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Abstract. We consider a new generalisation of the Dining Philosophers
problem with a set of agents and a set of resource units which can be
accessed by them according to a fixed graph of accessibility between
agents and resources. Each agent needs to accumulate a certain (fixed for
the agent) number of accessible resource units to accomplish its task, and
once it is accomplished the agent releases all resources and starts accu-
mulating them again. All this happens in succession of discrete ‘rounds’
and yields a concurrent game model of ‘dynamic resource allocation’. We
use the Alternating time Temporal Logic (ATL) to specify important
properties, such as goal achievability, fairness, deadlock, starvation, etc.
These can be formally verified using the efficient model checking algo-
rithm for ATL. However, the sizes of the resulting explicit concurrent
game models are generally exponential both in the number of resources
and the number of agents, which makes the ATL model checking proce-
dure generally intractable on such models, especially when the number
of resources is large. That is why we also develop an abstract representa-
tion of the dynamic resource allocation models and develop a symbolic
version of the model checking procedure for ATL. That symbolic proce-
dure reduces the time complexity of model checking to polynomial in the
number of resources, though it can take a worst-case double exponential
time in the number of agents.

Keywords: Dining philosophers games · Dynamic resource allocation ·
Alternating time temporal logic ATL · Symbolic model checking

1 Introduction and Related Work

The dining philosophers problem [11] is a well-established example for illustrating
the problems of resource allocation in distributed computing [7]. In its original
2V. Goranko—Visiting professorship.
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version it involved 5 ‘philosophers’ sitting at a round table, where 1 fork is placed
between each pair of neighboured philosophers and they share it. The descrip-
tion of this scenario is well-known [11] and we do not need to repeat it here.
However we should point out that we assume in this paper that philosophers’
actions, thinking or eating, are instantaneous. The problem is to design a dis-
tributed protocol for picking up forks that ensures that each philosopher will get
to eat repeatedly. The relevant properties here are liveness, as well as deadlock-
and starvation-freedom. Technically the ‘philosophers’ represent processes of a
distributed system, ‘forks’ are shared resources, and ‘eating’ is performing a
computational task.

Since the introduction of the original problem, several generalisations have
been published, for example the drinking philosophers [6], where each resource is
still shared between two philosophers, but the resource distribution can now be
arbitrary. Accordingly, a philosopher may have access to more than two resources
and may also have more than two neighbours. The solution of [8] also uses com-
munication between neighbours in order to determine on what each philosopher
can do next. The generalised dining philosophers problem [12] permits that one
resource may be shared between more than two philosophers. Still each philoso-
pher has access to exactly two resources and needs these two resources in order
to eat. The solution of [12] implements each philosopher as a random-based algo-
rithm whereby all these algorithms run asynchronously. The randomised solution
guarantees deadlock-freedom. The original problem has also been generalised by
allowing mobility. Mobile philosophers [14] are able to move around the table,
which results in a resource accessibility relation that changes over time. In [9]
a solution to the mobile philosophers problem is presented that ensures mutual
exclusion, liveness and self-stabilisation. The solution requires that the philoso-
phers follow a certain access pattern that determines the orders of requests and
the direction of moving around. All these problems fall under the broader cate-
gory of resource allocation problems.

In this paper we present a new generalisation of the dining philosophers
problem, involving a set of agents and a set of resource units which can be
accessed by them according to a fixed bipartite graph of accessibility between
agents and resources. Each agent needs to accumulate a certain (fixed for the
agent) number of accessible resource units to accomplish its task. Once it is
accomplished the agent releases all resources and starts accumulating them again.
Thus, all agents compete for resources and attempt simultaneously to acquire
them in a distributed way, in a discrete succession of rounds. In contrast to
the drinking philosophers problem and the so far proposed solutions for it, we
assume in our approach that the total resource demand of each philosopher
remains the same in each round. However, we do not assume the restriction that
a resource may be shared only between two philosophers. Moreover, our agent-
based scenario does not involve communication between philosophers (other than
possibly coordinating on their joint strategy when acting as a team). Thus, our
problem formulation is a further generalisation of the one in [12] in the sense
that we allow for arbitrary demands and arbitrary access topologies.
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The scenario described above can be naturally modelled as a concurrent game
model [4], [10, Chap. 9] of ‘dynamic resource allocation’. For such models we use
a version of the alternating time temporal logic ATL [4] to specify and verify
their important properties, such as goal achievability, fairness, etc. An important
feature of ATL is that its model checking has complexity which is linear in both
the length of the formula and the size of the model. However, the sizes of the
resulting explicit concurrent game models are generally exponential both in the
number of resources and the number of agents, which makes the explicit model
checking problem generally intractable. This is particularly bad when the number
of resources is large. To avoid the resource-based exponential blow-up we also
develop an abstract representation of the dynamic resource allocation models and
develop a symbolic version of the model checking procedure for ATL. Working in
such abstractions reduces the time complexity of model checking to polynomial in
the number of resources. However, that is done at the cost of worst-case double
exponential time complexity bound in the number of agents, so the symbolic
algorithm is only guaranteed to outperform the explicit one when the number of
resources is much larger than the number of agents.

In addition to these technical results, to our best knowledge our work is
the first that presents an agent-based solution to a generalisation of the dining
philosophers problem, even though a multi-agent approach to the classical prob-
lem was used in [5]. Besides modelling each philosopher as an agent, the solution
in [5] uses an additional ‘manager’ agent (scheduler) who grants permission to
acquire and release resources. With the scheduler as a central agent this app-
roach can result in reduced parallelism in comparison to a decentralised solution.
By contrast, our solution is fully distributed, without any central authority.

A similar definition of the generalised dining philosophers problem can be
found in [15]. There, philosophers and resources are nodes of a bipartite graph
that characterises the accessibility of resources. In contrast to our approach,
however, a philosopher that requests a resource is blocked until he is eventually
able to acquire it. The solution of [15] is based on (NP-complete) graph-colouring
and guarantees robustness, deadlock- and starvation-freedom.

Lastly, some works on resource-bounded reasoning [1–3] are conceptually
related to the approach presented here, although they are quite different in the
framework and proposed solution. Indeed, while our reasoning tasks focus on
how to obtain resources, resource-bounded reasoning abstracts this aspect away
and is about which properties can be guaranteed given a set of resources and
assuming that actions have costs.

The structure of the paper is as follows. In Sect. 2 we introduce our generali-
sation of the dining philosophers problem, viz dining philosophers game (GDP).
In Sect. 3 we propose a variant of the alternating time temporal logic ATL for
specifying and verifying properties of dining philosophers games. Section 4 devel-
ops an abstraction which represents sets of configurations by means of symbolic
expressions, used for the symbolic model-checking algorithm developed in Sect. 5.
We end with a brief concluding Sect. 6. The proof of our main theorem is placed
in the AppendixA.
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2 Generalisation of the Dining Philosophers Problem

Definition 1 (Generalised dining philosophers game (GDP)). A GDP
game is a tuple:

G = (Agt ,Res , d,Acc) where:

– Agt = {a1, . . . , an} is a non-empty set of agents;
– Res = {r1, . . . , rm} is a non-empty set of resource units (of the same type);
– d : Agt → IN+ is a demand function defining the number of resources that

each agent needs in order to carry out its tasks;
– Acc ⊆ Agt × Res is an accessibility relation denoting which resources

agents can access. The set of resources that are accessible to an agent a is
Acc(a) = {r ∈ Res | Acc(a, r)}, and we always assume:

• |Acc(a)| ≥ d(a) for each a ∈ Agt and
• ∀r ∈ Res,∃a ∈ Agt .Acc(a, r).

The above definition statically describes a game that is played in turns by agents,
as explained later. The scenario is similar in spirit to the dining philosophers
problem, where agents are philosophers and resources are forks. However here:
(i) each resource can be shared by any set of agents (not only by two adjacent
philosophers) as specified by Acc relation and ii each agent needs a generic (fixed
for the agent) number of resources (not specifically two) in order to carry out
its abstract task as described by the demand function d.

Example 1. The graph describes agents a1, a2, a3, the
resources r1−r6, and the accessibility relation of a GDP
game G.

The game is fully specified once the demand function
d is defined, e.g. d(ai) = 2 for each i = 1, 2, 3.

a1

a2

a3

r1

r2

r3

r4

r5

r6

Intuitively, the objective of each agent ai is to acquire, gradually over time, the
number of resources it needs by means of ‘request’ actions. Actually, each agent
can perform several types of actions, as formalised below.

Definition 2 (Actions). Given a GDP game G, the set of actions Act is the
union of the following types of actions:

– request actions: {reqa
r | a ∈ Agt , r ∈ Acc(a)}

– release actions: {relar | a ∈ Agt , r ∈ Acc(a)}
– release-all actions: {relaall | a ∈ Agt}
– idle actions: {idlea | a ∈ Agt}.
The game is played in rounds, each of which consists of a tuple of (simultaneously
executed) actions, one for each agent. Before any round, each agent holds a
certain number of resources, and it can: request an accessible resource; release
a resource that it holds; carry out its task, and then release all its resources at
the same round; or idle.
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Disallowing requests for multiple resources at the same time (or, release of
multiple resources but not all of them) is a purely conceptual choice to keep the
framework simple and essential: however, the results presented in the paper carry
over without essential complications when the restrictions above are dropped.

The dynamics of the game is thus given in terms of a system of possible transi-
tions between configurations over time. Configurations describe which resources
each agent currently possesses.

Definition 3 (Configurations). Given a GDP game G, a configuration in
G is a function c : Res → Agt+, where Agt+ = Agt ∪ {null}. If c(r) = a then
resource r is assigned in c to agent a. If c(r) = null then r is unassigned in
configuration c. We denote by c0 the initial configuration, where c0(r) = null
for each r ∈ Res, and by Conf the set of all possible configurations in G.

Example 2. Consider G as in Example 1. Here is a possible configuration c in G:
c(r1) = null ; c(r2) = a1; c(r3) = null ; c(r4) = a2; c(r5) = a2 and c(r6) = null .

In each configuration, only a subset of all actions is executable by each agent.

Definition 4 (Actions’ Availability). The availability of actions to
agents at configurations is a function av : Conf × Agt → 2Act defined
component-wise as follows, for each c ∈ Conf and a ∈ Agt:

1. if |c−1(a)| ≥ d(a) then av(c, a) = {relaall};
2. otherwise:

(a) relaall 	∈ av(c, a);
(b) reqa

r ∈ av(c, a) iff c(r) = null ;
(c) relar ∈ av(c, a) iff c(r) = a;
(d) idlea ∈ av(c, a).

Intuitively: 1 and 2a say that when, and only when, agent a holds all the number
of resources that it needs for achieving its goal, a must release them all; 2b says
that a can request resource r iff r is accessible by a and is currently available; 2c
states that a can release r iff it currently has it; and 2d says that a can always
idle, unless it must release its resources.

Example 3. Consider the configuration c defined in Example 2. Then av(c, a1) =
{reqa1

r1
, rela1

r2
, reqa1

r3
, idlea1}; av(c, a2) = {rela2

all} and av(c, a3) = {reqa3
r6

, idlea3}.

Note that agents may request resources only if they are currently available in the
configuration (no waiting queues). This has two implications: (i) agents cannot
yet request resources that are about to be released by another agent and (ii)
an agent that has just reached its goal and has just released all of its resources
can request again any of these resources in the next turn, i.e., as soon as they
are available again to everyone. We assume here full knowledge/observability by
all agents of both the game and the current configuration: they know the other
agents, their demand function, the accessibility relation as well as the current
configuration. However, they cannot observe the actions taken by the others at
any given round, until that round is completed.
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Definition 5 (Action Profile). Given a game G an action profile in G is
a mapping ap : Agt → Act. We denote with AP the set of all action profiles.
Moreover, we say that ap is executable at c ∈ Conf when for each a ∈ Agt we
have ap(a) ∈ av(c, a).

Given a configuration c and an action profile ap, we define the respective
successor configuration c′ and a game step (c, ap, c′) component-wise, as follows.
Firstly, in order for (c, ap, c′) to be a legitimate game step, ap must be executable
at c. Then, an agent a will keep holding in c′ a resource r that it has in c unless it
releases it with its action in ap, resulting in r being unassigned in c′. Lastly, an
agent a will acquire a requested resource r in that step if and only if r is available
and a is the only one requesting r; otherwise, i.e., whenever there is a request
conflict for r, it remains unassigned for the sake of a fully deterministic transition
function (see below). This choice is again to keep the framework simple: having
nondeterministic evolutions does not affect the abstraction presented later, which
only depends on configurations and the logical language.

Definition 6 (Game Steps and Game Transition Function). Given a
GDP game G, a game step in G is a triple (c, ap, c′) denoted by c

ap→ c′, where
c, c′ ∈ Conf and:

(i) ap is an executable action profile at c in G, and
(ii) c′ is such that for each r ∈ Res:

1. if c(r) = null , then:
(a) if ((∃a.ap(a) = reqa

r ∧ ∀a′.a′ 	= a → ap(a′) 	= reqa′
r ) then c′(r) = a);

(b) otherwise c′(r) = c(r) = null ;
2. otherwise, let c(r) = a for some (unique) agent a; then:

(a) if (ap(a) = relar ∨ ap(a) = relaall) then c′(r) = null ;
(b) otherwise c′(r) = c(r) = a.

The game transition function of G is the set ρ(G) of all game steps in G.

Example 4. Consider the following action profiles in Example 2:
ap′(a1) = idlea1 ; ap′(a2) = rela2

all ; ap′(a3) = reqa3
r6

ap′′(a1) = reqa1
r3

; ap′′(a2) = reqa2
r3

; ap′′(a3) = reqa3
r5

The respective resulting configurations from performing ap′ and then ap′′ at
configuration c are:
c′(r1) = null ; c′(r2) = a1; c′(r3) = null ; c′(r4) = null ; c(r5) = null ; c′(r6) = a3.
c′′(r1) = null ; c′′(r2) = a1; c′(r3) = null ; c′(r4) = null ; c(r5) = a3; c′(r6) = a3.

Plays in a GDP game G are (infinite) sequences of game steps in G, defined by
means of the transition system G = (Conf , ρ(G)), which we call configuration
graph of G. We also define the local configuration graph of G generated
by c0, that is the restriction (G, c0) = (Conf (c0), ρ(G)) of G, where Conf (c0) is
the set of only those configurations in Conf which are reachable from the initial
configuration c0 by ρ(G).
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Proposition 1. The size of (G, c0) (hence, also of G) is, in general, exponential
in the number of resources in G.

Proof. Take G where ∀a, r.Acc(a, r) and ∀a.d(a) = |Res |. Then each assignment
of resources to agents is a reachable configuration, thus |Conf | = |Agt ||Res|.

3 Logic for Specification and Verification of GDP Games

Agents in GDP games may, but need not, cooperate in pursuing their goals,
which may be positive, i.e. eventually acquiring the necessary number of resources
to achieve their individual goals, or negative, i.e. preventing others from achieve
their goals, or combined and more complex. Thus, our choice of language and
formalism LGDP for specification and verification of GDP games is naturally a
(slight) variation of the alternating time temporal logic ATL [4], which allows to
express temporal properties ϕ parameterised by a set of agents A in multi-agent
games. The main construction in ATL is 〈〈A〉〉ϕ, the intuitive meaning of which
is that the coalition of agents in A has a joint strategy to collaborate in order to
achieve ϕ, no matter how the opponent agents in Agt \ A may counter-act. As
customary when reasoning at this level of abstraction, we do not focus on how
agents in the same coalition should coordinate to achieve the objectives, but we
assume such a coordination mechanism is already in place.

Definition 7 (Syntax). The formulae of LGDP are defined as follows:

ϕ ::= gai
| ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | 〈〈A〉〉Xϕ | 〈〈A〉〉Gϕ | 〈〈A〉〉ϕ1Uϕ2

where ai ∈ Agt, A ⊆ Agt. We may also write 〈〈a1, . . . , ai〉〉 instead of
〈〈{a1, . . . , ai}〉〉 .

The atomic formula gai
expresses the claim that agent ai has reached the number

of resources it needs (given by d(ai)) to achieve its goal. All other boolean
connectives and the standard temporal operators next X, always G, and until U
have the usual semantics (cf. e.g. [10]).

Definition 8 (Positional Strategy). Let G be a game, for each agent a ∈ Agt,
a (positional) strategy for a is a function σa : Conf → Act such that ∀c.σa(c) ∈
av(c, a). Given A = {a1, . . . , ar} ⊆ Agt, a joint strategy for A is a tuple of
strategies σA(σai

, . . . , σar
) one for each ai ∈ A.

The function out(c, σA) returns the set of all paths in Conf ω that can occur when
agents in A follow the joint strategy σA from configuration c on. We denote by
π = c0, c1, . . . a path in Conf ω and with π[i] the i-th configuration of π.

out(c, σA) =
{

π = c0, c1, . . . | c0 = c ∧
∀i ∈ IN,∃(act i

a1
, . . . , act i

an
),∀a ∈ Agt .

(
act i

a ∈ av(ci, a) ∧ (
a ∈ A → act i

a ∈ σA

) ∧ qi

(actia1
,...,actian

)→ qi+1

)}
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Formulae of LGDP are evaluated over a game configuration graph G. The sat-
isfaction relation G, c |= ϕ is defined inductively on the structure of formulae,
for all c ∈ G, as follows, where res(c, a) = |c−1(a)|, i.e. the number of resources
owned by a in configuration c.

– G, c |= gai
iff res(c, ai) ≥ d(ai);

– ∧, ∨ and ¬ are treated as usual;
– G, c |= 〈〈A〉〉Xϕ iff there is a joint strategy σA such that, for every path

π ∈ out(c, σA) we have that G, π[1] |= ϕ;
– G, c |= 〈〈A〉〉Gϕ iff there is a joint strategy σA such that, for every path

π ∈ out(c, σA) and for every i ∈ IN we have that G, π[i] |= ϕ;
– G, c |= 〈〈A〉〉ϕ1Uϕ2 iff there is a joint strategy σA such that, for every path

π ∈ out(c, σA) we have that ∃i ≥ 0.G, π[i] |= ϕ2 and ∀0 ≤ j < i.G, π[j]
|= ϕ1.

For every game configuration graph G and a formula ϕ ∈ LGDP we define the
extension of ϕ in G to be the set of all configurations in G that satisfy ϕ:

[[ϕ]]G = {c ∈ Conf | G, c |= ϕ}.

Example 5. The figure shows a graphical representation
of c as in Example 2 where red resources are held by the
agents in brackets. It is easy to see that the following
formulae hold in G, c:

〈〈a1〉〉G〈〈a1〉〉Fga1 , meaning that there is a strategy for
agent a1 to reach its goal infinitely often (it can always
get resources r1 and r2), and 〈〈a2, a3〉〉Fga2 (there is a
strategy for a2, a3 to eventually reach the goal of a2).
But, there is no strategy for a3 alone to eventually reach
its goal, i.e. G, c 	|= 〈〈a3〉〉Fga3 as there exists a strategy
for a2 which prevents a3 to acquire r4 or r5. Such a strat-
egy by a2 simply amounts to mimic a3 requests (notice
that the semantics of LGDP only require such a counter-
strategy to exists, even if in practice that would mean
a2 to guess a3 requests).

a1

a2

a3

r1

r2(a1)

r3

r4(a2)

r5(a2)

r6

The global model checking problem for LGDP is a computational problem
which amounts to compute [[ϕ]]G given G and ϕ ∈ LGDP.

Lemma 1. The global model checking problem for LGDP has worst-case time
complexity exponential in the number of resources.

Proof. Follows immediately from Proposition 1 and the linear time complexity
of the global model checking algorithm for atl.

Since the number of resources in a GDP game scenarios is generally large, this
exponential time bound is bad, and it is clear that the standard model checking
algorithm for ATL [4], [10, Chap. 9] would be generally intractable if applied
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to explicitly generated configuration graphs of GDP games. That is why we
develop here an abstract symbolic representation that will eventually keep the
worst-case complexity of the model checking problem polynomial in the number
of resources.

4 Symbolic Representation of Configurations on GDP
Games

Our solution is based on an abstraction which represents sets of configurations
by means of symbolic expressions. Essentially, we group together configurations
which cannot be distinguished by LGDP-formulae and that behave “similarly”
with respect to the G transition function. In this way we solve the global model
checking problem of LGDP-formulae without explicitly computing the configura-
tion graph G, but rather by computing the corresponding symbolic expressions.

In other words, configurations contains more information than needed to
answer LGDP-formulas: indeed, configurations describe which resources each
agents holds, while LGDP-formulas cannot distinguish configurations where
agents hold the same number of resources. Therefore, intuition suggests that
abstracting from specific resources each agent has and keep only the number
of those held by each agent may suffice. Unfortunately this not the case, as
resources are in general accessible to subset of agents only (as specified by the
Acc) thus, given a subset of agents, how many resources among those accessible
to them are still available is a necessary information to reason on the capability
to achieve their goals. To see this, let us consider a situation of G in Example 1
where a3 holds one resource only: knowing which one is important to determine
the capability of a3 to reach ga3 in the next state, namely to assess whether
Gc |= 〈〈a3〉〉Xga3 . Indeed, if the resource owned by a3 is r4 (or r5), then the
above formula is true (as a3 can always request and obtain r6) whilst if it is r6
is false, as there is no guarantee it can obtain one among r4 or r5.

Our symbolic representation is based on the intuition that only resources
that are accessed by the same subset of agents can be safely regarded as
undistinguishable. Thus, we start by formally describing such sets of resources.
With mild notational abuse, we define Acc−1 : Res → 2Agt such that
Acc−1(r) = {a | Acc(a, r)} and Acc : 2Agt → 2Res such that Acc(A) =
{r ∈ Res | ∀a ∈ Agt .a ∈ A ↔ Acc(a, r)}, namely the set of resources shared by,
and only by, the agents in A.

The function Acc−1 defined above induces an equivalence relation ∼ ⊆
Res × Res among resources as follows:

ri ∼ rj ↔ (Acc−1(ri) = Acc−1(rj))

We denote by R = {R1, . . . , Ru} the quotient set of Res by ∼, namely the set
of equivalence classes in Res induced by ∼. Notice that each Ri ∈ R uniquely
identifies the set of agents which have access to them. Again with mild notational
abuse we denote such a set by Acc−1(Ri).
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Our symbolic representation defines for each agent ai and each equivalence
class of resources Rj , the range on the number of resources in Rj that ai holds.

Definition 9 (Interval Expressions). Let G be a game, based of an intuitive
understanding of the notion of ‘intervals’, interval expressions α are defined as
follows:

α ::=
∧

a∈Agt

∧
R∈R

(a,R)[laR, laR] | α1 ∨ α2

Intuitively we call each (a,R)[laR, laR] an interval, and it constrains the number
of resources held by a and belonging to R to be between laR and La

R.
Now we define the formal semantics of interval expressions. In every GDP

game configuration graph G each interval expression α defines a set of configu-
rations ‖α‖G, the extension of α, as follows:

– ‖(a,R)[laR, La
R]‖G = {c ∈ Conf : laR ≤ |c−1(a) ∩ R| ≤ La

R};
– ‖∧a∈Agt

∧
R∈R(a,R)[laR, laR]‖G =

⋂
a∈Agt

⋂
R∈R ‖(a,R)[laR, La

R]‖G;
– ‖α1 ∨ α2‖G = ‖α1‖G ∪ ‖α2‖G.

Example 6. With reference to G as in Example 1, we notice that there are four
equivalence classes in R: R1 = {r1, r2}, with Acc−1(R1) = {a1}; R2 = {r3}, with
Acc−1(R2) = {a1, a2}; R3 = {r4, r5}, with Acc−1(R3) = {a2, a3} and R4 = {r6},
with Acc−1(R4) = {a3}. The expression α′:

(a1, R1)[0, 1] ∧ (a1, R2)[0, 1] ∧
(a2, R2)[0, 1] ∧ (a2, R3)[1, 2] ∧
(a3, R3)[0, 0] ∧ (a3, R4)[0, 1]

is such that the configuration c from Example 2 belongs to ‖α′‖G. For the sake
of readability we omit intervals for pairs (a′, R′) such that R ∩ Acc−1(a′) = ∅.
Let also c′ be as c but with agent a1 not holding r2. Then, c′ ∈‖α′‖G as well.

Interval expressions, being defined on intervals, are very modular, and they
can represent sets of configurations of different sizes. They can be classified
from “coarsest” to “finest” depending on the number of configurations in their
extensions. The larger the number, the coarser the abstraction. Given a game G
there is a coarsest formula α� representing the whole set Conf of configurations
which is such that for all a ∈ Agt and R ∈ R, (a,R)[0,min(d(a), |R|)]. Anal-
ogously, it is always possible to define a finest expression α⊥ the extension of
which is empty (it is enough to define an interval (a,R)[L,L] where L > |Res|).
The finer expressions are more important for our purposes, as they provide the
smallest abstraction level we can manipulate. Those expressions, of the form:∧

a∈Agt

∧
R∈R(a,R)[�a

R, �a
R] will be called β-expressions. Clearly, every interval

expression can be transformed into a semantically equivalent (i.e., with the same
extension) expanded normal form, that is, a disjunction of β-expressions.
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Definition 10 (Expanded Normal Form). An interval constraint expression
α is in expanded normal form if each interval is of the form (a,R)[�a

R, �a
R].

We recursively define function expd(α) which translates α in its extended normal
form as follows:

expd(
∧

a∈Agt

∧
R∈R(a,R)[laR, La

R]) ::=
∨

l
a1
R1

≤�
a1
R1

≤L
a1
R1

. . .
∨

l
a1
Ru

≤�
a1
Ru

≤L
a1
Ru

...∨
lan
R1

≤�an
R1

≤Lan
R1

. . .
∨

lan
Ru

≤�an
Ru

≤Lan
Ru

(
∧

1≤i≤n

∧
1≤j≤u(ai, Rj)[lai

Rj
, lai

Rj
])

expd(α1 ∨ α2) ::= expd(α1) ∨ expd(α2)

Lemma 2. Let α be an interval expression. Its expanded normal form expd(α)
has, in the worst-case, size which is double exponential in the number of agents
and polynomial in the number of resources.

Proof. Consider α� in a game G. Then expd(α�) returns all possible β-
expressions in G. If we consider |Res | as the complexity parameter, then the
worst case is when d(ai) = |Res | for each i ∈ {1, . . . , n}, which results in a size of
expd(α�) which is polynomial in the number of resources. If we consider |Agt |
as the complexity parameter, then the worst case is given by Acc such that we
have all equivalence classes for resources, i.e., 2|Agt|. Given that each interval
in α is (a,R)[0, |Res |], we have size of α double exponential in the number of
agents.

5 Symbolic Verification of LGDP Formulae in GDP
Games

The algorithm for the symbolic verification of LGDP-formulae has the same struc-
ture as that for ATL formulae [4], [10, Chap. 9]: for the strategic next-time
operator it computes the controllable by a given coalition A pre-image of the
extension of a given formula, and then exploits the fixpoint characterisations
of the temporal operators G and U. Now, instead of manipulating states of the
explicit model G, i.e. the configuration graph, our algorithm works symbolically,
with interval expressions. The basic step of the algorithm is to compute, given
a coalition A and an interval expression α′, the controllable by A symbolic pre-
image α = pre(G, A, α′) which, intuitively, is the set of all interval expressions
that only ‘contain’ configurations from which coalition A has a joint action that
forces the outcome to be in the set of configurations defined by the extension
of α′.

Definition 11 (Controllability). Let G be a GDP game, A ⊆ Agt, and α, α′

interval expressions. We say that α is in the controllable by A pre-image
of α′ iff there exists a strategy σA such that, for all c ∈‖α‖G and for all π ∈
out(c, σA) we have that π[1] ∈‖α′‖G.
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In what follows, we show how to compute the controllable pre-image of a
interval expression. Given a GDP game G, we do the following:

1. As pre-processing we compute the set AP of all action profiles in G.
2. Then, we consider the expansion expd(α′) = β′

1 ∨ . . . ∨ β′
s, where β′

1, . . . , β
′
s

are β-expressions. For each β′
i ∈ expd(α′) and each apj ∈ AP we compute set

{βi,j,1, . . . βi,j,t} of symbolic β-expressions such that, for each c ∈ expd(βi,j,k),
performing ap leads to a configuration c′ ∈ expd(β′

i).
3. Lastly, for each βi,j,k we check if it belongs in the controllable by A pre-

image of α′, by verifying if there exists a joint action for agents in A such for
every possible joint actions for the other agents, the successor is in α′. This
requires to check all possible action profiles. If such a joint action exists, βi,j,k

will be added in disjunction to a formula αβ′
i

which represents (part of) the
controllable pre-image of α′ that has been computed, roughly speaking, by
considering predecessors of β′

i. The whole controllable by A pre-image α of α′

is simply the union of such controllable predecessors, namely α =
⋃

1≤i≤s αβ′
i
.

We now present steps (2) and (3) in detail.

Step (2). The difficulty lies in the fact that the transition function ρ(G) is not
injective, thus when computing the pre-images of an interval expression β′

i for a
specific apj , the result consists, in general, of more than one β-interval expression.
In order to see why, let us consider the following example.

Example 7 Let α′ be as in Example 6 and let β′
i:

(a1, R1)[0, 0] ∧ (a1, R2)[0, 0] ∧
(a2, R2)[0, 0] ∧ (a2, R3)[2, 2] ∧
(a3, R3)[0, 0] ∧ (a3, R4)[0, 0]

be one of its expanded β-expressions. Notice that the configuration c′ defined at
the end of Example 6 belongs to β′

i.
Now, let 〈rela1

all , req
a2
r4

, rela3
r6

〉 be an action profile apj . Which interval expres-
sions belong to the pre-image of β′

i given apj? In other words, from which interval
expressions is β′

i reachable when performing apj? Issues arise with the release-all
action rela1

all , as we do not know which resources a1 was holding in the previous
configuration, hence to which equivalence classes those resources belonged to.
Indeed, since d(a1) = 2, a1 was holding 2 resources that could have been any of
the following: {{r1, r2}, {r1, r3}, {r2, r3}}. This gives rise to two different interval
expressions in the pre-image of β′ given apj :

– in case a1 was holding {r1, r2}, it is βi,j,1 defined as follows:

(a1, R1)[2, 2] ∧ (a1, R2)[0, 0] ∧
(a2, R2)[0, 0] ∧ (a2, R3)[2, 2] ∧
(a3, R3)[0, 0] ∧ (a3, R4)[0, 0]
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– and, if a1 was holding either {r1, r3} or {r2, r3}, it is βi,j,2, defined as follows:

(a1, R1)[1, 1] ∧ (a1, R2)[1, 1] ∧
(a2, R2)[0, 0] ∧ (a2, R3)[2, 2] ∧
(a3, R3)[0, 0] ∧ (a3, R4)[0, 0]

During Step (2) for each apj ∈ AP , we compute the set {apj,1, ..., apj,q} of
expanded action profiles for apj , where each apj,k is a set of actions where:

(i) resources are replaced by their equivalence classes, and
(ii) the release-all actions by each agent a are replaced by a set of (single-
resource) release actions one for each resource to be released by a in an
equivalence relation in all possible ways.
It is easy to see that the number of possible expanded action profiles for apj

is, in the worst case, double exponential in the number of agents. Indeed, if agent
a performs a release-all action, such that d(a) = |Res | and a has access to all
possible 2|Agt|−1 equivalence classes of resources, defined by sets of agents where
a occurs, then we get a predecessor for each way of assigning |Res | resources to
these 2|Agt|−1 equivalence classes, thus |Res |2|Agt|−1

.
We now show how we actually compute the predecessor. Let

β′ =
∧

a∈Agt

∧
R∈R

(a,R)[�a
R, �a

R]

be the successor expression under consideration and let (apj , apj,k) as before.

We build β such that βi,j,k

(apj ,apj,k)→ β′
i by first considering the release actions

in apj,k and then the request actions in apj :

– for each release action relāR̄ ∈ apj,k we increase by one the number �ā
R̄
;

– for each request action reqā
r̄ ∈ ap such that ¬∃a′ such that reqā′

r̄ ∈ ap we
decrease by one the number �a

R̄
where R̄ is the equivalence class of r̄.

Step (3). Given a βi,j,k obtained in the previous step, for each joint action for
A we check if that is the required one-step strategy σn by simply verifying if all
action profiles extending σn lead to α′. Let apv be one of such action profiles.
We compute β′

i,j,k,v such that βi,j,k
apv→ β′

i,j,k,v. The issue is that βi,j,k
apv→ β′

i,j,k,v

may not be a step, for two reasons:
(i) βi,j,k may be inconsistent, i.e., ‖βi,j,k‖G= ∅, or
(ii) apv may not be executable in βi,j,k, meaning that there is no c ∈‖βi,j,k‖G
such that c

apv→ c′ is a step.

We first perform check (i) and then (ii) separately, but with the same tech-
nique: by a reduction to the maximal matching problem in a bipartite graph
(cf. [13]), defined as follows. Given bipartite graph G = (V = (X,Y ), E) where
E ⊆ X × Y , the maximum matching problem amounts to find a maximal set
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M ⊆ E such that for all (x, y), (x′, y′) ∈ M , x = x′ iff y = y′, i.e. different edges
in M share no vertices. The Hopcroft-Karp algorithm [13] solves it in worst-time
complexity linear in the size of G. We now show how to build the bipartite prob-
lem which solution guarantees that βi,j,k is consistent. From βi,j,k and Acc we
define bpg(β,Acc) = ((X,Y ), E) as follows:

– for each a ∈ Agt and R ∈ R we have {x(a,R, 1), . . . , x(a,R, �a
R)} ∈ X iff

�a 	= 0;
– Y = Res ;
– for each a ∈ Agt and R ∈ R and 1 ≤ t ≤ �a

R, (x(a,R, t), r) ∈ E iff (a, r) ∈ Acc
and r ∈ R.

In the worst case, the size of G is double exponential in the number of agents,
coming from the number of x-nodes. It is easy to prove that solution M of
the maximum matching problem is such that each x-node is covered, i.e., ∀x ∈
X,∃y ∈ Y.(x, y) ∈ M if and only if ‖βi,j,k‖G 	= ∅. The ‘only if’ direction follows
from the fact that M is the largest possible such set.

If ‖βi,j,k‖G 	= ∅ then we check if apu can be executed in βi,j,k.

Remark. Notice that given βi,j,k consistent, and apu, then there is a unique
possible expansion (apu, apu), as βi,j,k provides information on the equivalence
classes of resources held by agents performing release-all actions. This entails
there is only a successor for each action profile, which guarantees that the tran-
sition relation between interval expressions is actually a function.

Now, we will build an instance of the maximum matching problem for
the bipartite graph bpg(βi,j ,k ,Acc, (apu , apu)) starting from bpg(βi,j ,k ,Acc) =
((X,Y ), E) as before and modifying it so as to account for (apu, apu):

1. for each relaR ∈ apu we:
(a) remove one node among {x(a,R, 1), . . . x(a,R, �a

R)} and its corresponding
edges. If no such node exists, then βi,j,k is not compatible with (apu, apu)
and we discard them both;

(b) add a node z(relaR) to X and edges (z(relaR), r) for all r ∈ R.
2. for each request action reqa

r ∈ ap: add a node z(reqr) and edge (z(reqr), r).

The maximum matching problem for the above has a solution covering all
the nodes in X iff (apu, apu) is executable in βi,j,k. The ‘only if’ direction is
again guaranteed by M being the largest. The (again, unique) successor state
β′

i,j,k,u can be easily computed by modifying the intervals in the intuitive way.
We now present our main result, the soundness and completeness of our

symbolic technique for global model checking of LGDP formulae. The proof is
constructive and provides a model checking algorithm.

Theorem 1. For every GDP game G and a formula ϕ ∈ LGDP there exists an
interval constraints expression α(G, ϕ) such that:

[[ϕ]]G = ‖α(G, ϕ)‖G



44 R. De Masellis et al.

The proof is in the Appendix.

Theorem 2. For each ϕ ∈ LGDP, computing ‖α(G, ϕ)‖G can be done in time
which is worst-case double exponential in the number of agents and polynomial
in the number of resources.

Proof. Let us first estimate the time complexity of the controllable pre-image
subroutine. As pointed out in the description of the algorithm, Step (2) gener-
ates all possible distinct β-expressions, which are, as stated in Lemma 2, double
exponential in the number of agents and polynomial in the number of resources.
Given a formula ϕ ∈ LGDP, the number of times the controllable pre-image sub-
routine is called is linear in the number of possible distinct β-expressions for
each fixpoint computation and the number of fixpoint computations is linear in
the size of the formula.

6 Conclusions and Outlook to Future Work

In this paper we have introduced the Generalised Dining Philosophers games,
which are a substantial generalisation of the original dining philosophers problem
proposed as a modelling framework for distributed multi-agent dynamic resource
allocation problems. We have developed a symbolic algorithm for the verification
of properties of GDP games specifiable in a version of ATL, built over atomic
propositions stating that an agent’s goal is achieved. We have showed that this
symbolic algorithm works in time which is polynomial in the number of resources,
though worst-case double exponential in the number of agents while the standard
ATL model checking algorithm, applied on the explicit configuration graph of
the game generally works in time exponential in both the number of agents and
the number of resources. Thus, both algorithms are generally incomparable in
their efficiency, but the symbolic algorithm is significantly more efficient than
the explicit one in cases where the number of resources is much larger than the
number of agents.

From theoretical perspective, GDP games are amenable to various natural
modifications of the operational semantics, e.g. allowing agents to request mul-
tiple resources at a time, or assuming basic individual rationality according to
which a rational agent will always attempt to acquire more resources rather
than idle, until it reaches its goal. These considerations are left to future work,
in which we also intend to apply our framework and techniques to more realistic
scenarios arising in ‘classical’ Computer Science (e.g. operating systems). Also,
both narrowing and broadening of our approach are worth exploring. The for-
mer looks for classes of formulas, or classes of models (e.g., those with a specific
accessibility graph) that allow for more compact symbolic representations, while
the latter investigates to which extent our ideas can be successfully applied to
more general settings.

From practical perspective, a future implementation of the symbolic tech-
nique described here will allow to compare the effectiveness of our approach
against explicit or BDD-based model checkers for MAS.
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A Appendix: Proof of Theorem1

The proof is by induction on ϕ.

– ϕ = ga. Then [[ϕ]]G = {c : res(c, a) = d(a)}. The required formula is α =
α1 ∨ . . . ∨ αs where each αi is the conjunction of intervals for agents a′ 	= a
and the conjunction of intervals for a. The conjunction of intervals for a′ 	= a
is the same for every αi, viz. (a′, R)[0, d(a′)], for each a′ 	= a and for each
R ∈ R. The conjunction of intervals for a is different for each αi, has the
form (a,R)[�a

R, �a
R] and is a solution of the constraint

∑
R∈R �a

R = d(a).
– ϕ = 〈〈A〉〉Xψ. Then [[ϕ]]G is the set of configurations from which there exists a

collective strategy σA for A such that for all π ∈ out(c, σA), G, π[1] |= ψ. We
show that pre(G, A, α(G, ψ)) satisfies the claim. We prove separately [[ϕ]]G ⊇
‖pre(G, A, α(G, ψ))‖G (soundness) and [[ϕ]]G ⊆‖pre(G, A, α(G, ψ))‖G (com-
pleteness).

Soundness. We have to prove that for every c ∈‖pre(G, A, α(G, ψ))‖G there
exists one step strategy to reach a state where ψ holds. By the inductive hypoth-
esis, all (and only) configurations in α(G, ψ) satisfy ψ, thus it is enough to
show that a one step strategy reaches α(G, ψ). Let us then consider a generic
c ∈‖pre(G, A, α(G, ψ))‖G. If c ∈‖pre(G, A, α(G, ψ))‖G then, by the pre-image
algorithm, there exists β, β′ and (ap, ap) such that:

• c ∈‖β‖G;

• β is in the predecessor of β′, thus β
(ap,ap)→ β′ from soundness of step (2) in

the pre-image computation;
• there exists a one-step strategy σA from β which leads to α(G, ψ).

We have to prove that such a strategy satisfies Definition 11.
Let (ap, ap) be a generic action profile consistent with strategy σA such that

β
(ap,ap)→ β′′, with clearly β′′ ∈ expd(α(G, ψ)). We show that for all c ∈‖β‖G

there exists ap′ ∈ AP and there exists c′ ∈ Conf such that c
ap′
→ c′, c′ ∈‖β′′‖G

and the expansion of ap′ is ap .
Constructively, we build ap′ agent-wise from ap . For each a ∈ Agt , its action

in ap can be one of the following:

(1) idlea;
(2) (single release) relaR;
(3) (multiple release) {relaR1

, . . . , relaRt
}; or

(4) reqa
R.
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If (1) then the ap′(a) = idlea. If (2) then ap′(a) = relar for a random r ∈ R such

that c(r) = a. Notice that this is always possible, given that β
(ap,ap)→ β′′, meaning

that a does have the number of resources necessary to perform a release. If (3),
then ap′(a) = relaall . This is always possible again from the same observations
in (2). If (4), then it is not enough to pick a random available r ∈ R and set
ap′(a) = reqa

r , as, depending on the requests actions performed by the other
agents, a can own or not r in the next configuration. Thus, first the requested r

must be such that c(r) = null (there exists one otherwise β
(ap,ap)→ β′′ would not

be a step) but also the request actions of all agents have to be considered together
when building ap′. It is, however, enough to look at the interval (a,R)[�′a

R , �′a
R ]

in β′′ in order to determine whether the request of a has been successful or not.
If �′a

R = �a
R, then it was successful, and there is another agent a′ performing

a request for the same resource (this is guaranteed by how the intervals of β′′

are computing from β by performing (ap, ap)). Otherwise, if �′a
R = �a

R + 1, then
the request by a of r has been successful and, when building ap′ for the other
agents, we have to be sure that no other agent requests r (again, this is always
guaranteed by how the intervals of β′′ are computing from β by performing
(ap, ap)). Finally, we have to show that c′ ∈‖β′′‖G. This is immediate, as the
expansion of ap′ is ap and from the way intervals are updated when computing

β
(ap,ap)→ β′′.

Completeness. We have to prove that if c ∈ Conf and there exists a strat-
egy σA which in one step reaches a configuration satisfying ψ, then c ∈‖
pre(G, A, α(G, ψ))‖G. If c satisfies the above, then ∃ap, c′.c

ap→ c′ with ap ∈ σA(c)
and c′ ∈ [[ψ]]G. By inductive hypothesis, c′ ∈‖α(G, ψ)‖G, meaning that there
exists β′ ∈ α(G, ψ) and c′ ∈‖β′ ‖G. The pre-image algorithm tries all action
profiles in AP that could lead to β′, thus also ap. We have to show that there

exists apk such that β
(ap,apk)→ β′ and c ∈‖β‖G. Constructively, the required

apk is built by looking at configuration c, which tells us to which classes the
resources of the agents performing the release-all actions belong. Since it exists,
the algorithm finds it as it explores all possible apk for any ap. Also, c ∈‖β‖G
by inspecting how we modify the intervals when computing the predecessors. It
remains to prove that β is controllable. This is straightforward, as the required
controllable joint action for A in Definition 11 is easily obtained from ap, which
is a one-step strategy by hypothesis.

– ϕ = ¬ψ. From α(G, ψ) = β1 ∨ . . . βs we compute the negation βi of each βi,
complementing its intervals. Such operation produces at most two intervals,
thus each |βi| is at most 2 · |βi|. Then we produce the intersection of those βi

by simply “projecting” on intervals common to each βi.
– ϕ = 〈〈A〉〉Gψ. Recursively, we start from α(G, ψ) and compute the conjunction

with its pre-image until a fixpoint is reached, just like in the explicit model
checking algorithm for ATL (cf. [4] or [10, Chap. 9]). Sound and completeness
follows from the fixpoint characterisation of the G operator.
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– ϕ = 〈〈A〉〉ψ1Uψ2. Similarly to the previous case, but each iteration computes
the disjunction of α(G, ψ2) with the conjunction of the pre-image of the expres-
sion obtained at the previous step with α(G, ψ1), again just like in the explicit
model checking algorithm for ATL. Soundness and completeness follow from
the fixpoint characterisation of the operator U.
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