We start with a technical overview of the basic game-theoretic concepts used
later on in this chapter. For more details we refer the reader to e.g. [51,65].

Throughout this chapter we use the terms ‘agent’ and ‘player’ as synonyms
and consider an arbitrarily fixed nonempty finite4 set of players/agents Agt. We
also fix a nonempty set of atomic propositions Prop that encode basic properties
of game states.

2.1 One-Round Multi-player Strategic Games

The abstract games studied in traditional non-cooperative game theory are usu-
ally presented either in extensive or in strategic form (also known as normal
form). We first focus on the latter type of games here.

Strategic Games

Definition 1 (Strategic Game Forms and Strategic Games). A strategic
game form is a tuple (Agt, {Acta | a ∈ Agt},Out, out) that consists of a nonempty
finite set of players Agt, a nonempty set of actions (also known as moves or
choices) Acta for each player a ∈ Agt, a nonempty set of outcomes Out, and
an outcome function out :

∏
a∈Agt Acta → Out, that associates an outcome with

every action profile; that is, tuple of actions, one for each player5.
A strategic game is a strategic game form endowed with preference orders

≤a on the set of outcomes, one for each player. Often, players’ preferences are

3 We do, however, discuss briefly in Sect. 5.2 how some concepts of rationality can be
expressed in logical languages considered here.

4 We have no strong reason for this finiteness assumption, other than common sense
and technical convenience.

5 We assume that there is an ordering on Agt which is respected in the definition of
tuples etc.
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expressed by payoff functions ua : Out → R. Then, the preference relations are
implicitly defined as follows: o ≤a o′ iff ua(o) ≤ ua(o′). Thus, strategic games
can be represented either as tuples (Agt, {Acta | a ∈ Agt},Out, out, (≤a)a∈Agt) or
(Agt, {Acta | a ∈ Agt},Out, out, (ua)a∈Agt).

In traditional game theory outcomes are usually characterized quantitatively
by real values called utilities or payoffs. More generally, outcomes can be abstract
objects, ordered by relations ≤a which represent preferences of players, as in the
definition above. Here we abstract from the actual preferences between outcomes
and focus on the players’ powers to enforce particular properties (sets) of out-
come states. Thus, we will use the terms “strategic game” and “strategic game
form” interchangeably, assuming that game forms come equipped with some
preference orders that have no direct bearing on our discussion.

The intuition behind a strategic game is simple: each player chooses an action
from her set of possible actions. All actions are performed independently and
simultaneously. Thus, all players perform a collective action based on which the
outcome function determines the (unique) outcome. Hence, a strategic game
typically represents a one-shot interaction.

1\2 coop defect

coop (3, 3) (0, 5)

defect (5, 0) (1, 1)

Fig. 1. Prisoner’s Dilemma.

Example 1 (Prisoner’s Dilemma as a Strategic Game). We will use a version of
the well-known Prisoner’s Dilemma game, given in Fig. 1, to illustrate the basic
concepts introduced in this section. Each of the two players in the game can
choose to cooperate (play action coop) or to defect (play action defect). For-
mally, the game is defined as ({1, 2}, {Act1,Act2}, {o1, o2, o3, o4}, out, (≤1,≤2))
with Act1 = Act2 = {coop, defect}, out(coop, coop) = o1, out(coop, defect) = o2,
out(defect , coop) = o3, and out(defect , defect) = o4. Moreover, we define ≤1

and ≤2 as the smallest transitive relations with o2 ≤1 o4 ≤1 o1 ≤1 o3 and
o3 ≤2 o4 ≤2 o1 ≤2 o2. In the figure we have shown the value of the payoff func-
tions u1 and u2 defined as follows: u1(o1) = u2(o1) = 3, u1(o4) = u2(o4) = 1,
u1(o2) = u2(o3) = 0, and u1(o3) = u2(o2) = 5.

2.2 Effectivity Functions and Models for Strategic Games

It is important to note that in strategic games none of the players knows in
advance the actions chosen by the other players, and therefore has no definitive
control on the outcome of the game. So, what power does an individual player
or a coalition of players have to influence the outcome in such a game? We will
address this fundamental question below in terms of effectivity functions, first
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introduced in cooperative6 game theory in Moulin and Peleg [64] and in social
choice theory in Abdou and Keiding [1], to provide an abstract representation
of powers of players and coalitions.

Definition 2 (Effectivity Functions and Models). Given a set of players
Agt and a set of outcomes Out, a (coalitional) effectivity function (EF) over Agt
and Out is a mapping E : P(Agt) → P(P(Out)) that associates a family of sets
of outcomes with each coalition of players.

A (coalitional) effectivity model (EM) is a coalitional effectivity function
endowed with a labelling V : Out → P(Prop) of outcomes with sets of atomic
propositions from Prop. The labeling prescribes which atomic propositions are
true in a given outcome state.

Intuitively, for a group of agents A ⊆ Agt every element of E(A) is the set
of all possible outcomes that can result from a given joint action of players in
A, depending on how the remaining players from Agt decide to act. In other
words, for every set X in E(A) the coalition A has a collective action that is
guaranteed to yield an outcome in X, regardless of the actions taken by the
players in A = Agt \ A. Therefore, every element of E(A) can be regarded as
representing a possible joint action of coalition A.

Every strategic game G naturally defines an effectivity function called the
α-effectivity function of G and denoted by Eα

G, which is defined as follows.

Definition 3 (Effectivity in Strategic Games, Pauly [71]). For a strategic
game G, the α-effectivity function Eα

G : P(Agt) → P(P(Out)) is defined as
follows: X ∈ Eα

G(A) if and only if there exists a joint action σA for A such that
for every joint action σA of A we have out(σA, σA) ∈ X.

Respectively, the β-effectivity function for G is Eβ
G : P(Agt) → P(P(Out)),

defined as follows: X ∈ Eβ
G(A) if and only if for every joint action σA of A

there exists a joint action σA of A (generally, depending on σA) such that
out(σA, σA) ∈ X.

Intuitively, α-effectivity functions describe the powers of coalitions to guaran-
tee outcomes satisfying desired properties while β-effectivity functions describe
the abilities of coalitions to prevent outcomes satisfying undesired properties.

Since strategic games are determined, α-effectivity and β-effectivity of coali-
tions are dual to each other in a sense that for every coalition A and X ⊆ Out:

X ∈ Eα
G(A) iff X /∈ Eβ

G(A)

where X = Out\X. That is, a coalition A can guarantee an outcome with a
property X precisely when its complementary coalition A cannot prevent it.

6 Coalitional effectivity can be regarded as a concept of cooperative game theory from
the internal perspective of the coalition, but from the external perspective of the
other players it becomes a concept of non-cooperative game theory. We will not
dwell into this apparent duality here.
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Example 2 (Prisoner’s Dilemma as Effectivity Model). The Prisoner’s Dilemma
from Example 1 can also be represented by the following effectivity function
over ({1, 2}, {o1, . . . , o4}): E(∅) = {Out}, E({1}) = {{o1, o2}, {o3, o4}} ∪ {X ⊆
{o1, . . . , o4} | {o1, o2} ⊆ X or {o3, o4} ⊆ X}, E({2}) = {{o1, o3}, {o2, o4}} ∪
{X ⊆ {o1, . . . , o4} | {o1, o3} ⊆ X or {o2, o4} ⊆ X}, and E({1, 2}) =
{{o1}, {o2}, {o3}, {o4}} ∪ {∃i ∈ {1, 2, 3, 4} s.t. oi ∈ X} = P({o1, o2, o3, o4})\{∅}.

Let us adopt atomic propositions representing the payoff values for each agent
{pja | a ∈ Agt, j ∈ {0, 1, 3, 5}} and label the outcomes appropriately. Then, for
example, we have V (o1) = {p31, p32} and V (o2) = {p01, u52}.

2.3 Characterization of Effectivity Functions of Strategic Games

Clearly, not every abstract effectivity function defined as above corresponds to
strategic games. The following notion captures the properties required for such
correspondence.

Definition 4 (True Playability (Pauly [71], Goranko et al. [45]). An
effectivity function E : P(Agt) → P(P(Out)) is truly playable iff the following
conditions hold:

Outcome monotonicity: X ∈ E(A) and X ⊆ Y implies Y ∈ E(A);
Liveness: ∅ /∈ E(A);
Safety: St ∈ E(A);
Superadditivity: if A1 ∩ A2 = ∅, X ∈ E(A1) and Y ∈ E(A2), then X ∩ Y ∈

E(A1 ∪ A2);
Agt-maximality: X 
∈ E(∅) implies X ∈ E(Agt);
Determinacy: if X ∈ E(Agt) then {x} ∈ E(Agt) for some x ∈ X.

It is easy to see that every α-effectivity function of a strategic game is truly
playable. The converse holds too as stated below.

Representation theorem for effectivity functions.7 An effectivity func-
tion E for (Agt,Out) is truly playable if and only if there exists a strategic game
G = (Agt, {Acti | i ∈ Agt},Out, out) such that Eα

G = E, see [45,71].

Actual α-effectivity in Strategic Games. The notion of effectivity in game
G can be refined to the “actual” α-effectivity function of G that collects precisely
the sets of outcomes of collective actions available to the coalition without closing
the sets under outcome monotonicity. Formally, given a strategic game G =
(Agt, {Acti | i ∈ Agt},Out, out), a coalition A and a joint action σA we define
outcome states(σA) as the set of all possible outcomes that can result from σA:

outcome states(σA) = {out(σA, σA) | σA is a joint action for A}.

7 This representation theorem was first proved in Pauly [71] for so called “playable”
effectivity functions, without the Determinacy requirement. It has been recently
shown in [45] that, for games with infinite outcome spaces, “playability” is not suffi-
cient. The Determinacy condition was identified and added to define “truly playable”
effectivity functions and prove a correct version of the representation theorem.
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We define the actual α-effectivity function ÊG : P(Agt) → P(P(Out)) as the
family of all outcome sets effected by possible joint actions of A:

ÊG(A) = {outcome states(σA) | σA is a joint action for A}.

Clearly, the standard α-effectivity function for G can now be obtained by closure
under outcome-monotonicity:

EG(A) = {Y | X ⊆ Y for some X ∈ ÊG(A)}.

Conversely, obtaining ÊG from EG for games with infinite outcome states is not
so straightforward because ÊG may not be uniquely determined by EG, so the
notion of actual effectivity is at least as interesting and perhaps more important
than “standard”, outcome-monotone effectivity. We refer the interested reader
for further discussion and details to [44].

2.4 Strategic Abilities in Concurrent Game Models

Extensive game forms allow to model turn-based games, where at every non-
terminal position only one player is allowed to make a move. In this section we
discuss more general (as we explain further) “concurrent” games, where at every
position all players make their moves simultaneously.

Extensive Games meet Repeated Games: Concurrent Game Struc-
tures. Strategic games are usually interpreted as one-step games. Especially
in evolutionary game theory, they are often considered in a repeated setting:
game G is played a number of times, and the payoffs from all rounds are aggre-
gated. Concurrent game structures from [8], which are essentially equivalent to
multi-player game frames from [71] (see Goranko [42]), generalize the setting
of repeated games by allowing different strategic games to be played at dif-
ferent stages. This way we obtain multi-step games that are defined on some
state space, in which every state is associated with a strategic game with out-
comes being states again. The resulting game consists of successive rounds of
playing one-step strategic games where the outcome of every round determines
the successor state, and therefore the strategic game to be played at the next
round. Alternatively, one can see concurrent game structures as a generaliza-
tion of extensive game forms where simultaneous moves of different players are
allowed, as well as loops to previously visited states.

Definition 5 (Concurrent Game Structures and Models). A concurrent
game structure (CGS) is a tuple

S = (Agt,St,Act, act, out)

which consists of a non-empty finite set of players Agt = {1, . . . , k}, a non-
empty set of states8 St, a non-empty set of atomic actions Act, a function act :
8 The set of states is assumed finite in [8] but that restriction is not necessary for our

purposes. In Sect. 6.3 we even rely on the fact that the set of states can be infinite.
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Agt × St → P(Act) \ {∅} that defines the set of actions available to each player
at each state, and a (deterministic) transition function out that assigns a unique
successor (outcome) state out(q, α1, . . . , αk) to each state q and each tuple of
actions 〈α1, . . . , αk〉 such that αa ∈ act(a, q) for each a ∈ Agt (i.e., each αa that
can be executed by player a in state q).

A concurrent game model (CGM) over a set of atomic propositions Prop is
a CGS endowed with a labelling V : St → P(Prop) of game states with subsets
of Prop, thus prescribing which atomic propositions are true at a given state.

Thus, all players in a CGS execute their actions synchronously and the combi-
nation of these actions together with the current state determines the transition
to a successor state in the CGS.

Note that turn-based extensive form games can be readily represented as
concurrent game structures by assigning at each non-leaf state the respective set
of actions to the player whose turn it is to move from that state, while allowing
a single action ‘pass’ to all other players at that state. At leaf states all players
are only allowed to ‘pass’ and the result of such collective pass action is the same
state, thus looping there forever.

Example 3 (Prisoner’s Escape). A CGM Mesc is shown in Fig. 2 modeling the
following scenario. A prison has two exits: the rear exit guarded by the guard
Alex and the front exit guarded by the guard Bob. The prison is using the
following procedure for exiting (e.g., for the personnel): every person authorized
to exit the prison is given secret passwords, one for every guard. When exiting

q1

q3

q2
(move, )

(move, )

(pwA, coop)

escaped

BobAlex

q4

(pwA, coop)

caught

(pwB , coop)

(pwB , coop)
(pwB , defect) (pwB , defect)

(nop,nop)

(nop,nop)

(pwA, defect) (pwA, defect)

Fig. 2. Prisoner’s escape modelled as CGM Mesc . An action tuple (a1, a2) consists of
an action of Frank (a1) and Charlie (a2). � is a placeholder for any action available at
the very state; e.g., the tuple (move, �) leading from state q1 to q2 is a shortcut for the
tuples (move, defect) and (move, coop). Loops are added to the “final states” q3 and
q4 where action nop is the only available action for both players. We leave the formal
definition to the reader.
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the prison the guard must be given the password associated with him/her. If a
person gives a wrong password to any guard, he is caught and arrested. Now,
Frank is a prisoner who wants to escape, of course. Somehow Frank has got a key
for his cell and has learned the passwords for each of the guards. Charlie is an
internal guard in the prison and can always see when Frank is going to any of the
exits. Frank has bribed Charlie to keep quiet and not to warn the other guards.
Charlie can cooperate (actions coop), by keeping quiet, or can defect (action
defect), by alerting the guards. Thus, the successful escape of Frank depends on
Charlie’s cooperation.

Global Coalition Effectivity Functions and Models. Every CGS S can
be associated with a global effectivity function E : St × P(Agt) → P(P(St))
that assigns a (local) α-effectivity function Eq = E(q, ·) to every state q ∈ St,
generated by the strategic game associated with q in S. These can be accord-
ingly extended to global effectivity models by adding valuation of the atomic
propositions.

Global effectivity functions and models have been introduced abstractly in
[71–73] (called there ‘effectivity frames and models’). The global effectivity func-
tions generated by concurrent game structures are characterized in [45,71] by
the true playability conditions listed in Sect. 2.3, applied to every Eq.

The idea of effectivity functions has also been extended to path effectivity
functions in [44]. They will not be discussed here; the reader is referred to that
paper for more details.

2.5 Strategies and Strategic Ability

Strategies in Concurrent Game Models. A path in a CGS/CGM is an
infinite sequence of states that can result from subsequent transitions in the
structure/model. A strategy of a player a in a CGS/CGM M is a conditional
plan that specifies what a should do in each possible situation. Depending on the
type of memory that we assume for the players, a strategy can be memoryless
(alias positional), formally represented with a function sa : St → Act, such that
sa(q) ∈ acta(q), or memory-based (alias perfect recall), represented by a function
sa : St+ → Act such that sa(〈. . . , q〉) ∈ acta(q), where St+ is the set of histories,
i.e., finite sequences of states in M. The latter corresponds to players with perfect
recall of the past states; the former corresponds to players whose memory, if any,
is entirely encoded in the current state of the system. Intermediate options, where
agents have bounded memory, have been studied by Ågothes and Walther [5],
but will not be discussed here.

A joint strategy of a group of players A = {a1, ..., ar} is simply a tuple of
strategies sA = 〈sa1 , ..., sar 〉, one for each player from A. We denote player a’s
component of the joint strategy sA by sA[a]. Then, in the case of positional joint
strategy sA, the action that sA[a] prescribes to player a at state q is sA[a](q);
respectively, sA[a](π) is the action that a memory-based joint strategy sA pre-
scribes to a from the finite path (i.e., history) π. By a slight abuse of notation, we
will use sA(q) and sA(π) to denote the joint actions of A in state q and history
π, respectively.
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Outcomes of Strategies and Strategic Abilities. The outcome set func-
tion outcome states can be naturally extended from joint actions to all strat-
egy profiles applied at a given state (respectively, history) in a given CGS (or
CGM). Then outcome states(q, sA) (respectively, outcome states(π, sA)) returns
the set of all possible successor states that can result from applying a given posi-
tional (respectively, memory-based) joint strategy sA of the coalition A at state
q (respectively, at history π). Formally,

outcome states(q, sA) = {out(q, sA(q), sA(q)) | sA is a joint strategy of A}.

The local actual effectivity function ÊS , defining the coalitional powers at every
state q in S, is defined explicitly as

ÊS(q,A) = {outcome states(q, sA) | sA is a memoryless joint strategy of A}.

As before, the standard α-effectivity functions for S can be obtained by closure
under outcome-monotonicity:

ES(q,A) = {Y | X ⊆ Y for some X ∈ ÊS(q,A)}.

Likewise for outcome states(π, sA), ÊS(π,A), and ES(π,A) which we will not
further discuss here.

Example 4 (Prisoner’s Escape Continued). ÊS(q1, {Frank}) = {{q2}, {q4},
{q3, q4}}, where S denotes the underlying CGS of Mesc .

We extend the function outcome states to a function outcome plays that
returns the set of all plays, i.e., all paths λ ∈ Stω that can be realised when
the players in A follow strategy sA from a given state q (respectively, history π)
onward. Formally, for memoryless strategies this is defined as:

outcome plays(q, sA) = {λ = q0, q1, q2... | q0 = q and for each j ∈ N there exists
an action profile for all players 〈αj

1, ..., α
j
k〉 such that αj

a ∈ acta(qj) for every
a ∈ Agt, αj

a = sA[a](qj) for every a ∈ A, and qj+1 = out(qj , α
j
a1 , ..., α

j
ak)}.

The definition for memory-based strategies is analogous: outcome plays(q, sA)
consists of all plays of the game that start in q and can be realised as a result
of each player in A following its individual memory-based strategy in sA, while
the remaining players act in any way that is admissible by the game structure.

Example 5 (Prisoner’s Escape Continued). Suppose the guard Charlie, who is
a friend with the guard Bob and does not want to cause him trouble, adopts the
memoryless strategy to cooperate with Frank if he goes to the rear exit (i.e., at
state q1) by not warning Alex, but to defect and warn Bob if Frank decides to
go to the front exit, i.e. at state q2. Naturally, Frank does not know that. The
set of possible outcome plays enabled by this strategy and starting from state
q1 is:

{(q1q2)ω, q1(q2q1)nqω
3 , (q1q2)nqω

4 | n ∈ N}.
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Suppose now being at q1 Frank decides, for his own reasons, to try to escape
through the front exit. Frank’s strategy is to move at q1 and to give the password
to the guard at q2. The resulting play from that strategy profile is the play q1q2q

ω
4 .

Memory-based strategies are more flexible. For instance, a memory-based
strategy for Charlie could be one where he defects the first time Frank appears
at any given exit, but thereafter cooperates at the rear exit (say, because he was
then given more money by Frank) and defects at the front exit. That strategy
enables the following set of plays from q1:

{(q1q2)ω, q1q
ω
4 , (q1q2)nqω

4 , q1(q2q1)n+1qω
3 | n ∈ N}.

So, if Frank tries to escape as soon as possible with Charlie’s support, he will
fail; however, if he decides to first move to the front exit (and to pay Charlie
extra money) and tries to escape the second time he appears at the front exit,
he may succeed.

Note that there is no memoryless strategy that would allow Frank to escape if
Charlie adopts the strategy specified above. This is because Frank’s memoryless
strategy must specify the same action in each state every time he is at that
state, regardless of the history of the game up to that point. Thus, either Frank
tries to escape through one of the exits right away, or he executes move forever,
or gets caught.

A fundamental question regarding a concurrent game model is: what can a
given player or coalition achieve in that game? So far the objectives of players
and coalitions are not formally specified, but a typical objective would be to
reach a state satisfying a given property, e.g. a winning state. Generally, an
objective is a property of plays, for instance one can talk about winning or
losing plays for the given player or coalition. More precisely, if the current state
of the game is q we say that a coalition of players A can (is sure to) achieve an
objective O from that state if there is a joint strategy sA for A such that every
play from outcome plays(q, sA) satisfies the objective O. The central problem
that we discuss in the rest of this chapter is how to use logic to formally specify
strategic objectives of players and coalitions and how to formally determine their
abilities to achieve such objectives.

3 Logics for Strategic Reasoning and Coalitional Abilities

Logic and game theory have a long and rich history of interaction which we
will not discuss here and refer the reader to e.g. [15]. Here, we will focus on the
role of logic in formalizing and structuring reasoning about strategic abilities in
multi-player games.

3.1 Expressing Local Coalitional Powers: Coalition Logic

The concept of α-effectivity in strategic games (Definition 3) has the distinct
flavour of a non-normal modal operator with neighbourhood semantics, see [33],
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and this observation was utilized by Pauly who introduced in [71,73] a multi-
modal logic capturing coalitional effectivity in strategic games, called Coalition
Logic (CL ). CL extends classical propositional logic with a family of modal
operators [A] parameterized with coalitions, i.e. subsets of the set of agents
Agt. Intuitively, the formula [A]ϕ says that coalition A has, at the given game
state, the power to guarantee an outcome satisfying ϕ. Formally, operator [A] is
interpreted in global effectivity models M = (E, V ) as follows:

M, q |= [A]ϕ iff ‖ϕ‖M ∈ Eq(A),

where ‖ϕ‖M := {s ∈ St | M, s |= ϕ}.
This implicitly defines the semantics of CL in every concurrent game

model M, in terms of the generated global α-effectivity function EM.
Coalition logic is a very natural language to express local strategic abilities

of players and coalitions; that is, their powers to guarantee desired properties in
the successor states.

Example 6 In the following we state some properties expressed in CL.

1. “If Player 1 has an action to guarantee a winning successor state, then Player
2 cannot prevent reaching a winning successor state.”

[1]Win1 → ¬[2]¬Win1 .

2. “Player 1 has an action to guarantee a successor state where she is rich, and
has an action to guarantee a successor state where she is happy, but has no
action to guarantee a successor state where she is both rich and happy.”

[1]Rich ∧ [1]Happy ∧ ¬[1](Rich ∧ Happy).

3. “None of players 1 and 2 has an action ensuring an outcome state satisfying
Goal, but they have a collective action ensuring such an outcome state.”

¬[1]Goal ∧ ¬[2]Goal ∧ [1, 2]Goal .

Example 7 (Prisoner’s Escape: Example 3 Continued). Let us denote hereafter
Frank by f and Charlie by c. Then we have Mesc , q1 |= ¬[f ]escaped and
Mesc , q1 |= [f, c]escaped.

3.2 Expressing Long-Term Strategic Abilities in the Logic ATL∗

While CL is suitable for expressing local properties and immediate abilities, it
cannot capture long-term strategic abilities of players and coalitions. For these,
we need to extend the language of CL with more expressive temporal operators.
That was done in [71,72] where Pauly introduced the Extended Coalition Logic
ECL, interpreted essentially (up to notational difference) on concurrent game
models. Independently, a more expressive logical system called Alternating-Time
Temporal Logic, ATL∗ (and its syntactic fragment ATL) was introduced and
studied by Alur, Henzinger and Kupferman in a series of papers, see [6–8] as a
logic for reasoning about open systems. The main syntactic construct of ATL∗

is a formula of type 〈〈A〉〉γ, intuitively meaning:
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“The coalition A has a collective strategy to guarantee the satisfaction of
the objective γ on every play enabled by that strategy”9.

As shown in [42,43] Pauly’s ECL is directly embeddable into ATL, so we will
not discuss ECL further, but will focus on ATL and ATL∗ interpreted over con-
current game models.

ATL∗ and its Fragment ATL : Syntax and Semantics. Formally, the
alternating-time temporal logic ATL∗ is a multimodal logic extending the lin-
ear time temporal logic LTL– comprising the temporal operators X (“at the
next state”), G (“always from now on”) and U (“until”) – with strategic path
quantifiers 〈〈A〉〉 indexed with coalitions A of players. There are two types of for-
mulae of ATL∗: state formulae that constitute the logic, and which are evaluated
at game states, and path formulae, which are evaluated on game plays. These
are respectively defined by the following grammars, where A ⊆ Agt, p ∈ Prop:

State formulae: ϕ:: = p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉γ,
Path formulae: γ:: = ϕ | ¬γ | γ ∧ γ | Xγ | Gγ | γ U γ.

The formal semantics of ATL∗ was initially based on alternating transition
systems in [6,7], and subsequently reworked for concurrent game models, as
follows10. Let M be a CGM, q a state in M, and λ = q0q1 . . . be a path in M.
For every i ∈ N we define λ[i] = qi, and denote by λ[0..i] the prefix q0q1 . . . qi,
and by λ[i..∞] the suffix qiqi+1 . . . of λ. The semantics of ATL∗ is given as follows
(cf. [8]). For state formulae:

M, q |= p iff q ∈ V (p), for p ∈ Prop;
M, q |= ¬ϕ iff M, q 
|= ϕ;
M, q |= ϕ1 ∧ ϕ2 iff M, q |= ϕ1 and M, q |= ϕ2;
M, q |= 〈〈A〉〉γ iff there is a joint strategy sA for A such that M, λ |= γ for every

play λ ∈ outcome plays(q, sA);

and for path formulae:
M, λ |= ϕ iff M, λ[0] |= ϕ for any state formula ϕ;
M, λ |= ¬γ iff M, λ 
|= γ;
M, λ |= γ1 ∧ γ2 iff M, λ |= γ1 and M, λ |= γ2;
M, λ |= Xγ iff M, λ[1,∞] |= γ;
M, λ |= Gγ iff M, λ[i,∞] |= γ for every i ≥ 0; and
M, λ |= γ1 U γ2 iff there is i such that M, λ[i,∞] |= γ2 and M, λ[j,∞] |= γ1 for

all 0 ≤ j < i.

The other Boolean connectives and constants � and ⊥ are defined as usual.
The operator F (“sometime in the future”) is defined as Fϕ ≡ �U ϕ.11

9 We use the terms objective and goal of a coalition A as synonyms, to indicate the
subformula γ of the formula 〈〈A〉〉γ. In doing so, we ignore the issue of whether agents
may have (common) goals, how these goals arise, etc.

10 As proved in [42,43], under natural assumptions the two semantics are equivalent.
11 Of course, G is definable as ¬F¬, but keeping it as a primitive operator in the

language is convenient when defining the sublanguage ATL.
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The logic ATL∗ is very expressive, often more than necessary. This expres-
siveness comes at a high computational price which can be avoided if we settle
for a reasonably designed fragment which is still sufficient in many cases. The
key idea is to restrict the combination of temporal operators in the language.
That can be achieved by imposing a syntactic restriction on the construction of
formulae: occurrences of temporal operators must be immediately preceded by
strategic path quantifiers. The result is the logic ATL defined by the following
grammar, for A ⊆ Agt, p ∈ Prop:

ϕ:: = p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉Xϕ | 〈〈A〉〉Gϕ | 〈〈A〉〉(ϕ U ϕ).

For example, 〈〈A〉〉G F p is an ATL∗ formula but not an ATL formula whereas
〈〈A〉〉G 〈〈B〉〉F p is also an ATL formula. Thus, the coalitional objectives in ATL
formulae are quite simple. As a consequence, it turns out that for the formulae
of ATL the two notions of strategy, memoryless and memory-based, yield the
same semantics [8,47].

Note that CL can be seen as the fragment of ATL involving only Booleans
and operators 〈〈A〉〉X , whereas ECL also involves the operator 〈〈A〉〉G (denoted in
[71,72] by [A∗]). Both logics inherit the semantics of ATL on concurrent game
models.

Example 8 (Prisoner’s Escape Continued). We express some properties of the
escape scenario from Example 3 in ATL∗. (We recall that we denote Frank by f
and Charlie by c.) We remark that all but the last formula belong to ATL.

1. Mesc , q1 |= ¬〈〈f〉〉F escaped: Frank cannot guarantee to escape on his own
(from q1).

2. Mesc , q1 |= 〈〈f, c〉〉F escaped: if Frank and Charlie cooperate then they can
ensure that Frank eventually escapes.

3. Mesc , q1 |= 〈〈c〉〉G ¬escape: Charlie can guarantee that Frank never escapes.
4. Mesc , q1 |= ¬〈〈c〉〉F caught: Charlie cannot guarantee that Frank is caught.
5. Mesc , q1 |= 〈〈f〉〉X (Bob∧ 〈〈f, c〉〉X escaped): Frank has a strategy to reach the

front exit guarded by Bob in the next step and then escape with the help of
Charlie.

6. Mesc , q1 |= 〈〈f〉〉G F Alex: Frank can guarantee to reach the rear exit guarded
by Alex infinitely many times.

3.3 From Branching-Time Temporal Logics to ATL∗

We have introduced ATL∗ from a game-theoretic perspective as a logic for rea-
soning about players’ strategic abilities. An alternative approach, in fact the one
adopted by its inventors in [8], is to introduce ATL/ATL∗ as a generalization of
the branching-time temporal logic CTL/CTL∗ to enable reasoning about open
systems. Indeed, CTL/CTL∗ can be regarded as a 1-player version of ATL/ATL∗

where – assuming the singleton set of agents is {i} – the existential path quan-
tifier E is identified with 〈〈i〉〉 and the universal path quantifier A is identified
with 〈〈∅〉〉. Indeed, we leave it to the reader to check that the semantics of 〈〈i〉〉ϕ
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and 〈〈∅〉〉ϕ in any single-agent CGM M coincide with the semantics of Eϕ and
Aϕ in M regarded as a transition system with transitions determined by the
possible actions of the agent i, respectively.

ATL/ATL∗ can be regarded – at least formally, but see a discussion further –
as a multi-agent extension of CTL/CTL∗ resulting into a more refined quan-
tification scheme over the paths, respectively computations, enabled by some
collective strategy of the given coalition.

4 Variations in Reasoning About Strategies

In this section, we discuss two interesting and important directions of extending
the basic pattern of reasoning about agents’ strategies and abilities. First, we
investigate limitations and inadequacies stemming from the compositionality of
the semantics of CL and ATL∗ that seem to be in conflict with the concept
of strategy commitment. We discuss variant notions of strategic ability that
attempt to resolve these problems. Then, we briefly summarize some attempts at
reasoning about outcomes of particular strategies, rather than the mere existence
of suitable plans.

4.1 Persistence of Strategic Committments

Strategic Commitment and Persistence in the Semantics of ATL∗.
Agents in actual multi-agent systems commit to strategies and relinquish their
commitments in pursuit of their individual and collective goals in a dynamic,
pragmatic, and often quite subtle way. While the semantics of ATL∗ is based on
the standard notion of strategy, it appears that it does not capture adequately
all aspects of strategic behaviour. For instance, the meaning of the ATL∗ for-
mula 〈〈A〉〉γ is that the coalition A has a collective strategy, say sA, to bring
about the truth of γ if the agents in A follow that strategy. However, accord-
ing to the formal semantics of ATL∗, as introduced in [8], the evaluation of γ
in the possible plays of the system enabled by sA does not take that strategy
into account anymore. That is, if γ contains a subformula 〈〈B〉〉ψ, then in the
evaluation of 〈〈B〉〉ψ the agents in A ∩ B are free to choose any (other) strategy
as part of the collective strategy of B claimed to exist to justify the truth of ψ.
Thus, the semantics of ATL∗ does not commit the agents in A to the strategies
they adopt in order to bring about the truth of the formula 〈〈A〉〉γ. This is in
agreement with the semantics of path quantifiers in CTL∗, where it is natural to
express claims like EG Eϕ read as “there is a path, such that from any state of
that path the system can deviate to another path which satisfies ϕ”. One may
argue that this feature disagrees with the game-theoretic view of a strategy as
a full conditional plan that completely specifies the agent’s future behavior. To
see the problem more explicitly, consider the ATL formula 〈〈i〉〉G (γ ∧ 〈〈i〉〉X ¬γ).
Depending on how orthodoxly or liberally one adopts the concept of strategic
commitment, the requirement expressed – that agent i has a strategy to ensure
both that γ holds forever and that it can always alter that strategy to reach a
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non-γ state – may be considered satisfiable or not. This issue has been indepen-
dently addressed in different ways in [3,4,19,75,81], where various proposals
have been made in order to incorporate strategic commitment and persistent
strategies in the syntax and semantics of ATL∗.
Paradoxes of Non-persistence. We continue with two more similar examples
to argue that non-persistent strategies can lead to apparently counterintuitive
descriptions of strategic ability.

Example 9 (Non-renewable Resource). Consider a system with a shared resource,
where we are interested in reasoning about whether agent a has access to the
resource. Let p denote the fact that agent a controls the resource. The ATL
formula 〈〈a〉〉X p expresses the claim that a is able to obtain control of the resource
in the next moment, if it chooses to. Now imagine that agent a does not need
to access the resource all the time, but it would like to be able to control the
resource any time it needs it. Intuitively, this is expressed in ATL by the formula
〈〈a〉〉G 〈〈a〉〉X p, saying that a has a strategy which guarantees that, in any future
state of the system, a can always force the next state to be one where a controls
the resource.

Now, consider the single-agent system M0 from Fig. 3. We have that
M0, q1 |= 〈〈a〉〉X p: a can choose action α2, which guarantees that p is true next.
But we also have that M0, q1 |= 〈〈a〉〉G 〈〈a〉〉X p: a’s strategy in this case is to
always choose α1, which guarantees that the system will stay in q1 forever and,
as we have seen, M0, q1 |= 〈〈a〉〉X p. However, this system does not have exactly
the property we had in mind because by following that strategy, agent a dooms
itself to never access the resource – in which case it is maybe counter-intuitive
that 〈〈a〉〉X p should be true. In other words, a can ensure that it is forever able
to access the resource, but only by never actually accessing it.12 Indeed, while a
can force the possibility of achieving p to be true forever, the actual achievement
of p destroys that possibility.

q1 q3q2

p
α1

α1
α1α2

Fig. 3. Having the cake or eating it: model M0 with a single agent a. The transitions
between states are labeled by the actions chosen by agent a.

Example 10 (Nested Strategic Operators). Non-persistence of strategic commit-
ments in nested strategic formulas (like in 〈〈a〉〉G 〈〈a〉〉X p) also contradicts the

12 This is the famous “have the cake or eat it” dilemma. One can keep being able to
eat the cake, but only by never eating the cake.
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observation that a player’s choice constrains the outcomes that can be achieved
by other players. Consider the ATL∗ formula 〈〈A〉〉〈〈B〉〉γ. It is easy to see that,
according to the semantics of ATL∗, the formula is equivalent to 〈〈B〉〉γ for any
pair A,B of coalitions (intersecting or not). Thus, none of A’s strategy can influ-
ence the outcome of B’s play, which is opposite to what we typically assume in
strategic reasoning.

Alternative Semantics of Strategic Play. What are the alternatives? Let
us analyze them using the example formula 〈〈1, 2〉〉G 〈〈2, 3〉〉X p.

1. Irrevocable Strategies. At the point of evaluation of 〈〈1, 2〉〉G 〈〈2, 3〉〉X p
the strategies of agents 1 and 2 are selected and fixed. When evaluating
the subformula 〈〈2, 3〉〉X p only the strategy of agent 3 can vary. A natural,
straightforward way of obtaining this semantics with minimal change to the
standard semantics of ATL∗ is to update the model when agents choose a
strategy, so that their future choices must be consistent with that strategy,
but otherwise keeping semantics (definition of strategies, etc.) as is. We call
these irrevocable strategies (see [3]), since a commitment to a strategy can
never be revoked in this semantics, and denote by IATL the version of ATL
adopting (memoryless) irrevocable strategies in its semantics.

2. Strategy Contexts. At the point of evaluation of 〈〈1, 2〉〉G 〈〈2, 3〉〉X p the
strategies of agents 1 and 2 are selected and fixed, but when evaluating the
subformula 〈〈2, 3〉〉X p agent 2 is granted the freedom to change its strategy
in order to achieve the current goal, i.e. X p. Thus, both agents 2 and 3 can
choose new strategies, and moreover they can do that under the assumption
that agent 1 remains committed to his strategy selected at the point of eval-
uation of 〈〈1, 2〉〉G 〈〈2, 3〉〉X p. This is a simple case of what we will later call
strategy contexts.

ATL with Irrevocable Strategies. A strategy in game theory is usually
understood as a plan that completely prescribes the player’s behaviour, in all
conceivable situations and for all future moments. An alternative semantics for
strategic quantifiers takes this into account by adopting irrevocable strategies,
implemented through the mechanism of model update.

Definition 6 (Model Update). Let M be a CGM, A a coalition, and sA a
strategy for A. The update of M by sA, denoted M † sA, is the model M where
the choice of each agent i ∈ A is fixed by the strategy sA[i]; that is, di(q) = {si(q)}
for each state q.

The semantics of ATL∗ with irrevocable strategies (IATL∗) is now defined as
follows, where q is a state in a CGS M:

[M, q |= 〈〈A〉〉γ iff there is a joint strategy sA such that for every path λ ∈
outcome playsM(q, sA) we have M † sA, λ |= γ.

Depending on whether memory-based strategies, or only memoryless strate-
gies, are allowed two different versions of ATL with irrevocable strategies emerge:
MATL and IATL. For further details on these, we refer the reader to [3,4].
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ATL with Strategy Contexts. A somewhat different and more flexible app-
roach has been proposed by Brihaye et al. [19]. Instead of a “hard” model update
that transforms the CGM according to the chosen strategy, the model is kept
intact and the strategy is only added to the strategy context. The context col-
lects strategies being currently executed, and hence influences the outcome paths
that can occur. On the other hand, since the model itself does not change, each
strategy can be revoked – in particular when an agent chooses another strategy
in a nested cooperation modality. Formally, let sA be a joint strategy of agents
A (the current strategy context), and let tB be a new joint strategy of agents B.
We define the context update sA ◦ tB as the joint strategy f for agents in A ∪ B
such that f [i] = tB[i] for i ∈ B and f [i] = sA[i] for i ∈ A \ B. That is, the
new strategies from tB are added to the context, possibly replacing some of the
previous ones. The semantic rule for strategic modalities becomes:

M, q, f |= 〈〈A〉〉γ iff there is a joint strategy sA for the agents in A such that for
every path λ ∈ outcome plays(q, f ◦ sA) we have that M, λ, f ◦ sA |= γ.

Additionally, M, q |= ϕ iff M, q, f∅ |= ϕ where f∅ is the only joint strategy of
the empty coalition (i.e., the empty tuple).

For more details and a thorough analysis of the model checking problem for
ATL with strategy contexts, we refer the reader to [19]. A proof of the undecid-
ability of the satisfiability problem for ATL with strategy contexts can be found
in [79].

4.2 Making Strategies Explicit

In this section, we discuss several proposed variations of ATL with explicit ref-
erences to strategies in the logical language.

Counterfactual ATL (CATL), proposed by van der Hoek et al. [52], extends
ATL with operators of “counterfactual commitment” Ci(σ, ϕ) where i is an agent,
σ is a term symbol standing for a strategy, and ϕ is a formula. The informal
reading of Ci(σ, ϕ) is: “if it were the case that agent i committed to strategy σ,
then ϕ would hold”. The semantics is based on model updates, like the IATL
semantics presented in Sect. 4.1:

M, q |= Ci(σ, ϕ) iff M † [[σ]]i, q |= ϕ

where [[σ]]i is the strategy of agent i denoted by the strategy term σ.
ATL with intentions (ATLI), proposed by Jamroga et al. [59], is similar to

CATL, but its counterfactual operators have a different flavour: (striσ)ϕ reads
as “suppose that agent i intends to play strategy σ, then ϕ holds”. An intention
is a kind of commitment – it persists – but it can be revoked by switching
to another intention. Semantically, this is done by an additional “marking” of
the intended actions in the concurrent game model. Moreover, strategies can
be nondeterministic, which provides semantic tools for e.g. partial strategies as
well as explicit release of commitments. Thus, Jamroga et al. [59] provide in
fact the semantics of ATL based on strategy contexts (here called intentions).
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However, ATLI does not allow to quantify over intentions, and hence allows only
for limited context change. ATLI and its richer variant called ATLP (“ATL with
plausibility” see [29]) have been used to e.g. characterize game-theoretic solution
concepts and outcomes that can be obtained by rational agents. We discuss this
and show some examples in Sect. 5.

Alternating-time temporal logic with explicit strategies (ATLES), see [81], is
a revised version of CATL which dispenses with the counterfactual operators.
Instead, strategic modalities are subscripted by commitment functions which
are partial functions of the form ρ = {a1 �→ σ1, . . . , al �→ σl} where each aj is
an agent and σj is a strategy term. The meaning of a formula such as 〈〈A〉〉ρG ϕ
is that there exists a strategy for A ∪ {a1, . . . , al} where each aj is required to
play [[σj ]] such that ϕ will hold. Note, that ATLES formulae also involve strategy
commitment. Consider, for instance, formula 〈〈A〉〉

ρ
G 〈〈A〉〉

ρ
F ϕ. If A is a subset of

the domain of ρ then in the evaluation of the subformula 〈〈A〉〉
ρ
F ϕ, A is bound

to play the same joint strategy it selected for the outer modality 〈〈A〉〉ρG .
Alternating-time temporal epistemic logic with actions (ATEL − A), proposed

by Ågotnes [2], enables reasoning about the interplay between explicit strategies
of bounded length and agents’ knowledge.

Strategy Logic, introduced by Chatterjee et al. [31,32], treats strategies in
two-player turn-based games as explicit first-order objects and enables specifying
important properties of non-zero-sum games in a simple and natural way. In
particular, the one-alternation fragment of strategy logic subsumes ATL∗ and is
strong enough to express the existence of Nash equilibria and secure equilibria.

The idea of treating strategies explicitly in the language and quantifying
over them is subsequently followed up in a series of papers, e.g. in [61–63] where
strategy logic is extended and generalized to concurrent games, and a decidable
fragment (as complex as ATL∗) of it is identified and studied.

5 Reasoning About Games

ATL∗ and its variations are closely related to basic concepts in game theory.
Firstly, their models are derived from those used in game theory. Secondly, their
semantics are based on the notions of strategies and their outcomes, central in a
game-theoretic analysis. In this section we give a brief overview of how to relate
game theory and strategic logics. We begin with the relation between games (as
viewed and analyzed in game theory) and concurrent game models. Then, we
present logics which can be used to characterize solution concepts and logics
which can use such solution concepts to reason about the outcome of games
and the ability of rational players. For a more substantial treatment on solution
concepts we refer the reader to the chapters by Bonanno [18], Pacuit [68], and
Perea [74] in this book.

5.1 Representing Games as Concurrent Games Models

Standard models of modal logics correspond to strategic games, as shown in
[9,52].Moreover, concurrent gamemodels have a close relationship to strategic and
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Fig. 4. Prisoner’s Dilemma modelled as CGM Mpris .

extensive form games, cf. [59]. We illustrate the correspondence with two examples
of how strategic and extensive game frames compare to concurrent game models.
The major difference is that CGMs lack the notion of payoff/outcome. However,
we recall after [9,59] that CGMs can embed strategic games (cf. Example 11) and
extensive games with perfect information (cf. Example 12) in a natural way. This
can be done, e.g., by adding auxiliary propositions to the leaf nodes of tree-like
CGMs that describe the payoffs of agents. Under this perspective, concurrent game
structures can be seen as a strict generalisation of extensive form games.

In formal terms, consider first any strategic game and let U be the set of
all possible utility values in it. For each value v ∈ U and agent a ∈ Agt, we
introduce a proposition uva and put uva ∈ V (q) iff a gets a payoff v in state q.

Example 11 (Prisoner’s Dilemma as CGM). The Prisoner’s Dilemma (Exam-
ple 1) can also be represented by the following CGM:

({1, 2}, {q0, . . . , q4}, {defect , coop},Act, out, V )

with Act(a, q) = {defect , coop} for all players a and states q, out(q0, coop, coop) =
q1, out(q0, coop, defect) = q2, out(q0, defect , coop) = q3, out(q0, defect , defect) =
q4, and out(qi, a1, a2) = qi for i = 1, . . . , 4 and a1, a2 ∈ {defect , coop}. The
CGM is shown in Fig. 4 where the labeling function V is defined over Prop =
{start} ∪ {uva | a ∈ Agt, v ∈ {0, 1, 3, 5}} as shown in the figure; e.g., we have
V (q2) = {u01, u52} representing that players 1 and 2 receive utility of 0 and 5,
respectively, if strategy profile (coop, defect) is played.

Example 12 (Bargaining). This example shows that CGMs are also rich enough
to model (possibly infinite) extensive form games. Consider bargaining with time
discount (cf. [65,76]). Two players, a1 and a2, bargain over how to split goods
worth initially w0 = 1 euro. After each round without agreement, the subjective
worth of the goods reduces by discount rates δ1 (for player a1) and δ2 (for player
a2). So, after t rounds the goods are worth 〈δt

1, δ
t
2〉, respectively. Subsequently,

a1 (if t is even) or a2 (if t is odd) makes an offer to split the goods in proportions
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Fig. 5. CGM Mbarg modeling the bargaining game.

〈x, 1 − x〉, and the other player accepts or rejects it. If the offer is accepted, then
a1 takes xδt

1, and a2 gets (1 − x)δt
2; otherwise the game continues.

The CGM corresponding to this extensive form game is shown in Fig. 5.
Note that the model has a tree-like structure with infinite depth and an infinite
branching factor. Nodes represent various states of the negotiation process, and
arcs show how agents’ moves change the state of the game. A node label refers
to the history of the game for better readability. For instance,

⎡
⎣

0, 1
1, 0
acc

⎤
⎦ has the

meaning that in the first round 1 offered 〈0, 1〉 which was rejected by 2. In the
next round 2’s offer 〈1, 0〉 has been accepted by 1 and the game has ended.

5.2 Characterization of Solution Concepts and Abilities

Rationality can be approached in different ways. Research within game theory
understandably favours work on the characterization of various types of ratio-
nality (and defining most appropriate solution concepts). Applications of game
theory, also understandably, tend toward using the solution concepts in order
to predict the outcome in a given game; in other words, to “solve” the game.
In this section we discuss logics which address both aspects. A natural question
is why we need logics for describing and using solution concepts. In our opinion
there are at least three good reasons: (i) Logical descriptions of solution concepts
help for better understanding of their inner structures; e.g. interrelations can be
proven by means of logical reasoning. (ii) Model checking provides an automatic
way to verify properties of games and strategy profiles; e.g. whether a given pro-
file is a Nash equilibrium in a given game or whether there is a Nash equilibrium
at all. (iii) Often, the logical characterization of solution concepts is a necessary
first step for using them to reason about rational agents in a flexible way, i.e. for



114 N. Bulling et al.

allowing a flexible description of rational behavior rather than having a static
pre-defined notion, hard-coded in the semantics of a logic.

We first give an overview of logics able to characterize solution concepts
before we consider logics to reason about rational agents using characterizations
of solution concepts.

Characterizing Solution Concepts in Strategic Games. In [50], a modal
logic for characterizing solution concepts was presented. The main construct
of the logic is [β]ϕ where β ranges over preference relations, and complete and
partial strategy profiles. The three kinds of operators have the following meaning,
where i, pref i, and σ, represent a player, her preference relation, and a complete
strategy profile, respectively:

[pref i]ϕ: ϕ holds in all states at least as preferred to i as the current one.
[σ]ϕ: ϕ will hold in the final state if all players follow σ.
[σ−i]ϕ: ϕ will hold in all final states if all players, apart from i, follow σ.

These basic operators can be used to describe solution concepts. For instance,
the formula BRi(σ) ≡ (¬[σ−i]¬[pref i]ϕ) → [σ]ϕ expresses that σi is a best
response to σ−i with respect to ϕ: if there is a strategy for i (note that σ−i does
not fix a strategy for i) such that the reachable state satisfies ϕ and is among
the most preferred ones for player i; then, the strategy σi (which is included in
σ) does also bring about ϕ. Then, the property that σ is a Nash equilibrium can
be captured with the formula NE(σ) ≡ ∧

i∈Agt BRi(σ).
The above characterization of Nash equilibrium illustrates that, in order to

assign properties to specific strategies, the strategies (or better: associated syn-
tactic symbols) must be explicit in the object language. In Sect. 4.2 we have
discussed some ATL-like logics of this kind that allow to reason about the out-
come of specific strategies.

In ATLI, proposed by Jamroga et al. [59] (cf. Sect. 4.2) for example, best
response strategies can be characterized as follows (where U is assumed to be
a finite set of utility values, and u≥v

a ≡ ∨
v∈U uva expresses that agent a gets a

utility value of at least v):

BRa(σ) ≡ (strAgt\{a}σ[Agt \ {a}])
∧

v∈U

(
(〈〈a〉〉F uva) → ((straσ[a])〈〈∅〉〉F u≥v

a )
)
.

BRa(σ) refers to σ[a] being a best response strategy for a against σ[Agt \ {a}].
The first counterfactual operator occurring in BRa(σ) fixes the strategies for
all players except a. Then, each conjunct corresponds to a utility value v and
expresses that if player a has a strategy to eventually achieve v (given the fixed
strategies of the other players); then, a’s strategy σ[a] does eventually guarantee
at least v. That is, σ[a] is at least as good as any other strategy of a against
the other players’ strategies σ[Agt\{a}]. The best response strategy allows to
characterize Nash equilibria and subgame perfect Nash equilibria:

NE(σ) ≡
∧

a∈Agt

BRa(σ) and SPN(σ) ≡ 〈〈∅〉〉G NE(σ).
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Example 13 (Prisoner’s Dilemma Continued). We continue Example 11. Sup-
pose the strategy term σ represents the strategy profile in which both players
execute coop in q0 and an arbitrary action in the “final” states q1, q2, q3, q4. Let
us now justify Mdil, q0 |= BR1(σ). The first operator (strAgt\{1}σ[Agt \ {1}])
fixes the strategy of player 2, i.e. to cooperate. Then, player 1 has a strategy to
obtain payoff u31 and u01 (expressed by 〈〈1〉〉F uv1) by playing coop and defect in q0,
respectively. Hence, player 1’s strategy contained in σ also guarantees a payoff
of u31 (expressed by (str1σ[1])〈〈∅〉〉F u≥v

1 ). This shows that player 1’s strategy
contained in σ is indeed a best response to player 2’s strategy contained in σ.

We have another look at the given characterization of a best response strat-
egy; in particular, at the temporal operator F used in the characterization. The
antecedent 〈〈a〉〉F uva requires that player a achieves v somewhere along every
resulting path; it is true for the greatest value v along the path. In contrast, if
we replace F by G the antecedent is only satisfied for the smallest value v; for, it
has to be true in every state along a path. In general, we can use any of the unary
temporal operators X ,G ,F , U ψ,ψ U and define variants BRT

a , NET , SPNT

where T stands for any of these temporal operators and replaces F everywhere
in the characterizations above. We refer to them as T -best response etc., each
corresponding to a different temporal pattern of utilities. For example, we may
assume that agent a gets v if a utility of at least v is guaranteed for every time
moment (T = G ), or if it is eventually achieved (T = F ), and so on. In [59] it
is shown that the F -Nash equilibrium corresponds to its game-theoretic coun-
terpart. This is obvious from the way games were encoded into CGMs: utility
values were added to terminal states.

In Bulling et al. [29], these concepts are further generalized to general solution
concepts. They evaluate strategies with respect to path formulae: the utility of a
strategy depends on the truth of specific path formula. Furthermore, ATL with
plausibility is introduced which extends ATL with intentions in several respects.

Further approaches for characterizing solution concepts, which we cannot
discuss in detail due to lack of space, are proposed in [9,14,52].

Reasoning about the Outcome of Rational Play. The logics discussed in
the previous paragraph allow to characterize game-theoretic solution concepts.
It is also interesting to use game-theoretic solution concepts to reason about
rational players. Although players have limited ability to predict the future often
some lines of action seem more sensible or realistic than others. If a rationality
criterion is available, we obtain means to focus on a proper subset of possible
plays and to reason about the abilities of players.

Game logic with preferences (GLP), proposed by van Otterloo et al. [53],
was designed to address the outcome of rational play in extensive form games
with perfect information. The central idea of GLP is facilitated by the preference
operator [A : ϕ], interpreted as follows: If the truth of ϕ can be enforced by group
A, then we remove from the model all the actions of A that do not enforce it
and evaluate ψ in the resulting model. Thus, the evaluation of GLP formulae
is underpinned by the assumption that rational agents satisfy their preferences
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whenever they can. This is a way of using solution concepts to reason about
rational outcome.

The ideas behind ATLI and GLP were combined and extended in ATL with
plausibility (ATLP ), proposed by Bulling et al. [29]. The logic allows to reason
about various rationality assumptions of agents in a flexible way. For this pur-
pose, sets of rational strategy profiles can be specified in the object language
in order to analyze agents’ play if only these strategy profiles were allowed. For
example, if we again consider the Prisoner’s Dilemma CGM from Example 13, a
typical formula has the following form: set - pl σ.NEF (σ)Pl 〈〈{1}〉〉X ((u31∧u32)∨
(u11∧u12)). The formula expresses that if it is supposed to be rational to follow F -
Nash equilibrium strategy profiles; then, player 1 can guarantee that the players
will both get a payoff of 1 or both get a payoff of 3. Similar to ATLI, NEF (σ)
describes all Nash equilibrium strategies. The term σ.NEF (σ) collects all these
strategy profiles and the operator set - pl· assumes that they describe rational
behavior. Finally, operator Pl assumes that all agents play indeed rationally,
and restricts their choices to rational ones; that is, Nash equilibria in this exam-
ple. The restriction to rational behavior rules out all other alternatives. The
logic also allows to characterize generalized versions of classical solution con-
cepts through the characterization of patterns of payoffs by temporal formulae
and quantification over strategy profiles. For further details, we refer to [24,29].
In [26] ATLP was enriched with an epistemic dimension, more precisely combined
with the logic CSL discussed in Sect. 6.4, to reason about rational players under
incomplete information.

Game Logic (GL) from Parikh [69] is another logic to reason about games,
more precisely about determined two-player games. It builds upon propositional
dynamic logic (PDL) and extends it with new operators. The work in [53,66,67]
commits to a particular view of rationality (Nash equilibria, undominated strate-
gies etc.). Finally, we would also like to mention the related work in [14] on
rational dynamics and in [17] on modal logic and game theory.

6 Strategic Reasoning Under Incomplete Information

6.1 Incomplete Information Models and Uniform Strategies

The decision making capabilities and abilities of strategically reasoning players
are influenced by the knowledge they possess about the world, other players,
past actions, etc. So far we have considered structures of complete and (almost)
perfect information in the sense that players are completely aware of the rules
and structure of the game system and of the current state of the play. The
only information they lack is the choice of actions of the other players at the
current state. However, in reality this is rarely the case: usually players have only
partial information about the structure and the rules of the game, as well as the
precise history and the current state of the game. It is important to note that
strategic ability crucially depends on the players’ knowledge. In the following we
are concerned with the following question: What can players achieve in a game
if they are only partially informed about its structure and the current state?
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Following the tradition of epistemic logic, we model the players’ incomplete
information13 by indistinguishability relations ∼⊆ St × St on the state space.
We write q ∼a q′ to describe player a’s inability to discern between states q and
q′. Both states appear identical from a’s perspective. The indistinguishability
relations are traditionally assumed to be equivalence relations. The knowledge
of a player is then determined as follows: a player knows a property O in a state
q if O is the case in all states indistinguishable from q for that player.

How does the incomplete information, modelled by an indistinguishability
relation, affect the abilities of players? In the case of ATL∗ with complete infor-
mation, abilities to achieve goals were modeled by strategies defined on states or
(play) histories, i.e. memoryless and memory-based strategies. A basic assump-
tion in the case of incomplete information is that a player has the same choices in
indistinguishable states, otherwise he/she would have a way to discern between
these states.

Formally, a concurrent game with incomplete information is modelled by a
concurrent epistemic game structure (CEGS), which is a tuple

S = (Agt,St, {∼a| a ∈ Agt},Act, act, out)

where (Agt,St,Act, act, out) is a CGS (cf. Definition 5) and ∼a is the indistin-
guishability relation of player a over St, one per agent in Agt, such that if q ∼a q′

then acta(q) = acta(q′).
Just like a CGM, a concurrent epistemic game model (CEGM) is defined by

adding to a CEGS a labeling of game states with sets of atomic propositions.
Note that models of perfect information (CGMs) can be seen as a special case of
CEGMs where each ∼a is the smallest reflexive relation (i.e., such that q ∼a q′

iff q = q′).

Example 14 (Prisoner’s Escape with Incomplete Information). We now explore
the consequences of incomplete information in the Prisoner’s escape scenario
from Example 3. Recall that Frank knows the two passwords but suppose now
that he does not know which one is for which guard. Equivalently, we can assume
that he does not know how the guards look and which guard is at which exit.
Hence, Frank does not know which password to use where. Surely, Charlie knows
the guards and who is at which exit. In this setting, Frank is still able to escape
with Charlie’s active help. That is, Frank asks Charlie about the guards, which
we now model explicitly with the action ask. When asked, Charlie replies by
telling the truth. But at states q1 and q2 Charlie still has the choice of cooperating
by keeping quiet or defecting by warning the guards when he sees Frank going
to the respective exit. A CEGM M′

esc modelling this scenario is shown in Fig. 6.

13 Traditionally in game theory two different terms are used to indicate lack of infor-
mation: “incomplete” and “imperfect”. Usually, the former refers to uncertainties
about the game structure and rules, while the latter refers to uncertainties about
the history, current state, etc. of the specific play of the game. Here we will use the
latter term in about the same sense, whereas we will use “incomplete information”
more loosely, to indicate any possible relevant lack of information.
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Fig. 6. Prisoner’s escape with incomplete information.

The relation q1 ∼1 q2 represents that player 1 (Frank), does not know which
guard is at which entrance.

How do these perceptual limitations affect the agents’ abilities? Under the
assumption of complete information, Frank and Charlie can guarantee that Frank
will eventually escape from q1 and q2 by a simple memoryless strategy for both:
s{1,2}(q1) = (pwA, coop), s{1,2}(q2) = (pwB , coop), and arbitrarily defined for the
other states in Mesc . This strategy, however, is not feasible if Frank’s incomplete
information is taken into account because it prescribes to him different actions
in the indistinguishable states q1 and q2. Actually, it is easy to see that in that
sense there is no feasible memoryless strategy which achieves the property from
q1 or q2. This is so because a strategy must be successful from all epistemic
alternatives for the player (Frank). For example, his action prescribed by the
strategy at q2 must also be successful from q1 and vice versa. This claim will
become precise later, when we present the formal semantics.

However, Frank has a feasible memory-based strategy which guarantees that
he can eventually escape, again in cooperation with Charlie. Firstly, from state
q1 or q2 Frank asks Charlie about the guards, thus learns about the environ-
ment, and then goes back to use the correct password and to escape if Charlie
cooperates. Formally, the reason for a successful memory-based strategy is that
the histories q1q5q1 and q2q6q2 can be distinguished by Frank.

We will analyze the interaction between memory and information more for-
mally in Sect. 6.3.

The above example indicates that the notion of strategy must be refined
in order to be consistent with the incomplete information setting. An exe-
cutable strategy must assign the same choices to indistinguishable situations.
Such strategies are called uniform, e.g. see [58].
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Definition 7 (Uniform Strategies). Let M be a CEGM over sets of states
St. A memoryless strategy sa (over M) is uniform if the following condition is
satisfied:

for all states q, q′ ∈ St, if q ∼a q′ then sa(q) = sa(q′).

For memory-based strategies we lift the indistinguishability between states to
indistinguishability between (play) histories. Two histories π = q0q1 . . . qn and
π′ = q′

0q
′
1 . . . q′

n′ are said to be indistinguishable for agent a, denoted by π ≈a π′,
if and only if, n = n′ and qi ∼a q′

i for i = 0, . . . , n.14

A memory-based strategy sa is uniform if the following condition holds:

for all histories π, π′ ∈ St+, if π ≈a π′ then sa(π) = sa(π′).

Analogously to perfect information, a uniform joint strategy for a group A is
a tuple of individual uniform strategies, one per member of A.15

6.2 Expressing Strategic Ability Under Uncertainty in ATL∗

Agents’ incomplete information and use of memory can be incorporated into
ATL∗ in different ways, see e.g. [8,56–58,78]. In [78] a natural taxonomy of four
strategy types was proposed: I (respectively i) stands for complete (respectively
incomplete) information, and R (respectively r) refers to perfect recall (respec-
tively no recall). The approach of Schobbens et al. [78] was syntactic in the sense
that cooperation modalities were extended with subscripts: 〈〈A〉〉xy where x indi-
cates the use of memory in the strategies (memory-based if x = R / memoryless
if x = r) and y indicates the information setting (complete information if y = I
and incomplete information if y = i).

Here, we take a semantic approach. We assume that the object language of
ATL/ATL∗ stays the same, but the semantics is parameterized with the strategy
type – yielding four different semantic variants of the logic, labeled accordingly
(ATLIR, ATLIr, ATLiR, ATLir). As a consequence, we obtain the following semantic
relations:

|=IR: complete information and memory-based strategies;
|=Ir: complete information and memoryless strategies;
|=iR: incomplete information and memory-based strategies;
|=ir: incomplete information and memoryless strategies.

Given a CEGM M, the two complete information semantic variants are
obtained by updating the main semantic clause from Sect. 3.2 as follows:
14 This corresponds to the notion of synchronous perfect recall according to [41].
15 Note that uniformity of a joint strategy is based on individual epistemic relations,

rather than any collective epistemic relation (representing, e.g., A’s common, mutual,
or distributed knowledge, cf. Sect. 6.4). This is because executability of agent a’s
choices within strategy sA should only depend on what a can observe and deduce.

Alternative semantics where uniformity of joint strategies is defined in terms of
knowledge of the group as a whole have been discussed in [36,48].
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M, q |=IR 〈〈A〉〉γ iff there is a memory-based joint strategy sA for A such that
M, λ |= γ for every play λ ∈ outcome plays(q, sA);

M, q |=Ir 〈〈A〉〉γ iff there is a memoryless joint strategy sA for A such that
M, λ |= γ for every play λ ∈ outcome plays(q, sA).

For the imperfect information variants we have:

M, q |=iR 〈〈A〉〉γ iff there is a uniform memory-based joint strategy sA for A
such that M, λ |= γ for every play λ ∈ ⋃

q′∈St s.t. q∼Aq′ outcome plays(q′, sA);
M, q |=ir 〈〈A〉〉γ iff there is a uniform memoryless joint strategy sA for A such

that M, λ |= γ for every play λ ∈ ⋃
q′∈St s.t. q∼Aq′ outcome plays(q′, sA);

where ∼A:=
⋃

a∈A ∼a is used to capture the collective knowledge of coalition
A. It is clear from the definition that this particular notion of collective knowl-
edge refers to what everybody in A knows, e.g. [41]. For a discussion of other
possibilities, we refer the reader to Sect. 6.4.

Example 15 (Prisoner’s Escape: Example 14 Continued). We formalize some
properties from Example 14.

1. For all q ∈ St\{q4} we have M′
esc , q |=Ir 〈〈f, c〉〉F escaped: under the assump-

tion of complete information coalition {f, c} can guarantee that Frank can
escape by using a memoryless strategy.

2. M′
esc , q1 
|=ir 〈〈f, c〉〉(¬asked)U escaped: under the assumption of incomplete

information Frank and Charlie cannot guarantee that Frank will eventually
escape without asking Charlie about the identity of the guards. This is true
even in the case of memory-based strategies:
M′

esc , q1 
|=iR 〈〈f, c〉〉(¬asked)U escaped.
3. M′

esc , q1 |=iR 〈〈f, c〉〉F escaped: under the assumption of incomplete informa-
tion Frank and Charlie can guarantee that Frank will eventually escape by
using a uniform memory-based strategy.

In [28] incomplete information has been additionally classified according to
objective and subjective ability. Here, we only consider subjective ability; that
is, 〈〈A〉〉γ means that A is not only able to execute the right strategy but A can
also identify the strategy. The mere existence of a winning strategy (without A
being able to find it) is not sufficient under this interpretation. This is why, when
evaluating 〈〈A〉〉γ in state q, all epistemic alternatives of q with respect to ∼A are
taken into account. Again, we will discuss some other possibilities in Sect. 6.4.

Finally, we would like to add a note on the treatment of nested strategic
modalities in ATL. When a nested strategic modality is interpreted, the new
strategy does not take into account the previous sequence of events: Agents are
effectively forgetting what they have observed before. This can lead to counter-
intuitive behaviors in the presence of perfect recall and incomplete information.
To overcome this, just recently a “no-forgetting semantics” for ATL has been
proposed in Bulling et al. [30].
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6.3 Comparing Semantics of Strategic Ability

Semantic variants of ATL are derived from different assumptions about agents’
capabilities. Can the agents “see” the current state of the system, or only a part
of it? Can they memorize the whole history of observations in the game? Different
answers to these questions induce different semantics of strategic ability, and they
clearly give rise to different analysis of a given game model. However, it is not
entirely clear to what extent they give rise to different logics. One natural question
that arises is whether the semantic variants generate different sets of valid (and
dually satisfiable) sentences. In this section, we show a comparison of the validity
sets for ATL∗ with respect to the four semantic variants presented in the previous
section. A detailed analysis and technical results can be found in [28].

The comparison of the validity sets is important for at least two reasons.
Firstly, many logicians identify a logic with the set of sentences that are valid
in the logic. Thus, by comparing validity sets we compare the respective logics
in the traditional sense. Perhaps more importantly, validities of ATL capture
general properties of games under consideration: if, e.g., two variants of ATL
generate the same valid sentences then the underlying notions of ability induce
the same kind of games. All the variants studied here are defined over the same
class of models (CEGS). The difference between games “induced” by different
semantics lies in available strategies and the winning conditions for them.

We recall that we use superscripts (e.g., ‘*’) to denote the syntactic variant
of ATL, and subscripts to denote the semantic variant being used. For example,
ATL∗

ir denotes the language of ATL∗ interpreted with the semantic relation |=ir,
that is, the one which assumes incomplete information and memoryless strate-
gies. Moreover, we will use Valid(L) to denote the set of validities of logic L,
and Sat(L) to denote the set of satisfiable formulas in L.

Perfect vs. Incomplete Information. We begin by comparing properties of
games with limited information to those where players can always recognize
the current state of the world. Firstly, we recall that complete information can
be seen as a special case of incomplete information: each CGM can be seen
as a CEGM in which each indistinguishability relation is taken as the smallest
reflexive relation. Hence, every valid formula of ATL∗

ir is also a validity of ATL∗
Ir:

if there were a CEGM M with M 
|=Ir ϕ then also M 
|=ir ϕ would be the case.
On the other hand, the formula 〈〈A〉〉F ϕ ↔ ϕ ∨ 〈〈A〉〉X 〈〈A〉〉F ϕ is a validity of
ATLIr but not of ATLir, which shows that the containment is strict even in the
limited syntactic fragment of ATL.16

The argument for ATLiR vs. ATLIR is analogous. Thus, we get that
Valid(ATLir) � Valid(ATLIr) and Valid(ATLir) � Valid(ATLIr), and the same
for the broader language of ATL∗.

16 The equivalence between 〈〈A〉〉F ϕ and ϕ ∨ 〈〈A〉〉X 〈〈A〉〉F ϕ is extremely important
since it provides a fixpoint characterization of 〈〈A〉〉F ϕ. The fact that 〈〈A〉〉F ϕ ↔
ϕ ∨ 〈〈A〉〉X 〈〈A〉〉F ϕ is not valid under incomplete information is one of the main
reasons why constructing verification and satisfiability checking algorithms is so
difficult for incomplete information strategies.
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Memory-based vs. Memoryless Strategies. The comparison of memory-
based and memoryless strategies is technically more involved. Firstly, we observe
that for any tree-like CGM M the sets of memory-based and memoryless strate-
gies coincide. Secondly, one can show that every CGM M and state q in M can
be unfolded into an equivalent (more precisely, bisimilar) tree-like CGM T (M, q)
as in [3]. These two observations imply that ATL∗

Ir ⊆ ATL∗
IR; for, if M, q 
|=IR ϕ

then T (M, q), q 
|=IR ϕ (by the latter observation) and T (M, q), q 
|=Ir ϕ
(by the first observation). Moreover, the formula ϕ ≡ 〈〈A〉〉(F ϕ1 ∧ F ϕ2) ↔
〈〈A〉〉F ((ϕ1 ∧ 〈〈A〉〉F ϕ2) ∨ (ϕ2 ∧ 〈〈A〉〉F ϕ1)) is a validity of ATL∗

IR but not of
ATL∗

Ir, which shows that the inclusion is strict.17 Note, however, that ϕ is
not a formula of ATL. Indeed, it is well known that the semantics given by
|=IR and |=Ir coincide in ATL, cf. [8,78]. As a consequence, we obtain that
Valid(ATL∗

Ir) � Valid(ATL∗
IR) and Valid(ATLIr) = Valid(ATLIR).

We observe that strict subsumption holds already for the language of ATL+

which allows cooperation modalities to be followed by a Boolean combination of
simple path formulae.

Finally, we consider the effect of memory in the incomplete information set-
ting. The idea is the same as for perfect information, but the unfolding of a
CEGM into an equivalent tree-like CEGM is technically more complex, as one
has to take into account the indistinguishability relations (see [28] for details).
To show that the inclusion is strict, we use 〈〈A〉〉X 〈〈A〉〉F ϕ → 〈〈A〉〉F ϕ which is
valid in ATLiR but not in ATLir.18 Thus, we get that Valid(ATLir) � Valid(ATLiR),
and analogously for the broader language of ATL∗.

Summary. We have obtained above the following hierarchy of logics:

Valid(ATL∗
ir) � Valid(ATL∗

iR) � Valid(ATL∗
Ir) � Valid(ATL∗

IR),
and Valid(ATLir) � Valid(ATLiR) � Valid(ATLIr) = Valid(ATLIR).

Equivalently, we can observe the following pattern in the sets of satisfiable
sentences:

Sat(ATL∗
IR) � Sat(ATL∗

Ir) � Sat(ATL∗
iR) � Sat(ATL∗

ir),
and Sat(ATLIR) = Sat(ATLIr) � Sat(ATLiR) � Sat(ATLir).

The first, and most important, conclusion is that all four semantic variants
of ability are different with respect to the properties of games they induce.
Moreover, the results capture formally the usual intuition: complete information
is a particular case of incomplete information, memory-based games are special
17 The formula expresses decomposability of conjuctive goals: being able to achieve

ϕ1 ∧ϕ2 must be equivalent to having a strategy that achieves first ϕ1 and ϕ2, or vice
versa. It is easy to see that the requirement holds for agents with perfect memory,
but not for ones bound to use memoryless strategies (and hence to play the same
action whenever the game comes back to a previously visited state).

18 The formula states that, if A has an opening move and a follow-up strategy to
achieve eventually ϕ, then both strategies can be combined into a single strategy
enforcing eventually ϕ already from the initial state.
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cases of memoryless games, and information is a more distinguishing factor than
memory.

On a more general level, the results show that what agents can achieve is more
sensitive to the strategic model of an agent (and a precise notion of achievement)
than it was generally realized. No less importantly, the study reveals that some
natural properties – usually taken for granted when reasoning about actions –
may cease to be universally true if we change the strategic setting. Examples
include fixpoint characterizations of temporal/strategic operators (that enable
incremental synthesis and iterative execution of strategies), decomposability of
conjunctive goals, and the duality between necessary and obtainable outcomes
in a game (cf. [28] for an example). The first kind of property is especially
important for practical purposes, since fixpoint equivalences provide the basis
for most model checking and satisfiability checking algorithms. Last but not
least, the results show that the language of ATL∗ is sufficiently expressive to
distinguish the main notions of ability.

6.4 Epistemic Extensions of ATL

Reasoning about Knowledge. In this section we consider how the language
of ATL can be combined with that of epistemic logic, in order to reason about
the interplay of knowledge and ability more explicitly. The basic epistemic logic
involves modalities for individual agent’s knowledge Ki, with Kiϕ interpreted as
“agent i knows that ϕ”. Additionally, one can consider modalities for collective
knowledge of groups of agents: mutual knowledge (EAϕ: “everybody in group A
knows that ϕ”), common knowledge (CAϕ: “all the agents in A know that ϕ,
and they know that they know it etc.”), and distributed knowledge (DAϕ: “if the
agents could share their individual information, they would be able to recognize
that ϕ”).

The formal semantics of epistemic operators is defined in terms of indis-
tinguishability relations ∼1, ...,∼k, given for instance in a concurrent epistemic
game model:

M, q |= Kiϕ iff M, q′ |= ϕ for all q′ such that q ∼i q′.

The accessibility relation corresponding to EA is defined as ∼E
A=

⋃
i∈A ∼i, and

the semantics of EA becomes

M, q |= EAϕ iff M, q′ |= ϕ for all q′ such that q ∼E
A q′.

Likewise, common knowledge CA is given semantics in terms of the relation ∼C
A

defined as the transitive closure of ∼E
A:

M, q |= CAϕ iff M, q′ |= ϕ for all q′ such that q ∼C
A q′.

Finally, distributed knowledge DA is based on the relation ∼D
A=

⋂
i∈A ∼i, with

the semantic clause defined analogously. For a more extensive exposition of epis-
temic logic, we refer the reader to [41,49,54].
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Bringing Strategies and Knowledge Together: ATEL. The alternating-time
temporal epistemic logic ATEL was introduced in [55,56] as a straightforward
combination of the multi-agent epistemic logic and ATL in order to formalize rea-
soning about the interaction of knowledge and abilities of agents and coalitions.
ATEL enables specification of various modes and nuances of interaction between
knowledge and strategic abilities, e.g.: 〈〈A〉〉ϕ → EA〈〈A〉〉ϕ (if group A can bring
about ϕ then everybody in A knows that they can), EA〈〈A〉〉ϕ ∧ ¬CA〈〈A〉〉ϕ (the
agents in A have mutual knowledge but not common knowledge that they can
enforce ϕ); 〈〈i〉〉ϕ → Ki¬〈〈Agt \ {i}〉〉¬ϕ (if i can bring about ϕ then she knows
that the rest of agents cannot prevent it), etc.

Models of ATEL are concurrent epistemic game models (CEGM): M =
(Agt,St,Act, act, out, V,∼1, ...,∼k) combining the CGM-based models for ATL
and the multi-agent epistemic models. That is, the same models are used for
ATEL and the Schobbens’ ATLxy variants of ATL as those presented in Sect. 6.2.
The semantics of ATEL simply combines the semantic clauses from ATL and
those from epistemic logic.

While ATEL extends both ATL and epistemic logic, it also raises a number of
conceptual problems. Most importantly, one would expect that an agent’s ability
to achieve property ϕ should imply that the agent has enough control and knowl-
edge to identify and execute a strategy that enforces ϕ. Unfortunately, neither of
these can be expressed in ATEL.19 A number of approaches have been proposed
to overcome this problem. Most of the solutions agree that only uniform strate-
gies (i.e., strategies that specify the same choices in indistinguishable states) are
really executable, cf. our exposition of ATL variants for incomplete information
in Sect. 6.2. However, in order to identify a successful strategy, the agents must
consider not only the courses of action, starting from the current state of the sys-
tem, but also from states that are indistinguishable from the current one. There
are many cases here, especially when group epistemics is concerned: the agents
may have common, ordinary, or distributed knowledge about a strategy being
successful, or they may be hinted the right strategy by a distinguished member
(the “leader”), a subgroup (“headquarters committee”) or even another group
of agents (“consulting company”).

Epistemic Levels of Strategic Ability. There are several possible interpre-
tations of A’s ability to bring about property γ, formalized by formula 〈〈A〉〉γ,
under imperfect information:

1. There exists a behavior specification σA (not necessarily executable!) for
agents in A such that, for every execution of σA, γ holds;

2. There is a uniform strategy sA such that, for every execution of sA, γ holds
(A has objective ability to enforce γ);

3. A knows that there is a uniform sA such that, for every execution of sA, γ
holds (A has a strategy “de dicto” to enforce γ);

4. There is a uniform sA such that A knows that, for every execution of sA, γ
holds (A has a strategy “de re” to enforce γ).

19 For a formal argument, see [2,57].
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Note that the above interpretations form a sequence of increasingly stronger
levels of ability – each next one implies the previous ones.

Case 4 is arguably most interesting, as it formalizes the notion of agents in
A knowing how to play in order to enforce γ. However, the statement “A knows
that every execution of sA satisfies γ” is precise only if A consists of a single agent
a. Then, we take into account the paths starting from states indistinguishable
from the current one according to a (i.e.,

⋃
q′ with q∼aq′ outcome plays(q′, sa)). In

case of multiple agents, there are several different “modes” in which they can
know the right strategy. That is, given strategy sA, coalition A can have:

– Common knowledge that sA is a winning strategy. This requires the least
amount of additional communication when coordinating a joint strategy: it
is sufficient that agents in A agree upon a total order over their collective
strategies before the game; then, during the game, they always choose the
maximal strategy (with respect to this order) out of all the strategies that
they commonly identify as winning;

– Mutual knowledge that sA is a winning strategy: everybody in A knows that
sA is winning;

– Distributed knowledge that sA is a winning strategy: if the agents share their
knowledge at the current state, they can identify the strategy as winning;

– “Leader”: the strategy can be identified by an agent a ∈ A;
– “Headquarters committee”: the strategy can be identified by a subgroup A′ ⊆

A;
– “Consulting company”: the strategy can be identified by another group B;
– ...other cases are also possible.

Expressing Levels of Ability: Constructive Knowledge. The issue of
expressing various knowledge-related levels of ability through a suitable com-
bination of strategic and epistemic logics has attracted significant attention.
Most extensions (or refinements) of ATL, proposed as solutions, cover only some
of the possibilities, albeit in an elegant way [2,66,78]. Others, such as [58,60],
offer a more general treatment of the problem at the expense of an overblown
logical language. Constructive Strategic Logic (CSL), proposed by Jamroga and
Ågotnes [57], aims at a solution which is both general and elegant. However,
there is a price to pay. In CSL, formulae are interpreted over sets of states rather
than single states. We write M, Q |= 〈〈A〉〉ϕ to express the fact that A must
have a strategy which is successful for all “opening” states from Q. New epis-
temic operators Ki,EA,CA,DA for “practical” or “constructive” knowledge yield
the set of states for which a single evidence (i.e., a successful strategy) should
be presented (instead of checking if the required property holds in each of the
states separately, like standard epistemic operators do).

Formally, the semantics of CSL (in its broadest syntactic variant CSL∗) over
concurrent epistemic game models is defined by the following clauses:

M, Q |= p iff p ∈ π(q) for every q ∈ Q;
M, Q |= ¬ϕ iff M, Q 
|= ϕ;
M, Q |= ϕ ∧ ψ iff M, Q |= ϕ and M, Q |= ψ;
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M, Q |= 〈〈A〉〉ϕ iff there is a uniform strategy sA such that M, λ |= ϕ for every
λ ∈ ∪q∈Q outcome plays(q, sA);

M, Q |= Kiϕ iff M, {q′ | ∃q∈Q q ∼i q′} |= ϕ;
M, Q |= CAϕ iff M, {q′ | ∃q∈Q q ∼C

A q′} |= ϕ;
M, Q |= EAϕ iff M, {q′ | ∃q∈Q q ∼E

A q′} |= ϕ;
M, Q |= DAϕ iff M, {q′ | ∃q∈Q q ∼D

A q′} |= ϕ.

The semantic clauses for path subformulae are the same as in ATL∗. Additionally,
we define that M, q |= ϕ iff M, {q} |= ϕ.

A nice feature of CSL is that standard knowledge operators can be defined
using constructive knowledge, e.g., as Kaϕ ≡ Ka〈〈∅〉〉ϕ U ϕ20. It is easy to see
that M, q |= Ka〈〈∅〉〉ϕ U ϕ iff M, q′ |= ϕ for every q′ such that q ∼a q′.

We point out that in CSL:

1. Ka〈〈a〉〉ϕ refers to agent a having a strategy “de re” to enforce ϕ (i.e. having
a successful uniform strategy and knowing the strategy);

2. Ka〈〈a〉〉ϕ refers to agent a having a strategy “de dicto” to enforce ϕ (i.e.
knowing only that some successful uniform strategy is available);

3. 〈〈a〉〉ϕ expresses that agent a has a uniform strategy to enforce ϕ from the
current state (but not necessarily even knows about it).

Thus, Ka〈〈a〉〉ϕ captures the notion of a’s knowing how to play to achieve ϕ,
while Ka〈〈a〉〉ϕ refers to knowing only that a successful play is possible. This
extends naturally to abilities of coalitions, with CA〈〈A〉〉ϕ,EA〈〈A〉〉ϕ,DA〈〈A〉〉ϕ
formalizing common, mutual, and distributed knowledge how to play, Ka〈〈A〉〉ϕ
capturing the “leader” scenario, and so on (and similarly for different levels of
knowledge “de dicto”). We conclude this topic with the following example.

Example 16 (Market Scenario). Consider an industrial company that wants to
start production, and looks for a good strategy when and how it should do
it. The market model is depicted in Fig. 7. The economy is assumed to run in
simple cycles: after the moment of bad economy (bad-market), there is always
a good time for small and medium enterprises (s&m), after which the market
tightens and an oligopoly emerges. At the end, the market gets stale, and we
have stagnation and bad economy again.

The company c is the only agent whose actions are represented in the model.
The company can wait (action wait) or decide to start production: either on
its own (own-production), or as a subcontractor of a major company (subpro-
duction). Both decisions can lead to either loss or success, depending on the
current market conditions. However, the company management cannot recog-
nize the market conditions: bad market, time for small and medium enterprises,
and oligopoly market look the same to them, as the epistemic links for c indicate.

The company can call the services of two marketing experts. Expert 1 is a spe-
cialist on oligopoly, and can recognize oligopoly conditions (although she cannot

20 We cannot replace ϕ U ϕ by ϕ when the latter is a path formula, as then 〈〈∅〉〉ϕ would
not be a formula of CSL.
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Fig. 7. Simple market: model Mmark

distinguish between bad economy and s&m market). Expert 2 can recognize bad
economy, but he cannot distinguish between other types of market. The experts’
actions have no influence on the actual transitions of the model, and are omitted
from the graph in Fig. 7. It is easy to see that the company cannot identify a
successful strategy on its own: for instance, for the small and medium enterprises
period, we have that Mmark, q1 |= ¬Kc〈〈c〉〉F success. It is not even enough to call
the help of a single expert: Mmark, q1 |= ¬K1〈〈c〉〉F success∧¬K2〈〈c〉〉F success, or
to ask the experts to independently work out a common strategy: Mmark, q1 |=
¬E{1,2}〈〈c〉〉F success. Still, the experts can propose the right strategy if they join
forces and share available information: Mmark, q1 |= D{1,2}〈〈c〉〉F success.

This is not true anymore for bad market, i.e., Mmark, q0 |= ¬D{1,2}〈〈c〉〉
F success, because c is a memoryless agent, and it has no uniform strategy to
enforce success from q0 at all. However, the experts can suggest a more complex
scheme that involves consulting them once again in the future, as evidenced by
Mmark, q0 |= D{1,2}〈〈c〉〉X D{1,2}〈〈c〉〉F success.

7 Deductive Systems and Logical Decision Problems

7.1 Validity and Satisfiability in ATL and ATL∗

Characterizing the valid and, dually, the satisfiable formulae of a given logic
by means of sound and complete deductive systems is a fundamental logical
problem. Few such deductive systems have been developed so far for the logics
discussed here, and these are mostly axiomatic systems. We will briefly present
the one for ATL.

Axiomatic Systems for CL and ATL. In Pauly [71–73] it was shown that the
conditions of liveness, safety, superadditivity, and Agt-maximality in Definition 4
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can be captured by a few simple axiom schemes presented below, where A1, A2 ⊆
Agt are any coalitions of players:

1. Complete set of axioms for classical propositional logic.
2. 〈〈Agt〉〉X�
3. 〈〈A〉〉X⊥
4. ¬〈〈∅〉〉Xϕ → 〈〈Agt〉〉X¬ϕ
5. 〈〈A1〉〉Xϕ ∧ 〈〈A2〉〉Xψ → 〈〈A1 ∪ A2〉〉X (ϕ ∧ ψ) for any disjoint A1, A2 ⊆ Agt

These, together with the inference rules Modus Ponens and monotonicity:

ϕ → ψ

〈〈A〉〉Xϕ → 〈〈A〉〉Xψ

provide a sound and complete axiomatization of the valid formulae of CL, see
[71,73].

The temporal operators G and U satisfy the following validities in ATL that
define them recursively as fixed points of certain monotone operators:

(FPG) 〈〈A〉〉Gϕ ↔ ϕ ∧ 〈〈A〉〉X 〈〈A〉〉Gϕ,
(GFPG) 〈〈∅〉〉G(θ → (ϕ ∧ 〈〈A〉〉X θ)) → 〈〈∅〉〉G(θ → 〈〈A〉〉Gϕ),
(FPU ) 〈〈A〉〉ψ U ϕ ↔ ϕ ∨ (ψ ∧ 〈〈A〉〉X 〈〈A〉〉ψ U ϕ),
(LFPU ) 〈〈∅〉〉G((ϕ ∨ (ψ ∧ 〈〈A〉〉X θ)) → θ) → 〈〈∅〉〉G(〈〈A〉〉ψ U ϕ → θ).

It was proved in Goranko and van Drimmelen [47] that these axioms added
to Pauly’s axioms for CL, plus the rule 〈〈∅〉〉G-Necessitation:

ϕ

〈〈∅〉〉Gϕ
.

provide a sound and complete axiomatization for the validities of ATL.
No explicit complete axiomatizations for ATL∗, nor for any of the variations

of ATL with incomplete information, are known yet.

Decidability and Decision Methods for ATL and ATL∗. A fundamental
algorithmic problem in logic is whether a given logical formula is satisfiable in
any model for the given logic, or dually, whether its negation is valid in the
given semantics. A constructive procedure for testing satisfiability is of practical
importance because it can be used to construct (to synthesize) models from for-
mal logical specifications. Sound and complete axiomatic systems provide only
semi-decision methods for testing validity, respectively non-satisfiability, while
complete algorithmic decision methods exist only for logics with a decidable
validity/satisfiability problem. The decidability of that problem in ATL, with
EXPTIME-complete worst-case complexity of the decision algorithm, was first
proved in van Drimmelen [39] (see also Goranko and van Drimmelen [47] for
detailed proofs) by proving a bounded-branching tree-model property and using
alternating tree automata, under the assumption that the number of agents
is fixed. The EXPTIME-completeness of ATL satisfiability was later re-proved
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in Walther et al. [80] without the assumption of fixed number of agents. An opti-
mal and practically implementable tableau-based constructive decision method
for testing satisfiability in ATL was developed in Goranko and Shkatov [46].
Later, the decidability and 2EXPTIME-complete complexity of the satisfiabil-
ity problem for ATL∗ was proved in Schewe [77] using alternating tree automata.

7.2 Model Checking of ATL and ATL∗

Model checking is another fundamental logical decision problem. It calls for a
procedure that determines whether a given formula is true in a given model. For
such procedures to be algorithmically implementable, the model must be finite,
or effectively (finitely) presented. We briefly discuss model checking ATL and
ATL∗ under the different semantic variants considered in this chapter. We focus
on the main technical issues that arise in that area, namely the computational
complexity of the model checking algorithms, as a measure of the inherent com-
plexity of the underlying semantics of the logic. The relevant complexity results
are summarized in Fig. 8.

Ir IR ir iR

ATL P P ΔP
2 Undecidable†

ATL∗ PSPACE 2EXPTIME PSPACE Undecidable

Fig. 8. Overview of the exact complexity results for model checking in explicit models
of formulae from the logic in the respective row with the semantics given in the column.

A deterministic polynomial-time model checking algorithm for ATLir (and
thus ATLiR) is presented in Alur et al. [8]. The algorithm is based on the fixpoint
characterizations of strategic-temporal modalities:

〈〈A〉〉G ϕ ↔ ϕ ∧ 〈〈A〉〉X 〈〈A〉〉G ϕ

〈〈A〉〉ϕ1 U ϕ2 ↔ ϕ2 ∨ (ϕ1 ∧ 〈〈A〉〉X 〈〈A〉〉ϕ1 U ϕ2).

The perfect information assumption allows to compute a winning strategy step-
by-step (if it exists). In the case of 〈〈A〉〉G ϕ, for example, the procedure starts
with all states in which ϕ holds and subsequently removes states in which there
is no joint action for team A to guarantee to end up in one of the states in which
ϕ holds. Let us refer to the resulting set of states as Q1. In the next step it is
checked whether for each state in Q1 there is a joint action of team A which
guarantees to remain in Q1. States in which such a joint action does not exist
are removed from Q1. This procedure is applied recursively until a fixed point
is reached. The formula 〈〈A〉〉G ϕ is true in all the remaining states.

The deterministic 2EXPTIME algorithm for model checking ATL∗
IR makes

use of a sophisticated tree automaton construction, see [8].
Algorithms for the the remaining settings based on memoryless strategies

employ model checking algorithms for CTL and CTL∗ (model checking is P-
complete and PSPACE-complete, respectively, see Clarke et al. [35]). The key
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observation is that there are only finitely many memoryless strategies and that a
strategy can be guessed in non-deterministic polynomial time. Then, all transi-
tions not possible given the guessed strategy profile are removed from the model
and the resulting temporal model checking problem is solved (cf. [78]). For illus-
tration, consider ATLiR and the formula 〈〈A〉〉G ϕ. First, we guess a memoryless
uniform strategy sA of coalition A. It is easy to see that the validation whether
the strategy profile is uniform or not can be done in deterministic polynomial-
time. Afterwards, all transitions not possible according to sA are removed from
the model as well as all transition labels. It remains to check whether G ϕ holds
on all possible behaviors/paths in the resulting purely temporal model. The lat-
ter corresponds to CTL model checking of AG ϕ. However, since ϕ may contain
nested cooperation modalities we need to proceed bottom-up which shows that
the problem is contained in PNPP

= ΔP
2 . Similarly, we obtain PSPACE algo-

rithms for ATL∗
Ir and ATL∗

ir: guess strategies and solve the CTL∗ model checking
problem, which can be done in PNPPSPACE

= PSPACE.
We note that model checking of ATL in the case of imperfect information

and memory-based strategy is undecidable, cf. [8,37].
For a more detailed overview of the complexities of model checking of these

logics we refer the reader to [8,25] for ATL and ATL∗, [27] for ATL+, a computa-
tionally better behaved fragment of ATL∗, and to [32,61–63] for more powerful
and recent extensions of ATL∗.

8 Concluding Remarks: Brief Parallels with Other
Logical Approaches to Strategic Reasoning

While strategic reasoning is a highly involved and complex form of reasoning,
requiring strong logical and analytic skills, its seems rather surprising that until
the 1980 s formal logic was seldom employed to either analyze or facilitate strate-
gic reasoning. However, with the ongoing invasion of logic into game theory and
multi-agent systems over the past 20 years, its role in both doing and analyzing
strategic reasoning has become increasingly more instrumental and recognized.
Logic has been successfully applied to several rather different aspects of strategic
reasoning and the variety of logical systems presented and discussed here gives a
good overall picture of only one of the logical approaches to strategic reasoning,
viz. reasoning about objective strategic abilities of players and coalitions pursuing
a specific goal, in competitive concurrent multi-player games where the remaining
players are regarded as (temporary) adversaries as far as achieving of that goal
is concerned. As mentioned in the introduction, there are several other related
logic-based approaches to strategic reasoning and most of them are treated in
other chapters of this book.

– Logics of agencies, abilities and actions. Philosophical approaches to develop-
ing logics of agency and ability, include early works of von Wright and Kanger
and more recent ones by Brown [23], Belnap and Perloff [13], and Chellas
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[34]. In particular, Brown [23] proposes a modal logic with non-normal modal-
ities formalising the idea that the modality for ability has a more complex,
existential-universal meaning (the agent has some action or choice, such that
every outcome from executing that action (making that choice) achieves the
aim), underlying the approaches to formalizing agents’ ability presented here.

– STIT logics. These originate from the work of Belnap [13] introducing the
operator seeing to it that, abbreviated to “STIT”. The approach to strategic
reasoning taken in the STIT family of logics of agency, discussed in Broersen
and Herzig [21], is the closest to the one presented in this chapter and we
will provide a more detailed parallel with it now. To begin with, both the
STIT-based and the ATL-based approaches assume that agents act simultane-
ously and independently. The main conceptual difference between the family
of STIT logics of agency and ATL-like logics is that the former delve into more
philosophical issues of agency and emphasize the intentional aspect of the
agents’ strategies, whereas the latter take a more pragmatic view on agents
and focus on the practical effects of their strategic abilities and choices, disre-
garding desires, intentions, and other less explicit attitudes. The basic STIT
operator is similar to the one-step strategic modality of CL while the intended
meaning of the “strategic” version of the STIT operator, SSTIT, comes very
close to the intended meaning of the strategic operator 〈〈〉〉 in ATL. The main
technical difference between these logics is in the semantics, which is rather
more general and abstract in the case of STIT as compared to ATL. Strategies
in ATL models are explicit rules mapping possible game configurations to pre-
scribed actions, whereas strategies in STIT models are implicit and essentially
represented by the respective plays (‘histories’) that they can enable. More
precisely, the formal semantics of the SSTIT operator defines ‘histories’ as
abstract objects representing the possible courses of events. Agents’ strategies
are abstract sets of histories satisfying some requirements, of which the most
essential one is that every strategy profile of the set of all agents intersects in
a single history. This semantics essentially extends the original semantics for
ATL based on “alternating transition systems”, subsequently replaced by the
more concrete and – in our view – more realistic semantics based on concur-
rent game models, presented here21. Due to the expressiveness of the language
of STIT/SSTIT and the generality of its semantics, it naturally embeds ATL∗

with complete information, as well as a number of its variations considered
here, as demonstrated in [20,22]. The price to pay for that expressiveness,
as it should be expected, is the generally intractable and usually undecidable
complexity of STIT logics.

– Logics for compositional reasoning about strategies, initiated by Parikh [69] and
discussed and extended in this book by Paul, Ramanujam and Simon [70],
is another approach, conceptually close to the present, where strategies are
treated as first-class citizens to which an endogenous, structural view is

21 Yet, the SSTIT semantic structures relate quite naturally to path effectivity mod-
els introduced and characterized in [44], and these could provide a more feasible
semantics for SSTIT.
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applied, and “the study of rationality in extensive form games largely takes a
functional view of strategies”. In a way, this approach relates to the ATL-based
one like the Propositional Dynamic Logic PDL relates to the temporal logics
LTL and CTL as alternative approaches to reasoning about programs.

– Logics of knowledge and beliefs. As we have noted repeatedly, strategic rea-
soning is intimately related to players’ knowledge and information. One of
the deepest and most successful manifestations of logical methods in strate-
gic reasoning is the doxastic-epistemic treatment of the concepts of individual
and common rationality in game theory. This approach is treated in-depth
and from different perspectives in the chapters by Bonanno [18], Pacuit [68]
and Perea [74] of this book, as well as in Baltag, Smets et al. [11,12], etc.
As stated in the chapter by Pacuit [68], this approach is not so focused on
strategies and strategic abilities per se, but rather on the process of rational
deliberation that leads players to their strategic choices and the latter are cru-
cially dependent on the players’ mutual rationality assumptions, rather than
on demand for success against any – rational, adversarial, or simply random –
behaviour of the others.

– Logics for social choice theory, discussed in the chapter by van Eijck [40] of
this book, focuses on logical modeling of specific strategic abilities that arise
on social choice scenarios such as voting.

– Dynamic epistemic logic. The relation of the ATL-based family of logics with
Dynamic epistemic logic (DEL) [10,38] is more distant and implicit. DEL does
not purport to reason explicitly about strategic abilities of agents, but it does
provide a framework for such reasoning, in terms of which epistemic objectives
agents can achieve by performing various epistemic actions, represented by
action models.

– Lastly, for broader and more conceptual perspectives on the subject we refer
the reader to the rest of this book and to van Benthem [15].
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