
Alternating-Time Temporal Logic

RAJEEV ALUR

University of Pennsylvania, Philadelphia, Pennsylvania

THOMAS A. HENZINGER

University of California, Berkeley, California

AND

ORNA KUPFERMAN

Hebrew University, Jerusalem, Israel

Abstract. Temporal logic comes in two varieties:linear-time temporal logicassumes implicit universal
quantification over all paths that are generated by the execution of a system;branching-time temporal
logic allows explicit existential and universal quantification over all paths. We introduce a third, more
general variety of temporal logic:alternating-time temporal logicoffers selective quantification over
those paths that are possible outcomes of games, such as the game in which the system and the
environment alternate moves. While linear-time and branching-time logics are natural specification
languages for closed systems, alternating-time logics are natural specification languages for open
systems. For example, by preceding the temporal operator “eventually” with a selective path quantifier,
we can specify that in the game between the system and the environment, the system has a strategy to
reach a certain state. The problems of receptiveness, realizability, and controllability can be formulated
as model-checking problems for alternating-time formulas. Depending on whether or not we admit
arbitrary nesting of selective path quantifiers and temporal operators, we obtain the two alternating-
time temporal logics ATL and ATL?.

ATL and ATL? are interpreted overconcurrent game structures. Every state transition of a con-
current game structure results from a choice of moves, one for each player. The players represent

A preliminary version of this article appeared in theProceedings of the 38th Annual Symposium on the
Foundations of Computer Science(FOCS’97). IEEE Computer Society Press, Los Alamitos, Calif.,
1997, pp. 100–109.
This work was supported in part by the ONR YIP award N00014-95-1-0520, by the NSF CAREER
awards CCR-9501708 and CCR-9970925, by the NSF grants CCR-9970925 and CCR-9988172, by
the DARPA grants NAG2-892 and NAG2-1214, by the SRC contracts 97-DC-324 and 99-TJ-688,
and by a Sloan Faculty Fellowship.
Authors’ present addresses: R. Alur, Department of Computer and Information Science, University of
Pennsylvania, Philadelphia, PA 19104, e-mail: alur@cis.upenn.edu, URL: www.cis.upenn.edu/˜alur;
T. A. Henzinger and O. Kupferman, Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, CA 94720-1770, e-mail:{tah;orna}@eecs.berkeley.edu, URL:
www.eecs.berkeley.edu/˜tah; www.eecs.berkeley.edu/˜orna.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or
to redistribute to lists, requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 1515 Broadway, New York, NY 10036 USA, fax:+1 (212)
869-0481, or permissions@ansi.org.
C© 2002 ACM 0004-5411/02/0900-0672 $5.00

Journal of the ACM, Vol. 49, No. 5, September 2002, pp. 672–713.

Alternating-Time Temporal Logic 673

individual components and the environment of an open system. Concurrent game structures can
capture various forms of synchronous composition for open systems, and if augmented with fair-
ness constraints, also asynchronous composition. Over structures without fairness constraints, the
model-checking complexity of ATL is linear in the size of the game structure and length of the
formula, and the symbolic model-checking algorithm for CTL extends with few modifications to
ATL. Over structures with weak-fairness constraints, ATL model checking requires the solution of
1-pair Rabin games, and can be done in polynomial time. Over structures with strong-fairness con-
straints, ATL model checking requires the solution of games with Boolean combinations of B¨uchi
conditions, and can be done in PSPACE. In the case of ATL?, the model-checking problem is
closely related to the synthesis problem for linear-time formulas, and requires doubly exponential
time.

Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs

General Terms: Theory, Verification

Additional Key Words and Phrases: Alternation, games, model checking, temporal logic

1. Introduction

Pnueli [1977] proposed to uselinear-time temporal logic(LTL) to specify require-
ments for reactive systems. A formula of LTL is interpreted over a computation,
which is an infinite sequence of states. A reactive system satisfies an LTL formula
if all its computations do. Due to the implicit use of universal quantification over
the set of computations, LTL cannot express existential, or possibility, properties.
Branching-time temporal logicssuch as CTL and CTL?, on the other hand, do
provide explicit quantification over the set of computations [Clarke and Emerson
1981; Emerson and Halpern 1986]. For instance, for a state predicateϕ, the CTL
formula∀¦ϕ requires that a state satisfyingϕ is visited in all computations, and
the CTL formula∃¦ϕ requires that there exists a computation that visits a state
satisfyingϕ. The problem ofmodel checkingis to verify whether a finite-state ab-
straction of a reactive system satisfies a temporal-logic specification [Clarke and
Emerson 1981; Queille and Sifakis 1981]. Efficient model checkers exist for both
LTL (e.g., SPIN [Holzmann 1997]) and CTL (e.g., SMV [McMillan 1993]), and
are increasingly being used as debugging aids for industrial designs.

The logics LTL and CTL are interpreted over Kripke structures. A Kripke struc-
ture offers a natural model for the computations of aclosed system, whose behavior
is completely determined by the state of the system. However, the compositional
modeling and design of reactive systems requires each component to be viewed as
an open system, where anopen systemis a system that interacts with its environ-
ment and whose behavior depends on the state of the system as well as the behavior
of the environment. Modeling languages for open systems, such as CSP [Hoare
1985], I/O Automata [Lynch 1996], and Reactive Modules [Alur and Henzinger
1999], distinguish betweeninternalnondeterminism, choices made by the system,
and externalnondeterminism, choices made by the environment. Consequently,
besides universal (do all computations satisfy a property?) and existential (does
some computation satisfy a property?) questions, a third question arises naturally:
can the system resolve its internal choices so that the satisfaction of a property is
guaranteed no matter how the environment resolves the external choices? Such an
alternatingsatisfaction can be viewed as a winning condition in a two-player game
between the system and the environment. Alternation is a natural generalization of

674 R. ALUR ET AL.

existential and universal branching, and has been studied extensively in theoretical
computer science [Chandra et al. 1981].

Different researchers have argued for game-like interpretations of LTL and CTL
specifications for open systems. We list four such instances here.

Receptiveness[Dill 1989;Gawlick et al.1994;Abadi and Lamport1995]: Given
a reactive system, specified by a set ofsafecomputations (typically, generated
by a transition relation) and a set oflive computations (typically, expressed by an
LTL formula), the receptiveness problem is to determine whether every finite
safe computation can be extended to an infinite live computation irrespective
of the behavior of the environment. It is necessary for executability and
compositionality to obtain an affirmative answer to the receptiveness problem.

Realizability(program synthesis) [Abadi et al.1989;Pnueli and Rosner1989a,
1989b]: Given an LTL formulaψ over sets of input and output signals, the
synthesis problem requires the construction of a reactive system that
assigns to every possible input sequence an output sequence so that the resulting
computation satisfiesψ .

Supervisory control[Ramadge and Wonham1989]: Given a finite-state machine
whose transitions are partitioned into controllable and uncontrollable, and a set
of safe states, the control problem asks for the construction of a controller
that chooses the controllable transitions so that the machine always stays within
the safe set (or satisfies some more general LTL formula).

Module checking[Kupferman et al.2001]: Given an open system and a CTL?

formulaϕ, the module-checking problem is to determine if, no matter how the
environment restricts the external choices, the system satisfiesϕ.

These four problems use standard temporal-logic syntax, which was developed
for specifying closed systems, and formulate new semantical conditions for open
systems. In this article, we propose, instead, to enrich temporal logic so that al-
ternating properties can be specified explicitly within the logic. For this purpose,
we introducealternating-time temporal logics, which are interpreted over game
structures. In order to capture compositions of open systems, we consider, instead
of two-player games between system and environment, the more general setting of
multi-player games, with a set6 of players that represent different components of
the system and the environment [Shapley 1953; Halpern and Fagin 1989].

The Kripke structure is a natural “common-denominator” model for closed sys-
tems, independent of whether the high-level description of a system is given, say, as
a product of state machines or as a set of guarded commands on variables. In anal-
ogy, the natural “common-denominator” model for compositions of open systems
is theconcurrent game structure. While modeling languages for open systems use a
variety of different communication mechanisms (variables vs. events, synchronous
vs. asynchronous interaction, etc.), they can be given a common semantics in terms
of concurrent game structures, which, unlike Kripke semantics, maintains the dif-
ferentiation of a design into system components and environment. A concurrent
game is played on a state space. In each step of the game, every player chooses
a move, and the combination of choices determines a transition from the current
state to a successor state. Special cases of a concurrent game areturn-based syn-
chronous(in each step, only one player has a choice of moves, and that player is
determined by the current state),Moore synchronous(the state is partitioned ac-
cording to the players, and in each step, every player updates its own component

Alternating-Time Temporal Logic 675

of the state independently of the other players), andturn-based asynchronous
(in each step, only one player has a choice of moves, and that player is chosen
by a fair scheduler). These subclasses of concurrent games capture various notions
of synchronous and asynchronous interaction between open systems.

For a setA⊆6 of players, a set3 of computations, and a stateq of the system,
consider the following game between a protagonist and an antagonist. The game
starts at the stateq. At each step, to determine the next state, the protagonist resolves
the choices controlled by the players in the setA, while the antagonist resolves the
remaining choices. If the resulting infinite computation belongs to the set3, then the
protagonist wins; otherwise, the antagonist wins. If the protagonist has a winning
strategy, we say that the alternating-time formula〈〈A〉〉3 is satisfied in the stateq.
Here,〈〈A〉〉 can be viewed as apath quantifier, parameterized with the setA of play-
ers, which ranges over all computations that the players inA can force the game
into, irrespective of how the players in6\A proceed. Hence, the parameterized
path quantifier〈〈A〉〉 is a generalization of the path quantifiers of branching-time
temporal logics: the existential path quantifier∃ corresponds to〈〈6〉〉, and the uni-
versal path quantifier∀ corresponds to〈〈∅〉〉. In particular, Kripke structures can be
viewed as game structures with a single playersys, which represents the system.
Then, the two possible parameterized path quantifiers〈〈{sys}〉〉 (also denoted〈〈sys〉〉)
and〈〈∅〉〉 (also denoted〈〈 〉〉) match exactly the path quantifiers∃ and∀ required for
specifying closed systems. Depending on the syntax used to specify the set3 of
computations, we obtain two alternating-time temporal logics: in the logic ATL?,
the set3 is specified by a formula of LTL; in the more restricted logic ATL, the set3
is specified by a single temporal operator applied to a state predicate. By allowing
nesting of alternating properties, we obtain ATL as the alternating-time generaliza-
tion of CTL, and ATL? as the alternating-time generalization of CTL?. Finally, by
considering game structures with fairness constraints (for modeling asynchronous
composition), we obtain Fair ATL as the alternating-time generalization of Fair CTL
[Emerson 1990].

Alternating-time temporal logics can naturally express properties of open sys-
tems, as illustrated by the following five examples:

(1) In a multiprocess distributed system, we can require any subset of processes
to attain a goal, irrespective of the behavior of the remaining processes. Con-
sider, for example, the cache-coherence protocol for Gigamax verified using
SMV [McMillan 1993]. One of the desired properties is the absence of dead-
locks, where a deadlock state is one in which a processor, saya, is permanently
blocked from accessing a memory cell. This requirement was specified using
the CTL formula

∀ (∃¦ read ∧ ∃¦ write).

The ATL formula

∀ (〈〈a〉〉 ¦ read ∧ 〈〈a〉〉 ¦ write)

captures the informal requirement more precisely. While the CTL formula
only asserts that it is always possible for all processors tocooperateso thata
can eventually read and write (“collaborative possibility”), the ATL formula is
stronger: it guarantees a memory access for processora, no matter what the
other processors in the system do(“adversarial possibility”).

676 R. ALUR ET AL.

(2) While the CTL formula∀ ϕ asserts that the state predicateϕ is an invariant of a
system component irrespective of the behavior of all other components (“adver-
sarial invariance”), the ATL formula [[a]] ϕ (which stands for〈〈6 \ {a}〉〉 ϕ)
states the weaker requirement thatϕ is apossible invariantof the componenta;
that is,a cannot violate ϕ on its own, and therefore the other system compo-
nents may cooperate to achieveϕ (“collaborative invariance”). A necessary
(but not sufficient) condition forϕ to be an invariant of a composite system, is
that every componenta of the system satisfies the ATL formula [[a]] ϕ.

(3) Thereceptivenessof a system whose live computations are given by the LTL
formulaψ is specified by the ATL? formula∀ 〈〈sys〉〉ψ .

(4) Checking therealizability (program synthesis) of an LTL formulaψ corre-
sponds to model checking the ATL? formula 〈〈sys〉〉ψ in a maximal model
that admits all possible inputs and outputs. (We formalize this intuition in
Theorem 5.6.)

(5) Thecontrollabilityof a system whose safe states are given by the state predicate
ϕ is specified by the ATL formula〈〈control〉〉 ϕ. Controller synthesis, then,
corresponds to model checking of this formula. More generally, for an LTL
formulaψ , the ATL? requirement〈〈control〉〉ψ asserts that the controller has a
strategy to ensure the satisfaction ofψ .

Notice that ATL is better suited for compositional reasoning than CTL. For in-
stance, if a componenta satisfies the CTL formula∃¦ ϕ, we cannot conclude that a
composite system that containsa as a component, also satisfies∃¦ϕ. On the
other hand, ifa satisfies the ATL formula〈〈a〉〉 ¦ ϕ, then so does the composite
system.

The model-checking problem for alternating-time temporal logics requires the
computation of winning strategies. In models without fairness constraints, all games
that arise in ATL model checking arefinite reachability games. Over Kripke struc-
tures, existential reachability (∃¦) can be checked by iterating the existential next-
time operator∃ f; universal reachability (∀¦), by iterating the universal next∀ f.
Similarly, over turn-based synchronous game structures, alternating reachability
(〈〈A〉〉¦) can be checked by iterating an appropriate mix of∃ f (whenever a player
in A determines the successor state) and∀ f (whenever a player in6\A determines
the successor state). Over general concurrent game structures, the next-time oper-
ators∃ f and∀ f need to be generalized to a game-based next,〈〈A〉〉 fϕ, which
characterizes the states from which the players inA can cooperate to ensure that
the immediate successor state satisfiesϕ. The operator〈〈A〉〉 f can be computed in
time linear in the size of the game structure,1 and iterated a linear number of times
to compute〈〈A〉〉¦. This gives a linear-time model-checking procedure for ATL,
and indicates how symbolic model checkers for CTL can be modified to check ATL
specifications.

1 Two remarks about complexity are in order, the first well-known, the second particular to concurrent
games. First, the number of states, in Kripke as well as game structures, is typically exponential in
the high-level system description, for example, if the system description involves Boolean variables.
Second, while for system descriptions with Boolean variables, the computation of∃◦ is in NP (Boolean
satisfiability), and∀◦ is in co-NP (Boolean validity), the computation of〈〈A〉〉◦may require PSPACE
(quantified Boolean formulas) or even NEXPTIME (Henkin-quantified Boolean formulas), already
in the restricted case of two players [de Alfaro et al. 2000, 2001b].

Alternating-Time Temporal Logic 677

In models with weak-fairness constraints, ATL model checking requires the
solution ofinfinitegames, namely, games whose winning condition is a single Rabin
pair. Consequently, the model-checking complexity for ATL with weak-fairness
constraints is polynomial in the size of the game structure, namely,O(m2 · w3 · `)
for a game structure withm transitions,w weak-fairness constraints, and a formula
of length`. In the special case ofturn-based asynchronousgame structures, the
only fairness constraints are on the scheduler, to ensure the fair selection of players.
In this case, the winning condition simplifies to a B¨uchi condition, and the ATL
model-checking problem can be solved in timeO(n · m · k2 · `) for a turn-based
asynchronous game structure withn states,m transitions, andk players, and a
formula of length̀ . In models with strong-fairness constraints, ATL model checking
requires solving games where the winning condition is a Boolean combination of
Büchi conditions, and can be done in PSPACE, or alternatively, in timemO(w) ·`, for
a game structure of sizemwith w fairness constraints, and a formula of length`. The
model-checking problem for ATL? is closely related to the realizability problem
for LTL, and therefore much harder, namely, complete for 2EXPTIME.

The article is organized as follows. Section 2 defines concurrent game structures
and considers several special cases. Section 3 defines the alternating-time tempo-
ral logics ATL, Fair ATL, and ATL?. Section 4 presents symbolic model-checking
procedures, and Section 5 establishes complexity bounds on model checking for
ATL, Fair ATL, and ATL?. In Section 6, we discuss more general ways of introduc-
ing game quantifiers in temporal logics. Specifically, we define an alternating-time
µ-calculus and a temporal game logic, and study their relationship to ATL and
ATL ?. Finally, Section 7 considers models in which individual players have only
partial information about the global state of the system. We show that in this case
the model-checking problem for ATL is generally undecidable, and we identify a
special case that is decidable in exponential time.

2. Concurrent Game Structures

We model compositions of open systems as concurrent game structures. While
in Kripke structures, a state transition represents a step of a closed system, in
a concurrent game structure, a state transition results from choices made by the
system components and the environment, and represents simultaneous steps by the
components and the environment.

2.1. DEFINITION. A (concurrent) game structureis a tuple S=〈k, Q,5,
π, d, δ〉 with the following components:r A natural numberk≥ 1 of players. We identify the players with the numbers

1, . . . , k.r A finite setQ of states.r A finite set5 of propositions(also calledobservables).r For each stateq∈ Q, a setπ (q)⊆5 of propositions true atq. The functionπ is
calledlabeling(or observation) function.r For each playera∈ {1, . . . , k} and each stateq∈ Q, a natural numberda(q)≥ 1
of moves available at stateq to playera. We identify the moves of playera at
stateq with the numbers 1, . . . ,da(q). For each stateq∈ Q, amove vectorat q
is a tuple〈 j1, . . . , jk〉 such that 1≤ ja≤ da(q) for each playera. Given a state

678 R. ALUR ET AL.

q∈ Q, we write D(q) for the set{1, . . . ,d1(q)} × · · · × {1, . . . ,dk(q)} of move
vectors. The functionD is calledmove function.r For each stateq∈ Q and each move vector〈 j1, . . . , jk〉 ∈ D(q), a state
δ(q, j1, . . . , jk)∈ Q that results from stateq if every player a∈ {1, . . . , k}
chooses moveja. The functionδ is calledtransition function.

The number of states of the structureS is n= |Q|. Thenumber of transitionsof S
is m= ∑q∈Q d1(q)×· · ·×dk(q), that is, the total number of elements in the move
function D. Note that unlike in Kripke structures, the number of transitions is not
bounded byn2. For a fixed alphabet5 of propositions, the size ofS is O(m).

For two statesq andq′, we say thatq′ is asuccessorof q if there is a move vector
〈 j1, . . . , jk〉 ∈ D(q) such thatq′ = δ(q, j1, . . . , jk). Thus,q′ is a successor ofq iff
whenever the game is in stateq, the players can choose moves so thatq′ is the next
state. Acomputationof S is an infinite sequenceλ=q0,q1,q2, . . . of states such
that for all positionsi ≥ 0, the stateqi+1 is a successor of the stateqi . We refer to
a computation starting at stateq as aq-computation. For a computationλ and a
positioni ≥ 0, we useλ[i], λ[0, i], andλ[i,∞] to denote thei th state ofλ, the finite
prefixq0,q1, . . . ,qi of λ, and the infinite suffixqi ,qi+1, . . . of λ, respectively.

Example2.1. Consider a system with two processes,a andb. The processa
assigns values to the Boolean variablex. Whenx= false, thena can leave the
value ofx unchanged or change it totrue. Whenx= true, thena leaves the value
of x unchanged. In a similar way, the processb assigns values to the Boolean
variabley. Wheny= false, thenb can leave the value ofy unchanged or change
it to true. Wheny= true, thenb leaves the value ofy unchanged. We model the
synchronous composition of the two processes by the following concurrent game
structureSxy=〈k, Q,5, π,d, δ〉:r k= 2. Player 1 represents processa, and player 2 represents processb.r Q={q,qx,qy,qxy}. The stateq corresponds tox= y= false, the stateqx cor-

responds tox= trueandy= false, andqy andqxy have similar interpretations.r 5={x, y}. The values of both variables are observable.r π (q)=∅, π (qx)={x}, π (qy)={y}, andπ (qxy)={x, y}.
• —d1(q)= d1(qy)= 2 andd1(qx)= d1(qxy)= 1. In statesq and qy, move 1 of

player 1 leaves the value ofx unchanged, and move 2 changes the value ofx.
In statesqx andqxy, player 1 has only one move, namely, to leave the value
of x unchanged.

—d2(q)= d2(qx)= 2 andd2(qy)= d2(qxy)= 1. In statesq and qx, move 1 of
player 2 leaves the value ofy unchanged, and move 2 changes the value ofy.
In statesqy andqxy, player 2 has only one move, which leaves the value ofy
unchanged.

• —Stateq has four successors:δ(q, 1, 1)=q, δ(q, 1, 2)=qy, δ(q, 2, 1)=qx, and
δ(q, 2, 2)=qxy.

—Stateqx has two successors:δ(qx, 1, 1)=qx andδ(qx, 1, 2)=qxy.
—Stateqy has two successors:δ(qy, 1, 1)=qy andδ(qy, 2, 1)=qxy.
—Stateqxy has one successor:δ(qxy, 1, 1)=qxy.

The infinite sequencesq,q,qx,qx,qx,qωxy andq,qy,qy,qωxy andq,qωxy are three
(out of infinitely many)q-computations of the game structureSxy.

Alternating-Time Temporal Logic 679

Now suppose that processb can changey from false to true only whenx is
alreadytrue. The resulting game structureS′xy differs from Sxy only in the move
function, namely,d′2(q)= 1. Whileq,q,qx,qx,qx,qωxy is aq-computation ofS′xy,
the sequencesq,qy,qy,qωxy andq,qωxy are not.

Third, suppose that processb can changey from falseto trueeither whenx is al-
readytrue, or when simultaneouslyx is set totrue. The resulting game structureS′′xy

differs fromSxy only in the transition function, namely,δ′′(q, 1, 2)=q. In stateq,
the first move of player 2 means “leavey unchanged” as before, but the second
move of player 2 now means “changey if player 1 simultaneously changesx; other-
wise, leavey unchanged.” Note that this corresponds to a Mealy-type synchronous
composition of the processesa andb, whereb reacts to the choice ofa within a
single state transition of the system. The sequencesq,q,qx,qx,qx,qωxy andq,qωxy

areq-computations ofS′′xy, butq,qy,qy,qωxy is not.
Fourth, suppose we consider processa on its own, as an open system with local

variablex and external variabley. In this case, we have again two players, player 1
representing processa as before, but player 2 now representing the environment.
Assume that the environment may, in every state, change the value ofy arbitrarily
but independently of how processa updatesx. The resulting game structureS+xy
differs fromSxy in the move and transition functions:r d+2 (q)= d+2 (qx)= d+2 (qy)= d+2 (qxy)= 2. In every state, the first move of player 2

setsy to false, and the second move setsy to true.
• —Stateq has four successors:δ+(q, 1, 1)=q, δ+(q, 1, 2)=qy, δ+(q, 2, 1)=qx,

andδ+(q, 2, 2)=qxy.
—Stateqx has two successors:δ+(qx, 1, 1)=qx andδ+(qx, 1, 2)=qxy.
—Stateqy has four successors:δ+(qy, 1, 1)=q,δ+(qy, 1, 2)=qy,δ+(qy, 2, 1)=

qx, andδ+(qy, 2, 2)=qxy.
—Stateqxy has two successors:δ+(qxy, 1, 1)=qx andδ+(qxy, 1, 2)=qxy.

Note thatS+xy has strictly moreq-computations thanSxy.
Finally, consider again processa on its own, but this time with an environment

that, in every state, can change the value ofy arbitrarily, even dependent of how
processa updatesx. This is a more powerful environment than in the previous case.
The resulting game structureS∗xy has the following move and transition functions:r d∗2(q)= d∗2(qx)= d∗2(qy)= d∗2(qxy)= 4. In every state, the four moves of player 2

correspond to the four Boolean functions that choose the next value ofydependent
on the next value ofx: move 1 setsy to false, move 2 setsy to true, move 3 sets
y to the next value ofx, and move 4 setsy to the complement of the next
value ofx.

• —δ∗(q, 1, 1)= δ∗(q, 1, 3)=q, δ∗(q, 1, 2)= δ∗(q, 1, 4)=qy, δ∗(q, 2, 1)=
δ∗(q, 2, 4)=qx, andδ∗(q, 2, 2)= δ∗(q, 2, 3)=qxy.

—δ∗(qx, 1, 1)= δ∗(qx, 1, 4)=qx andδ∗(qx, 1, 2)= δ∗(qx, 1, 3)= qxy.
—δ∗(qy, 1, 1)= δ∗(qy, 1, 3)=q, δ∗(qy, 1, 2)= δ∗(qy, 1, 4)=qy, δ∗(qy, 2, 1)=
δ∗(qy, 2, 4)=qx, andδ∗(qy, 2, 2)= δ∗(qy, 2, 3)=qxy.

—δ∗(qxy, 1, 1)= δ∗(qxy, 1, 4)=qx andδ∗(qxy, 1, 2)= δ∗(qxy, 1, 3)=qxy.

While S∗xy has the sameq-computations asS+xy, they describe very different games.
For example, in stateq of the game structureS∗xy, the environment (player 2) can
choose a move (namely, move 3) that ensures that in the next state, both variables

680 R. ALUR ET AL.

FIG. 1. A turn-based synchronous game structure modeling a train controller.

x andy have the same value. In stateq of the game structureS+xy, the environment
has no such choice. Consequently, only inS∗xy has the environment a strategy to
keepx andy equal at all times.

A Kripke structure(or labeled transition system) is the special case of a game
structure with a single player, that is,k= 1. In this special case, the sole player 1,
which represents a closed system, can always choose the successor state on its own.
If the numberd1(q) of moves of player 1 at a stateq is greater than 1, then the
choice of successor state atq is nondeterministic.

We now define two special cases of game structures that commonly arise in the
synchronous composition of open systems.

2.1.1. Turn-Based Synchronous Game Structures.In a turn-based synchronous
game structure, at every state, only a single player has a choice of moves. For-
mally, a game structureS=〈k, Q,5, π,d, δ〉 is turn-based synchronousif for
every stateq∈ Q, there exists a playeraq ∈ {1, . . . , k} such thatdb(q)= 1 for all
playersb∈ {1, . . . , k} \ {aq}. We say that at stateq, it is the turn of player aq.
Equivalently, a turn-based synchronous game structure can be viewed as a tuple
S=〈k, Q,5, π, σ, R〉, whereσ : Q→{1, . . . , k} is a function that maps each state
q to the playeraq, andR⊆ Q × Q is a total transition relation. Thenq′ is a suc-
cessor ofq iff R(q,q′). Note that in the turn-based synchronous case, the number
of transitions ism= |R| =O(n2), wheren is the number of states. Also note that
every 1-player structure (Kripke structure) is turn-based synchronous.

Example2.2. Consider the turn-based synchronous game structureStrain=
〈k, Q,5, π,d, δ〉 shown in Figure 1, which describes a protocol for a train en-
tering a railroad crossing:

r k= 2. Player 1 represents the train, and player 2 the gate controller.r Q={q0,q1,q2,q3}.r 5={out of gate, in gate, request, grant}.
• —π (q0)={out of gate}. The train is outside the gate.

—π (q1)={out of gate, request}. The train is still outside the gate, but has
requested to enter.

—π (q2)={out of gate, grant}. The controller has given the train permission to
enter the gate.

—π (q3)={in gate}. The train is in the gate.

Alternating-Time Temporal Logic 681

• —d1(q0)= 2 andd2(q0)= 1. At q0, it is the train’s turn. The train can choose to
either (move 1) stay outside the gate, inq0, or (move 2) request to enter the
gate and proceed toq1.

—d1(q1)= 1 andd2(q1)= 3. At q1, it is the controller’s turn. The controller
can choose to either (move 1) grant the train permission to enter the gate,
or (move 2) deny the train’s request, or (move 3) delay the handling of the
request.

—d1(q2)= 2 andd2(q2)= 1. At q2, it is the train’s turn. The train can choose to
either (move 1) enter the gate or (move 2) relinquish its permission to enter
the gate.

—d1(q3)= 1 andd2(q3)= 2. At q3, it is the controller’s turn. The controller can
choose to either (move 1) keep the gate closed or (move 2) reopen the gate to
new requests.

• —δ(q0, 1, 1)=q0 andδ(q0, 2, 1)=q1.
—δ(q1, 1, 1)=q2 andδ(q1, 1, 2)=q0 andδ(q1, 1, 3)=q1.
—δ(q2, 1, 1)=q3 andδ(q2, 2, 1)=q0.
—δ(q3, 1, 1)=q3 andδ(q3, 1, 2)=q0.

Two states of the system,q1 andq3, are controlled; that is, when a computation
is in one of these states, the controller chooses the next state. The other two states
are uncontrolled, and the train chooses successor states. This gives the following
mapping of states to players:σ (q0)= σ (q2)= 1 andσ (q1)= σ (q3)= 2.

2.1.2. Moore Synchronous Game Structures.In a Moore synchronous game
structure, the state space is the product of local state spaces, one for each player.
In every state, all players proceed simultaneously. Each player chooses its next
local state, possibly dependent on the current local states of the other players but
independent of the moves chosen by the other players. Formally, a game struc-
ture S=〈k, Q,5, π,d, δ〉 is Moore synchronousif the following two conditions
are satisfied:

(1) The state space has the formQ= Q1× · · · × Qk.
(2) For each playera∈ {1, . . . , k}, each state q∈ Q, and each move

j ∈ {1, . . . ,da(q)}, there exists a state componentδa(q, j) such that
δ(q, j1, . . . , jk)=〈δ1(q, j1), . . . , δk(q, jk)〉 for all states q∈ Q and move
vectors〈 j1, . . . , jk〉 ∈ D(q).

Thus, every global stateq∈ Q is ak-tupleq=〈q1, . . . ,qk〉 of state componentsqa,
each representing the local state of playera. Eachδa, for playera, can be viewed
as a local transition function that determines the next local state of playera.

Example2.3. The concurrent game structureSxy from Example 2.1 is Moore
synchronous. To see this, note that its state spaceQ={q,qx,qy,qxy} can be viewed
as the product ofQ1={u, ux} and Q2={v, vy} with q=〈u, v〉, qx =〈ux, v〉,
qy=〈u, vy〉, andqxy=〈ux, vy〉. The local transition functions are as follows:r δ1(q, 1)= δ1(qy, 1)= u andδ1(q, 2)= δ1(qy, 2)= δ1(qx, 1)= δ1(qxy, 1)= ux.r δ2(q, 1)= δ2(qx, 1)= v andδ2(q, 2)= δ2(qx, 2)= δ2(qy, 1)= δ2(qxy, 1)= vy.

Also the game structuresS′xy andS+xy from Example 2.1 are Moore synchronous,
but the game structuresS′′xy andS∗xy are not. ForS′′xy, this is because the ability of
processb to change the value ofy depends on what processa does in the same

682 R. ALUR ET AL.

step tox. In S∗xy, the environment has this Mealy-type power, of looking at the next
value ofx before deciding on the next value ofy.

Moore synchronous game structures arise if a system is described as a syn-
chronous composition of Moore machines. More general concurrent game struc-
tures can capture the synchronous composition of Mealy machines, the composi-
tion of Reactive Modules [Alur and Henzinger 1999], and generalizations thereof
[de Alfaro et al. 2000, 2001b].

2.2. FAIRNESS CONSTRAINTS. When closed systems are modeled as Kripke
structures, to establish liveness properties, it is often necessary to rule out certain
(infinite) computations that ignore enabled moves forever. For instance, in an asyn-
chronous system consisting of many processes, we may like to restrict attention
to the computations in which all the processes take infinitely many steps. Such
assumptions can be incorporated in the model by adding fairness constraints to
Kripke structures. Motivated by similar concerns, we define fairness constraints for
game structures.

Consider a concurrent game structureS=〈k, Q,5, π,d, δ〉. A fairness con-
straint 〈a, γ 〉 consists of a playera∈ {1, . . . , k} and a functionγ that maps every
stateq∈ Q to a (possibly empty) subset of the moves available at stateq to playera,
that is,γ (q)⊆{1, . . . ,da(q)}. A fairness constraint partitions the computations of
Sinto computations that are fair and computations that are not fair. Consider a com-
putationλ=q0,q1,q2, . . . of the game structureSand a fairness constraint〈a, γ 〉.
We say that〈a, γ 〉 is enabledat positioni ≥ 0 of λ if γ (qi) 6= ∅. We say that〈a, γ 〉
is takenat positioni of λ if there is a move vector〈 j1, . . . , jk〉 ∈ D(qi) such that
(1) ja ∈ γ (qi) and (2)δ(qi , j1, . . . , jk)=qi+1. We elaborate on two interpretations
for fairness constraints:r The computationλ is weakly〈a, γ 〉-fair if either there are infinitely many posi-

tions ofλ at which〈a, γ 〉 is not enabled, or there are infinitely many positions of
λ at which〈a, γ 〉 is taken.r The computationλ is strongly〈a, γ 〉-fair if either there are only finitely many
positions ofλ at which〈a, γ 〉 is enabled, or there are infinitely many positions
of λ at which〈a, γ 〉 is taken.

With these standard definitions, strong fairness implies weak fairness.
A weak-fairness condition0w for the game structureS is a set of fairness con-

straints that are interpreted in the weak manner: a computationλ of S is0w-fair if
λ is weakly〈a, γ 〉-fair for all fairness constraints〈a, γ 〉 ∈0w. Similarly, astrong-
fairness condition0s for the game structureS is a set of fairness constraints that
are interpreted in the strong manner: a computationλ of S is0s-fair if λ is strongly
〈a, γ 〉-fair for all fairness constraints〈a, γ 〉 ∈0s. Note that for every fairness con-
dition0 (weak or strong), every finite prefix of a computation ofScan be extended
to a computation that is0-fair.

Example2.4. Consider the concurrent game structureSxy from Example 2.1
and the fairness constraint〈2, γ 〉 with γ (q)= γ (qx)={2} andγ (qy)= γ (qxy)=∅.
Only the computations ofSxy in which the value of the variabley is eventuallytrue
are (weakly or strongly)〈2, γ 〉-fair. This is because, as long as the value ofy is
false, the game is either in stateq or in stateqx. Therefore, as long as the value ofy is
false, the fairness constraint〈2, γ 〉 is enabled. Hence, in a〈2, γ 〉-fair computation,

Alternating-Time Temporal Logic 683

〈2, γ 〉will eventually be taken; that is, player 2 will eventually choose move 2, thus
changing the value ofy to true.

As fairness enables us to exclude some undesirable computations of a game
structure, it can be used to model the asynchronous (or interleaving) composition
of open systems.

2.2.1. Turn-Based Asynchronous Game Structures.In a turn-based asyn-
chronous game structure, one player is designated to represent ascheduler. If
the set of players is{1, . . . , k}, we assume (without loss of generality) that the
scheduler is always playerk. In every state, the scheduler selects one of the other
k − 1 players, which represent—as usual—the components of the system and the
environment. The selected player then determines the next state. Formally, a game
structureS=〈k, Q,5, π,d, δ〉 is turn-based asynchronousif k≥ 2 and for every
stateq∈ Q, the following two conditions are satisfied:

(1) dk(q)= k− 1.
(2) For all move vectors〈 j1, . . . , jk〉, 〈 j ′1, . . . , j ′k〉 ∈ D(q), if jk= j ′k and ja= j ′a for

a= jk, thenδ(q, j1, . . . , jk)= δ(q, j ′1, . . . , j ′k).

We say that playera∈ {1, . . . , k − 1} is scheduledwhenever playerk (the sched-
uler) chooses movea. The move chosen by the scheduled player completely de-
termines the next state. Equivalently, a turn-based asynchronous game structure
can be viewed as a tupleS=〈Q,5, π, R1, . . . , Rk−1〉, where eachRa⊆ Q × Q
is a total transition relation. Whenever playera is scheduled in a stateq, then the
next state is chosen so thatRa(q,q′). We call eachRa a component transition re-
lation. Note that in the turn-based asynchronous case, the number of transitions is
m= ∑1≤a<k |Ra| =O(k · n2), wheren is the number of states.

We can use fairness constraints to ensure that the scheduler is fair. Specifi-
cally, there arek − 1 fairness constraints of the form〈k, γa〉, one for each player
a∈ {1, . . . , k − 1}. The functionγa, for a∈ {1, . . . , k − 1}, is defined such that
γa(q)={a} for every stateq∈ Q. If interpreted in the weak manner, then the fair-
ness constraint〈k, γa〉 ensures that the scheduler does not neglect playera forever.
Note that the choice of selecting a playera is always available to the scheduler,
and thus, the strong interpretation of the fairness constraints〈k, γa〉 coincides with
its weak interpretation. We therefore associate with every turn-based asynchronous
game structureS the weak-fairness condition0w ={〈k, γ1〉, . . . , 〈k, γk−1〉}.

Example2.5. As an example of a turn-based asynchronous game structure
consider the modeling of the sender process of the alternating-bit protocol shown
in Figure 2. The sender is player 1, the environment is player 2, and the scheduler is
player 3. In the initial stateq0, if the scheduler selects the sender, it chooses either
(move 1) to stay inq0 or (move 2) to proceed toq1. The transition fromq0 to q1
corresponds to sending a message tagged with the bit 0. Inq0, if the scheduler selects
the environment, it has no choice of moves, and the game stays inq0. In stateq1, the
sender waits to receive an acknowledgment. If the sender is scheduled, it continues
to wait inq1. If the environment is scheduled, the transition represents the reception
of an acknowledgment by the sender. If the acknowledgment bit is 0, the sender
proceeds to toggle its bit by moving to stateq2, and if the acknowledgment bit
is 1, the sender attempts to resend the message by moving back to stateq0. This is

684 R. ALUR ET AL.

FIG. 2. A turn-based asynchronous game structure modeling a message transmission protocol.

modeled by letting the environment, when scheduled in stateq1, choose betweenq2
(move 1) andq0 (move 2). Stateq2 is similar to stateq0, andq3 is similar toq1.

Formally,k= 3 andQ={q0,q1,q2,q3}. The set5 contains four propositions:
send0is true in stateq0, wait0 is true inq1, send1is true inq2, andwait1 is true
in q3. The move and transition functions are defined as follows:

• —d1(q0)= d1(q2)= 2 andd1(q1)= d1(q3)= 1.
—d2(q0)= d2(q2)= 1 andd2(q1)= d2(q3)= 2.
—d3(q0)= d3(q1)= d3(q2)= d3(q3)= 2.
• —δ(q0, 1, 1, 1)= δ(q0, 1, 1, 2)= δ(q0, 2, 1, 2)=q0 andδ(q0, 2, 1, 1)=q1.

—δ(q1, 1, 1, 2)=q2 and δ(q1, 1, 2, 2)=q0 and δ(q1, 1, 1, 1)= δ(q1, 1, 2, 1) =
q1.

—δ(q2, 1, 1, 1)= δ(q2, 1, 1, 2)= δ(q2, 2, 1, 2)=q2 andδ(q2, 2, 1, 1)= q3.
—δ(q3, 1, 1, 2)=q2 and δ(q3, 1, 2, 2)=q0 and δ(q3, 1, 1, 1)= δ(q3, 1, 2, 1) =

q3.

This gives rise to the following component transition relations:r R1={(q0,q0), (q0,q1), (q1,q1), (q2,q2), (q2,q3), (q3,q3)}.r R2={(q0,q0), (q1,q2), (q1,q0), (q2,q2), (q3,q0), (q3,q2)}.
There are two weak-fairness constraints, in order to ensure that the scheduler
(player 3) cannot neglect the sender nor the environment forever. The weak-fairness
constraint〈3, γ1〉 guarantees that if the sender is ready to send, in stateq0 or q2,
it will eventually send; the weak-fairness constraint〈3, γ2〉 guarantees that if the
sender waits for an acknowledgment, in stateq1 or q3, it will eventually receive
one:r γ1(q0)= γ1(q1)= γ1(q2)= γ1(q3)={1}.r γ2(q0)= γ2(q1)= γ2(q2)= γ2(q3)={2}.
In this example, additional fairness constraints are desirable to ensure progress of
the protocol. The assumption that the environment (player 2) cannot keep send-
ing incorrect acknowledgments forever, can be modeled by the strong-fairness
constraints〈2, γe〉 and〈2, γ ′e〉:r γe(q1)={1} andγe(q0)= γe(q2)= γe(q3)=∅.r γ ′e(q3)={2} andγ ′e(q0)= γ ′e(q1)= γ ′e(q2)=∅.

Alternating-Time Temporal Logic 685

3. Alternating-Time Temporal Logic

3.1. ATL SYNTAX . The temporal logic ATL (Alternating-Time Temporal Logic)
is defined with respect to a finite set5of propositionsand a finite set6={1, . . . , k}
of players. An ATL formula is one of the following:

(S1) p, for propositionsp∈5.
(S2) ¬ϕ or ϕ1 ∨ ϕ2, whereϕ, ϕ1, andϕ2 are ATL formulas.
(S3) 〈〈A〉〉 fϕ, 〈〈A〉〉 ϕ, or 〈〈A〉〉ϕ1Uϕ2, whereA⊆6 is a set of players, andϕ,

ϕ1, andϕ2 are ATL formulas.

The operator〈〈 〉〉 is a path quantifier, and f (“next”), (“always”), and U
(“until”) are temporal operators. The logic ATL is similar to the branching-time
temporal logic CTL, only that path quantifiers are parameterized by sets of players.
Sometimes we write〈〈a1, . . . ,al 〉〉 instead of〈〈{a1, . . . ,al }〉〉, and〈〈 〉〉 instead of
〈〈∅〉〉. Additional Boolean connectives are defined from¬ and∨ in the usual manner.
Similar to CTL, we write〈〈A〉〉 ¦ ϕ for 〈〈A〉〉trueUϕ.

3.2. ATL SEMANTICS. We interpret ATL formulas over the states of a concur-
rent game structureS that has the same propositions and players. The labeling of
the states ofS with propositions is used to evaluate the atomic formulas of ATL.
The logical connectives¬ and∨ have the standard interpretation. To evaluate a
formula of the form〈〈A〉〉ψ at a stateq of S, consider the following game between a
protagonist and an antagonist. The game proceeds in an infinite sequence of rounds,
and after each round, the position of the game is a state ofS. The initial position
is q. Now consider the game in some positionu. To update the position, first the
protagonist chooses for every playera∈ A a move ja ∈ {1, . . . ,da(u)}. Then,
the antagonist chooses for every playerb∈6\A a move jb∈ {1, . . . ,db(u)}, and
the position of the game is updated toδ(u, j1, . . . , jk). In this way, the game con-
tinues forever and produces a computation. The protagonist wins the game if the
resulting computation satisfies the subformulaψ , read as a linear temporal formula
whose outermost operator isf, , or U ; otherwise, the antagonist wins. The ATL
formula〈〈A〉〉ψ is satisfied at the stateq iff the protagonist has a winning strategy
in this game.

In order to define the semantics of ATL formally, we first define the notion of
strategies. Consider a game structureS=〈k, Q,5, π,d, δ〉. As before, we write
6={1, . . . , k} for the set of players. Astrategyfor playera∈6 is a function fa
that maps every nonempty finite state sequenceλ∈ Q+ to a natural number such
that if the last state ofλ is q, then fa(λ)≤ da(q). Thus, the strategyfa determines
for every finite prefixλ of a computation a movefa(λ) for playera. Each strategy
fa for playera induces a set of computations that playera can enforce. Given a
stateq∈ Q, a setA⊆{1, . . . , k} of players, and a setFA={ fa|a∈ A} of strategies,
one for each player inA, we define theoutcomesof FA from q to be the set
out(q, FA) of q-computations that the players inA enforce when they follow the
strategies inFA; that is, a computationλ=q0,q1,q2, . . . is in out(q, FA) if q0=q
and for all positionsi ≥ 0, there is a move vector〈 j1, . . . , jk〉 ∈ D(qi) such that
(1) ja= fa(λ[0, i]) for all playersa∈ A, and (2)δ(qi , j1, . . . , jk)=qi+1.

We can now turn to a formal definition of the semantics of ATL. We writeS,q |=ϕ
to indicate that the stateq satisfies the formulaϕ in the structureS. WhenS is clear
from the context, we omit it and writeq |=ϕ. The satisfaction relation|= is defined,

686 R. ALUR ET AL.

for all statesq of S, inductively as follows:r q |= p, for propositionsp∈5, iff p∈π (q).r q |=¬ϕ iff q 6|=ϕ.r q |=ϕ1 ∨ ϕ2 iff q |=ϕ1 or q |=ϕ2.r q |= 〈〈A〉〉 fϕ iff there exists a setFA of strategies, one for each player inA, such
that for all computationsλ∈ out(q, FA), we haveλ[1] |=ϕ.r q |= 〈〈A〉〉 ϕ iff there exists a setFA of strategies, one for each player inA, such
that for all computationsλ∈ out(q, FA) and all positionsi ≥ 0, we haveλ[i] |=ϕ.r q |= 〈〈A〉〉ϕ1Uϕ2 iff there exists a setFA of strategies, one for each player inA,
such that for all computationsλ∈ out(q, FA), there exists a positioni ≥ 0 such
thatλ[i] |=ϕ2 and for all positions 0≤ j < i , we haveλ[j] |=ϕ1.

Note that the next-time operatorf is local:q |= 〈〈A〉〉 fϕ iff for every playera∈ A,
there exists a moveja ∈ {1, . . . ,da(q)} such that for all playersb∈6 \ Aand moves
jb∈ {1, . . . ,db(q)}, we haveδ(q, j1, . . . , jk) |=ϕ.

Example3.1. Consider the stateq of the concurrent game structureSxy from
Example 2.1. We haveSxy,q |= 〈〈2〉〉 fy, because player 2 can choose move 2
to set y to true, but S′xy,q 6|= 〈〈2〉〉 fy, because in game structureS′xy no such
move is available to player 2. We haveSxy,q 6|= 〈〈2〉〉 f(x= y), because if player 2
chooses move 1, then player 1 can choose move 2 to achievex 6= y, and if player 2
chooses move 2, then player 1 can choose move 1 with the same result. How-
ever,S′′xy,q |= 〈〈2〉〉 f(x= y), because in game structureS′′xy player 2 can choose
move 2 to ensure thatx andy will have equal values in the next state, which may
be q or qxy, depending on whether player 1 chooses move 1 or move 2. Simi-
larly, S+xy,q 6|= 〈〈2〉〉 f(x= y) but S∗xy,q |= 〈〈2〉〉 f(x= y), which confirms that the
environment is more powerful in modelS∗xy than in modelS+xy.

It is often useful to express an ATL formula in a dual form. For this purpose, we
use the path quantifier [[A]], for a setA of players. While the ATL formula〈〈A〉〉ψ
intuitively means that the players inA can cooperate to makeψ true (they can “en-
force”ψ), the dual formula [[A]]ψ means that the players inA cannot cooperate to
makeψ false (they cannot “avoid”ψ). Using the path quantifier [[]], we can write,
for a setA of players and an ATL formulaϕ, the formula [[A]] fϕ for¬〈〈A〉〉 f¬ϕ,
the formula [[A]] ϕ for ¬〈〈A〉〉 ¦¬ϕ, and [[A]] ¦ϕ for ¬〈〈A〉〉 ¬ϕ (similar
abbreviations can be defined for the dual of theU operator). Let us make this
more precise. For a stateq∈ Q and a set3 of q-computations, we say that the
players in A can enforcethe set3 of computations if there exists a setFA of
strategies, one for each player inA, such thatout(q, FA)⊆3. Dually, we say
that the players inA can avoid the set3 of computations if there exists a set
FA of strategies, one for each player inA, such that3∩ out(q, FA)=∅. If the
players inA can enforce a set3 of computations, then the players in6 \ A can-
not avoid3. Therefore,q |= 〈〈A〉〉ψ impliesq |= [[6 \ A]]ψ . The converse of this
statement is not necessarily true. To see this, consider the concurrent game struc-
ture with k= 2 andQ={q,q1,q2,q3,q4}. Let5={p} andπ (q1)=π (q4)={p}
andπ (q2)=π (q3)=∅. Let d1(q)= d2(q)= 2 andδ(q, 1, 1)=q1, δ(q, 1, 2)=q2,
δ(q, 2, 1)=q3, andδ(q, 2, 2)=q4. Thenq 6|= 〈〈1〉〉 fp andq |= [[2]] fp; that is, in
stateq, player 1 does not have a strategy to enforcep in the next state, and player 2
does not have a strategy to avoidp in the next state.

Alternating-Time Temporal Logic 687

Example3.2. Recall the turn-based synchronous game structureStrain from
Example 2.2. Recall that in a turn-based synchronous game structure, every state can
be labeled with a player that chooses the successor state. In this simplified setting,
to determine the truth of a formula with path quantifier〈〈A〉〉, we can consider the
following simpler version of the ATL game, which corresponds to a traditional
game played on AND–OR graphs. At a stateu, if it is the turn of a player inA,
then the protagonist updates the position to some successor ofu, and otherwise,
the antagonist updates the position to some successor ofu. Therefore, every state
of Strain satisfies the following ATL formulas.

(1) Whenever the train is out of the gate and does not have a grant to enter the gate,
the controller can prevent it from entering the gate:

〈〈 〉〉 ((out of gate∧¬grant)→〈〈ctr〉〉 out of gate).

For readability, we writectr for the constant 2, and similarly,train for the
constant 1.

(2) Whenever the train is out of the gate, the controller cannot force it to enter the
gate:

〈〈 〉〉 (out of gate→ [[ctr]] out of gate).

(3) Whenever the train is out of the gate, the train and the controller can cooperate
so that the train will enter the gate:

〈〈 〉〉 (out of gate→〈〈ctr, train〉〉 ¦ in gate).

(4) Whenever the train is out of the gate, it can eventually request a grant for
entering the gate, in which case the controller decides whether the grant is
given or not:

〈〈 〉〉 (out of gate→〈〈train〉〉 ¦ (request∧ (〈〈ctr〉〉 ¦grant)∧ (〈〈ctr〉〉 ¬grant))).

(5) Whenever the train is in the gate, the controller can force it out in the next step:

〈〈 〉〉 (in gate→〈〈ctr〉〉 fout of gate).

These natural requirements involve unbounded alternations between universal and
existential path quantification and cannot be stated in CTL or CTL?. Consider the
first two ATL formulas. They provide more information than the CTL formula

∀ (out of gate→∃ out of gate).

While the CTL formula only requires the existence of a computation in which the
train is always out of the gate, the two ATL formulas guarantee that no matter how
the train behaves, the controller can prevent it from entering the gate, and no matter
how the controller behaves, the train can decide to stay out of the gate. (As the train
and the controller are the only players in this example, the third ATL formula is,
overStrain, equivalent to the CTL formula

∀ (out of gate→∃¦ in gate).

The third ATL formula, however, does not have an equivalent CTL formula over
game structures with more than two players, because in general the path quantifier
〈〈1, 2〉〉 is not equivalent to the existential path quantifier of CTL.)

688 R. ALUR ET AL.

3.2.1. Turn-Based Game Structures.It is worth noting that in the special case
of turn-based synchronous as well as turn-based asynchronous game structures, the
players inA can enforce a set3 of computations iff the players in6\A cannot
avoid3. This is the property ofdeterminednessfor turn-based games [B¨uchi and
Landweber 1969; Gurevich and Harrington 1982]; in each state, either the players in
A can win with objective3, or the players not inA can win with the complementary
objective. Therefore, for all statesq of a turn-based synchronous or asynchronous
game structure,q |= 〈〈A〉〉ψ iff q |= [[6\A]]ψ , or equivalently, [[A]] =〈〈6\A〉〉. It fol-
lows that〈〈A〉〉 fϕ = [[6\A]] fϕ=¬〈〈6\A〉〉 f¬ϕ over turn-based synchronous
and asynchronous game structures. Furthermore, over turn-based game structures
we can define the temporal operatorfrom¦, namely,〈〈A〉〉 ϕ = [[6\A]] ϕ=
¬〈〈6\A〉〉 ¦¬ϕ.

3.2.2. Single-Player Structures.Recall that a Kripke structure is a concurrent
game structure with a single player, that is,k= 1. In this case, which is also a special
case of turn-based synchronous, there are only two path quantifiers:〈〈1〉〉= [[]] and
〈〈 〉〉= [[1]]. Then each setout(q, { f1}) of outcomes, for some player-1 strategyf1,
contains a singleq-computation, and each setout(q, ∅) of outcomes contains all
q-computations. Accordingly, the path quantifiers〈〈1〉〉 and〈〈 〉〉 are equal, respec-
tively, to the existential and universal path quantifiers∃ and∀ of the logic CTL.
In other words, over Kripke structures, ATL is identical to CTL. We write, over
arbitrary game structures,∃ for the path quantifier〈〈6〉〉, and∀ for the path quanti-
fier [[6]]. This is because, regardingq |= ∃ψ , all players can cooperate to enforce a
conditionψ iff there exists aq-computation that satisfiesψ . Similarly, regarding
q |= ∀ψ , all players cannot cooperate to avoidψ iff all q-computations satisfyψ .

3.3. FAIR ATL. Fairness constraints rule out certain computations. Conse-
quently, in the presence of fairness constraints, we need to refine the interpretation
of formulas of the form〈〈A〉〉ψ . In particular, in the Fair ATL game, we require the
protagonist to satisfy all fairness constraints for players inA, and we require the
antagonist to satisfy all fairness constraints for players in6\A. This leads us to
the following definition. Consider a fairness condition0 for a game structureS.
A strategy fa for playera is 0-fair if for every computationλ∈ out(q, { fa}) and
every fairness constraint of the form〈a, γ 〉 ∈0, the computationλ is 〈a, γ 〉-fair.

The logic Fair ATL has the same syntax as ATL. The formulas of Fair ATL
are interpreted over a concurrent game structureS, a fairness condition0 for S,
and a stateq of S. The satisfaction relationS, 0,q |=F ϕ (“state q fairly sat-
isfies the formulaϕ in the structureS with respect to fairness condition0”)
for propositions and Boolean connectives is defined as in the case of ATL.
Moreover (bothSand0 are omitted from the satisfaction relation for convenience):

r q |=F 〈〈A〉〉 fϕ iff there exists a setFA of 0-fair strategies, one for each player
in A, such that for all0-fair computationsλ∈ out(q, FA), we haveλ[1] |=F ϕ.r q |=F 〈〈A〉〉 ϕ iff there exists a setFA of 0-fair strategies, one for each player
in A, such that for all0-fair computationsλ∈ out(q, FA) and all positionsi ≥ 0,
we haveλ[i] |=F ϕ.r q |=F 〈〈A〉〉ϕ1Uϕ2 iff there exists a setFA of0-fair strategies, one for each player
in A, such that for all0-fair computationsλ∈ out(q, FA), there exists a position
i ≥ 0 such thatλ[i] |=F ϕ2 and for all positions 0≤ j < i , we haveλ[j] |=F ϕ1.

Alternating-Time Temporal Logic 689

Example3.3. Consider the game structureStrain from Example 2.2. Unless the
controller cooperates with the train, there is no guarantee that the train eventually
enters the gate:

q0 6|= 〈〈train〉〉 ¦ in gate.

So suppose we add a fairness condition0 containing the single fairness constraint
〈2, γc〉, which imposes fairness on the decisions of the controller (player 2) in
stateq1, namely,γc(q1)={1} andγc(q0)= γc(q2)= γc(q3)=∅. If we interpret0 as
a strong-fairness condition, then the train has a strategy to eventually enter the gate:

q0 |=F 〈〈train〉〉 ¦ in gate.

To see this, whenever the train is inq0, let it move toq1. Eventually, due to the
strong-fairness constraint, the controller will move toq2. Then the train can move
toq3. On the other hand, if we interpret0 as a weak-fairness condition, cooperation
between the train and the controller is still required to enter the gate, and the Fair
ATL formula is not satisfied inq0. To see this, note that the train cannot avoid the
weakly〈2, γc〉-fair computationq0,q1,q0,q1,q0,q1, . . .

3.4. ATL?. The logic ATL is a fragment of a more expressive logic called
ATL ?. There are two types of formulas in ATL?: state formulas, whose satisfaction
is related to a specific state, andpath formulas, whose satisfaction is related to a
specific computation. Formally, an ATL? state formula is one of the following:

(S1) p, for propositionsp∈5.
(S2) ¬ϕ or ϕ1 ∨ ϕ2, whereϕ, ϕ1, andϕ2 are ATL? state formulas.
(S3) 〈〈A〉〉ψ , whereA⊆6 is a set of players andψ is an ATL? path formula.

An ATL ? path formula is one of the following:

(P1) An ATL ? state formula.
(P2) ¬ψ orψ1 ∨ ψ2, whereψ , ψ1, andψ2 are ATL? path formulas.
(P3) fψ orψ1Uψ2, whereψ , ψ1, andψ2 are ATL? path formulas.

The logic ATL? consists of the set of state formulas generated by the rules (S1–S3).
The logic ATL? is similar to the branching-time temporal logic CTL?, only that
path quantification is parameterized by players. Additional Boolean connectives
and temporal operators are defined from¬, ∨, f, and U in the usual manner; in
particular,¦ψ = trueUψ and ψ = ¬¦¬ψ . As with ATL, we use the dual path
quantifier [[A]]ψ = ¬〈〈A〉〉¬ψ , and the abbreviations∃= 〈〈6〉〉 and∀= [[6]]. The
logic ATL can be viewed as the fragment of ATL? that consists of all formulas in
which every temporal operator is immediately preceded by a path quantifier.

The semantics of ATL? formulas is defined with respect to a concurrent game
structureS. We writeS, λ |=ψ to indicate that the computationλ of the structure
Ssatisfies the path formulaψ . The satisfaction relation|= is defined, for all states
q and computationsλ of S, inductively as follows:r For state formulas generated by the rules (S1–S2), the definition is the same as

for ATL.r q |= 〈〈A〉〉ψ iff there exists a setFA of strategies, one for each player inA, such
that for all computationsλ∈ out(q, FA), we haveλ |=ψ .r λ |=ϕ for a state formulaϕ iff λ[0] |=ϕ.

690 R. ALUR ET AL.

r λ |=¬ψ iff λ 6|= ψ .r λ |=ψ1 ∨ ψ2 iff λ |=ψ1 or λ |=ψ2.r λ |= fψ iff λ[1,∞] |=ψ .r λ |=ψ1Uψ2 iff there exists a positioni ≥ 0 such thatλ[i,∞] |=ψ2 and for all
positions 0≤ j < i , we haveλ[j,∞] |=ψ1.

For example, the ATL? formula

χ =〈〈a〉〉((¦ ¬req) ∨ (¦grant))

asserts that playera has a strategy to enforce computations in which either only
finitely many requests are sent, or infinitely many grants are given. Such a require-
ment can be expressed neither in CTL? nor in ATL.2 Since both weak and strong
fairness conditions can be expressed within ATL? (provided appropriate proposi-
tions are available; see Section 4.2), there is no need for Fair ATL?.

Remark3.4. In the definitions of ATL and ATL?, the strategy of a player may
depend on an unbounded amount of information, namely, the full history of the
game up to the current position. As we considerfinitegame structures, all involved
games areω-regular. Therefore, the existence of a winning strategy implies the ex-
istence of a winningfinite-statestrategy [Büchi and Landweber 1969; Rabin 1972],
which depends only on a finite amount of information about the history of the game.
It follows that the semantics of ATL and ATL? (over finite game structures) can
be defined, equivalently, using the outcomes of finite-state strategies only. This is
interesting, because a strategy can be thought of as the parallel composition of the
system with a “controller,” which makes sure that the system follows the strategy.
Then, for an appropriate definition of parallel composition, finite-state strategies
can be implemented using, again, finite game structures. Indeed, for the finite reach-
ability games of ATL, it suffices to considermemory-freestrategies [Emerson and
Jutla 1988], which can be implemented as control maps (i.e., controllers without
state). This is not the case for Fair ATL, which gives rise to games with conjunc-
tions of Büchi conditions, nor for ATL?, whose formulas can specify the winning
positions of Streett games [Thomas 1995].

4. Symbolic Model Checking

4.1. ATL SYMBOLIC MODEL CHECKING. Themodel-checking problem for ATL
asks, given a game structureS=〈k, Q,5, π,d, δ〉 and an ATL formulaϕ, for the
set of states inQ that satisfyϕ. We denote the desired set of states by [ϕ]S, or simply
by [ϕ] if the game structureS is understood. As usual, let6={1, . . . , k}. Figure 3
shows asymbolicalgorithm for ATL model checking, which manipulates state sets
of S. The control structure of the algorithm is identical to symbolic algorithms for
CTL model checking [Burch et al. 1992], but the pre-image operator on Kripke
structures used for CTL model checking is replaced by aPre operator on game

2 To see thatχ cannot be expressed in ATL, note that in the case of a single-player structure, the
formulaχ is equivalent to the CTL? formula∃((¦ ¬req) ∨ (¦ grant)), which cannot be expressed
in CTL.

Alternating-Time Temporal Logic 691

foreachϕ′ in Sub(ϕ) do
caseϕ′ = p: [ϕ′] :=Reg(p)
caseϕ′ =¬θ : [ϕ′] := [true] \ [θ]
caseϕ′ = θ1 ∨ θ2: [ϕ′] := [θ1] ∪ [θ2]
caseϕ′ = 〈〈A〉〉 fθ : [ϕ′] :=Pre(A, [θ])
caseϕ′ = 〈〈A〉〉 θ :
ρ := [true]; τ := [θ];
while ρ 6⊆ τ do ρ := τ ; τ :=Pre(A, ρ)∩ [θ] od;
[ϕ′] := ρ

caseϕ′ = 〈〈A〉〉θ1Uθ2:
ρ := [false]; τ := [θ2];
while τ 6⊆ ρ do ρ := ρ ∪ τ ; τ :=Pre(A, ρ)∩ [θ1] od;
[ϕ′] := ρ

end case
od;
return [ϕ].

FIG. 3. ATL symbolic model checking.

structures. More precisely, the algorithm uses the following primitive operations:r The functionSub, when given an ATL formulaϕ, returns a queue of syntactic
subformulas ofϕ such that ifϕ1 is a subformula ofϕ andϕ2 is a subformula
of ϕ1, thenϕ2 precedesϕ1 in the queueSub(ϕ).r The functionReg, when given a propositionp∈5, returns the set of states inQ
that satisfyp.r The functionPre, when given a setA⊆6 of players and a setρ⊆ Q of states,
returns the set of statesq such that fromq, the players inA can cooperate and
enforce the next state to lie inρ. Formally, Pre(A, ρ) contains stateq∈ Q if
for every playera∈ A, there exists a moveja ∈ {1, . . . ,da(q)} such that for all
playersb∈6 \ A and movesjb∈ {1, . . . ,db(q)}, we haveδ(q, j1, . . . , jk)∈ ρ.r Union, intersection, difference, and inclusion test for state sets. Note also that we
write [true] for the setQ of all states, and [false] for the empty set of states.

Partial correctness of the algorithm can be proved by induction on the structure of
the input formulaϕ. Termination is guaranteed, because the state spaceQ is finite.

If each state is a valuation for a setX of Boolean variables, then a state setρ can
be encoded by a Boolean expressionρ(X) over the variables inX. For Kripke struc-
tures that arise from descriptions of closed systems with Boolean state variables, the
symbolic operations necessary for CTL model checking have standard implemen-
tations. In this case, a transition relationR on states can be encoded by a Boolean
expressionR(X, X′) over X and X′, whereX′ is a copy ofX that represents the
values of the state variables after a transition. Then, thepre-imageof ρ underR —
that is, the set of states that haveR-successors inρ—can be computed as

(∃X′)(R(X, X′)∧ ρ(X′)).

Based on this observation, symbolic model checkers for CTL, such as SMV
[McMillan 1993], typically use ordered binary-decision diagrams (OBDDs)
[Bryant 1992] to represent Boolean expressions, and implement the Boolean and
pre-image operations on state sets by manipulating OBDDs. In the special case
that the game structureS is turn-based synchronous, the symbolic computation
of Pre is also straightforward. Recall that in this case, the move and transition

692 R. ALUR ET AL.

functions ofScan be replaced by a mapσ and a transition relationR, such that for
every stateq∈ Q, it is the turn of playerσ (q). Then, when given a setA of players
and a setρ of states, the functionPre returns the set of statesq such that either
σ (q)∈ A and someR-successor ofq lies in ρ, or σ (q) 6∈ A and all R-successors
of q lie in ρ. Suppose thatA(X) is a Boolean expression that encodes the set of
statesq such thatσ (q)∈ A. ThenPre(ρ) can be computed as

(A(X) ∧ (∃X′)(R(X, X′)∧ ρ(X′))) ∨
(¬A(X) ∧ (∀X′)(R(X, X′) → ρ(X′)))

using standard operations on OBDDs.
For general game structures, the situation is more delicate. Typically a game

structure arises from a description of an open system with Boolean state variables
in a particular system description language. A language for describing open sys-
tems has a specific semantics for the parallel composition of open systems. The
language, together with its composition semantics, determines a possibly restricted
class of game structures that need to be considered, and often suggests a natu-
ral symbolic representation for these game structures, that is, an encoding of the
move function and the transition function using Boolean expressions. The symbolic
implementation of thePreoperator, then, depends on the chosen representation of
game structures. Several interesting cases of description languages for open systems
with synchronous composition, as well as the computation of the corresponding
Pre operators, are discussed in de Alfaro et al. [2000, 2001b]. One of these lan-
guages is Reactive Modules [Alur and Henzinger 1999], for which a symbolic ATL
model checker based on OBDDs has been implemented in the verification tool suite
MOCHA [Alur et al. 1998, 2001].

4.2. FAIR ATL SYMBOLIC MODELCHECKING. Themodel-checking problem for
Fair ATLasks, given a game structureS=〈k, Q,5, π,d, δ〉, a fairness condition0
for S, and a Fair ATL formulaϕ, to compute the set of states inQ that fairly satisfy
ϕ with respect to0. As will be explained in Section 5.2, Fair ATL model checking
can be reduced to model checking of ATL? formulas that have a special form. Here,
we consider the special case of turn-based asynchronous game structures. Recall
that in a turn-based asynchronous game structure, in every state, the scheduler
selects one of the players, and the selected player determines the next state. A given
turn-based asynchronous game structure with players6={1, . . . , k}, where player
k≥ 2 is the scheduler, can be viewed as a tupleS=〈Q,5, π, R1, . . . , Rk−1〉 with
k− 1 transition relations. A computationλ=q0,q1,q2, . . . is an infinite sequence
of states such that for all positionsi ≥ 0, we haveRa(qi ,qi+1) for some player
1≤a< k. For 1≤a< k, the (weak) fairness constraint〈k, γa〉 on the scheduler
enforces that playera is selected infinitely often, and thus, the computationλ is
〈k, γa〉-fair if Ra(qi ,qi+1) holds for infinitely many positionsi ≥ 0.

To facilitate Fair ATL model checking, fromS we define another turn-based
asynchronous game structure,Sf =〈Q f ,5 f , π f , Rf

1 , . . . , Rf
k−1〉, as follows:

r Q f = Q× {1, . . . , k}.r 5 f =5 ∪ {done}.r π f (〈q,a〉)=π (q) for 1≤a< k, andπ f (〈q, k〉)=π (q) ∪ {done}.

Alternating-Time Temporal Logic 693

ρ := [true]; τ := [¬p];
while ρ 6⊆ τ do
ρ := τ ;
ρ′ := [false]; τ ′ := [ρ] ∩ [done];
while τ ′ 6⊆ ρ′ do ρ′ := ρ′ ∪ τ ′; τ ′ :=Pref (6 \ A, ρ′)∩ [¬p] od;
τ :=Pref (6 \ A, ρ′)∩ [¬p]

od;
return ρ̂ := [true] \ ρ

FIG. 4. Nested fixed-point computation for Fair ATL symbolic model checking.r For 1≤a< k, the relationRf
a contains (〈q, j 〉, 〈q′, j ′〉) iff Ra(q,q′) and either

(1) j = k and j ′ = 1, or (2) j =a and j ′ =a+ 1, or (3) 1≤ j < k and j 6=a and
j ′ = j .

Intuitively, a state ofSf keeps a counter. If the counter isa, then it is incremented
when a transition inRa is taken (i.e., when the scheduler selects the playera). The
counter is reset to 1 when it reachesk. The new propositiondoneis true precisely
when the counter isk. Thus, the requirement that the scheduler selects every player
infinitely often corresponds to the propositiondonebeing true infinitely often.

PROPOSITION 4.1. A state q of the turn-based asynchronous game structure S
fairly satisfies an Fair ATL formula of the form〈〈A〉〉ψ , where A is a set of players
of S, andψ = p orψ = p1U p2 for propositions p, p1, and p2, with respect to the
weak-fairness condition0w of S iff the state〈q, 1〉 of the extended game structure
Sf satisfies the ATL? formula〈〈A〉〉(¦ done→ψ).

This proposition allows us to develop a symbolic model-checking algorithm for
Fair ATL. We consider here only the sample formula〈〈A〉〉 ¦ p, for a setA⊆6
of players and a propositionp. Consider the following game on the structureSf ,
with the players inA being the protagonist, and the players in6\A the antagonist.
Suppose that the current state of the game isq. If the scheduler belongs toA (i.e.,
k∈ A), then the protagonist either updates the state toq′ such thatRf

a (q,q′) for some
1≤a< k anda∈ A, or the protagonist picks an agenta 6∈ A, and then the antagonist
updates the state toq′ such thatRf

a (q,q′). If the scheduler does not belong to
A (i.e.,k 6∈ A), then the antagonist either updates the state toq′ such thatRf

a (q,q′)
for some 1≤a< k anda 6∈ A, or the antagonist picks an agenta∈ A, and then the
protagonist updates the state toq′ such thatRf

a (q,q′). When a state labeled byp
is visited, the protagonist wins. If the game continues forever, then the protagonist
wins iff the resulting computation is not fair, that is, if the propositiondone is
true only finitely often. The winning condition for the protagonist can therefore be
specified by the LTL formula (¦p) ∨ ¦ ¬done, or equivalently,¦(p∨ ¬done).
Since the game is turn-based, and thus determined, the winning condition for the
antagonist is obtained by negation, as(¬p∧¦done). This is a Büchi game, and
the set of winning states in such a game can be computed using nested fixed points.
Note that the CTL? formula∃ (p1∧¦p2) can be computed symbolically as the
greatest fixpoint

νX.(p1∧∃ f(p1U(p2∧ X))).

Similarly, the algorithm of Figure 4 computes the set ˆρ⊆ Q f of winning states for
the protagonist.

For a turn-based asynchronous game structure, the setPre(A, ρ), can be com-
puted as follows. If the scheduler belongs toA, thenPre(A, ρ) contains all states

694 R. ALUR ET AL.

q such that (1) for some 1≤a< k with a∈ A, we haveRa(q,q′) for some state
q′ ∈ ρ, or (2) for some 1≤a< k with a 6∈ A, if Ra(q,q′), thenq′ ∈ ρ. If the scheduler
does not belong toA, thenPre(A, ρ) contains all statesq such that both (1) for
all 1≤a< k with a∈ A, we haveRa(q,q′) for some stateq′ ∈ ρ, and (2) for all
1≤a< k with a 6∈ A, if Ra(q,q′), thenq′ ∈ ρ. In other words, the functionPrecan
be easily encoded from the encodings of the component transition relationsRa. The
functionPref is like Pre, but operates on the extended game structureSf .

5. Model-Checking Complexity

We measure the complexity of a model-checking problem in two different ways:
the (joint) complexityof model checking considers the complexity in terms of both
the game structure and the formula; thestructure complexityof model checking
considers the complexity in terms of the game structure only, assuming the formula
is fixed. Since the game structure is typically much larger than the formula, and
its size is the most common computational bottleneck, the structure-complexity
measure is of particular practical interest [Lichtenstein and Pnueli 1985]. For Fair
ATL model checking, the fairness condition is considered together with the game
structure, and thus the structure complexity of Fair ATL model checking depends
on the size of both the game structure and the fairness condition.

5.1. ATL MODEL-CHECKING COMPLEXITY. The essential subroutines for solv-
ing the ATL model-checking problem concern the solution of games with reachabil-
ity and invariance objectives played on game structures. These games can be solved
in linear time on turn-based synchronous game structures [Beeri 1980]. We there-
fore reduce games played on general game structures to games played on turn-based
synchronous game structures. Consider a game structureS=〈k, Q,5, π,d, δ〉 and
a setA⊆6 of players, where6={1, . . . , k} as usual. For a stateq∈ Q, anA-move
catq is a function that maps each playera∈ A to a natural numberc(a)≤ da(q). The
A-movec represents a possible combination of moves atq for the players inA. A
stateq′ ∈ Q is ac-successorof q if there is a move vector〈 j1, . . . , jk〉 ∈ D(q) such
that (1) ja= c(a) for all a∈ A, and (2)q′ = δ(q, j1, . . . , jk). We write C(A,q)
for the set of A-moves atq, and C(A)= ⋃q∈Q C(A,q) for the set of all A-
moves. We build the following 2-player turn-based synchronous game structure
SA=〈2, QA,5A, πA, σA, RA〉:r There is a state for every state ofS, and a new state for everyA-move: QA=

Q ∪ C(A).r There is a special propositionauxthat identifies the new states:5A=5∪{aux}.r πA(q)=π (q) for all q∈ Q, andπA(c)={aux} for all c∈ C(A).r At statesq∈ Q it is the turn of player 1, and atA-movesc∈ C(A) it is the turn
of player 2; that is,σA(q)= 1 for all q∈ Q, andσA(c)= 2 for all c∈ C(A).r There is a transition from a stateq∈ Q to anA-movec∈ C(A) if c is anA-move
at q, and there is a transition fromc to a stateq′ ∈ Q if q′ is ac-successor ofq.
Formally,R(u, u′) iff either (1)u∈ Q andu′ ∈C(A, u), or (2) there exists a state
q∈ Q such thatu∈C(A,q) andu′ ∈ Q andu′ is au-successor ofq.

If the original game structureShasm transitions, then the turn-based synchronous
structureSA hasO(m) states and transitions.

Alternating-Time Temporal Logic 695

PROPOSITION 5.1. Let S be a game structure with state space Q, let A be a set of
players of S, and let p be a proposition of S. Then,[〈〈A〉〉 ¦ p]S= [〈〈1〉〉 ¦ p]SA ∩ Q
and[〈〈A〉〉 p]S= [〈〈1〉〉 (p∨ aux)]SA ∩ Q.

In other words, in order to solve a reachability or invariance game onS, we can
solve a corresponding game on the 2-player turn-based synchronous structureSA.
This gives the following result.

THEOREM 5.2. The model-checking problem for ATL is PTIME-complete, and
can be solved in time O(m · `) for a game structure with m transitions and an ATL
formula of length̀ . The problem is PTIME-hard even for a fixed formula, and even
in the special case of turn-based synchronous game structures.

PROOF. Consider a game structureSwith m transitions and an ATL formulaϕ
of length`. We claim that an algorithm that follows the outer loop of Figure 3 can be
implemented in timeO(m · `). The size ofSub(ϕ) is bounded bỳ . Thus it suffices
to show that each case statement can be executed in timeO(m). The interesting
cases are〈〈A〉〉 ϕ and〈〈A〉〉ϕ1Uϕ2. To compute [〈〈A〉〉 ϕ] from [ϕ], we apply the
second part of Proposition 5.1, choosing a new propositionp with [p]= [ϕ]. The
resulting invariance game onSA can be solved in time linear in the size ofSA, that
is, in time O(m) [Beeri 1980]. To compute [〈〈A〉〉ϕ1Uϕ2] from [ϕ1] and [ϕ2], we
first restrict the game structureS to the states in [ϕ1] ∪ [ϕ2], and then apply the first
part of Proposition 5.1, choosingp such that [p]= [ϕ2]. The resulting reachability
game can again be solved in timeO(m). This concludes the upper bound.

Since reachability in AND–OR graphs is PTIME-hard [Immerman 1981], and
can be specified using the fixed ATL formula〈〈a〉〉¦p interpreted over turn-based
synchronous game structures, the lower bounds are immediate.

It is interesting to compare the model-checking complexities of ATL and CTL
over turn-based synchronous game structures. While both problems can be solved
in timeO(m·`) (for CTL, see Clarke et al. [1986]), the structure complexity of CTL
model checking is only NLOGSPACE [Kupferman et al. 2000]. This is because
CTL model checking is related to graph reachability, whereas ATL model checking
is related to AND–OR graph reachability.

5.2. FAIR ATL M ODEL-CHECKING COMPLEXITY. Consider a game structure
S=〈k, Q,5, π,d, δ〉 and a fairness condition0 for S. We need to restrict attention
to the computations ofSthat satisfy all fairness constraints in0. To determine which
fairness constraints are satisfied by a computation, we augment the state space
by adding new propositions that indicate for each fairness constraint〈a, γ 〉 ∈0,
whether or not〈a, γ 〉 is enabled, and whether or not〈a, γ 〉 is taken. For this purpose,
we define the following extended game structure,SF =〈k, QF ,5F , π F , dF , δF〉:r QF ={〈⊥,q〉 | q∈ Q} ∪ {〈q′,q〉 | q′,q∈Q andq is a successor ofq′ in S}.

Intuitively, a state of the form〈⊥,q〉 of SF corresponds to the game structure
S being in stateq at the beginning of a computation, and a state of the form
〈q′,q〉 corresponds toS being in stateq during a computation whose previous
state wasq′.r For each fairness constraint〈a, γ 〉 ∈0, there is a new proposition〈a, γ,enabled〉
and a new proposition〈a, γ, taken〉; that is,5F =5 ∪ (0 × {enabled, taken}).

696 R. ALUR ET AL.

r For each state〈⊥,q〉 ∈ QF , we haveπ F (〈⊥,q〉)=π (q). For each state〈q′,q〉 ∈
QF , we have

π F (〈q′,q〉) = π (q) ∪ {〈a, γ,enabled〉 | γ (q′) 6= ∅} ∪
{〈a, γ, taken〉 | there is a move vector〈 j1, . . . , jk〉 ∈ D(q′)
such thatja ∈ γ (q′) andδ(q′, j1, . . . , jk)=q}.r For each playera∈6 and each state〈·,q〉 ∈ QF , we havedF

a (〈·,q〉)= da(q).r For each state〈·,q〉 ∈ QF and each move vector〈 j1, . . . , jk〉 ∈ D(q), we have
δF (〈·,q〉, j1, . . . , jk)= δ(q, j1, . . . , jk).

There is a one-to-one correspondence between computations ofS and SF , and
between strategies inS and SF . The new propositions in0 × {enabled, taken}
allow us to identify the fair computations. Consequently, evaluating formulas of
Fair ATL over states ofS can be reduced to evaluating, over states ofSF , ATL?

formulas that encode the fairness constraints in0 as follows.

PROPOSITION 5.3. A state q of the game structure S fairly satisfies a Fair ATL
formula of the form〈〈A〉〉ψ , where A is a set of players of S, andψ = p1U p2 or
ψ = p for propositions p, p1, and p2, with respect to the weak-fairness condition
0w iff the state〈⊥,q〉 of the extended game structure SF satisfies the following
ATL? formula:

〈〈A〉〉(∧a∈A,〈a,γ 〉 ∈0w
¦(¬〈a, γ,enabled〉 ∨ 〈a, γ, taken〉) ∧(∧

a∈6\A,〈a,γ 〉 ∈0w
¦(¬〈a, γ,enabled〉 ∨ 〈a, γ, taken〉) → ψ

))
.

Moreover, q fairly satisfies〈〈A〉〉ψ with respect to the strong-fairness condition0s
iff 〈⊥,q〉 satisfies the following ATL? formula:

〈〈A〉〉(∧a∈A,〈a,γ 〉∈0s
(¦〈a, γ,enabled〉→ ¦〈a, γ, taken〉) ∧(∧

a∈6\A,〈a,γ 〉 ∈0s
(¦〈a, γ,enabled〉→ ¦〈a, γ, taken〉) → ψ

))
.

The ATL? formulas that need to be model checked by the above reduction are of a
special form, and the corresponding complexity bounds are much lower than those
for general ATL? model checking. Let us consider first weak fairness. Themodel-
checking problem for Weakly-Fair ATLassumes that the fairness condition on the
game structure is a weak-fairness condition.

THEOREM 5.4. The model-checking problem for Weakly-Fair ATL is PTIME-
complete, and can be solved in time O(m2·w3·`) for a game structure with m
transitions, w weak-fairness constraints, and a Fair ATL formula of length`. Fur-
thermore, for a turn-based asynchronous game structure with n states, m transitions,
k players, and a Fair ATL formula of length̀, the model-checking problem can be
solved in time O(n ·m · k2 · `).

PROOF. Consider a game structureS with m transitions andw weak-fairness
constraints. Letϕ be a Fair ATL formula. The algorithm labels each state ofS
with all subformulas ofϕ, starting with the innermost subformulas. Let us consider
the case corresponding to a subformula of the form〈〈A〉〉ψ . As described earlier,
we first construct the extended game structureSF , and the truth of〈〈A〉〉ψ can be
evaluated by solving a game onSF . The number of states and transitions ofSF

is O(m).

Alternating-Time Temporal Logic 697

We will further augmentSF to simplify the winning condition of the game.
Let us partition the weak-fairness constraints in0 into two sets:01 contains all
constraints of the form〈a, γ 〉 with a∈ A, and02 contains the remaining con-
straints. Suppose that01 contains the constraints〈a1

1, γ
1
1 〉, . . . , 〈a1

w1
, γ 1

w1
〉, and02

contains the constraints〈a2
1, γ

2
1 〉, . . . , 〈a2

w2
, γ 2

w2
〉. We define the game structureSf

A
from SF by adding two counters. The two counters take their values from the sets
{1, . . . ,wi + 1}, for i = 1, 2 respectively, and are used to simplify the respective
conjunctions

∧
〈a,γ 〉 ∈0i

¦(¬〈a, γ,enabled〉∨〈a, γ, taken〉). The states ofSf
A have

the form〈u, c1, c2〉, whereu is a state ofSF , and theci ’s are the two counter values.
The state componentu determines the available moves and the labeling with propo-
sitions. The countersc1 andc2 are updated deterministically: ifci equalswi+1, then
it is reset to 1; if 1≤ ci ≤wi andu satisfies¬〈ai

ci
, γ i

ci
, enabled〉 ∨ 〈ai , γ i

ci
, taken〉,

thenci is incremented; otherwiseci stays unchanged. Thus,ci reacheswi + 1 in-
finitely often iff each fairness constraint in the corresponding set0i is infinitely
often disabled or taken. Consequently, Proposition 5.3 can be restated as: a stateq
of the game structureS fairly satisfies a Fair ATL formula of the form〈〈A〉〉ψ with
respect to the weak-fairness condition0 iff the state〈⊥,q, 1, 1〉 of the extended
game structureSf

A satisfies the formula

〈〈A〉〉(¦ (c1=w1+ 1)∧ (¦ (c2≤w2) ∨ ψ)).

Since the truth ofψ can be encoded in the structure (by doubling the states), the
winning condition is a single Rabin pair. The game structureSf

A hasO(m·w2) states
and transitions. The number of states that satisfy the condition¦(c1=w1 + 1)
is O(m · w). Using the complexity bounds for solving games with a single Rabin
pair [Jurdzinski 2000; Etessami et al. 2001], we get the overall complexity of
O(m2 ·w3). While these bounds are for turn-based games, the reasoning described
in Proposition 5.1 can be used to obtain the same bounds also for concurrent
game structures.

In the case of turn-based asynchronous structures, recall the construction from
Section 4.2. The structureSf obtained by adding the counter corresponding to
the fairness constraints on the scheduler hasO(n · k) states andO(m · k) tran-
sitions. Checking〈〈A〉〉ψ reduces to solving a (co)B¨uchi game with the winning
condition ¦done→ψ . Since this can be done in time proportional to the
product of the number of states and the number of transitions (use the nested
fixed-point computation of Figure 4), the cost of processing a temporal operator
is O(n ·m · k2).

Now let us consider the general case of strong fairness. Proposition 5.3 shows
how to reformulate the Fair ATL model-checking problem for a game structureS
as an ATL? model-checking problem for the extended game structureSF . While
such games do not admit a polynomial-time solution, the worst-case bound of
2EXPTIME for ATL? model checking does not apply.

THEOREM 5.5. The model-checking problem for Fair ATL is PSPACE-
complete, and can be solved in time mO(w) · ` for a game structure with m tran-
sitions, w fairness constraints, and a Fair ATL formula of size`. The problem is
PSPACE-hard even for a fixed formula. For a bounded number of fairness con-
straints, the problem is PTIME-complete.

698 R. ALUR ET AL.

PROOF. As usual, the model-checking algorithm labels each state of the ex-
tended game structureSF with all subformulas of the given Fair ATL formulaϕ,
starting with the innermost subformulas. The interesting case corresponds to sub-
formulas of the form〈〈A〉〉ψ . This requires solving a game onSF with the win-
ning condition of the form given by the second part of Proposition 5.3. In Alur
et al. [2002], it is shown that turn-based games whose condition is a Boolean
combination of formulas of the form ¦p, for propositionsp, can be solved
in PSPACE, or in timemn, wherem is the size of the game structure andn
is the size of the formula. In our case, the size of the winning condition is
O(w), wherew is the number of fairness constraints. Consequently, each tem-
poral operator can be processed in timemO(w), leading to the overall comp-
lexity bound.

For the lower bounds, the construction of Alur et al. [2002] can be modified to
reduce the satisfaction of a given quantified Boolean formulaφ to Fair ATL model
checking of a fixed formula of the form〈〈a〉〉 p, for a playera and propositionp,
over a 2-player turn-based synchronous game structure (i.e., an AND–OR graph)
of sizeO(|φ|) with O(|φ|) strong-fairness constraints.

5.3. ATL? MODEL-CHECKING COMPLEXITY. We have seen that the transition
from CTL to ATL does not involve a substantial computational price. While there is
an exponential price to pay in model-checking complexity when moving from CTL
to CTL?, this price becomes even more significant (namely, doubly exponential)
when we consider the alternating-time versions of both logics, ATL and ATL?. To
see this, we consider themodel-checking problem for ATL?, which asks, given a
game structureS and an ATL? (state) formulaϕ, for the set of states ofS that
satisfyϕ.

Before we discuss ATL? model checking, let us briefly recall CTL? model check-
ing [Emerson and Lei 1985]. We follow the automata-theoretic approach to model
checking. For the definition of word and tree automata on infinite objects, see
Thomas [1990]. The computationally difficult case corresponds to evaluating a
state formula of the form∃ψ , for an LTL formulaψ . The solution is to con-
struct a Büchi automatonA that accepts all computations that satisfyψ . To de-
termine whether a stateq satisfies the formula∃ψ , we need to check if some
q-computation is accepted by the automatonA, and this can be done by analyz-
ing the product ofA with the structure. The complexity of CTL? model checking
reflects the cost of translating LTL formulas toω-automata. In case of an ATL?

state formula〈〈A〉〉ψ , the solution is similar, but requires the use of tree automata,
because satisfaction corresponds to the existence of winning strategies. There-
fore, model checking requires checking the nonemptiness of the intersection of
two tree automata: one accepting trees in which all paths satisfyψ , and the other
accepting trees that correspond to possible strategies of the protagonist (i.e., the
players inA).

In order to solve the model-checking problem for ATL?, we first define the notion
of execution trees. Consider a game structureS=〈k, Q,5, π,d, δ〉, a setA⊆6
of players, and a setFA={ fa | a∈ A} of strategies for the players inA. For a state
q∈ Q, the setout(q, FA) of q-computations is fusion-closed, and therefore induces
a treeexecS(q, FA). Intuitively, the treeexecS(q, FA) is obtained by unwindingS
starting fromq according to the successor relation, while pruning subtrees whose
roots are not chosen by the strategies inFA. Formally, the treeexecS(q, FA) has as

Alternating-Time Temporal Logic 699

nodes the following elements ofQ∗:r q is a node (the root).r For a nodeλ ·q′ ∈ Q∗, the successor nodes (children) ofλ ·q′ are all strings of the
form λ · q′ · q′′, whereq′′ is such that there is a move vector〈 j1, . . . , jk〉 ∈ D(q′)
such that (1)ja= fa(λ · q′) for all playersa∈ A, and (2)δ(q′, j1, . . . , jk)=q′′.

A treet is a〈q, A〉-execution treeif there exists a setFA of strategies, one for each
player inA, such thatt = execS(q, FA).

THEOREM 5.6. The model-checking problem for ATL? is 2EXPTIME-complete,
even in the special case of turn-based synchronous game structures. For ATL?

formulas of bounded size, the model-checking problem is PTIME-complete.

PROOF. Consider a game structureS and an ATL? formula ϕ. As in the al-
gorithm for CTL? model checking, we label each stateq of S by all state sub-
formulas ofϕ that are satisfied inq. We do this in a bottom-up fashion, starting
from the innermost state subformulas ofϕ. For subformulas generated by the rules
(S1–S2), the labeling procedure is straightforward. For subformulasϕ′ generated
by (S3), we employ the algorithm for CTL? module checking [Kupferman et al.
2001] as follows. Letϕ′ = 〈〈A〉〉ψ . Since the satisfaction of all state subformulas
of ψ has already been determined, we can assume thatψ is an LTL formula.
We construct a Rabin tree automatonAψ that accepts precisely the trees that
satisfy the CTL? formula ∀ψ , and for each stateq of S, we construct a B¨uchi
tree automatonAS,q,A that accepts precisely the〈q, A〉-execution trees. The prod-
uct of the two automataAψ andAS,q,A is a Rabin tree automaton that accepts
precisely the〈q, A〉-execution trees that satisfy∀ψ . Recall thatq |= 〈〈A〉〉ψ iff
there is a setFA of strategies for the players inA so that allq-computations
of S that are outcomes ofFA satisfyψ . Since each〈q, A〉-execution tree corre-
sponds to a setFA of strategies, it follows thatq |= 〈〈A〉〉ψ iff the product automaton
is nonempty.

The automatonAψ has 22
O(|ψ |)

states and 2O(|ψ |) Rabin pairs [Emerson and
Sistla 1984]. In order to define the automatonAS,q,A, we first define, for a
stateq′ and a setA of players, the setPost(A,q′) of minimal state setsρ⊆ Q
so that the players inA can cooperate to ensure that the successor ofq′ is a
member ofρ. Formally,ρ ∈Post(A,q′) if (1) for every playera∈ A, there ex-
ists a move ja ∈ {1, . . . ,da(q′)} such that for all playersb∈6\A and moves
jb∈ {1, . . . ,db(q′)}, we haveδ(q′, j1, . . . , jk)∈ ρ, and (2)ρ is minimal, in the
sense that no proper subset ofρ satisfies requirement (1). Assume there is an order
on the states inQ. Then, we can refer toPost(A,q′) as a set of tuples of length at
mostQ. The tree automatonAS,q,A has the input alphabet 25, the state setQ, the
initial stateq, and the nondeterministic transition functionη such that for every state
q′ ∈ Q, we haveη(q′, π (q′))=Post(A,q′), andη(q′, p)=∅ for all p 6=π (q′); that
is, each set inPost(A,q) determines a set of possible successor states on inputπ (q′).
All states inQ are Büchi acceptance states. Note that, using the terminology of
Section 5.1, each tupleρ ∈Post(A,q′) corresponds to anA-movec at q′, andρ
contains exactly thec-successors ofq′. Thus, the number of tuples inPost(A,q′)
is5a∈ Ada(q). It follows that the size of the automatonAS,q,A is bounded by the
size of the game structureS. Since the tree automatonAψ is obtained by expand-
ing a deterministic word automaton into a tree automaton, the fact that we regard

700 R. ALUR ET AL.

Post(A,q′) as a set of tuples with a single order on the states does not affect the
nonemptiness of the product ofAψ with AS,q,A. The nonemptiness problem for a
Rabin tree automaton of sizen with r Rabin pairs can be solved in timeO(n · r)3r

[Emerson and Jutla 1988; Pnueli and Rosner 1989a]. Hence, labeling a single state
with ϕ′ requires at most time (|S| ·22O(|ψ |)

)2O(|ψ |) = |S|2O(|ψ |)
. Since there are|Q| states

and at most|ϕ| subformulas, membership in 2EXPTIME follows.
For the lower bound, we reduce the realizability problem for LTL [Pnueli and

Rosner 1989a], which is 2EXPTIME-hard [Rosner 1992], to ATL? model checking.
An LTL formulaψ over a set5of propositions is realizable iff there exists a 2-player
turn-based synchronous game structureSof the following form:

(1) The transitions inSalternate between states at which it is the turn of player 1,
called player-1 states, and states at which it is the turn of player 2.

(2) Every player-1 state has 25 successors, each labeled by a different subset of 25.
(3) Some state ofSsatisfies the ATL? formula〈〈2〉〉ψ .

Intuitively, a state ofSthat satisfies〈〈2〉〉ψ witnesses a strategy for player 2 to satisfy
ψ irrespective of how player 1 updates the truth values of propositions. LetS5 be
the maximal 2-player turn-based synchronous game structure over5 that alternates
between player-1 states and player-2 states: in transition-relation form,

S5=〈2, 25×{1, 2},5, π, σ, ((25×{1})× (25×{2}))∪ ((25×{2})× (25×{1}))〉
such that for allu⊆5, we haveπ (〈u, 1〉)=π (〈u, 2〉)= u andσ (〈u, 1〉)= 1 and
σ (〈u, 2〉)= 2. Thenψ is realizable iff there exists some state inS5 that satisfies
〈〈2〉〉ψ . Since the 2EXPTIME lower bound holds for the realizability of LTL for-
mulas with a fixed number of propositions, the size ofS5 is fixed, and the lower
bound for the joint complexity of ATL? model checking follows. The lower bound
for the structure complexity follows from Theorem 5.2, and the upper bound from
fixing |ψ | in the analysis of the joint complexity above.

6. Beyond ATL?

In this section, we suggest two more formalisms for the specification of open
systems. We compare the two formalisms with ATL and ATL? and consider their
expressiveness and their model-checking complexity. Given two logicsL1 andL2,
we say that the logicL1 is as expressiveas the logicL2 if for every formulaϕ2
of L2, there exists a formulaϕ1 of L1 such thatϕ1 andϕ2 are equivalent (i.e., they
are true in the same states of each game structure). The logicL1 is more expressive
thanL2 if L1 is as expressive asL2 andL2 is not as expressive asL1.

6.1. THE ALTERNATING-TIME µ-CALCULUS. The formulas of the logic AMC
(Alternating-Timeµ-Calculus) are constructed from propositions, Boolean connec-
tives, the next-time operatorf, each occurrence parameterized by a set of players,
as well as the least fixed-point operatorµ. Formally, given a set5 of propositions,
a setV of propositional variables, and a set6={1, . . . , k} of players, an AMC
formula is one of the following:r p, for propositionsp∈5.r X, for propositional variablesX ∈V .

Alternating-Time Temporal Logic 701

r ¬ϕ or ϕ1 ∨ ϕ2, whereϕ, ϕ1, andϕ2 are AMC formulas.r 〈〈A〉〉 fϕ, whereA⊆6 is a set of players andϕ is an AMC formula.r µX.ϕ, whereϕ is an AMC formula in which all free occurrences ofX (i.e.,
those that do not occur in a subformula ofϕ starting withµX) fall under an even
number of negations.

The logic AMC is similar to theµ-calculus [Kozen 1983], only that the next-time
operator f is parameterized by sets of players rather than by a universal or an
existential path quantifier. Additional Boolean connectives are defined from¬ and
∨ in the usual manner. As with ATL, we use the dual [[A]] fϕ = ¬〈〈A〉〉 f¬ϕ, and
the abbreviations∃= 〈〈6〉〉 and∀= [[6]]. As with theµ-calculus, we writeνX.ϕ to
abbreviate¬µX.¬ϕ. Using the greatest fixed-point operatorν, the dual next-time
operator [[A]] f, and the connective∧, we can write every AMC formula inposi-
tive normal form, where all occurrences of¬ are in front of propositions. As in the
µ-calculus, thealternation depthof an AMC formula is the maximal length of a
chain of nested alternating least and greatest fixed-point operators. In particular, an
AMC formulaϕ is alternation-freeif, whenϕ is written in positive normal form,
there are no occurrences ofν (respectively,µ) on any syntactic path from an occur-
rence ofµX (respectively,νX) to a bound occurrence ofX. For example, the for-
mulaµX.(p∨µY.(X∨〈〈a〉〉 fY)) is alternation-free; the formulaνX.µY.((p∧ X)∨
〈〈a〉〉 fY) is not. Thealternation-free fragmentof AMC contains only alternation-
free formulas.

We now turn to the semantics of AMC. We first need some definitions and
notations. Given a game structureS=〈k, Q,5, π,d, δ〉, avaluationV is a function
from the propositional variablesV to subsets ofQ. For a valuationV, a propositional
variableX, and a setρ⊆ Q of states, we denote byV[X := ρ] the valuation that
mapsX to ρ and agrees withV on all other variables. An AMC formulaϕ is
interpreted as a mappingϕS from valuations to state sets. Then,ϕS(V) denotes the
set of states that satisfy the AMC formulaϕ under the valuationV in the structureS.
The mappingϕS is defined inductively as follows:

r For a propositionp∈5, we havepS(V)={q∈ Q | p∈π (q)}.r For a propositional variableX ∈V , we haveXS(V)=V(X).r (¬ϕ)S(V)= Q \ϕS(V).r (ϕ1 ∨ ϕ2)S(V)=ϕS
1 (V) ∪ ϕS

2 (V).r (〈〈A〉〉 fϕ)S(V)={q∈ Q | for every playera∈ A, there exists a moveja ∈
{1, . . . ,da(q)} such that for all playersb∈6\A and movesjb∈ {1, . . . ,db(q)},
we haveδ(q, j1, . . . , jk)∈ϕS(V)}.r (µX.ϕ)S(V)= ⋂{ρ⊆ Q | ϕS(V[X := ρ])⊆ ρ}.

Consider an AMC formula of the formµX.ϕ. Given a valuationV, the subformula
ϕ can be viewed as a functionhS

ϕ,V that maps each state setρ⊆ Q to the state
setϕS(V[X := ρ]). Since all free occurrences ofX fall under an even number of
negations, the functionhS

ϕ,V is monotonic; that is, ifρ⊆ ρ ′, thenhS
ϕ,V (ρ)⊆ hS

ϕ,V (ρ ′).
Consequently, by standard fixed-point theory, the functionhS

ϕ,V has a least fixed
point, namely,

⋂{ρ⊆ Q | ϕS(V[X := ρ])⊆ ρ}. The least fixed point can be

702 R. ALUR ET AL.

computed by iterative approximation:

(µX.ϕ)S(V) =
⋃
i ≥ 0

(
hS
ϕ,V
)i

([false]).

As the game structureShas finitely many states, the union is finite, and the iterative
approximation converges in a finite number of steps.

A sentenceof AMC is a formula that contains no free occurrences of propositional
variables. A sentenceϕ defines the same state setϕS(V) for any and all valuationsV.
Therefore, for a stateq of Sand a sentenceϕ, we writeS,q |=ϕ (“stateq satisfies
the formulaϕ in the structureS”) if q∈ϕS(V) for any valuationV. For example, the
AMC formulaµX.(q∨(p∧ 〈〈A〉〉 fX)) is equivalent to the ATL formula〈〈A〉〉pUq.

6.1.1. AMC Expressiveness.All temporal properties using the always and un-
til operators can be defined as fixed points of next-time properties. For closed
systems, this gives theµ-calculus as a generalization of temporal logics. Theµ-
calculus is more expressive than CTL?, and the alternation-freeµ-calculus is more
expressive than CTL [Emerson 1990; Dam 1994]. The relationships between AMC,
alternation-free AMC, ATL, and ATL? are analogous.

THEOREM 6.1. AMC is more expressive than ATL?. The alternation-free frag-
ment of AMC is more expressive than ATL.

PROOF. First, we define a functionG from ATL formulas to alternation-free
AMC formulas such that for every ATL formulaϕ, the formulasϕ andG(ϕ) are
equivalent. The functionG is defined inductively as follows:r G(p)= p, for propositionsp∈5.r G(¬ϕ)=¬G(ϕ).r G(ϕ1 ∨ ϕ2)=G(ϕ1) ∨ G(ϕ2).r G(〈〈A〉〉 fϕ)=〈〈A〉〉 fG(ϕ).r G(〈〈A〉〉 ϕ)= νX.(G(ϕ)∧ 〈〈A〉〉 fX).r G(〈〈A〉〉ϕ1Uϕ2)=µX.(G(ϕ2) ∨ (G(ϕ1)∧ 〈〈A〉〉 fX)).

Second, in de Alfaro et al. [2001a], it is shown how a formula of the form〈〈A〉〉ψ ,
whereψ is an LTL formula, can be translated into an equivalent formulaG(〈〈A〉〉ψ)
of AMC.3 The functionG can be inductively extended to all ATL? formulas. Con-
sider an ATL? formula 〈〈A〉〉ψ , whereψ is an arbitrary path formula. Letψ ′ be
the LTL formula that results fromψ by replacing every state subformulaϕ with a
new propositionpϕ. Letχ =G(〈〈A〉〉ψ ′) be the AMC formula that is equivalent to
〈〈A〉〉ψ ′. Finally, defineG(〈〈A〉〉ψ) to be the result of replacing each new proposition
pϕ in χ by the AMC formulaG(ϕ). ThenG(〈〈A〉〉ψ) is an AMC formula that is
equivalent to the ATL? formula 〈〈A〉〉ψ . This establishes that the alternation-free
fragment of AMC is as expressive as ATL, and that AMC is as expressive as ATL?.

To see that AMC is more expressive than ATL?, and that alternation-free AMC is
more expressive than ATL, note that for 1-player game structures, (alternation-free)

3 It should be noted that if aµ-calculus formulaϕ is equivalent to∃ψ , for an LTL formulaψ , then
it is not necessarily the case that by replacing every occurrence of∃◦ in ϕ with 〈〈A〉〉◦ we obtain an
AMC formula that is equivalent to〈〈A〉〉ψ [de Alfaro et al. 2001a].

Alternating-Time Temporal Logic 703

AMC is the same as the (alternation-free)µ-calculus, CTL? is the same as ATL?,
and CTL is the same as ATL.

Remark6.2. Parikh [1983] has defined apropositional logic of games. Parikh’s
logic extends the dynamic logic PDL [Fischer and Landner 1979] in a way similar
to the way in which AMC extends theµ-calculus. The formulas in Parikh’s logic
are built with respect to a set of atomic games. Each atomic game is a subset of
W×2W, whereW is a set of worlds. Thus, an atomic game corresponds to a single
step of a game played on a game structure, with each player choosing a move (or
a set of moves) depending on the state of the game structure. Cooperation between
players, as well as the iteration of atomic games, are specified in Parikh’s logic by
standard PDL operations, such as disjunction and iteration. For example, the AMC
formulaµX.(p∨ 〈〈a, b〉〉 fX) corresponds to the formula〈(a ∨ b)∗〉p of Parikh’s
logic. Parikh’s [1983] logic is shown to be decidable, and a complete set of axioms
is given. Our work is motivated by the verification of open systems. Accordingly,
we have defined the game versions of logics that are popular for the specification
of closed systems, such as temporal logics and theµ-calculus, and unlike [Parikh
1983], we focus on the model-checking problem.

6.1.2. AMC Model Checking. The model-checking problem for AMCasks,
given a game structureS and an AMC sentenceϕ, for the set of states ofS that
satisfyϕ. The only difference between the classicalµ-calculus and AMC is the
next-time operator, which has a game interpretation in AMC. Hence, symbolic
algorithms and tools forµ-calculus model checking can be modified to handle
AMC by implementing thePre function, which computes the next-time operator
〈〈·〉〉 f of AMC (see the discussion in Section 4.1 on possible implementations).
From a computational point of view, theµ-calculus and alternation-freeµ-calculus
model-checking algorithms of Emerson and Lei [1986] and Cleaveland and Steffen
[1991] can be modified to handle AMC and alternation-free AMC within the same
complexity bounds.

We first consider the alternation-free case. The algorithm of Cleaveland and
Steffen [1991] is based on a bottom-up evaluation of subformulas. Consider a
game structure withm transitions and an alternation-freeµ-calculus formulaϕ of
length`. The formulas in Cleaveland and Steffen [1991] are given inequational
form; that is, each formula is presented as a set of equational blocks and a propo-
sitional variable, called root. An equational block has two forms,ν{E} or µ{E},
whereE is a list of equations of the formXi =ϕi , eachϕi is aµ-calculus formula
without fixed-point operators, and theXi are propositional variables. We assume
that the equational blocks are simple; that is, eachϕi contains at most one non-
propositional subformula. By adding new propositional variables, we can turn a
block that is not simple into a simple block, at a cost that is linear in the length
of the formula. If a propositional variableX that appears in the right-hand side of
an equation in some blockB also appears in the left-hand side of an equation in
someotherblock B′, thenB depends onB′. The formula is alternation-free if the
dependencies are not circular. The algorithm in Cleaveland and Steffen [1991] pro-
cesses each equational block in order to evaluate its left-hand side variables. The
algorithm proceeds from the minimal blocks, which depend on no other blocks,
following a linearization of the dependencies until the root variable is evaluated.
Thus, when it reaches a block with an equationXi =ϕi , then each propositional

704 R. ALUR ET AL.

variable that appears inϕi appears either in the left-hand side of another equation
of the current block, or it has already been evaluated. The processing of a block re-
quires the repeated application of thePre function: first all left-hand side variables
are initialized to true, in case of aν block, or to false, in case of aµ block, and then
the equations are evaluated repeatedly until a fixed point is reached. If the block
containse equations, then the fixed-point computation requires timeO(e · m).
As ` bounds the number of equations in all blocks, the overall complexity
O(m · `) follows.

In the case of the classicalµ-calculus, each calculation ofPre is simple, as it
corresponds to a universal or an existential next-time operator. In the case of AMC,
we need to be more careful in establishing theO(e · m) bound for the repeated
application of thePre function in the processing of a block witheequations. Recall
that the equational blocks are simple. Thus, each equationXi =ϕi is such thatϕi
contains at most one subformula of the form〈〈A〉〉 fϕ′. Following the reasoning
described in Proposition 5.1, the repeated evaluations ofXi can be done with
respect to the turn-based game structureSA defined there. Note thatϕi may contain
a propositional variableX j that appears in the left-hand side of the current block,
and thatϕ j may contain a subformula of the form〈〈B〉〉 fϕ′′ for B different fromA.
The repeated evaluation ofXi then uses the intermediate values ofX j , which are
computed on the turn-based game structureSB. Still, the repeated calculations of
Pre required for each equation, which monotonically shrink or grow the left-hand
side variable, can be completed in total timeO(m). Thus, the evaluation of a block
with eequations requires timeO(e·m), yielding an overall complexity ofO(m · `)
for model checking the alternation-free fragment of AMC.

Now consider the general case. The algorithm of Emerson and Lei [1986] for
µ-calculus model checking proceeds also bottom-up, and the evaluation of each
subformula involves again repeated applications of thePre function. Here, how-
ever, each evaluation may depend on intermediate values of outer subformulas. In
particular, the value of a subformula may be updated nonmonotonically, and the
number of such updates is bounded by the alternation level of the subformula, that
is, by the number of alternations of fixed-point operators in whose scope the sub-
formula occurs. This leads, for a formulaϕ of alternation depthd, to a complexity
of O((m·`)d+1) forµ-calculus model checking. In the case of AMC, each repeated
monotonic application of thePre function for evaluating a subformulaϕ′ can be
performed as in the alternation-free case, in timeO(m · |ϕ′|), yielding the overall
complexity ofO((m · `)d+1) as well.

THEOREM 6.3. The model-checking problem for the alternation-free fragment
of AMC can be solved in time O(m · `) for a game structure with m transitions and
a formula of sizè . The model-checking problem for AMC can be solved in time
O((m · `)d+1) for a game structure with m transitions and a formula of length`
and alternation depth d≥ 1.

6.2. GAME LOGIC. The parameterized path quantifier〈〈A〉〉 first stipulates the
existenceof strategies for the players inA, and thenuniversallyquantifies over
the outcomes of the stipulated strategies. One may generalize ATL and ATL? by
separating the two concerns into strategy quantifiers and path quantifiers, say, by
writing ∃∃A. ∀ instead of〈〈A〉〉 (read∃∃A as “there exist strategies for the players
in A”). Then, for example, the formula ˆϕ=∃∃A. (∃ ϕ1∧ ∃ ϕ2) asserts that the
players inA have strategies such that for some behavior of the remaining players,

Alternating-Time Temporal Logic 705

ϕ1 is always true, and for some possibly different behavior of the remaining players,
ϕ2 is always true.

We refer to the general logic with strategy quantifiers, path quantifiers, temporal
operators, and Boolean connectives asgame logic(GL, for short). There are three
types of formulas in GL:state formulas, whose satisfaction is related to a specific
state of a given game structureS, tree formulas, whose satisfaction is related to a
specific execution tree ofS(for the definition of execution trees, recall Section 5.3),
andpath formulas, whose satisfaction is related to a specific computation ofS.
Formally, given a set5 of propositions and a set6 of players, a GL state formula
is one of the following:

(S1) p, for propositionsp∈5.
(S2) ¬ϕ or ϕ1 ∨ ϕ2, whereϕ, ϕ1, andϕ2 are GL state formulas.
(S3) ∃∃A. θ , whereA⊆6 is a set of players andθ is a GL tree formula.

A GL tree formula is one of the following:

(T1) ϕ, for a GL state formulaϕ.
(T2) ¬θ or θ1 ∨ θ2, whereθ , θ1, andθ2 are GL tree formulas.
(T3) ∃ψ , whereψ is a GL path formula.

A GL path formula is one of the following:

(P1) θ , for a GL tree formulaθ .
(P2) ¬ψ orψ1 ∨ ψ2, whereψ , ψ1, andψ2 are GL path formulas.
(P3) fψ orψ1Uψ2, whereψ , ψ1, andψ2 are GL path formulas.

The logic GL consists of the set of state formulas generated by the rules (S1–S3).
For instance, while the formula ˆϕ from above is a GL (state) formula, its subformula
∃ ϕ1 ∧ ∃ ϕ2 is a tree formula.

We now define the semantics of GL with respect to a game structureS. We write
S,q |=ϕ to indicate that the stateq of the structureSsatisfies the state formulaϕ;
we writeS, t |= θ to indicate that the execution treet of the structureSsatisfies the
tree formulaθ ; and we writeS, t, λ |=ψ to indicate that the rooted infinite pathλ
of the execution treet of the structureS satisfies the path formulaψ (note that in
this case,λ is a computation ofS). If t is an execution tree ofS, andx is a node
of t , we write t(x) for the subtree oft with root x. The satisfaction relation|= is
defined inductively as follows:

r For formulas generated by the rules (S1–S2), the definition is the same as for
ATL. For formulas generated by the rules (T2) and (P2), the definition is obvious.r S,q |= ∃∃A. θ iff there exists a setFA of strategies, one for each player inA, such
thatS, execS(q, FA) |= θ .r S, t |=ϕ for a state formulaϕ iff S,q |=ϕ, whereq is the root of the execution
treet .r S, t |= ∃ψ for a path formulaψ iff there exists a rooted infinite pathλ in t such
thatS, t, λ |=ψ .r S, t, λ |= θ for a tree formulaθ iff S, t |= θ .r S, t, λ |= fψ iff S, t(λ[0, 1]), λ[1,∞] |=ψ .

706 R. ALUR ET AL.

r S, t, λ |=ψ1Uψ2 iff there exists a positioni ≥ 0 such that S, t(λ[0, i]),
λ[i,∞] |=ψ2 and for all positions 0≤ j < i , we have S, t(λ[0, j]),
λ[j,∞] |=ψ1.

Note that whenever a strategy quantifier is applied, the tree formula in its scope
is evaluated with respect to execution trees ofS, even when the strategy quanti-
fier is in a scope of another strategy quantifier. Thus, for example, the GL formula
∃∃A1. ∃∃A2. θ is equivalent to the GL formula∃∃A2. θ . This is analogous to the seman-
tics of nested path quantifiers in CTL?, where, for example,∃∀ψ is equivalent to∀ψ .

6.2.1. GL Expressiveness.The logic ATL? is the syntactic fragment of GL that
consists of all formulas in which every strategy quantifier is immediately followed
by a path quantifier (note that∃∃A. ∀ is equivalent to〈〈A〉〉). In particular, the formula
ϕ̂′ = ∃∃{a}. (∃ p∧∃ q), for a playera and two different propositionsp andq,
is not equivalent to any ATL? formula. It follows that GL is more expressive than
ATL ?. GL and AMC are incomparable generalizations of ATL?: the GL formula
ϕ̂′ is not equivalent to any AMC formula; over 1-player game structures, GL is the
same as CTL?, and thus not as expressive as the (alternation-free)µ-calculus.

THEOREM 6.4. GL is more expressive than ATL? but not as expressive as AMC.
AMC is not as expressive as GL.

A syntactic fragment of GL different from ATL/ATL? is studied inmodule check-
ing [Kupferman et al. 2001]. There, one considers formulas of the form∃∃A. θ , with
a single outermost strategy quantifier followed by a CTL or CTL? formulaθ . The
GL formula〈〈a〉〉 ¦ 〈〈b〉〉 ¦ p involves strategies for two different players,a andb,
and is not equivalent to any formula with a single outermost strategy quantifier.
It follows that GL is more expressive than module checking. Thus, from an ex-
pressiveness point of view, alternating-time temporal logics and module checking
identify incomparable fragments of game logic. In Kupferman et al. [2001], it
is shown that the module-checking problem is EXPTIME-complete for CTL and
2EXPTIME-complete for CTL?, and the structure complexity of both problems is
PTIME. Hence, from a computational point of view, ATL is advantageous.

6.2.2. GL Model Checking. The model-checking problem for GLasks, given
a game structureS and a GL (state) formulaϕ, for the set of states ofS that
satisfy ϕ. The model-checking problem for CTL? can be solved by repeatedly
applying, in a bottom-up fashion, an LTL model-checking procedure on subformu-
las [Emerson and Lei 1985]. The same technique can be used in order to solve the
model-checking problem for GL by repeatedly applying the CTL? module-checking
algorithm from Kupferman et al. [2001]. The complexity of CTL? module checking
then implies the following.

THEOREM 6.5. The model-checking problem for GL is 2EXPTIME-complete.
For GL formulas of bounded size, the model-checking problem is PTIME-complete.

7. Incomplete Information

According to our definition of ATL, every player has complete information about
the state of a game structure. In certain modeling situations it may be appropriate,
however, to assume that a player can observe only a subset of the propositions. Then,

Alternating-Time Temporal Logic 707

the strategy of the player can depend only on the observable part of the history of
the game. In this section we study such players with incomplete information. Using
known results on multi-player games with incomplete information, we show that
this setting is much more complex than the setting with complete information.
Our main result is negative: we show that the ATL model-checking problem is
undecidable for cooperating players with incomplete information. We present this
result for the special case of turn-based synchronous game structures.

7.1. GAME STRUCTURES WITHINCOMPLETEINFORMATION. A turn-based syn-
chronous game structure with incomplete informationis a pair〈S, P〉 that consists
of a turn-based synchronous game structureS=〈k, Q,5, π, σ, R〉 and a vector
P={5a | 1≤a≤ k} of k sets5a⊆5 of propositions, one for each player. Recall
thatσ is a map from the statesQ to the players6={1, . . . , k} such that at stateq, it
is the turn of playerσ (q), andR⊆ Q× Q is a total transition relation. Theobserv-
ability vector Pdefines for each playera∈6 the set5a of propositionsobservable
bya. For each playera∈6, we assume that there is a propositionpa ∈5a such that
[pa]={q | σ (q)=a}. Thus, playera can observe when it is its turn, but it might not
observeσ (q) for statesq with σ (q) 6=a. Consider a playera∈6. A subsetv⊆5a
is called ana-view, and the set ofa-views is denotedVa= 25a . The functionπa
maps each stateq∈ Q to the correspondinga-view πa(q)=π (q)∩5a, and the
functionπã maps each stateq∈ Q to the setπã(q)=π (q)\5a of propositions that
hold in q but a cannot observe. The functionπa is extended to computations in
the natural way: ifλ=q0,q1,q2, . . . , thenπa(λ)=πa(q0), πa(q1), πa(q2), . . . We
require that whenever it is playera’s turn, then the transition relation can influence
only propositions thata can observe, and is independent of propositions thata
cannot observe. An exception are propositions of the formpb, for b∈6, which
may became valid in the target state. Formally, we require that the following two
conditions hold for all playersa∈6 and all statesq1,q′1,q2∈ Q:

(1) If σ (q1)=a andR(q1,q′1), thenπã(q1)=πã(q′1)\{pσ (q′1)}.
(2) If σ (q1)= σ (q2)=a andπa(q1)=πa(q2) andR(q1,q′1), thenR(q2,q′2) for all

statesq′2 with πa(q′2)=πa(q′1) andπã(q′2)\{pσ (q′2)}=πã(q2).

In other words, we can view the transition relationRas a vector ofplayer transition
relations Ra⊆Va × Va, one for each playera∈6. The player transition relation
Ra specifies for eacha-view a set of possible successora-views: for alla-viewsv
andv′, we haveRa(v, v′) iff for any and all pairs〈q,q′〉 of states withσ (q)=a and
πa(q)= v andπa(q′)= v′ andπã(q)=πã(q′)\{pσ (q′)}, we haveR(q,q′).

7.2. ATL WITH INCOMPLETE INFORMATION. When we specify properties of
a game structure with incomplete information using ATL formulas, we restrict
ourselves to a syntactic fragment of ATL. To see why, consider the ATL formula
〈〈a〉〉¦p, for a propositionp 6∈5a that cannot be observed by playera. The formula
requires playera to have a strategy to reach a state in which the propositionp
is true. Asa cannot observep, this requirement makes no sense. Consequently,
whenever a set of players is supposed to attain a certain task, we require that each
player in the set can observe the propositions that are involved in the task. This
includes all propositions that appear in the task as well as all propositions that
are observable by players appearing in the task. Consider, for example, for the
ATL formula 〈〈a〉〉 ¦ 〈〈b〉〉 ¦ p, for two playersa andb. If a cannot observe all

708 R. ALUR ET AL.

propositions thatb can observe, thena cannot determine whether its task, to reach
a state that satisfies〈〈b〉〉¦p, is accomplished. Hence, we require that5b⊆5a, as
well as p∈5b.

Formally, given an observability vectorP, we define for each ATL formulaϕ
the setinvP(ϕ)⊆5 of involved propositions. The definition proceeds by induction
on the structure of the formula:r invP(p)={p}, for propositionsp∈5.r invP(¬ϕ)= invP(ϕ).r invP(ϕ1 ∨ ϕ2)= invP(ϕ1)∪ invP(ϕ2).r invP(〈〈A〉〉 fϕ)= invP(ϕ)∪ ⋃a∈A5a.r invP(〈〈A〉〉 ϕ)= invP(ϕ)∪ ⋃a∈A5a.r invP(〈〈A〉〉ϕ1Uϕ2)= invP(ϕ1)∪ invP(ϕ2)∪

⋃
a∈A5a.

The ATL formulaϕ is well-formedwith respect to the observability vectorP if the
following two conditions hold:

(1) For every subformula ofϕ of the form〈〈A〉〉 fθ or 〈〈A〉〉 θ , and for every player
a∈ A, we haveinvP(θ)⊆5a.

(2) For every subformula ofϕ of the form〈〈A〉〉θ1Uθ2, and for every playera∈ A,
we haveinv(θ1) ∪ inv(θ2)⊆5a.

Note that if the formula〈〈A〉〉ψ is well-formed, then each player inA can observe
all propositions that are observable by players that appear inψ , but it may not be
able to observe some propositions that are observable by other players inA.

When we interpret an ATL formulaϕ over a turn-based synchronous game struc-
ture 〈S, P〉 with incomplete information, we require thatϕ is well-formed with
respect toP. The definition of the satisfaction relation is the same as in the case
of complete information (see Section 3.2), except for the following definitions of
strategies and outcomes. Now, astrategyfor playera∈6 is a functionfa: V+a →Va
that maps every nonempty, finite sequenceκ of a-views to ana-view such that if
the lasta-view of κ is v, then Ra(v, fa(κ)). Thus, the strategyfa looks at the
a-views of a finite computation prefix and suggests ana-view for the next state
(the suggestion is followed if it is the turn of playera). Given a stateq∈ Q, a set
A⊆6 of players, and a setFA={ fa | a ∈ A} of strategies, one for each player
in A, a computationλ=q0,q1,q2, . . . is in anoutcomein out(q, FA) if q0=q and
for all positionsi ≥ 0, if σ (qi)∈ A, thenπa(qi+1)= fa(πa(λ[0, i])) for a= σ (qi).
Thus, for example,q |= 〈〈A〉〉 fϕ iff either σ (q)∈ A and there exists aσ (q)-view
v⊆5σ (q) such that for all statesq′ with R(q,q′) andπσ (q)(q′)= v, we haveq′ |=ϕ,
or σ (q) 6∈ A and for all statesq′ with R(q,q′), we haveq′ |=ϕ.

Themodel-checking problem for turn-based synchronous ATL with incomplete
informationasks, given a turn-based synchronous game structure〈S, P〉 with in-
complete information, and an ATL formulaϕ that is well-formed with respect toP,
for the set of states ofS that satisfyϕ.

THEOREM 7.1. The model-checking problem for turn-based synchronous ATL
with incomplete information is undecidable.

PROOF. The outcome problem for multi-player games with incomplete
information has been proved undecidable by M. Yannakakis (personal com-
munication). This problem is identical to the model-checking problem for the

Alternating-Time Temporal Logic 709

ATL formula 〈〈A〉〉 ¦ p on a turn-based synchronous game structure with incom-
plete information.

We note that for Fair ATL over turn-based asynchronous game structures with
weak-fairness constraints for the scheduler, and incomplete information for the
other players, proving undecidability is easier, and follows from undecidability
results on asynchronous multi-player games with incomplete information [Peterson
and Reif 1979; Pnueli and Rosner 1990].

7.3. SINGLE-PLAYER ATL WITH INCOMPLETE INFORMATION. Single-player
ATL is the fragment of ATL in which every path quantifier is parameterized by a sin-
gleton set of players. In this case, players cannot cooperate, and the model-checking
problem is decidable also for incomplete information. There is an exponential price
to be paid, however, over the setting with complete information.

THEOREM 7.2. The model-checking problem for single-player turn-based syn-
chronous ATL with incomplete information is EXPTIME-complete. The problem is
EXPTIME-hard even for a fixed formula.

PROOF. We start with the upper bound. Given a turn-based synchronous game
structure〈S, P〉 with incomplete information and a single-player ATL formulaϕ
that is well-formed with respect toP, we label the states ofS with subformulas
of ϕ, starting as usual from the innermost subformulas. For subformulas generated
by the rules (S1–S2), the labeling procedure is straightforward. For subformulasϕ′
generated by (S3), we proceed as follows.

Let Sa=〈2,Va,5a, id, σa, Ra〉 be the game structureSas observed by playera:
id is the identity function, and for all statesv ∈Va, defineσa(v)= 1 if pa ∈ v, and
σa(v)= 2 otherwise. Note thatSa is a 2-player game structure—player 1 corre-
sponds to playera, and player 2 corresponds to all other players—and player 1
has complete information in this game. We construct the extended game struc-
ture S′a=〈2,Va,5

′
a, π

′
a, σa, Ra〉 by adding the following new propositions. If

ϕ′ = 〈〈a〉〉 fθ or ϕ′ = 〈〈a〉〉 θ , then5′a=5a ∪ {pθ } with [pθ]S′a = [θ]Sa ; that is,
the new propositionpθ represents the label that corresponds to the proper subfor-
mulaθ . Similarly, ifϕ′ = 〈〈a〉〉θ1Uθ2, then5′a=5a∪{pθ1, pθ2}with [pθ1]S′a = [θ1]Sa

and [pθ2]S′a = [θ2]Sa . Sinceϕ is well-formed with respect toP, player 1 can solve the
ATL model-checking problems for the subformulasθ , θ1, andθ2 in Sa, and thus can
observe the propositions in5′a. In particular, ifθ , θ1, orθ2 contain a path quantifier
〈〈b〉〉 with b 6=a, then5b⊆5a, and the game structureSa refines the game struc-
tureSb. If ϕ′ = 〈〈a〉〉 fθ , letϕ′′ = 〈〈1〉〉 fpθ ; if ϕ′ = 〈〈a〉〉 θ , letϕ′′ = 〈〈1〉〉 pθ ; and
if ϕ′ = 〈〈a〉〉θ1Uθ2, letϕ′′ = 〈〈1〉〉pθ1 U pθ2. Then,q |=ϕ′ in S iff πa(q) |=ϕ′′ in S′a. In
particular, given a winning strategy for playera from stateq in S, we can construct
a winning strategy for player 1 from stateπa(q) in Sa, and vice-versa. Since the
size ofSa is exponential in the size ofS, membership in EXPTIME follows from
Theorem 5.2.

For the lower bound, we observe that the model-checking problem for the ATL
formula〈〈1〉〉¦p on a turn-based synchronous game structure with two players and
incomplete information is identical to the outcome problem for 2-player games
with incomplete information. The latter problem is known to be EXPTIME-hard
[Reif 1984].

710 R. ALUR ET AL.

TABLE I. MODEL-CHECKING COMPLEXITY RESULTS

Closed Systems Open Systems
ATL joint complexity PTIME PTIME

[Clarke et al. 1986] O(m · `)
ATL structure complexity NLOGSPACE PTIME

[Kupferman et al. 2000]
Weakly-Fair ATL joint complexity PTIME PTIME

[Clarke et al. 1986] O(m2 · w3 · `)
Weakly-Fair ATL structure complexity NLOGSPACE PTIME

[Kupferman and Vardi 1995]
Strongly-Fair ATL joint complexity PTIME PSPACE

[Clarke et al. 1986] mO(w) · `
Strongly-Fair ATL structure complexity PTIME PSPACE

[Kupferman and Vardi 1998]
ATL ? joint complexity PSPACE 2EXPTIME

[Clarke et al. 1986] m2O(`)

ATL ? structure complexity NLOGSPACE PTIME
[Kupferman et al. 2000]

8. Conclusions

Methods for reasoning about closed systems are, in general, not applicable for rea-
soning about open systems. The verification problem for open systems, more than
it corresponds to the model-checking problem for temporal logics, corresponds, in
the case of linear time, to therealizability problem [Abadi et al. 1989; Pnueli and
Rosner 1989a, 1989b], and in the case of branching time, to themodule-checking
problem [Kupferman et al. 2001], that is, to a search for winning strategies. While
existing methods for the verification of open systems do not avoid the compu-
tational price caused by solving infinite games, the logic ATL introduced here
identifies a class of verification problems for open systems for which it suffices
to solve iterated finite games. The ensuing linear model-checking complexity for
ATL shows that despite the pessimistic results achieved in this area so far, there
is still a great deal of interesting reasoning about open systems that can be per-
formed efficiently.

While closed systems are naturally modeled as Kripke structures (labeled tran-
sition systems), a general model for open systems, which can accommodate a wide
variety of notions of composition, is the concurrent game structure. Closed sys-
tems correspond to the special case of a single player. In this case, game structures
degenerate to Kripke structures, ATL degenerates to CTL, Fair ATL to Fair CTL,
and ATL? to CTL?. Our model-checking complexity results are summarized in
Table I. All complexities in the table denote tight bounds, wherem is the size
of the structure,w is the number of fairness constraints, and` is the length of
the formula.

ACKNOWLEDGMENTS. We thank Luca de Alfaro, Kousha Etessami, Salvatore La
Torre, P. Madhusudan, Amir Pnueli, Moshe Vardi, Thomas Wilke, and Mihalis
Yannakakis for helpful discussions. We also thank Freddy Mang for comments on
a draft of this manuscript.

Alternating-Time Temporal Logic 711

REFERENCES

ABADI, M., AND LAMPORT, L. 1995. Conjoining specifications.ACM Trans. Prog. Lang. Syst. 17, 3,
507–534.

ABADI, M., LAMPORT, L., AND WOLPER, P. 1989. Realizable and unrealizable concurrent program spec-
ifications. InProc. 16th International Colloquium on Automata, Languages and Programming. Lecture
Notes in Computer Science, vol. 372. Springer-Verlag, 1–17.

ALUR, R.,DE ALFARO, L., GROSU, R., HENZINGER, T. A., KANG, M., KIRSCH, C. M., MAJUMDAR, R., MANG,
F. Y. C.,AND WANG, B. Y. 2001. JMOCHA: A model-checking tool that exploits design structure. In
Proc. 23rd International Conference on Software Engineering. IEEE Computer Society Press, 835–836.

ALUR, R.,AND HENZINGER, T. A. 1999. Reactive modules. InFormal Methods in System Design 15, 1,
7–48.

ALUR, R., HENZINGER, T. A., MANG, F. Y. C., QADEER, S. K., RAJAMANI , S. K.,AND TASIRAN, S. 1998.
MOCHA: Modularity in model checking. InProc. 10th International Conference, Computer Aided Veri-
fication. Lecture Notes in Computer Science, vol. 1427. Springer-Verlag, 521–525.

ALUR, R., LA TORRE, S.,AND MADHUSUDAN, P. 2002. Playing games with boxes and diamonds. Tech.
Rep., Univ. Pennsylvania.

BEERI, C. 1980. On the membership problem for functional and multivalued dependencies in relational
databases.ACM Trans. Datab. Syst. 5, 241–259.

BRYANT, R. E. 1992. Symbolic Boolean manipulation with ordered binary-decision diagrams.ACM
Comput. Surv. 24, 3, 293–318.

BÜCHI, J. R.AND LANDWEBER, L. H. 1969. Solving sequential conditions by finite-state strategies.Trans.
AMS 138, 295–311.

BURCH, J. R., CLARKE, E. M., MCMILLAN , K. L., DILL , D. L., AND HWANG, L. J. 1992. Symbolic model
checking: 1020 states and beyond. InInf. Comput. 98, 2, 142–170.

CHANDRA, A. K., KOZEN, D. C.,AND STOCKMEYER, L. J. 1981. Alternation.J. ACM 28, 1, 114–133.
CLARKE, E. M., AND EMERSON, E. A. 1981. Design and synthesis of synchronization skeletons using

branching-time temporal logic. InProc. Workshop on Logic of Programs. Lecture Notes in Computer
Science, vol. 131. Springer-Verlag, 52–71.

CLARKE, E. M., EMERSON, E. A.,AND SISTLA, A. P. 1986. Automatic verification of finite-state concur-
rent systems using temporal logic specifications.ACM Trans. Progr. Lang. Syst. 8, 2, 244–263.

CLEAVELAND , R., AND STEFFEN, B. 1991. A linear-time model-checking algorithm for the alternation-
free modalµ-calculus. InProc. 3rd International Conference on Computer Aided Verification. Lecture
Notes in Computer Science, vol. 575. Springer-Verlag, 48–58.

DAM, M. 1994. CTL? and ECTL? as fragments of the modalµ-calculus.Theoret. Comput. Sci. 126,
77–96.

DE ALFARO, L., HENZINGER, T. A., AND MAJUMDAR, R. 2001a. From verification to control: Dynamic
programs for omega-regular objectives. InProc. 16th Annual Symposium on Logic in Computer Science.
IEEE Computer Society Press, 279–299.

DE ALFARO, L., HENZINGER, T. A., AND MANG, F. Y. C. 2000. The control of synchronous systems. In
Proc. 11th International Conference on Concurrency Theory. Lecture Notes in Computer Science, vol.
1877. Springer-Verlag, 458–473.

DE ALFARO, L., HENZINGER, T. A., AND MANG, F. Y. C. 2001b. The control of synchronous systems,
Part II. In Proc. 12th International Conference on Concurrency Theory. Lecture Notes in Computer
Science, vol. 2154. Springer-Verlag, 566–580.

DILL , D. L. 1989. Trace Theory for Automatic Hierarchical Verification of Speed-Independent Circuits.
MIT Press.

EMERSON, E. A. 1990. Temporal and modal logic. InHandbook of Theoretical Computer Science, vol. B.
J. van Leeuwen, Ed. Elsevier, 997–1072.

EMERSON, E. A., AND HALPERN, J. Y. 1986. Sometimes and not never revisited: On branching versus
linear time.J. ACM 33, 1, 151–178.

EMERSON, E. A.,AND JUTLA, C. 1988. The complexity of tree automata and logics of programs. InProc.
29th Symp. on Foundations of Computer Science.IEEE Computer Society Press, 328–337.

EMERSON, E. A., AND LEI, C.-L. 1985. Modalities for model checking: Branching-time logic strikes
back. InProc. 20th Symp. on Principles of Programming Languages. ACM Press, 84–96.

EMERSON, E. A., AND LEI, C.-L. 1986. Efficient model checking in fragments of the propositional
µ-calculus. InProc. 1st Symp. on Logic in Computer Science. IEEE Computer Society Press, 267–278.

712 R. ALUR ET AL.

EMERSON, E. A.,AND SISTLA, A. P. 1984. Deciding branching-time logic. InProc. 16th Symp. on Theory
of Computing. ACM Press, 14–24.

ETESSAMI, K., WILKE, T., AND SCHULLER, R. A. 2001. Fair simulation relations, parity games, and
state space reduction for B¨uchi automata. InProc. 28th International Colloquium on Automata,
Languages and Programming. Lecture Notes in Computer Science, vol. 2076. Springer-Verlag,
694–707.

FISCHER, M. J.,AND LADNER, R. E. 1979. Propositional dynamic logic of regular programs.J. Comput.
Syst. Sci. 18, 194–211.

GAWLICK , R., SEGALA, R., SOGAARD-ANDERSEN, J.,AND LYNCH, N. A. 1994. Liveness in timed and
untimed systems. InProc. 21st International Colloquium on Automata, Languages and Programming.
Lecture Notes in Computer Science, vol. 820. Springer-Verlag, 166–177.

GUREVICH, Y., AND HARRINGTON, L. 1982. Trees, automata, and games. InProc. 14th Symp. on Theory
of Computing. ACM Press, 60–65.

HALPERN, J. Y. AND FAGIN, R. 1989. Modeling knowledge and action in distributed systems.Distrib.
Comput. 3, 4, 159–179.

HOARE, C. A. R. 1985. Communicating Sequential Processes. Prentice-Hall.
HOLZMANN, G. J. 1997. The model checker SPIN.IEEE Trans. Softw. Eng. 23, 5, 279–295.
IMMERMAN, N. 1981. Number of quantifiers is better than number of tape cells.J. Comput. Syst. Sci. 22, 3,

384–406.
JURDZINSKI, M. 2000. Small progress measures for solving parity games. InProc. 17th Symp. on The-

oretical Aspects of Computer Science. Lecture Notes in Computer Science, vol. 1770. Springer-Verlag,
290–301.

KOZEN, D. 1983. Results on the propositionalµ-calculus.Theoret. Comput. Sci. 27, 333–354.
KUPFERMAN, O.,AND VARDI, M. Y. 1995. On the complexity of branching modular model checking. In

Proc. 6th International Conference on Concurrency Theory. Lecture Notes in Computer Science, vol.
962. Springer-Verlag, 408–422.

KUPFERMAN, O. AND VARDI, M. Y. 1998. Verification of fair transition systems.Chicago J. Theoret.
Comput. Sci. 1998, 2.

KUPFERMAN, O., VARDI, M. Y., AND WOLPER, P. 2000. An automata-theoretic approach to branching-
time model checking.J. ACM 47, 2, 312–360.

KUPFERMAN, O., VARDI, M. Y., AND WOLPER, P. 2001. Module checking.Inf. Comput. 164,
322–344.

LICHTENSTEIN, O., AND PNUELI, A. 1985. Checking that finite state concurrent programs satisfy their
linear specification. InProc. 12th Symp. on Principles of Programming Languages. ACM Press, 97–107.

LYNCH, N. A. 1996. Distributed Algorithms. Morgan-Kaufmann.
MCMILLAN , K. L. 1993. Symbolic Model Checking. Kluwer Academic Publishers.
PARIKH, R. 1983. Propositional game logic. InProc. 24th Symp. on Foundations of Computer Science.

IEEE Computer Society Press, 195–200.
PETERSON, G. L.,AND REIF, J. H. 1979. Multiple-person alternation. InProc. 20st Symp. on Foundations

of Computer Science. IEEE Computer Society Press, 348–363.
PNUELI, A. 1977. The temporal logic of programs. InProc. 18th Symp. on Foundations of Computer

Science. IEEE Computer Society Press, 46–57.
PNUELI, A., AND ROSNER, R. 1989a. On the synthesis of a reactive module. InProc. 16th Symp. on

Principles of Programming Languages. ACM Press, 179–190.
PNUELI, A., AND ROSNER, R. 1989b. On the synthesis of an asynchronous reactive module. InProc.

16th International Colloquium on Automata, Languages and Programming. Lecture Notes in Computer
Science, vol. 372. Springer-Verlag, 652–671.

PNUELI, A., AND ROSNER, R. 1990. Distributed reactive systems are hard to synthesize. InProc. 31st
Symp. on Foundations of Computer Science. IEEE Computer Society Press, 746–757.

QUEILLE, J. P.,AND SIFAKIS, J. 1981. Specification and verification of concurrent systems in CESAR. In
Proc. 5th International Symp. on Programming. Lecture Notes in Computer Science, vol. 137. Springer-
Verlag, 337–351.

RABIN, M. O. 1972. Automata on Infinite Objects and Church’s Problem. Regional Conference Series
in Mathematics, vol. 13., AMS.

RAMADGE, P.,AND WONHAM, W. 1989. The control of discrete event systems.IEEE Transactions on
Control Theory 77, 81–98.

REIF, J. H. 1984. The complexity of two-player games of incomplete information.J. Comput. Syst.
Sci. 29, 274–301.

Alternating-Time Temporal Logic 713

ROSNER, R. 1992. Modular synthesis of reactive systems. Ph.D. dissertation, Weizmann Institute of
Science, Rehovot, Israel.

SHAPLEY, L. S. 1953. Stochastic games. InProc. Nat. Acad. Sci., 39, 1095–1100.
THOMAS, W. 1990. Automata on infinite objects.Handbook of Theoretical Computer Science, vol. B,

J. van Leeuwen, Ed. Elsevier, 165–191.
THOMAS, W. 1995. On the synthesis of strategies in infinite games. InProc. 12th Symp. on Theoretical

Aspects of Computer Science. Lecture Notes in Computer Science, vol. 900. Springer-Verlag, 1–13.

RECEIVED JUNE2002;REVISED AUGUST2002;ACCEPTED AUGUST2002

Journal of the ACM, Vol. 49, No. 5, September 2002.

