Alternating-Time Temporal Logic

RAJEEV ALUR

University of Pennsylvania, Philadelphia, Pennsylvania
THOMAS A. HENZINGER

University of California, Berkeley, California

AND
ORNA KUPFERMAN

Hebrew University, Jerusalem, Israel

Abstract. Temporallogic comesintwo varietilisear-time temporal logi@assumes implicit universal
quantification over all paths that are generated by the execution of a systerhing-time temporal
logic allows explicit existential and universal quantification over all paths. We introduce a third, more
general variety of temporal logialternating-time temporal logioffers selective quantification over
those paths that are possible outcomes of games, such as the game in which the system and the
environment alternate moves. While linear-time and branching-time logics are natural specification
languages for closed systems, alternating-time logics are natural specification languages for open
systems. For example, by preceding the temporal operator “eventually” with a selective path quantifier,
we can specify that in the game between the system and the environment, the system has a strategy to
reach a certain state. The problems of receptiveness, realizability, and controllability can be formulated
as model-checking problems for alternating-time formulas. Depending on whether or not we admit
arbitrary nesting of selective path quantifiers and temporal operators, we obtain the two alternating-
time temporal logics ATL and ATL

ATL and ATL* are interpreted overoncurrent game structuregvery state transition of a con-
current game structure results from a choice of moves, one for each player. The players represent

A preliminary version of this article appeared in fi@ceedings of the 38th Annual Symposium on the
Foundations of Computer Scienf@OCS'97). IEEE Computer Society Press, Los Alamitos, Calif.,
1997, pp. 100-109.

This work was supported in part by the ONR YIP award N00014-95-1-0520, by the NSF CAREER
awards CCR-9501708 and CCR-9970925, by the NSF grants CCR-9970925 and CCR-9988172, by
the DARPA grants NAG2-892 and NAG2-1214, by the SRC contracts 97-DC-324 and 99-TJ-688,
and by a Sloan Faculty Fellowship.

Authors’ present addresses: R. Alur, Department of Computer and Information Science, University of
Pennsylvania, Philadelphia, PA 19104, e-mail: alur@cis.upenn.edu, URL: www.cis.upenn.edu/ alur;
T. A. Henzinger and O. Kupferman, Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, CA 94720-1770, e-mdilah;ornd@eecs.berkeley.edu, URL:
www.eecs.berkeley.edu/"tah; www.eecs.berkeley.edu/"orna.

Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or
to redistribute to lists, requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 1515 Broadway, New York, NY 10036 USA, fag:(212)
869-0481, or permissions@ansi.org.

© 2002 ACM 0004-5411/02/0900-0672 $5.00

Journal of the ACM, Vol. 49, No. 5, September 2002, pp. 672—713.

Alternating-Time Temporal Logic 673

individual components and the environment of an open system. Concurrent game structures can
capture various forms of synchronous composition for open systems, and if augmented with fair-
ness constraints, also asynchronous composition. Over structures without fairness constraints, the
model-checking complexity of ATL is linear in the size of the game structure and length of the
formula, and the symbolic model-checking algorithm for CTL extends with few modifications to
ATL. Over structures with weak-fairness constraints, ATL model checking requires the solution of
1-pair Rabin games, and can be done in polynomial time. Over structures with strong-fairness con-
straints, ATL model checking requires the solution of games with Boolean combinationscbf B”
conditions, and can be done in PSPACE. In the case of*Allie model-checking problem is
closely related to the synthesis problem for linear-time formulas, and requires doubly exponential
time.

Categories and Subject Descriptors: F.3.ddics and Meanings of Program§ Specifying and
Verifying and Reasoning about Programs

General Terms: Theory, Verification
Additional Key Words and Phrases: Alternation, games, model checking, temporal logic

1. Introduction

Pnueli [1977] proposed to ufieear-time temporal logi¢LTL) to specify require-
ments for reactive systems. A formula of LTL is interpreted over a computation,
which is an infinite sequence of states. A reactive system satisfies an LTL formula
if all its computations do. Due to the implicit use of universal quantification over
the set of computations, LTL cannot express existential, or possibility, properties.
Branching-time temporal logicsuch as CTL and CTi, on the other hand, do
provide explicit quantification over the set of computations [Clarke and Emerson
1981; Emerson and Halpern 1986]. For instance, for a state pregictie CTL
formulaVv< ¢ requires that a state satisfyiggis visited in all computations, and
the CTL formulad<® ¢ requires that there exists a computation that visits a state
satisfyingg. The problem ofnodel checkings to verify whether a finite-state ab-
straction of a reactive system satisfies a temporal-logic specification [Clarke and
Emerson 1981; Queille and Sifakis 1981]. Efficient model checkers exist for both
LTL (e.g., SPIN [Holzmann 1997]) and CTL (e.g., SMV [McMillan 1993]), and
are increasingly being used as debugging aids for industrial designs.

The logics LTL and CTL are interpreted over Kripke structures. A Kripke struc-
ture offers a natural model for the computations ofased systepwhose behavior
is completely determined by the state of the system. However, the compositional
modeling and design of reactive systems requires each component to be viewed as
an open system, where apen systers a system that interacts with its environ-
ment and whose behavior depends on the state of the system as well as the behavior
of the environment. Modeling languages for open systems, such as CSP [Hoare
1985], 1/0 Automata [Lynch 1996], and Reactive Modules [Alur and Henzinger
1999], distinguish betwednternal nondeterminism, choices made by the system,
and externalnondeterminism, choices made by the environment. Consequently,
besides universal (do all computations satisfy a property?) and existential (does
some computation satisfy a property?) questions, a third question arises naturally:
can the system resolve its internal choices so that the satisfaction of a property is
guaranteed no matter how the environment resolves the external choices? Such an
alternatingsatisfaction can be viewed as a winning condition in a two-player game
between the system and the environment. Alternation is a natural generalization of

674 R. ALUR ET AL.

existential and universal branching, and has been studied extensively in theoretical
computer science [Chandra et al. 1981].

Different researchers have argued for game-like interpretations of LTL and CTL
specifications for open systems. We list four such instances here.

Receptiveneddill 1989;Gawlick et al.1994;Abadi and Lamporii995]: Given
a reactive system, specified by a sesafecomputations (typically, generated
by a transition relation) and a setlafe computations (typically, expressed by an
LTL formula), the receptiveness problem is to determine whether every finite
safe computation can be extended to an infinite live computation irrespective
of the behavior of the environment. It is necessary for executability and
compositionality to obtain an affirmative answer to the receptiveness problem.

Realizability (program synthes)s|Abadi et al.1989; Pnueli and Rosnefl989a,
1989b]: Given an LTL formula) over sets of input and output signals, the
synthesis problem requires the construction of a reactive system that
assigns to every possible input sequence an output sequence so that the resulting
computation satisfieg.

Supervisory controlRamadge and Wonhafr®89]: Given a finite-state machine
whose transitions are partitioned into controllable and uncontrollable, and a set
of safe states, the control problem asks for the construction of a controller
that chooses the controllable transitions so that the machine always stays within
the safe set (or satisfies some more general LTL formula).

Module checkingKupferman et al2001]: Given an open system and a CTL
formulag, the module-checking problem is to determine if, no matter how the
environment restricts the external choices, the system satjsfies

These four problems use standard temporal-logic syntax, which was developed
for specifying closed systems, and formulate new semantical conditions for open
systems. In this article, we propose, instead, to enrich temporal logic so that al-
ternating properties can be specified explicitly within the logic. For this purpose,
we introducealternating-time temporal logi¢swvhich are interpreted over game
structures. In order to capture compositions of open systems, we consider, instead
of two-player games between system and environment, the more general setting of
multi-player games, with a sét of players that represent different components of
the system and the environment [Shapley 1953; Halpern and Fagin 1989].

The Kripke structure is a natural “common-denominator” model for closed sys-
tems, independent of whether the high-level description of a system is given, say, as
a product of state machines or as a set of guarded commands on variables. In anal-
ogy, the natural “common-denominator” model for compositions of open systems
is theconcurrent game structurgVhile modeling languages for open systems use a
variety of different communication mechanisms (variables vs. events, synchronous
vs. asynchronous interaction, etc.), they can be given a common semantics in terms
of concurrent game structures, which, unlike Kripke semantics, maintains the dif-
ferentiation of a design into system components and environment. A concurrent
game is played on a state space. In each step of the game, every player chooses
a move, and the combination of choices determines a transition from the current
state to a successor state. Special cases of a concurrent gatmmarased syn-
chronous(in each step, only one player has a choice of moves, and that player is
determined by the current statdjpore synchronougthe state is partitioned ac-
cording to the players, and in each step, every player updates its own component

Alternating-Time Temporal Logic 675

of the state independently of the other players), &umd-based asynchronous

(in each step, only one player has a choice of moves, and that player is chosen
by a fair scheduler). These subclasses of concurrent games capture various notions
of synchronous and asynchronous interaction between open systems.

For a setA C X of players, a seh of computations, and a stafeof the system,
consider the following game between a protagonist and an antagonist. The game
starts at the statp At each step, to determine the next state, the protagonist resolves
the choices controlled by the players in the Aetvhile the antagonist resolves the
remaining choices. If the resulting infinite computation belongs to th& gben the
protagonist wins; otherwise, the antagonist wins. If the protagonist has a winning
strategy, we say that the alternating-time formihs) A is satisfied in the statg.

Here,{ A)) can be viewed asath quantifier parameterized with the sétof play-

ers, which ranges over all computations that the playews @an force the game
into, irrespective of how the players B\ A proceed. Hence, the parameterized
path quantifier{ A)) is a generalization of the path quantifiers of branching-time
temporal logics: the existential path quantifiecorresponds tg X)), and the uni-
versal path quantifier corresponds t¢@)). In particular, Kripke structures can be
viewed as game structures with a single plasys which represents the system.
Then, the two possible parameterized path quantifiesgs)) (also denotedsys))

and (@) (also denoted))) match exactly the path quantifietandV required for
specifying closed systems. Depending on the syntax used to specify theo$et
computations, we obtain two alternating-time temporal logics: in the logictATL
the setA is specified by aformula of LTL; in the more restricted logic ATL, the/set

is specified by a single temporal operator applied to a state predicate. By allowing
nesting of alternating properties, we obtain ATL as the alternating-time generaliza-
tion of CTL, and ATL* as the alternating-time generalization of CTEinally, by
considering game structures with fairness constraints (for modeling asynchronous
composition), we obtain Fair ATL as the alternating-time generalization of Fair CTL
[Emerson 1990].

Alternating-time temporal logics can naturally express properties of open sys-
tems, as illustrated by the following five examples:

(1) In a multiprocess distributed system, we can require any subset of processes
to attain a goal, irrespective of the behavior of the remaining processes. Con-
sider, for example, the cache-coherence protocol for Gigamax verified using
SMV [McMillan 1993]. One of the desired properties is the absence of dead-
locks, where a deadlock state is one in which a processoa, s&ipermanently
blocked from accessing a memory cell. This requirement was specified using
the CTL formula

Yo (3¢ read A 3O write).
The ATL formula
Vo ((a) O read A (a) © write)

captures the informal requirement more precisely. While the CTL formula
only asserts that it is always possible for all processorotperateso thata

can eventually read and write (“collaborative possibility”), the ATL formula is
stronger: it guarantees a memory access for processw matter what the
other processors in the system @adversarial possibility™).

676 R. ALUR ET AL.

(2) Whilethe CTL formul&/o ¢ asserts that the state predicais an invariant of a
system componentirrespective of the behavior of all other components (“adver-
sarial invariance”), the ATL formulad] o ¢ (which stands foX \ {a})) O)
states the weaker requirement thhas apossible invarianbf the componenrt;
that is,a cannot violateo ¢ on its own, and therefore the other system compo-
nents may cooperate to achiewey (“collaborative invariance”). A necessary
(but not sufficient) condition fop to be an invariant of a composite system, is
that every componera of the system satisfies the ATL formula]] o ¢.

(3) Thereceptivenessf a system whose live computations are given by the LTL
formulayr is specified by the ATLformulay o (sys) v .

(4) Checking therealizability (program synthes)jsof an LTL formula corre-
sponds to model checking the ATlformula {sys)y in a maximal model
that admits all possible inputs and outputs. (We formalize this intuition in
Theorem 5.6.)

(5) Thecontrollability of a system whose safe states are given by the state predicate
¢ is specified by the ATL formul&control) o ¢. Controller synthesis, then,
corresponds to model checking of this formula. More generally, for an LTL
formulay, the ATL* requirement(control) s asserts that the controller has a
strategy to ensure the satisfactionjof

Notice that ATL is better suited for compositional reasoning than CTL. For in-
stance, if a componeatsatisfies the CTL formula® ¢, we cannot conclude that a
composite system that contaiasas a component, also satisfigé ¢. On the
other hand, ifa satisfies the ATL formuld(a)) ¢ ¢, then so does the composite
system.

The model-checking problem for alternating-time temporal logics requires the
computation of winning strategies. In models without fairness constraints, all games
that arise in ATL model checking afmite reachability games. Over Kripke struc-
tures, existential reachabilitd{) can be checked by iterating the existential next-
time operatodQ; universal reachabilityM<), by iterating the universal nex.
Similarly, over turn-based synchronous game structures, alternating reachability
({A)©) can be checked by iterating an appropriate miZof (whenever a player
in Adetermines the successor state) @od(whenever a player i&t \ A determines
the successor state). Over general concurrent game structures, the next-time oper-
ators30 andVvO need to be generalized to a game-based fegk)0O ¢, which
characterizes the states from which the players ican cooperate to ensure that
the immediate successor state satisfieBhe operatof{ A) O can be computed in
time linear in the size of the game structdrand iterated a linear number of times
to compute{{ A)<. This gives a linear-time model-checking procedure for ATL,
and indicates how symbolic model checkers for CTL can be modified to check ATL
specifications.

! Two remarks about complexity are in order, the first well-known, the second particular to concurrent
games. First, the number of states, in Kripke as well as game structures, is typically exponential in
the high-level system description, for example, if the system description involves Boolean variables.
Second, while for system descriptions with Boolean variables, the computaHorisifi NP (Boolean
satisfiability), andvo is in co-NP (Boolean validity), the computationf))© may require PSPACE
(quantified Boolean formulas) or even NEXPTIME (Henkin-quantified Boolean formulas), already
in the restricted case of two players [de Alfaro et al. 2000, 2001b].

Alternating-Time Temporal Logic 677

In models with weak-fairness constraints, ATL model checking requires the
solution ofinfinitegames, namely, games whose winning condition is a single Rabin
pair. Consequently, the model-checking complexity for ATL with weak-fairness
constraints is polynomial in the size of the game structure, nar@éty? - w? - ¢)
for a game structure withn transitionsw weak-fairness constraints, and a formula
of length ¢. In the special case dfirn-based asynchronowggame structures, the
only fairness constraints are on the scheduler, to ensure the fair selection of players.
In this case, the winning condition simplifies to ad@i condition, and the ATL
model-checking problem can be solved in ti®¢n - m - k? - £) for a turn-based
asynchronous game structure withstates,m transitions, ank players, and a
formula of lengthe. In models with strong-fairness constraints, ATL model checking
requires solving games where the winning condition is a Boolean combination of
Buichi conditions, and can be done in PSPACE, or alternatively, inrif{&) - ¢, for
agame structure of sizewith w fairness constraints, and a formula of lengtfihe
model-checking problem for ATLis closely related to the realizability problem
for LTL, and therefore much harder, namely, complete for 2EXPTIME.

The article is organized as follows. Section 2 defines concurrent game structures
and considers several special cases. Section 3 defines the alternating-time tempo-
ral logics ATL, Fair ATL, and ATL*. Section 4 presents symbolic model-checking
procedures, and Section 5 establishes complexity bounds on model checking for
ATL, Fair ATL, and ATL*. In Section 6, we discuss more general ways of introduc-
ing game quantifiers in temporal logics. Specifically, we define an alternating-time
u-calculus and a temporal game logic, and study their relationship to ATL and
ATL*. Finally, Section 7 considers models in which individual players have only
partial information about the global state of the system. We show that in this case
the model-checking problem for ATL is generally undecidable, and we identify a
special case that is decidable in exponential time.

2. Concurrent Game Structures

We model compositions of open systems as concurrent game structures. While
in Kripke structures, a state transition represents a step of a closed system, in
a concurrent game structure, a state transition results from choices made by the
system components and the environment, and represents simultaneous steps by the
components and the environment.

2.1. DeEFINITION. A (concurrenj game structureis a tuple S=(k, Q, I,
m, d, §) with the following components:

e A natural numbek > 1 of players We identify the players with the numbers
1....k

» Afinite setQ of states

« Afinite setIl of propositiong(also calledbservables

» For each statq € Q, a setr(q) C IT of propositions true af. The functionr is
calledlabeling (or observatiof function

e Foreachplayeac{1,..., k} and each statg € Q, a natural numbet,(q) > 1
of moves available at statpto playera. We identify the moves of playex at
stateq with the numbers 1 .., d,(q). For each statg € Q, amove vectoatq
is a tuple(js, ..., jk) such that Xk j, < dy(q) for each playea. Given a state

678 R. ALUR ET AL.

g e Q, we write D(q) for the set{1, ..., di(qQ)} x --- x {1, ..., dk(q)} of move
vectors. The functio is calledmove function

e For each stategqe Q and each move vectotjs,..., jk) € D(q), a state
3(q, j1, ..., jk) € Q that results from stateg if every playerae{l,...,k}
chooses movg,. The functions is calledtransition function

The number of states of the structi8és n = |Q|. Thenumber of transitionsf S
ism= quQ di(q) x - - - x dk(q), that is, the total number of elements in the move
function D. Note that unlike in Kripke structures, the number of transitions is not
bounded byr?. For a fixed alphabdi of propositions, the size @is O(m).

For two stateg andq’, we say that]’ is asuccessoof q if there is a move vector
(j1,---, Jx) € D(q) such tha’ =§(q, ji1, .-, jk). Thus,q’ is a successor af iff
whenever the game is in stajethe players can choose moves so tfias the next
state. Acomputationof Sis an infinite sequence=qo, g1, go, . . . Of states such
that for all positions > 0, the statey; ., is a successor of the stage We refer to
a computation starting at stafieas ag-computationFor a computationk and a
positioni > 0, we use\[i], A[O, i], andA[i, oo] to denote theth state of., the finite
prefixqo, qi, ..., g of A, and the infinite suffixy, gi,1, ... of A, respectively.

Example2.1. Consider a system with two processeandb. The process
assigns values to the Boolean variakleWhenx = false thena can leave the
value ofx unchanged or change it tnie. Whenx = true, thena leaves the value
of x unchanged. In a similar way, the procdssssigns values to the Boolean
variabley. Wheny = falseg thenb can leave the value of unchanged or change
it to true. Wheny =true, thenb leaves the value of unchanged. We model the
synchronous composition of the two processes by the following concurrent game
structureS,y = (k, Q, I1, =, d, §):

» k=2. Player 1 represents processand player 2 represents process

* Q={q, gx, Ay, Oxy}. The statey corresponds ta =y = falsg the stateq, cor-
responds tx = true andy = falsg andqgy andagyy have similar interpretations.

» IT={x, y}. The values of both variables are observable.

* T[(q) = @’ ”(QX) = {X}! W(Qy) = {y}1 andT[(qu) = {Xv y}
o —di(q) =di(aqy) =2 andd;(ax) =di(axy) = 1. In statesg and gy, move 1 of
player 1 leaves the value gfunchanged, and move 2 changes the value of
In statest, andagyy, player 1 has only one move, namely, to leave the value
of x unchanged.
—dx(q) =d2(0x) =2 anddx(ay) =d2(axy) = 1. In statesg andqgy, move 1 of
player 2 leaves the value gfunchanged, and move 2 changes the value of
In statesy, andayy, player 2 has only one move, which leaves the valug of
unchanged.
« —Stateq has four successor&(q, 1, 1)=q, §(q, 1, 2)=aqy, 5(q, 2, 1) =0, and
8(q7 2’ 2) = qXY'
—Stateq], has two successor&(qy, 1, 1)=ax ands(ax, 1, 2) = Oyy.
—Stateqy has two successors{qy, 1, 1)=qy ands(qy, 2, 1) = dyy.
—Stateqyy has one success@(0yy, 1, 1) = Oxy.

The infinite sequences q, dx, dx, dx, A, andq, gy, dy, g, anda, dy;, are three
(out of infinitely many)q-computations of/ the game structiig,.

Alternating-Time Temporal Logic 679

Now suppose that processcan changey from falseto true only whenx is
alreadytrue. The resulting game structug, differs from S, only in the move
function, namelyd,(q) = 1. Whileq, g, dx, dx, dx, 0y, is ag-computation of3,,,
the sequences, gy, dy, oy, andq, gy, are not.

Third, suppose that procelsgan changeg from falseto true either wherx is al-
readytrue, or when simultaneouslyis set tatrue. The resulting game structugg,
differs from S, only in the transition function, namel¥/(q, 1, 2) =q. In stateq,
the first move of player 2 means “leayeunchanged” as before, but the second
move of player 2 now means “changé player 1 simultaneously changrsother-
wise, leavey unchanged.” Note that this corresponds to a Mealy-type synchronous
composition of the processasandb, whereb reacts to the choice & within a
single state transition of the system. The sequeqcesady, dx, dx, 0y, andq, o,
areq-computations of5,, butq, gy, gy, g, is not.

Fourth, suppose we consider procasm its own, as an open system with local
variablex and external variablg. In this case, we have again two players, player 1
representing processas before, but player 2 now representing the environment.
Assume that the environment may, in every state, change the vajuarbitrarily
but independently of how proceasupdatesx. The resulting game structu@fy
differs from S,y in the move and transition functions:

« dy () =d; (ax) =d; (qy) = d; (axy) = 2. In every state, the first move of player 2
setsy to falsg and the second move satso true.
. —Stateq has four successost (g, 1, 1)=0q,87(q, 1, 2)=0qy,67(Q, 2, 1) =0y,
ands*(q, 2, 2) = Oxy.
—Stateqgy has two successordt (gx, 1, 1)= gy ands*(ax, 1, 2) = gxy.
—Stateny has four successoist (qy, 1, 1)=q, 5 (ay. 1, 2)=0qy, 57 (ay, 2, 1)=
Ox, ands™(ay, 2, 2) = Oyy.
— Stategxy has two successorst (dyy, 1, 1) = gx ands™ (gxy, 1, 2) = dxy.

Note thatSjy has strictly morej-computations tha,y.

Finally, consider again proceason its own, but this time with an environment
that, in every state, can change the valug @irbitrarily, even dependent of how
process updatex. This is a more powerful environment than in the previous case.
The resulting game structufg, has the following move and transition functions:

* d;(g) =d;(ax) =d;(ay) =d;(axy) = 4. In every state, the four moves of player 2
correspond to the four Boolean functions that choose the next vajudependent
on the next value of: move 1 sety to false move 2 sety to true, move 3 sets
y to the next value ofk, and move 4 sety to the complement of the next
value ofx.

e —0%(0,1,1)=6"(0,1,3)=q, 6%(q,1,2)=6"(q,1,4)=0qy, (0.2 1)=

8*(9, 2, 4)=ayx, ands*(q, 2, 2)=6"(q, 2, 3) = yy.
—&8"(Ox, 1, 1)=6"(ax, 1, 4)=0ax andé*(ax, 1, 2) =6"(0x, 1, 3) = Oy.
_5*(Qy» 17 1) = 5*(va 1’ 3): qi 5*(Qy’ 1? 2): 5*(qya 1’ 4) = qy1 5*(an 2’ 1) =
§*(ay, 2, 4) =0y, andé*(qy, 2, 2)=56*(dy, 2, 3) = Oxy-
—&8*(Oxy, 1, 1)=46%(0xy, 1, 4) =0x ands*(dxy, 1, 2) = 6" (Oxy, 1, 3) = Oxy-
While S, has the samg-computations asjy, they describe very different games.

For example, in statq of the game structurg,, the environment (player 2) can
choose a move (hamely, move 3) that ensures that in the next state, both variables

680 R. ALUR ET AL.

train ctr

out_of_gate
t_of_gate
‘ out-of-gate - request

q0 q1
: q2
out_of_gate
grant

ctr train

Fic. 1. Aturn-based synchronous game structure modeling a train controller.

x andy have the same value. In staief the game structursjy, the environment

has no such choice. Consequently, onlySjy has the environment a strategy to
keepx andy equal at all times. [

A Kripke structure(or labeled transition systenis the special case of a game
structure with a single player, that is= 1. In this special case, the sole player 1,
which represents a closed system, can always choose the successor state on its own.
If the numberd;(q) of moves of player 1 at a statpis greater than 1, then the
choice of successor statecpis nondeterministic.

We now define two special cases of game structures that commonly arise in the
synchronous composition of open systems.

2.1.1 Turn-Based Synchronous Game Structurds.a turn-based synchronous
game structure, at every state, only a single player has a choice of moves. For-
mally, a game structur&= (k, Q, I, =, d, §) is turn-based synchronous for
every state) € Q, there exists a playeay € {1, . .., k} such thatdy(q) =1 for all
playersbe {1,...,k}\ {aq}. We say that at state, it is the turn of playerag.
Equivalently, a turn-based synchronous game structure can be viewed as a tuple
S=(k, Q, I1, 7, 0, R),wheres: Q — {1, ..., k} is a function that maps each state
q to the playemy, andRC Q x Q is a total transition relation. Theqyf is a suc-
cessor ofy iff R(q, g). Note that in the turn-based synchronous case, the number
of transitions isn= |R| = O(n?), wheren is the number of states. Also note that
every 1-player structure (Kripke structure) is turn-based synchronous.

Example2.2. Consider the turn-based synchronous game struSure=
(k, Q, I, m,d, §) shown in Figure 1, which describes a protocol for a train en-
tering a railroad crossing:

» k=2. Player 1 represents the train, and player 2 the gate controller.

e Q={do, U1, %2, Ga}-
» IT={outof gate in_gate requestgrant}.
. —m(qgo) = {out.of_gatg. The train is outside the gate.
—m(q;) = {out.of_gate reques}. The train is still outside the gate, but has
requested to enter.
—(g2) = {out.of_gate grant}. The controller has given the train permission to
enter the gate.
—m(gz) = {in_gatg. The train is in the gate.

Alternating-Time Temporal Logic 681

o —di(gqo) =2 andd,(gp) = 1. At qo, it is the train’s turn. The train can choose to
either (move 1) stay outside the gateg) or (move 2) request to enter the
gate and proceed .

—di(g1) =1 anddy(g;) =3. At q, it is the controller’'s turn. The controller
can choose to either (move 1) grant the train permission to enter the gate,
or (move 2) deny the train’s request, or (move 3) delay the handling of the
request.

—di(g2) =2 anddy(gp) = 1. At gy, it is the train’s turn. The train can choose to
either (move 1) enter the gate or (move 2) relinquish its permission to enter
the gate.

—d1(g3) =1 andd,(g3) = 2. At qg, it is the controller’s turn. The controller can
choose to either (move 1) keep the gate closed or (move 2) reopen the gate to
new requests.

« —3(qo, 1, 1)=qo andé(do, 2, 1)=ta.

—38(th, 1, 1) =02 ands(qs, 1, 2)=qo ands(qs, 1, 3)=ay.

—3(t, 1, 1) =03 ands(de, 2, 1) = qo.

_8(q3’ 1s 1): Oz and(s(q3’ l’ 2) =(o-

Two states of the systerg; andqg, are controlled; that is, when a computation
is in one of these states, the controller chooses the next state. The other two states
are uncontrolled, and the train chooses successor states. This gives the following
mapping of states to players(qo) = o () =1 ando (1) =0 (gz) =2. O

2.1.2 Moore Synchronous Game Structuretn a Moore synchronous game
structure, the state space is the product of local state spaces, one for each player.
In every state, all players proceed simultaneously. Each player chooses its next
local state, possibly dependent on the current local states of the other players but
independent of the moves chosen by the other players. Formally, a game struc-
ture S=(k, Q, I, 7, d, §) is Moore synchronou§ the following two conditions
are satisfied:

(1) The state space has the fo@n= Q1 x - -+ x Qx.
(2) For each playerae{l,...,k}, each stateqe @, and each move

j€{l,...,dy(q)}, there exists a state componesi(q, j) such that
8(q, 1, .- jk)=(81(q, j1), ..., 8k(q, jk)) for all statesqe Q and move
vectors(j, ..., jk) € D(Q).

Thus, every global statge Q is ak-tupleq=(qy, ..., gk) of state components,,
each representing the local state of plageEaché,, for playera, can be viewed
as a local transition function that determines the next local state of pdayer

Example2.3. The concurrent game structug from Example 2.1 is Moore
synchronous. To see this, note that its state s@ae€q, dx, dy. Oxy} can be viewed
as the product ofQ1 = {u, uy} and Q= {v, vy} with g=(u, v), gx = (uy, V),
gy = (u, Vy), andayy = (Uy, Vy). The local transition functions are as follows:

* 81(q, 1)=461(qy, 1) =u andsi(q, 2) = 81(dy, 2) = 81(Ax, 1) = 1(Axy, 1) = Ux.
* 82(q, 1)=462(0x, 1) =V andsz(q, 2) = 82(qx, 2) = 82(qy, 1) = 82(0xy, 1) =vy.

Also the game structure§,, and S, from Example 2.1 are Moore synchronous,

but the game structureg, and §;, are not. ForS|, this is because the ability of
processh to change the value q{depends on what proceasdoes in the same

682 R. ALUR ET AL.

step tox. In §;,, the environment has this Mealy-type power, of looking at the next
value ofx before deciding on the next value pf [

Moore synchronous game structures arise if a system is described as a syn-
chronous composition of Moore machines. More general concurrent game struc-
tures can capture the synchronous composition of Mealy machines, the composi-
tion of Reactive Modules [Alur and Henzinger 1999], and generalizations thereof
[de Alfaro et al. 2000, 2001b].

2.2. FAIRNESS CONSTRAINTS When closed systems are modeled as Kripke
structures, to establish liveness properties, it is often necessary to rule out certain
(infinite) computations that ignore enabled moves forever. For instance, in an asyn-
chronous system consisting of many processes, we may like to restrict attention
to the computations in which all the processes take infinitely many steps. Such
assumptions can be incorporated in the model by adding fairness constraints to
Kripke structures. Motivated by similar concerns, we define fairness constraints for
game structures.

Consider a concurrent game structBe- (k, Q, I1, , d, §). A fairness con-
straint (a, y) consists of a playest € {1, ..., k} and a functiorny that maps every
stateq € Q to a (possibly empty) subset of the moves available at gtatelayera,
thatis,y(q) € {1, ..., da(q)}. A fairness constraint partitions the computations of
Sinto computations that are fair and computations that are not fair. Consider a com-
putationi =g, q1, O, . . . 0of the game structur and a fairness constraitd, y).

We say thata, y) is enabledat positioni >0 of A if y(q;) # ¥. We say thata, y)

is takenat positioni of A if there is a move vectofjy, ..., jk) € D(q) such that
(1) jae y(g) and (2)5(qi, j1, - - -, jk) =0i+1. We elaborate on two interpretations
for fairness constraints:

» The computation. is weakly(a, y)-fair if either there are infinitely many posi-
tions of A at which(a, y) is not enabled, or there are infinitely many positions of
A atwhich(a, y) is taken.

» The computation. is strongly (a, y)-fair if either there are only finitely many
positions ofA at which(a, y) is enabled, or there are infinitely many positions
of A at which(a, y) is taken.

With these standard definitions, strong fairness implies weak fairness.

A weak-fairness conditiof,, for the game structur8is a set of fairness con-
straints that are interpreted in the weak manner: a computatdrsis I'y,-fair if
A is weakly(a, y)-fair for all fairness constraint&, y) € T'y,. Similarly, astrong-
fairness conditiorl’'s for the game structur8 is a set of fairness constraints that
are interpreted in the strong manner: a computatiohSis I's-fair if A is strongly
(a, y)-fair for all fairness constraint@, y) € I's. Note that for every fairness con-
dition " (weak or strong), every finite prefix of a computatiorSafan be extended
to a computation that iE-fair.

Example2.4. Consider the concurrent game structBfgfrom Example 2.1
and the fairness constraif®, y) with y(q) = y(ax) = {2} andy(ay) = ¥ (dxy) = 9.
Only the computations d§y in which the value of the variablgis eventuallytrue
are (weakly or strongly}2, y)-fair. This is because, as long as the valueya$
false the game is either in stafgor in statey. Therefore, as long as the valueyat
false the fairness constrairi2, y) is enabled. Hence, in@, y)-fair computation,

Alternating-Time Temporal Logic 683

(2, y) will eventually be taken; that is, player 2 will eventually choose move 2, thus
changing the value of to true. [J

As fairness enables us to exclude some undesirable computations of a game
structure, it can be used to model the asynchronous (or interleaving) composition
of open systems.

2.2.1 Turn-Based Asynchronous Game Structurdn. a turn-based asyn-
chronous game structure, one player is designated to represatteduler If
the set of players i$1, ..., k}, we assume (without loss of generality) that the
scheduler is always playér In every state, the scheduler selects one of the other
k — 1 players, which represent—as usual—the components of the system and the
environment. The selected player then determines the next state. Formally, a game
structureS= (k, Q, I1, x, d, 8) is turn-based asynchronoufsk > 2 and for every
stateq € Q, the following two conditions are satisfied:

(1) de(@)=k —1.
(2) For all move vec'torsjl, oo i), (ji, cee, jlg) e D(q), if jx= j, andjy = j} for
a=jx, thend(d, ji,..., jk)=0(d, ji.---, Jy)-

We say that playea e {1, ..., k — 1} is scheduledvhenever playek (the sched-

uler) chooses mova. The move chosen by the scheduled player completely de-
termines the next state. Equivalently, a turn-based asynchronous game structure
can be viewed as a tupe=(Q, I, 7, Ry, ..., Rc_1), where eachiR; € Q x Q

is a total transition relation. Whenever playeis scheduled in a statg then the

next state is chosen so thaf(q, q’). We call eachR, acomponent transition re-
lation. Note that in the turn-based asynchronous case, the number of transitions is
m= ", ..« |Ral=O(k - n?), wheren is the number of states.

We can use fairness constraints to ensure that the scheduler is fair. Specifi-
cally, there ar&k — 1 fairness constraints of the fortk, y,), one for each player
ac{l, ...,k —1}. The functiony,, forae{l,...,k — 1}, is defined such that
va(q) ={a} for every state) € Q. If interpreted in the weak manner, then the fair-
ness constraink, y;) ensures that the scheduler does not neglect ptajanever.

Note that the choice of selecting a playeis always available to the scheduler,

and thus, the strong interpretation of the fairness constréingg) coincides with

its weak interpretation. We therefore associate with every turn-based asynchronous
game structur& the weak-fairness conditidn, = {(k, y1), ..., (K, yk—1)}.

Example2.5. As an example of a turn-based asynchronous game structure
consider the modeling of the sender process of the alternating-bit protocol shown
in Figure 2. The sender is player 1, the environment is player 2, and the scheduler is
player 3. In the initial state, if the scheduler selects the sender, it chooses either
(move 1) to stay i or (move 2) to proceed tq,. The transition frongg to g;
corresponds to sending a message tagged with the big§).ifthe scheduler selects
the environment, it has no choice of moves, and the game stgydimstatey;, the
sender waits to receive an acknowledgment. If the sender is scheduled, it continues
towaiting;,. If the environment is scheduled, the transition represents the reception
of an acknowledgment by the sender. If the acknowledgment bit is 0, the sender
proceeds to toggle its bit by moving to staig and if the acknowledgment bit
is 1, the sender attempts to resend the message by moving back tpstdies is

684 R. ALUR ET AL.

sender

env sender

sender

sender env

qs3 sender q2

FiG. 2. Aturn-based asynchronous game structure modeling a message transmission protocol.

modeled by letting the environment, when scheduled in giatshoose betweep
(move 1) andy (move 2). State), is similar to stateyp, andgsz is similar toq;.

Formally,k =3 andQ = {qo, 01, 02, g3}. The setll contains four propositions:
send0is true in stategp, waitO is true ing;, sendlis true ingy, andwaitl is true
in gz. The move and transition functions are defined as follows:

e —d1(Qo) = d1(02) = 2 andd;(q;) = d1(gz) = 1.
—d>(0o) = d2(02) = 1 anddz(qy) = d2(gz) = 2.
—03(qo) = d3(01) = d3(02) = d3(0z) = 2.
e —3(0o, 1,1, 1)=48(qo, 1, 1, 2)=5(qo, 2, 1, 2) =0 andé(dpo, 2, 1, 1)=q;.
—68(01,1,1,2)=q2 and§(q1, 1,2,2)=qp and§(qe, 1,1, 1)=68(q1, 1,2, 1) =
ds-
—8(02, 1, 1,1)=6(02, 1, 1, 2)=6(02, 2, 1, 2) =g @andé(g2, 2, 1, 1) = gs.
—358(03,1,1,2)=0p and$(gs, 1,2, 2)=qo and 8(gs, 1,1, 1)=46(0s, 1, 2,1) =
0s.
This gives rise to the following component transition relations:

* Ry ={(do, do). (do. A1), (A1, G1). (02, 02), (G2, G3). (T3, G3)}-
* Ro=1{(do, 9o), (a1, 92), (1, Ko), (92, G2), (013, To), (A3,)}

There are two weak-fairness constraints, in order to ensure that the scheduler
(player 3) cannot neglect the sender nor the environment forever. The weak-fairness
constraint(3, y1) guarantees that if the sender is ready to send, in gtade gp,

it will eventually send; the weak-fairness constrai@ty,) guarantees that if the
sender waits for an acknowledgment, in stader qs, it will eventually receive

one:

* y1(do) = y1(d) = y1(A2) = v1(Gs) = {1}.
* y2(do) = y2() = y2(d2) = v2(as) = {2}.
In this example, additional fairness constraints are desirable to ensure progress of
the protocol. The assumption that the environment (player 2) cannot keep send-

ing incorrect acknowledgments forever, can be modeled by the strong-fairness
constraints2, ye) and(2, y{):

* ¥e(Q1) = {1} andye(do) = ye(d2) = ve(ds) =¥.
* vo(a3) = {2} andyg(do) = ve(d) = ve(d2) =9. O

Alternating-Time Temporal Logic 685

3. Alternating-Time Temporal Logic

3.1. ATLSyNTAX. Thetemporallogic ATLAlternating-Time Temporal Logjic
is defined with respect to a finite détof propositionsand a finite seE = {1, ..., k}
of players An ATL formula is one of the following:

(S1) p, for propositionsp € IT.
(S2) —¢ or g1 V @2, Wherep, g1, andg, are ATL formulas.

(S3) {ANO @, (A) O e, or {A)p1Ups, whereAC 3 is a set of players, ang,
@1, andg, are ATL formulas.

The operator{)) is a path quantifiey andO (“next”), o (“always”), and U
(“until”) are temporal operatorsThe logic ATL is similar to the branching-time
temporal logic CTL, only that path quantifiers are parameterized by sets of players.
Sometimes we writéay, ..., a)) instead of({{as, ..., a}), and{)) instead of

(@Y. Additional Boolean connectives are defined frerandv in the usual manner.
Similar to CTL, we write{(A)) © ¢ for {A)truelfp.

3.2. ATL SEMANTICS. We interpret ATL formulas over the states of a concur-
rent game structur8 that has the same propositions and players. The labeling of
the states ofs with propositions is used to evaluate the atomic formulas of ATL.
The logical connectives: and v have the standard interpretation. To evaluate a
formula of the form{{ A))v at a state of S, consider the following game between a
protagonist and an antagonist. The game proceeds in an infinite sequence of rounds,
and after each round, the position of the game is a stag ®he initial position
is g. Now consider the game in some positienTo update the position, first the

protagonist chooses for every playae A a move joe{1,...,dy(u)}. Then,
the antagonist chooses for every plaper X\ A a movej, € {1, ..., dy(u)}, and
the position of the game is updatedst@, j4, ..., jk). In this way, the game con-

tinues forever and produces a computation. The protagonist wins the game if the
resulting computation satisfies the subformylaead as a linear temporal formula
whose outermost operatords, O, or U; otherwise, the antagonist wins. The ATL
formula (A)y is satisfied at the statgiff the protagonist has a winning strategy

in this game.

In order to define the semantics of ATL formally, we first define the notion of
strategies. Consider a game structBee (k, Q, I1, =, d, §). As before, we write
¥ ={1, ..., k} for the set of players. Atrategyfor playerae X is a function f,
that maps every nonempty finite state sequenee™ to a natural number such
that if the last state of is g, then f4(1) < da(q). Thus, the strategy, determines
for every finite prefixk of a computation a mové, (1) for playera. Each strategy
fa for playera induces a set of computations that plagecan enforce. Given a
stateg e Q,asetAC {1, ..., k} of players, and a séis = { fy|a € A} of strategies,
one for each player irA, we define theoutcomesof Fp from q to be the set
out(q, Fa) of g-computations that the players henforce when they follow the
strategies irF,; that is, a computatioh = qp, g1, O, . .. isinout(q, Fa) if go=q
and for all positions > 0, there is a move vectdiy, ..., jx) € D(gi) such that
(1) ja= fa(A[0,i]) for all playersa € A, and (2)8(Gi, j1. - - - jk) = Gi+1-

We can now turn to a formal definition of the semantics of ATL. We w&itg = ¢
to indicate that the statgsatisfies the formula in the structures. WhenSis clear
from the context, we omit it and writg = ¢. The satisfaction relatiop- is defined,

686 R. ALUR ET AL.

for all stategy of S, inductively as follows:

* k= p, for propositionsp € I, iff pex(q).
* QE—eiff aF ¢.

* dE@1V @ iff g1 0rgEe;.

g = (A)O ¢ iff there exists a sefep of strategies, one for each playerAnsuch
that for all computations € out(q, Fa), we haver[1] = ¢.

g = ((A) Dy iff there exists a seff 5 of strategies, one for each playerAnsuch
that for all computations € out(q, F») and all position$ > 0, we have\[i] = ¢.

g E (A)e1 U, iff there exists a seFa of strategies, one for each playerAn
such that for all computationse out(q, Fa), there exists a position> 0 such
that\[i] &= ¢, and for all positions & j <i, we haver[j] = ¢i.

Note that the next-time operator is local:q = (A))O ¢ iff for every playera € A,
there existsamovp € {1, ..., da(q)} such thatfor all players€ X \ Aand moves

Jjoe(l,.... dy(q)}, we haves(q, ju. jk) E¢.

Example3.1. Consider the statpof the concurrent game structug, from
Example 2.1. We hav&,y, q E (2)O vy, because player 2 can choose move 2
to sety to true, but S, q ¥ (2)0y, because in game structug, no such
move is available to pIayer 2. We ha$g,, q [~ (2)O (x=Y), because if player 2
chooses move 1, then player 1 can choose move 2 to achigwe and if player 2
chooses move 2, then player 1 can choose move 1 with the same result. How-
ever, S, q = (2)O (x=Yy), because in game structu% player 2 can choose
move 2 to ensure that andy will have equal values in the next state, which may
be g or Oyy, dependlng on whether pIayer 1 chooses move 1 or move 2. Simi-
larly, Sjy, q ¥ (2)0 (x=Y) but §, q = (2)O (x =Yy), which confirms that the

environment is more powerful in modgf, than in modelS§,. O

It is often useful to express an ATL formula in a dual form. For this purpose, we
use the path quantifierd], for a setA of players. While the ATL formula A)) s
intuitively means that the players facan cooperate to makgetrue (they can “en-
force” ¢), the dual formula A] v means that the players liacannot cooperate to
makey false (they cannot “avoidi/r). Using the path quantifier [], we can write,
for a setA of players and an ATL formula, the formula JA]O ¢ for ={ A)O —¢,
the formula [A] O ¢ for ={A) © —¢p, and [A] © ¢ for —=({(A) O —¢ (similar
abbreviations can be defined for the dual of #eoperator). Let us make this
more precise. For a statee Q and a setA of g-computations, we say that the
players in A canenforcethe setA of computations if there exists a sEj of
strategies, one for each player & such thatout(q, Fa) € A. Dually, we say
that the players inA canavoid the setA of computations if there exists a set
Fa of strategies, one for each player & such thatA Nnout(q, Fa) =9. If the
players inA can enforce a set of computations, then the playersih\ A can-
not avoidA. Thereforeq &= (A)y impliesq =[X \ A]v¥. The converse of this
statement is not necessarily true. To see this, consider the concurrent game struc-
ture withk =2 andQ = {q, g1, Gz, 3, 04} Let TT = { p} and (d1) = 7 (da) = { P}
andr (g) = (gg) = 9. Let di(q) =dx(q) =2 ands(q, 1, 1)=qu, §(q, 1, 2)=p,
8(q, 2,1)=0qs, ands(q, 2, 2)=q4. Theng = (1)O pandg =[2] O p; thatis, in
stateq, player 1 does not have a strategy to enfqoée the next state, and player 2
does not have a strategy to avgidn the next state.

Alternating-Time Temporal Logic 687

Example3.2. Recall the turn-based synchronous game strucue from
Example 2.2. Recall thatin aturn-based synchronous game structure, every state can
be labeled with a player that chooses the successor state. In this simplified setting,
to determine the truth of a formula with path quantifigk)), we can consider the
following simpler version of the ATL game, which corresponds to a traditional
game played on AND-OR graphs. At a statdf it is the turn of a player inA,
then the protagonist updates the position to some successoraofl otherwise,
the antagonist updates the position to some successoridferefore, every state
of Siain satisfies the following ATL formulas.

(1) Whenever the train is out of the gate and does not have a grant to enter the gate,
the controller can prevent it from entering the gate:

{ » O ((outof_gaten —grant) — ((ctr)) oout.of_gate.

For readability, we writectr for the constant 2, and similarlyzain for the
constant 1.

(2) Whenever the train is out of the gate, the controller cannot force it to enter the
gate:

{() o (outof_gate— [ctr] ooutof_gate.

(3) Whenever the train is out of the gate, the train and the controller can cooperate
so that the train will enter the gate:

{) o (out.of_gate— ((ctr, train)) ¢ in_gaté.

(4) Whenever the train is out of the gate, it can eventually request a grant for
entering the gate, in which case the controller decides whether the grant is
given or not:

{ yo(outof_gate— ((train)) < (requesta ((ctr)) © grant) A ((ctr)) o—grant))).
(5) Whenever the train is in the gate, the controller can force it out in the next step:
{ » o(in_gate— ((ctr)O out.of gate.

These natural requirements involve unbounded alternations between universal and
existential path quantification and cannot be stated in CTL or*CTbnsider the
first two ATL formulas. They provide more information than the CTL formula

V o (out of gate— 30 out of gate).

While the CTL formula only requires the existence of a computation in which the
train is always out of the gate, the two ATL formulas guarantee that no matter how
the train behaves, the controller can prevent it from entering the gate, and no matter
how the controller behaves, the train can decide to stay out of the gate. (As the train
and the controller are the only players in this example, the third ATL formula is,
over Syin, equivalent to the CTL formula

Vo (out.of_gate— 3¢ in_gate).

The third ATL formula, however, does not have an equivalent CTL formula over
game structures with more than two players, because in general the path quantifier
{1, 2)) is not equivalent to the existential path quantifier of CTLL)

688 R. ALUR ET AL.

3.2.1 Turn-Based Game Structureslt is worth noting that in the special case
of turn-based synchronous as well as turn-based asynchronous game structures, the
players inA can enforce a sek of computations iff the players i\ A cannot
avoid A. This is the property ofleterminednest®r turn-based games [Bhi and
Landweber 1969; Gurevich and Harrington 1982]; in each state, either the playersin
A can win with objective\, or the players not il can win with the complementary
objective. Therefore, for all statesof a turn-based synchronous or asynchronous
game structurey = (A) v iff g =] 2\ Al v, orequivalently, [A] = (X\ A)). Itfol-
lows that({A)O ¢ = [Z\A]JO ¢ ==X\ A)O —¢ over turn-based synchronous
and asynchronous game structures. Furthermore, over turn-based game structures
we can define the temporal operatorfrom <, namely,(A) O¢ = [Z\A]Oop =
—(X\A) O —o.

3.2.2 Single-Player Structures.Recall that a Kripke structure is a concurrent
game structure with a single player, thatis; 1. In this case, which is also a special
case of turn-based synchronous, there are only two path quantifigrs: [] and
{ » =[1]- Then each sebut(q, { f;}) of outcomes, for some player-1 stratefyy
contains a single-computation, and each setit(q, ¥) of outcomes contains all
g-computations. Accordingly, the path quantifigrs) and()) are equal, respec-
tively, to the existential and universal path quantifigrandV of the logic CTL.

In other words, over Kripke structures, ATL is identical to CTL. We write, over
arbitrary game structures for the path quantifie(x)), andv for the path quanti-
fier [X]. This is because, regardinp= 3, all players can cooperate to enforce a
conditionv iff there exists ag-computation that satisfieg. Similarly, regarding

g &=V, all players cannot cooperate to aveidff all g-computations satisfy .

3.3. FAIR ATL. Fairness constraints rule out certain computations. Conse-
guently, in the presence of fairness constraints, we need to refine the interpretation
of formulas of the form(A))v. In particular, in the Fair ATL game, we require the
protagonist to satisfy all fairness constraints for playeréjrand we require the
antagonist to satisfy all fairness constraints for playerEiA. This leads us to
the following definition. Consider a fairness conditibrfor a game structuré.

A strategy f, for playera is I'-fair if for every computatiori € out(q, { f5}) and
every fairness constraint of the forfa, y) € I', the computatioi is (a, y)-fair.

The logic Fair ATL has the same syntax as ATL. The formulas of Fair ATL
are interpreted over a concurrent game strucgjre fairness conditiom for S,
and a statey of S. The satisfaction relatiols, I', g =r ¢ (“state q fairly sat-
isfies the formulap in the structureS with respect to fairness conditiofli”)
for propositions and Boolean connectives is defined as in the case of ATL.
Moreover (bothSandrI” are omitted from the satisfaction relation for convenience):

* g Er {(A)O g iff there exists a seFa of I'-fair strategies, one for each player
in A, such that for all’-fair computations. € out(q, Fa), we haver[1] = ¢.

* g E¢ (A) O iff there exists a seFp of I'-fair strategies, one for each player
in A, such that for all’-fair computations. € out(q, Fa) and all positions > 0,
we haverli] =g ¢.

* g E=r (A)e1Ug; iffthere exists a seE of I'-fair strategies, one for each player
in A, such that for all’-fair computations. € out(q, Fa), there exists a position
i >0 suchthai[i] =r @2 and for all positions & j <i, we haver[j] =k ¢1.

Alternating-Time Temporal Logic 689

Example3.3. Consider the game structug;, from Example 2.2. Unless the
controller cooperates with the train, there is no guarantee that the train eventually
enters the gate:

Qo & {(train)) ¢ in_gate

So suppose we add a fairness condifiboontaining the single fairness constraint
(2, ¥c), which imposes fairness on the decisions of the controller (player 2) in

stateqy, namely,yc(dz) = (1} andye(do) = ye(Ge) = ve(ds) =¥ If we interpretl” as
a strong-fairness condition, then the train has a strategy to eventually enter the gate:

o E=F (train)) ¢in_gate

To see this, whenever the train isdpg, let it move toqg;. Eventually, due to the
strong-fairness constraint, the controller will movegto Then the train can move

to gz. On the other hand, if we interprBtas a weak-fairness condition, cooperation
between the train and the controller is still required to enter the gate, and the Fair
ATL formula is not satisfied imjg. To see this, note that the train cannot avoid the

weakly (2, yc)-fair computatiorgo, gu, do, d1, o, G1, - - - [J

3.4. ATL*. The logic ATL is a fragment of a more expressive logic called
ATL*. There are two types of formulas in ATistate formulaswhose satisfaction
is related to a specific state, apdth formulas whose satisfaction is related to a
specific computation. Formally, an ATlstate formula is one of the following:

(S1) p, for propositionsp € IT.
(S2) —¢p or g1 V @, Whereg, @1, andg, are ATL* state formulas.
(S3) (AN, whereAC X is a set of players andl is an ATL* path formula.

An ATL* path formula is one of the following:

(P1) An ATL* state formula.
(P2) —y or yr1 Vv ¥, Wwherey, ¥1, andyr, are ATL* path formulas.
(P3) O ¥ or 1 Urp, Whereyr, 1, andyr, are ATL* path formulas.

The logic ATL* consists of the set of state formulas generated by the 18lesS3.

The logic ATL* is similar to the branching-time temporal logic CTlonly that

path quantification is parameterized by players. Additional Boolean connectives

and temporal operators are defined freinv, O, and U/ in the usual manner; in

particular,0y = trueldyy andoy = — O —y. As with ATL, we use the dual path

quantifier [A]l¥ = —{A)—y, and the abbreviatiors= (X)) andv=[X]. The

logic ATL can be viewed as the fragment of ATthat consists of all formulas in

which every temporal operator is immediately preceded by a path quantifier.
The semantics of ATLformulas is defined with respect to a concurrent game

structureS. We write S, A = to indicate that the computationof the structure

S satisfies the path formuka. The satisfaction relatiop= is defined, for all states

g and computations of S, inductively as follows:

 For state formulas generated by the rul83+{S2, the definition is the same as
for ATL.

* g k= (A iff there exists a seFp of strategies, one for each playerAn such
that for all computations € out(q, Fa), we have: = 1.

») = for a state formula iff A[0] = ¢.

690 R. ALUR ET AL.

Ay iff A B .

AEYLV Y iff A=y ord =y

AEO Y iff A[1, o] = .

A = Y U, iff there exists a positiom > 0 such that.[i, co] = v, and for all
positions O< j <i, we haver[], oo] = V1.

For example, the ATL.formula
x = {a)y((¢ o —reg) v (o < grant)

asserts that playex has a strategy to enforce computations in which either only
finitely many requests are sent, or infinitely many grants are given. Such a require-
ment can be expressed neither in CTor in ATL.? Since both weak and strong
fairness conditions can be expressed within A{jrovided appropriate proposi-
tions are available; see Section 4.2), there is no need for Fait.ATL

Remark3.4. In the definitions of ATL and AT1, the strategy of a player may
depend on an unbounded amount of information, namely, the full history of the
game up to the current position. As we consifileite game structures, all involved
games arev-regular. Therefore, the existence of a winning strategy implies the ex-
istence of a winnindjnite-statestrategy [Richi and Landweber 1969; Rabin 1972],
which depends only on a finite amount of information about the history of the game.
It follows that the semantics of ATL and ATL(over finite game structures) can
be defined, equivalently, using the outcomes of finite-state strategies only. This is
interesting, because a strategy can be thought of as the parallel composition of the
system with a “controller,” which makes sure that the system follows the strategy.
Then, for an appropriate definition of parallel composition, finite-state strategies
can be implemented using, again, finite game structures. Indeed, for the finite reach-
ability games of ATL, it suffices to consideremory-freestrategies [Emerson and
Jutla 1988], which can be implemented as control maps (i.e., controllers without
state). This is not the case for Fair ATL, which gives rise to games with conjunc-
tions of Buchi conditions, nor for ATE, whose formulas can specify the winning
positions of Streett games [Thomas 1995].

4. Symbolic Model Checking

4.1. ATL SrMmBoLIC MODEL CHECKING. Themodel-checking problem for ATL
asks, given a game structuge= (k, Q, I1, =, d, §) and an ATL formulap, for the
set of states i that satisfyp. We denote the desired set of statesddyg[or simply
by [¢] if the game structur&is understood. As usual, & ={1, ..., k}. Figure 3
shows asymbolicalgorithm for ATL model checking, which manipulates state sets
of S. The control structure of the algorithm is identical to symbolic algorithms for
CTL model checking [Burch et al. 1992], but the pre-image operator on Kripke
structures used for CTL model checking is replaced Breaoperator on game

2 To see thaty cannot be expressed in ATL, note that in the case of a single-player structure, the
formula x is equivalent to the CTLformula3((¢ o —red) Vv @< grant), which cannot be expressed
in CTL.

Alternating-Time Temporal Logic 691

foreach¢’ in Sul{y) do
casep’ = p: [¢']:=Redp)
caseyp’ =—0: [¢']:=[true] \ [0]
casep’ =61V 6. [¢']:=[61] U [62]
casey’ = (A)YO 6: [¢']:=Pre(A, [0])
casep’ = (A)[16:

p=[true]; v :=[0];
while p Z T do p:=1; t:=Pre(A, p)N[6] od;
[¢1:=0p

casep’ = ((A)61 UO:
p=[falsd; 7 :=[62];
whilet € pdop:=pUTt; 1:=Pre(A, p)N[6] od;
[¢]l:=p
end case
od;
return [¢].

Fic. 3. ATL symbolic model checking.

structures. More precisely, the algorithm uses the following primitive operations:

» The functionSub when given an ATL formula, returns a queue of syntactic
subformulas ofy such that ife; is a subformula ofp and ¢, is a subformula
of ¢1, theng, precedeg; in the queusSul{p).

» The functionReg when given a propositiop € IT, returns the set of states @
that satisfyp.

» The functionPre, when given a sef C X of players and a set C Q of states,
returns the set of statessuch that fronq, the players inA can cooperate and
enforce the next state to lie im. Formally, Pre(A, p) contains state € Q if
for every playera e A, there exists a movg, € {1, ..., dy(q)} such that for all
playersbe ¥ \ Aand moveg, {1, ..., dy(q)}, we havei(q, ji1,..., jk) € o-

« Union, intersection, difference, and inclusion test for state sets. Note also that we
write [true] for the setQ of all states, andfflsd for the empty set of states.

Partial correctness of the algorithm can be proved by induction on the structure of
the input formulap. Termination is guaranteed, because the state Spasénite.

If each state is a valuation for a s¢tof Boolean variables, then a state getan
be encoded by a Boolean expressigix) over the variables iiX. For Kripke struc-
tures that arise from descriptions of closed systems with Boolean state variables, the
symbolic operations necessary for CTL model checking have standard implemen-
tations. In this case, a transition relatiBon states can be encoded by a Boolean
expressionR(X, X’) over X and X', where X’ is a copy ofX that represents the
values of the state variables after a transition. Thenpteeémageof p underR —
that is, the set of states that haResuccessors ip—can be computed as

EX)R(X, X) A p(X)).

Based on this observation, symbolic model checkers for CTL, such as SMV
[McMillan 1993], typically use ordered binary-decision diagrams (OBDDS)
[Bryant 1992] to represent Boolean expressions, and implement the Boolean and
pre-image operations on state sets by manipulating OBDDs. In the special case
that the game structur8 is turn-based synchronous, the symbolic computation
of Pre is also straightforward. Recall that in this case, the move and transition

692 R. ALUR ET AL.

functions ofS can be replaced by a mapand a transition relatioR, such that for
every stat@ € Q, itis the turn of playet (q). Then, when given a sé& of players
and a sep of states, the functioRre returns the set of stategsuch that either
o(q) € A and someR-successor of] lies in p, or o(q) € A and all R-successors

of g lie in p. Suppose thal\(X) is a Boolean expression that encodes the set of
stategy such that (q) € A. ThenPre(p) can be computed as

(A(X) A BX)R(X, X)) A p(X))) v
(=AX) A (YX)(R(X, X) = p(X7))

using standard operations on OBDDs.

For general game structures, the situation is more delicate. Typically a game
structure arises from a description of an open system with Boolean state variables
in a particular system description language. A language for describing open sys-
tems has a specific semantics for the parallel composition of open systems. The
language, together with its composition semantics, determines a possibly restricted
class of game structures that need to be considered, and often suggests a natu-
ral symbolic representation for these game structures, that is, an encoding of the
move function and the transition function using Boolean expressions. The symbolic
implementation of thé&re operator, then, depends on the chosen representation of
game structures. Several interesting cases of description languages for open systems
with synchronous composition, as well as the computation of the corresponding
Pre operators, are discussed in de Alfaro et al. [2000, 2001b]. One of these lan-
guages is Reactive Modules [Alur and Henzinger 1999], for which a symbolic ATL
model checker based on OBDDs has been implemented in the verification tool suite
MOCHA [Alur et al. 1998, 2001].

4.2. FAIR ATL SymBoLIC MODEL CHECKING. Themodel-checking problem for
Fair ATL asks, given a game structuse= (k, Q, I, &, d, §), afairness conditioR
for S, and a Fair ATL formulap, to compute the set of states@ithat fairly satisfy
@ with respect td". As will be explained in Section 5.2, Fair ATL model checking
can be reduced to model checking of ATtbrmulas that have a special form. Here,
we consider the special case of turn-based asynchronous game structures. Recall
that in a turn-based asynchronous game structure, in every state, the scheduler
selects one of the players, and the selected player determines the next state. A given
turn-based asynchronous game structure with playetq1, .. ., k}, where player
k > 2 is the scheduler, can be viewed as a tupte (Q, IT, 7, Ry, ..., Rc_1) with
k — 1 transition relations. A computation=qo, J1, Oz, . . . iS an infinite sequence
of states such that for all positioms> 0, we haveR;(q;, gi;+1) for some player
l<a<k. For 1<a<k, the (weak) fairness constraitk, y,) on the scheduler
enforces that playea is selected infinitely often, and thus, the computatiois
(K, va)-fair if Ra(qi, gi+1) holds for infinitely many positions> 0.

To facilitate Fair ATL model checking, frons we define another turn-based
asynchronous game structud,= (Qf, r1f, = ', le, o R‘Ll), as follows:

e Qf=0Qx{1,...,k}.
e I1f =TT U {done.
« 77((g,a)) =m(q) for L<a <k, andr F((g, k)) =7 (q) U {dong.

Alternating-Time Temporal Logic 693

p=[true]; T :=[—-p];
while p Z do
pI=T,
p':=[falsg; ' :=[p] N[dong;
while 7/ g p/ do p’:=p’ Ut’; 7/ :=Pref (£ \ A, p))N[-p] od;
r:=Pref (T \ A p)N[-p]
od,
return p:=[true] \ p

FiG. 4. Nested fixed-point computation for Fair ATL symbolic model checking.

« For 1<a <k, the relationR! contains @, j), i) iff Ra(q, g') and either
(1) j=kandj’=1,or(2)j=aandj’ —a+1 or(3) 1<j<kandj#aand
i'=1.
Intuitively, a state ofsf keeps a counter. If the counterdasthen it is incremented
when a transition iR, is taken (i.e., when the scheduler selects the play€rhe
counter is reset to 1 when it reacHesThe new propositiodoneis true precisely
when the counter ik. Thus, the requirement that the scheduler selects every player
infinitely often corresponds to the propositidanebeing true infinitely often.

PrOPOSITION4.1. A state q of the turn-based asynchronous game structure S
fairly satisfies an Fair ATL formula of the forfpA) ¢, where A is a set of players
of S, and/ = o p ory = p1 U p, for propositions p, p, and p, with respect to the
weak-fairness conditiofi,, of S iff the statéq, 1) of the extended game structure
S' satisfies the ATLformula (A)(o < done—).

This proposition allows us to develop a symbolic model-checking algorithm for
Fair ATL. We consider here only the sample formylA)) ¢ p, for a setAC =
of players and a propositiop. Consider the following game on the struct8g,
with the players inA being the protagonist, and the playersiRA the antagonist.
Suppose that the current state of the gam 1§the scheduler belongs ta(.e.,
k € A), thenthe protagonist either updates the stagésach thaR—j1 (g,q)forsome
l<a<kandae A, orthe protagonlst picks an ageny A, and then the antagonist
updates the state gy such thatR/ (9, q’). If the scheduler does not belong to
A(i.e.,k ¢ A), then the antagonist either updates the statg soich thatR! (9,9)
for some l<a <k anda¢ A, or the antagonlst picks an agent A, and then the
protagomst updates the stateq’osuch thatR, (9, 9). When a state labeled by
is visited, the protagonist wins. If the game continues forever, then the protagonist
wins iff the resulting computation is not fair, that is, if the propositidoneis
true only finitely often. The winning condition for the protagonist can therefore be
specified by the LTL formulag p) v ¢ o—done or equivalentlyo(p v o—dong.
Since the game is turn-based, and thus determined, the winning condition for the
antagonist is obtained by negation,@é—-p A ¢dong. This is a Bichi game, and
the set of winning states in such a game can be computed using nested fixed points.
Note that the CTE formula3 o (p. A< p2) can be computed symbolically as the
greatest fixpoint

vX.(pL A 3O (pU(p2 A X))).

Similarly, the algorithm of Figure 4 computes the get Q' of winning states for
the protagonist.

For a turn-based asynchronous game structure, theregh, p), can be com-
puted as follows. If the scheduler belongsApthenPre(A, p) contains all states

694 R. ALUR ET AL.

g such that (1) for some 4 a < k with a< A, we haveR,(q, q) for some state
g’ € p,or(2)forsome ka<kwithag A, if Ry(q, q'), theng’ € p. Ifthe scheduler
does not belong t&\, thenPre(A, p) contains all stateg such that both (1) for
all 1<a <k with ae A, we haveR,(q, q') for some state|’ € p, and (2) for all
l<a<kwithag A, if Ry(q, q), thenq’ € p. In other words, the functioRre can
be easily encoded from the encodings of the component transition rel&johke
functionPre' is like Pre, but operates on the extended game strucliite

5. Model-Checking Complexity

We measure the complexity of a model-checking problem in two different ways:
the (joint) complexityof model checking considers the complexity in terms of both
the game structure and the formula; steucture complexityf model checking
considers the complexity in terms of the game structure only, assuming the formula
is fixed. Since the game structure is typically much larger than the formula, and
its size is the most common computational bottleneck, the structure-complexity
measure is of particular practical interest [Lichtenstein and Pnueli 1985]. For Fair
ATL model checking, the fairness condition is considered together with the game
structure, and thus the structure complexity of Fair ATL model checking depends
on the size of both the game structure and the fairness condition.

5.1. ATL MODEL-CHECKING COMPLEXITY. The essential subroutines for solv-
ing the ATL model-checking problem concern the solution of games with reachabil-
ity and invariance objectives played on game structures. These games can be solved
in linear time on turn-based synchronous game structures [Beeri 1980]. We there-
fore reduce games played on general game structures to games played on turn-based
synchronous game structures. Consider a game strugtai&, Q, I, =, d, §) and
asetAC X of players, wher& = {1, ..., k} as usual. For a statpc Q, anA-move
catqisafunctionthat maps each playet Ato a naturalnumbex(a) < d,(q). The
A-movec represents a possible combination of moves fair the players inA. A
stateq’ € Q is ac-successoof g if there is a move vecta(js, ..., jx) € D(q) such
that (1) ja=c(a) for all ac A, and (2)q'=4(q, j1. ..., jx). We write C(A, q)
for the set of A-moves atg, and C(A)= [Jyq C(A.) for the set of allA-
moves. We build the following 2-player turn-based synchronous game structure
Sa=1(2, Qa, Ta, ma, oA, Ra):
» There is a state for every state fand a new state for everx-move: Qa =
QUC(A).
» There is a special propositi@uxthat identifies the new stated:a = ITU {auX.
» 7a(q) =m(q) for all q € Q, andma(c) = {aux for all ce C(A).

» At statesg € Q it is the turn of player 1, and a&-movesc € C(A) it is the turn
of player 2; that ispa(q) =1 for allg € Q, andoa(c) =2 for allc e C(A).

» There is a transition from a stafie=s Q to anA-movec € C(A) if cis anA-move
atq, and there is a transition fromto a statey’ € Q if q’ is ac-successor ofj.
Formally, R(u, u’) iff either (1)u € Q andu’ € C(A, u), or (2) there exists a state
g € Q such thau € C(A, g) andu’ € Q andu’ is au-successor of.

If the original game structur® hasm transitions, then the turn-based synchronous
structureSy hasO(m) states and transitions.

Alternating-Time Temporal Logic 695

ProOPOSITIONS.1. Let S be agame structure with state space Q, let A be a set of
players of S, and let p be a proposition of S. THE®)) & pls=[{(1) ¢ pls,N Q
and[(A) o pls=[(1)o(p Vv auX]s,N Q.

In other words, in order to solve a reachability or invariance gams, ove can
solve a corresponding game on the 2-player turn-based synchronous st&icture
This gives the following result.

THEOREM 5.2. The model-checking problem for ATL is PTIME-complete, and
can be solved in time @n - £) for a game structure with m transitions and an ATL
formula of lengthY. The problem is PTIME-hard even for a fixed formula, and even
in the special case of turn-based synchronous game structures.

ProOOF. Consider a game structuBwith m transitions and an ATL formula
of length¢. We claim that an algorithm that follows the outer loop of Figure 3 can be
implemented in time&(m - £). The size oSul{y) is bounded by. Thus it suffices
to show that each case statement can be executed inQimg. The interesting
cases arg A)) 0 g and{A)p1 Ug,. To compute { A)) O ¢] from [¢], we apply the
second part of Proposition 5.1, choosing a new proposiionth [p] =[¢]. The
resulting invariance game @ can be solved in time linear in the size$f, that
is, in time O(m) [Beeri 1980]. To compute({[A) @1 Ug,] from [¢1] and [p2], we
first restrict the game structu&to the states ingd:] U [¢2], and then apply the first
part of Proposition 5.1, choosirgsuch that p] = [¢2]. The resulting reachability
game can again be solved in tifdm). This concludes the upper bound.

Since reachability in AND—OR graphs is PTIME-hard [Immerman 1981], and
can be specified using the fixed ATL formula))< p interpreted over turn-based
synchronous game structures, the lower bounds are immediate.

It is interesting to compare the model-checking complexities of ATL and CTL
over turn-based synchronous game structures. While both problems can be solved
intime O(m-¢) (for CTL, see Clarke et al. [1986]), the structure complexity of CTL
model checking is only NLOGSPACE [Kupferman et al. 2000]. This is because
CTL model checking is related to graph reachability, whereas ATL model checking
is related to AND—OR graph reachability.

5.2. FAIR ATL M ODEL-CHECKING COMPLEXITY. Consider a game structure
S=(k, Q, I, =, d, §) and a fairness conditidnfor S. We need to restrict attention
to the computations @that satisfy all fairness constraintdinTo determine which
fairness constraints are satisfied by a computation, we augment the state space
by adding new propositions that indicate for each fairness const@aimpt) < T,
whether or nota, y) is enabled, and whether or n@t, y) is taken. For this purpose,
we define the following extended game struct®®e= (k, Q, 1%, #F, dF, §F):

e QF={(L,9)] e QU {(0,q) | d,geQ andq is a successor af in S}.
Intuitively, a state of the fornL, q) of S™ corresponds to the game structure
S being in stateg at the beginning of a computation, and a state of the form
(d’, g) corresponds t& being in statey during a computation whose previous
state wag’.

» Foreach fairness constraiat, y) € I", there is a new propositioja, y, enabled
and a new propositiota, y, taker); that is,TTF =TT U (I" x {enabledtaken}).

696 R. ALUR ET AL.

« For each statel,) € QF, we haver F((L, q)) = (q). For each statéy’, q)
QF, we have

7P,) = 7(q) U{(a y,enabled | y(q)#0} U _
{{(a, y, taken | there is a move vectdy, ..., jx) € D(q’)
such thatj, € y(q) ands(q’, ji, ..., jx) =0}

« For each playea € ¥ and each statg, q) € QF, we haved| ((-, q)) = da(q).
» For each statg-, q) € QF a_nd each move vectdljs, .. ., jk) € D(q), we have
SF((" q>’ Ji, oo Jk) :8(q’ Jas oo Jk)

There is a one-to-one correspondence between computatioBsied S, and
between strategies i6 and ST. The new propositions i x {enabled taken
allow us to identify the fair computations. Consequently, evaluating formulas of
Fair ATL over states of can be reduced to evaluating, over stateS'of ATL*
formulas that encode the fairness constrainis as follows.

ProOPOSITIONS.3. A state g of the game structure S fairly satisfies a Fair ATL
formula of the form{ A)vr, where A is a set of players of S, afid= p; U/ p, or
Y = o p for propositions p, p and p, with respect to the weak-fairness condition
I, iff the state(L, g) of the extended game structuré Satisfies the following
ATL* formula:

(AN Naca.ay)er, OO(—(a, v, enabled v (a, y, taken) A
Nacs\A ey cr, D(—(@, v, enabled v (a, y, taken) — v)).

Moreover, g fairly satisfieg A)) v with respect to the strong-fairness conditibg
iff (L, g) satisfies the following ATLformula:

(AN Naca.@yer.(00(@, v, enabled — 00(a, y, taken) A
Nacs\A ey er (OO (@, v, enabled — 0o(a, y, taken) — V).

The ATL* formulas that need to be model checked by the above reduction are of a
special form, and the corresponding complexity bounds are much lower than those
for general ATl model checking. Let us consider first weak fairness. mioelel-
checking problem for Weakly-Fair ATdssumes that the fairness condition on the
game structure is a weak-fairness condition.

THEOREM 5.4. The model-checking problem for Weakly-Fair ATL is PTIME-
complete, and can be solved in timgn@-w3.¢) for a game structure with m
transitions, w weak-fairness constraints, and a Fair ATL formula of leidgEur-
thermore, for aturn-based asynchronous game structure with n states, m transitions,
k players, and a Fair ATL formula of length the model-checking problem can be
solved in time @n - m- k2. ¢).

ProOF Consider a game structu&with m transitions andv weak-fairness
constraints. Lety be a Fair ATL formula. The algorithm labels each stateSof
with all subformulas op, starting with the innermost subformulas. Let us consider
the case corresponding to a subformula of the f@) . As described earlier,
we first construct the extended game structsfeand the truth of(A)y can be
evaluated by solving a game @7. The number of states and transitionsS5f
is O(m).

Alternating-Time Temporal Logic 697

We will further augmentS™ to simplify the winning condition of the game.
Let us partition the weak-fairness constraintd’innto two sets:I'; contains all
constraints of the forma, y) with ae A, andT", contains the remaining con-
straints. Suppose th&li contains the constrain'(a}, Yi)s ..., (@5, ¥, andl
contains the constralntal, yl) (aWz, VW2> We define the game struct
from S© by adding two counters The two counters take their values from the sets
{1,. + 1}, fori =1, 2 respectively, and are used to simplify the respectlve
conjunctlons;/\ aper 00(=(@, v, enablec}lv a, y, taken). The statesoﬁ; have
the form(u, ¢, ¢;), whereu is a state 08", and thec;’s are the two counter values.
The state componentdetermines the avallable moves and the labeling with propo-
sitions. The counter andc, are updated determlnlstlcally qfequalsw. +1,then
itisresetto 1;if I=c¢ <w; andu satlsfles—|(aC Vc. enabled v (a',)/C , taker)
thenc; is incremented; otherwisg stays unchanged Thus, reachesw. +1in-
finitely often iff each fairness constraint in the correspondingl%ds infinitely
often disabled or taken. Consequently, Proposition 5.3 can be restated asga state
of the game structur8 fairly satisfies a Fair ATL formula of the forffjA)) v with
respect to the weak-fairness conditibnff the state(L, g, 1, 1) of the extended

game structurs,i satisfies the formula
ANO O (Ci=w1+ 1A (SD(C2=W2) Vv ¥)).

Since the truth of/ can be encoded in the structure (by doubling the states), the
winning condition is a single Rabin pair. The game struc&LrbasO(m-wZ) states

and transitions. The number of states that satisfy the conditiorfc; =w; + 1)

is O(m - w). Using the complexity bounds for solving games with a single Rabin
pair [Jurdzinski 2000; Etessami et al. 2001], we get the overall complexity of
O(m? - w3). While these bounds are for turn-based games, the reasoning described
in Proposition 5.1 can be used to obtain the same bounds also for concurrent
game structures.

In the case of turn-based asynchronous structures, recall the construction from
Section 4.2. The structur8’ obtained by adding the counter corresponding to
the fairness constraints on the scheduler @4s - k) states andd(m - k) tran-
sitions. Checking(A))v reduces to solving a (co)®hi game with the winning
condition o ¢ done— . Since this can be done in time proportional to the
product of the number of states and the number of transitions (use the nested
fixed-point computation of Figure 4), the cost of processing a temporal operator
isO(n-m-k?. O

Now let us consider the general case of strong fairness. Proposition 5.3 shows
how to reformulate the Fair ATL model-checking problem for a game stru@ure
as an ATLl* model-checking problem for the extended game struc8ireWhile
such games do not admit a polynomial-time solution, the worst-case bound of
2EXPTIME for ATL* model checking does not apply.

THEOREM 5.5. The model-checking problem for Fair ATL is PSPACE-
complete, and can be solved in tim&# - ¢ for a game structure with m tran-
sitions, w fairness constraints, and a Fair ATL formula of giz&he problem is
PSPACE-hard even for a fixed formula. For a bounded number of fairness con-
straints, the problem is PTIME-complete.

698 R. ALUR ET AL.

PrROOF. As usual, the model-checking algorithm labels each state of the ex-
tended game structu® with all subformulas of the given Fair ATL formula,
starting with the innermost subformulas. The interesting case corresponds to sub-
formulas of the form{(A)v . This requires solving a game @ with the win-
ning condition of the form given by the second part of Proposition 5.3. In Alur
et al. [2002], it is shown that turn-based games whose condition is a Boolean
combination of formulas of the forno < p, for propositionsp, can be solved
in PSPACE, or in timem", wherem is the size of the game structure and
is the size of the formula. In our case, the size of the winning condition is
O(w), wherew is the number of fairness constraints. Consequently, each tem-
poral operator can be processed in tim€™), leading to the overall comp-
lexity bound.

For the lower bounds, the construction of Alur et al. [2002] can be modified to
reduce the satisfaction of a given quantified Boolean formutaFair ATL model
checking of a fixed formula of the forga)) o p, for a playera and propositiom,
over a 2-player turn-based synchronous game structure (i.e., an AND-OR graph)
of size O(|¢|) with O(|¢|) strong-fairness constraints[]

5.3. ATL* MODEL-CHECKING COMPLEXITY. We have seen that the transition
from CTL to ATL does notinvolve a substantial computational price. While there is
an exponential price to pay in model-checking complexity when moving from CTL
to CTL*, this price becomes even more significant (namely, doubly exponential)
when we consider the alternating-time versions of both logics, ATL andATa
see this, we consider thraodel-checking problem for ATLwhich asks, given a
game structureS and an ATL* (state) formulap, for the set of states of that
satisfyg.

Before we discuss ATLmodel checking, let us briefly recall CTimodel check-
ing [Emerson and Lei 1985]. We follow the automata-theoretic approach to model
checking. For the definition of word and tree automata on infinite objects, see
Thomas [1990]. The computationally difficult case corresponds to evaluating a
state formula of the forndy,, for an LTL formulay. The solution is to con-
struct a Bichi automatond that accepts all computations that satigfy To de-
termine whether a statg satisfies the formulay,, we need to check if some
g-computation is accepted by the automatdnand this can be done by analyz-
ing the product of4 with the structure. The complexity of CTlmodel checking
reflects the cost of translating LTL formulas deautomata. In case of an ATL
state formula({ A)) v, the solution is similar, but requires the use of tree automata,
because satisfaction corresponds to the existence of winning strategies. There-
fore, model checking requires checking the nonemptiness of the intersection of
two tree automata: one accepting trees in which all paths satisind the other
accepting trees that correspond to possible strategies of the protagonist (i.e., the
players inA).

In order to solve the model-checking problem for ATlwe first define the notion
of execution trees. Consider a game structsite(k, Q, I, 7, d, §), a SetAC X
of players, and a sét, = { f; | a € A} of strategies for the players . For a state
g e Q, the sebut(q, Fa) of g-computations is fusion-closed, and therefore induces
a treeexeg(q, Fa). Intuitively, the treeexeg(q, Fa) is obtained by unwinding
starting fromq according to the successor relation, while pruning subtrees whose
roots are not chosen by the strategie& in Formally, the treexeg(q, Fa) has as

Alternating-Time Temporal Logic 699

nodes the following elements 6§*:

» ¢ is a node (the root).

» Foranode.-q' € Q*, the successor nodes (childrenjofy” are all strings of the
formx - q’ - q”, whereq” is such that there is a move vectgy, . .., jx) € D(q)
such that (1), = fa(x - g') for all playersa e A, and (2)6(d, j1, ..., jx) =9q".

Atreet is a(qg, A)-execution tredf there exists a sdt, of strategies, one for each
player in A, such that = exeg(q, Fa).

THEOREM 5.6. The model-checking problem for ATik 2EXPTIME-complete,
even in the special case of turn-based synchronous game structures. For ATL
formulas of bounded size, the model-checking problem is PTIME-complete.

PROOF Consider a game structueand an ATl formulag. As in the al-
gorithm for CTL* model checking, we label each stajeof S by all state sub-
formulas ofe that are satisfied ig. We do this in a bottom-up fashion, starting
from the innermost state subformulasgfFor subformulas generated by the rules
(S1-S2), the labeling procedure is straightforward. For subformylagenerated
by (S3), we employ the algorithm for CTLmodule checking [Kupferman et al.
2001] as follows. Lety’ = ({(A)y. Since the satisfaction of all state subformulas
of ¢ has already been determined, we can assumevythigtan LTL formula.
We construct a Rabin tree automatgly, that accepts precisely the trees that
satisfy the CTL formula Vs, and for each statq of S, we construct a Bchi
tree automatots g A that accepts precisely thg, A)-execution trees. The prod-
uct of the two automatad,, and Asq a is @ Rabin tree automaton that accepts
precisely the(q, A)-execution trees that satisfys. Recall thatq = (A)y iff
there is a sef, of strategies for the players iA so that allg-computations
of Sthat are outcomes df, satisfy . Since eachq, A)-execution tree corre-
sponds to a sdt of strategies, it follows thay = (A)) ¢ iff the product automaton
iS nonempty.

The automatond, has 2"’ states and 2¥) Rabin pairs [Emerson and
Sistla 1984]. In order to define the automatalyq o, we first define, for a
stateq’ and a setA of players, the sePos(A, q') of minimal state setp C Q
so that the players irfA can cooperate to ensure that the successay @ a
member ofp. Formally, p € Pos(A, g') if (1) for every playerae A, there ex-
ists a movej,e{l,...,da(q)} such that for all playerbe X\ A and moves
be{l, ..., ds(q)}, we haves(q’, ji, ..., jx) € p, and (2) p is minimal, in the
sense that no proper subsefpdfatisfies requirement (1). Assume there is an order
on the states iQ. Then, we can refer tBos(A, q') as a set of tuples of length at
mostQ. The tree automators q has the input alphabet'2the state se®, the
initial stateg, and the nondeterministic transition functipauch that for every state
g’ € Q, we haven(q’, 7 (q")) =Pos(A, q'), andn(q’, p) =¥ for all p#£ 7 (q'); that
is, each setiRos(A, q) determines a set of possible successor states orvirfgi)t
All states inQ are Bichi acceptance states. Note that, using the terminology of
Section 5.1, each tuple € Pos{ A, ') corresponds to ad-movec atq’, andp
contains exactly the-successors af’. Thus, the number of tuples Pos{A, Q')
is ITac ada(q). It follows that the size of the automatods g A is bounded by the
size of the game structu@ Since the tree automato#,, is obtained by expand-
ing a deterministic word automaton into a tree automaton, the fact that we regard

700 R. ALUR ET AL.

Pos(A, g') as a set of tuples with a single order on the states does not affect the
nonemptiness of the product g, with Asq a. The nonemptiness problem for a
Rabin tree automaton of sizewith r Rabin pairs can be solved in tin@(n - r)¥
[Emerson and Jutla 1988; Pnueli and Rosner 1989a]. Hence, labeling a single state
with ¢ requires at most time g - 22°"")2°""" = 5/2*" Since there argQ)| states

and at mosty| subformulas, membership in 2EXPTIME follows.

For the lower bound, we reduce the realizability problem for LTL [Pnueli and
Rosner 1989a], which is 2EXPTIME-hard [Rosner 1992], to Afrlodel checking.
AnLTL formulay over asefl of propositions is realizable iff there exists a 2-player
turn-based synchronous game structtad the following form:

(1) The transitions ir§ alternate between states at which it is the turn of player 1,
called player-1 states, and states at which it is the turn of player 2.

(2) Every player-1 state ha& Zuccessors, each labeled by a different subsét of 2
(3) Some state o satisfies the AT formula ((2)).

Intuitively, a state oSthat satisfieg2))y witnesses a strategy for player 2 to satisfy
Y irrespective of how player 1 updates the truth values of propositionss| be
the maximal 2-player turn-based synchronous game structuré&lavet alternates
between player-1 states and player-2 states: in transition-relation form,

S1=1(2,2"x{1,2}, I, 7, 0, (2" > {1}) x 2" x {2})) U((2" x {2}) x (2" x {1))))

such that for allu C I, we haver ({u, 1)) =7 ({u, 2)) =u ando ({(u, 1)) =1 and
o({u, 2)) =2. Theny is realizable iff there exists some stateSq that satisfies
{(2) . Since the 2EXPTIME lower bound holds for the realizability of LTL for-
mulas with a fixed humber of propositions, the sizeSgfis fixed, and the lower
bound for the joint complexity of AT model checking follows. The lower bound
for the structure complexity follows from Theorem 5.2, and the upper bound from
fixing || in the analysis of the joint complexity above.]

6. Beyond ATL

In this section, we suggest two more formalisms for the specification of open
systems. We compare the two formalisms with ATL and ABlnd consider their
expressiveness and their model-checking complexity. Given two lagiesidL ,,

we say that the logit ; is as expressivas the logicL , if for every formulag,

of Ly, there exists a formul@; of L; such thatp; andg, are equivalent (i.e., they
are true in the same states of each game structure). Thellpggenore expressive
thanL, if L1 is as expressive ds, andL, is not as expressive ds.

6.1. THE ALTERNATING-TIME u-CALcuLus. The formulas of the logic AMC
(Alternating-Timeu-Calculug are constructed from propositions, Boolean connec-
tives, the next-time operatQr , each occurrence parameterized by a set of players,
as well as the least fixed-point operatarFormally, given a sefil of propositions,

a setV of propositional variables, and a sEt={1, ..., k} of players, an AMC
formula is one of the following:

* p, for propositionsp € I1.
» X, for propositional variableX € V.

Alternating-Time Temporal Logic 701

e —@ OF @1 V @2, Whereg, ¢1, andg, are AMC formulas.
* (A)O ¢, whereAC X is a set of players and is an AMC formula.

* uX.p, whereg is an AMC formula in which all free occurrences #f (i.e.,
those that do not occur in a subformulago$tarting withu X) fall under an even
number of negations.

The logic AMC is similar to thes-calculus [Kozen 1983], only that the next-time
operatorO is parameterized by sets of players rather than by a universal or an
existential path quantifier. Additional Boolean connectives are defined-framd

Vv in the usual manner. As with ATL, we use the dudl]o ¢ = —({A)O —¢, and

the abbreviationd = (X)) andv =[X]. As with the n-calculus, we write X.¢ to
abbreviate-u X.—¢. Using the greatest fixed-point operatoithe dual next-time
operator [A]JO , and the connective, we can write every AMC formula iposi-

tive normal formwhere all occurrences ef are in front of propositions. As in the
u-calculus, thealternation depthof an AMC formula is the maximal length of a
chain of nested alternating least and greatest fixed-point operators. In particular, an
AMC formula ¢ is alternation-freeif, when ¢ is written in positive normal form,
there are no occurrenceswofrespectivelyu) on any syntactic path from an occur-
rence ofu X (respectivelyy X) to a bound occurrence &f. For example, the for-
mulap X.(pvuY.(XV{@)O Y))is alternation-free; the formulaX. . Y.((p A X)v

{@)O Y) is not. Thealternation-free fragmentf AMC contains only alternation-
free formulas.

We now turn to the semantics of AMC. We first need some definitions and
notations. Given agame struct8e- (k, Q, IT, x, d, §), avaluation) is afunction
from the propositional variablésto subsets of). For a valuatior/, a propositional
variable X, and a sep C Q of states, we denote by[X := p] the valuation that
maps X to p and agrees with on all other variables. An AMC formula is
interpreted as a mapping® from valuations to state sets. Ther$()) denotes the
set of states that satisfy the AMC formylainder the valuatio in the structures.

The mappingy® is defined inductively as follows:

« For a propositiorp € I, we havepS(V)={qe Q | pex(q)}.

« For a propositional variabl¥ e V, we haveXS(V) = V(X).

* (—9)5(V)=Q\ ¢3(V).

* (p1V 92)5(V) =P (V) U 3(V).

e ((AYO @)3(V)={ge Q|for every playerac A, there exists a movg, €

{1, ...,da(q)} such that for all playerb e ¥\ A and moveg, € {1, ..., dy(q)},
we haves(q, ji, ..., jk) € eS(V)}.

o (X)) = Np S Q| S(V[X:=p]) € p}.

Consider an AMC formula of the form X.¢. Given a valuatio®), the subformula
¢ can be viewed as a functldmf that maps each state setC Q to the state
setpS(V[X := p]). Since all free occurrences f fall under an even number of
negations, the functidn® |, is monotonic; thatis, ib < o', thenh® ,,(0) h> ,(p").
Consequently, by standard fixed-point theory, the funct@q} has a Ieast fixed
point, namely,N{p € Q | ¢>(V[X:=p]) Cp}. The least fixed point can be

702 R. ALUR ET AL.

computed by iterative approximation:

(X)) = | (h)) ([falsd).

i>0

As the game structurghas finitely many states, the union is finite, and the iterative
approximation converges in a finite number of steps.

A sentencef AMC is aformulathat contains no free occurrences of propositional
variables. A sentengedefines the same state 8&{)) for any and all valuationy.
Therefore, for a statg of Sand a sentenag, we write S, g = ¢ (“stateq satisfies
the formulay in the structures’) if q € ¢S(V) for any valuatiorV. For example, the
AMC formulau X.(qV (p A {A)O X)) is equivalentto the ATL formulg§A)) piq.

6.1.1 AMC ExpressivenessAll temporal properties using the always and un-
til operators can be defined as fixed points of next-time properties. For closed
systems, this gives the-calculus as a generalization of temporal logics. Tihe
calculus is more expressive than CThand the alternation-free-calculus is more
expressive than CTL [Emerson 1990; Dam 1994]. The relationships between AMC,
alternation-free AMC, ATL, and ATt are analogous.

THEOREM 6.1. AMC is more expressive than AT[The alternation-free frag-
ment of AMC is more expressive than ATL.

ProoF. First, we define a functios from ATL formulas to alternation-free
AMC formulas such that for every ATL formulga, the formulasy andG(g) are
equivalent. The functiof is defined inductively as follows:

* G(p) = p, for propositionsp < IT.

s G(—¢)=—G(p).

* G(p1V ¢2) =G(p1) V G(g2).

* G({A)O ¢) = (A)O G(p).

s G((A) Op)=vX.(G(p) A (ANO X).

* G((AYpr1Up2) = uX.(C(p2) v (G(p1) A (ANO X)).

Second, in de Alfaro et al. [2001a], it is shown how a formula of the f¢i) -,
whereyr is an LTL formula, can be translated into an equivalent forn&(&A) v)
of AMC.2 The functionG can be inductively extended to all ATformulas. Con-
sider an ATL formula ({A)y, whereyr is an arbitrary path formula. Let’ be
the LTL formula that results fronjr by replacing every state subformudawith a
new propositionp,,. Let x = G({A)¢') be the AMC formula that is equivalent to
{ AN’ Finally, defineG({{ A)v) to be the result of replacing each new proposition
p, in x by the AMC formulaG(p). ThenG({A)v) is an AMC formula that is
equivalent to the ATL formula { A)v . This establishes that the alternation-free
fragment of AMC is as expressive as ATL, and that AMC is as expressive as ATL
To see that AMC is more expressive than ATand that alternation-free AMC is
more expressive than ATL, note that for 1-player game structures, (alternation-free)

3 1t should be noted that if a-calculus formulap is equivalent tdyr, for an LTL formulays, then
it is not necessarily the case that by replacing every occurrerige wf ¢ with {(A)0 we obtain an
AMC formula that is equivalent t§ A) [de Alfaro et al. 2001a].

Alternating-Time Temporal Logic 703

AMC is the same as the (alternation-freexalculus, CTL is the same as AT\,
and CTL is the same as ATL.[]

Remarl6.2. Parikh [1983] has definedeopositional logic of game®arikh’s
logic extends the dynamic logic PDL [Fischer and Landner 1979] in a way similar
to the way in which AMC extends the-calculus. The formulas in Parikh’s logic
are built with respect to a set of atomic games. Each atomic game is a subset of
W x 2W, whereW is a set of worlds. Thus, an atomic game corresponds to a single
step of a game played on a game structure, with each player choosing a move (or
a set of moves) depending on the state of the game structure. Cooperation between
players, as well as the iteration of atomic games, are specified in Parikh’s logic by
standard PDL operations, such as disjunction and iteration. For example, the AMC
formulauX.(p Vv {a, b)O X) corresponds to the formulga v b)*) p of Parikh’s
logic. Parikh’s [1983] logic is shown to be decidable, and a complete set of axioms
is given. Our work is motivated by the verification of open systems. Accordingly,
we have defined the game versions of logics that are popular for the specification
of closed systems, such as temporal logics andtiealculus, and unlike [Parikh
1983], we focus on the model-checking problem.

6.1.2 AMC Model Checking. The model-checking problem for AM@&sks,
given a game structur and an AMC sentence, for the set of states db that
satisfy ¢. The only difference between the classigatalculus and AMC is the
next-time operator, which has a game interpretation in AMC. Hence, symbolic
algorithms and tools fop-calculus model checking can be modified to handle
AMC by implementing thePre function, which computes the next-time operator
{(-»O of AMC (see the discussion in Section 4.1 on possible implementations).
From a computational point of view, thecalculus and alternation-free-calculus
model-checking algorithms of Emerson and Lei [1986] and Cleaveland and Steffen
[1991] can be modified to handle AMC and alternation-free AMC within the same
complexity bounds.

We first consider the alternation-free case. The algorithm of Cleaveland and
Steffen [1991] is based on a bottom-up evaluation of subformulas. Consider a
game structure witlm transitions and an alternation-freecalculus formulap of
length£. The formulas in Cleaveland and Steffen [1991] are giveagnational
form; that is, each formula is presented as a set of equational blocks and a propo-
sitional variable, called root. An equational block has two foro{&} or u{E},
whereE is a list of equations of the fori; = ¢;, eachy; is au-calculus formula
without fixed-point operators, and tB§ are propositional variables. We assume
that the equational blocks are simple; that is, egchontains at most one non-
propositional subformula. By adding new propositional variables, we can turn a
block that is not simple into a simple block, at a cost that is linear in the length
of the formula. If a propositional variabg that appears in the right-hand side of
an equation in some block also appears in the left-hand side of an equation in
someotherblock B, thenB depends oB’. The formula is alternation-free if the
dependencies are not circular. The algorithm in Cleaveland and Steffen [1991] pro-
cesses each equational block in order to evaluate its left-hand side variables. The
algorithm proceeds from the minimal blocks, which depend on no other blocks,
following a linearization of the dependencies until the root variable is evaluated.
Thus, when it reaches a block with an equatiin= ¢;, then each propositional

704 R. ALUR ET AL.

variable that appears in appears either in the left-hand side of another equation
of the current block, or it has already been evaluated. The processing of a block re-
quires the repeated application of #hee function: first all left-hand side variables

are initialized to true, in case ofigblock, or to false, in case of;ablock, and then

the equations are evaluated repeatedly until a fixed point is reached. If the block
containse equations, then the fixed-point computation requires tid{e - m).

As ¢ bounds the number of equations in all blocks, the overall complexity
O(m - ¢) follows.

In the case of the classicalcalculus, each calculation &fre is simple, as it
corresponds to a universal or an existential next-time operator. In the case of AMC,
we need to be more careful in establishing & - m) bound for the repeated
application of théPre function in the processing of a block widhkequations. Recall
that the equational blocks are simple. Thus, each equatieng; is such thaiy;
contains at most one subformula of the fofA)O ¢’. Following the reasoning
described in Proposition 5.1, the repeated evaluationXjofan be done with
respect to the turn-based game structeefined there. Note that may contain
a propositional variabl; that appears in the left-hand side of the current block,
and thatp; may contain a subformula of the for§B)) O ¢” for B different fromA.

The repeated evaluation of then uses the intermediate valuesxgf, which are
computed on the turn-based game structgeStill, the repeated calculations of
Pre required for each equation, which monotonically shrink or grow the left-hand
side variable, can be completed in total ti@ém). Thus, the evaluation of a block
with e equations requires tim@(e- m), yielding an overall complexity o®(m- £)

for model checking the alternation-free fragment of AMC.

Now consider the general case. The algorithm of Emerson and Lei [1986] for
u-calculus model checking proceeds also bottom-up, and the evaluation of each
subformula involves again repeated applications ofRhefunction. Here, how-
ever, each evaluation may depend on intermediate values of outer subformulas. In
particular, the value of a subformula may be updated nonmonotonically, and the
number of such updates is bounded by the alternation level of the subformula, that
is, by the number of alternations of fixed-point operators in whose scope the sub-
formula occurs. This leads, for a formugeof alternation deptldl, to a complexity
of O((m- £)9*+1) for u-calculus model checking. In the case of AMC, each repeated
monotonic application of th@re function for evaluating a subformulgl can be
performed as in the alternation-free case, in ti@@n - |¢’|), yielding the overall
complexity of O((m - £)9+1) as well.

THEOREM 6.3. The model-checking problem for the alternation-free fragment
of AMC can be solved in time @ - £) for a game structure with m transitions and
a formula of sizeZ. The model-checking problem for AMC can be solved in time
O((m - £)4+1) for a game structure with m transitions and a formula of length
and alternation depth ¢ 1.

6.2. GME LocGic. The parameterized path quantifief)) first stipulates the
existenceof strategies for the players iA, and thenuniversallyquantifies over
the outcomes of the stipulated strategies. One may generalize ATL andiATL
separating the two concerns into strategy quantifiers and path quantifiers, say, by
writing FA.V instead of{A)) (read3 A as “there exist strategies for the players
in A”). Then, for example, the formula=3A. (30 ¢1 A 30 ¢,) asserts that the
players inA have strategies such that for some behavior of the remaining players,

Alternating-Time Temporal Logic 705

@1 is always true, and for some possibly different behavior of the remaining players,
@2 is always true.

We refer to the general logic with strategy quantifiers, path quantifiers, temporal
operators, and Boolean connectivegiame logiqGL, for short). There are three
types of formulas in GLstate formulaswhose satisfaction is related to a specific
state of a given game structugtree formulaswhose satisfaction is related to a
specific execution tree & (for the definition of execution trees, recall Section 5.3),
and path formulas whose satisfaction is related to a specific computatiofs.of
Formally, given a sell of propositions and a sé&t of players, a GL state formula
is one of the following:

(S1) p, for propositionsp € IT.
(S2) —¢ or g1 V @, Whereg, @1, andg, are GL state formulas.
(S3) FA.6, whereAC X is a set of players anglis a GL tree formula.

A GL tree formula is one of the following:

(T1) ¢, for a GL state formula.
(T2) —6 or 6, v 6, whered, 61, andd, are GL tree formulas.
(T3) Iy, wherey is a GL path formula.

A GL path formula is one of the following:

(P1) 9, for a GL tree formula®.
(P2) =y Or Y1 V ¥ro, Wherey, 1, andy, are GL path formulas.
(P3) O or Y1 Uy, Wherey, 1, andy, are GL path formulas.

The logic GL consists of the set of state formulas generated by the &1eS3).
For instance, while the formulaffom above is a GL (state) formula, its subformula
d0 g1 A 30 @2 is a tree formula.

We now define the semantics of GL with respect to a game struStiie write
S, g = ¢ to indicate that the statgof the structures satisfies the state formulg
we write S, t =6 to indicate that the execution treef the structures satisfies the
tree formulag; and we writeS, t, A = to indicate that the rooted infinite path
of the execution tree of the structures satisfies the path formula (note that in
this case is a computation o). If t is an execution tree db, andx is a node
of t, we writet(x) for the subtree of with root x. The satisfaction relatiop= is
defined inductively as follows:

» For formulas generated by the ruled1£S2), the definition is the same as for
ATL. For formulas generated by the ruld®) and 2), the definition is obvious.

* S qE3A. 0 iff there exists a seffa Of strategies, one for each playerAnsuch
thatS, exeg(q, Fa) E=6.

» S, t =g for a state formula iff S, g = ¢, whereq is the root of the execution
treet.

« S t =3y for a path formulay iff there exists a rooted infinite paghin t such
thatS, t, A = .

e S t,AE=0foratree formul@ iff St =0.

* StAREOYIff St(A[0,1]), A[1, c0] =y

706 R. ALUR ET AL.

e St,AEy1UY, iff there exists a positioni >0 such thatS, t(1[0,i]),
A[i_, o] =v» and for all positions G j<i, we have S t(A[O, |]),
)\'[17 OO] ': WI-

Note that whenever a strategy quantifier is applied, the tree formula in its scope
is evaluated with respect to execution treesSpeven when the strategy quanti-
fier is in a scope of another strategy quantifier. Thus, for example, the GL formula
FA;. A, 0isequivalentto the GL formulA,. 6. This is analogous to the seman-
tics of nested path quantifiers in CT,lwhere, for examplélvys is equivalent tov.

6.2.1 GL Expressiveness.The logic ATL* is the syntactic fragment of GL that
consists of all formulas in which every strategy quantifier is immediately followed
by a path quantifier (note th&tA. vV is equivalent tg{ A))). In particular, the formula
¢'=3{a}. 3o pA3Ioq), for a playera and two different propositionp andq,
is not equivalent to any ATLformula. It follows that GL is more expressive than
ATL*. GL and AMC are incomparable generalizations of ATthe GL formula
¢’ is not equivalent to any AMC formula; over 1-player game structures, GL is the
same as CTt, and thus not as expressive as the (alternation-freeglculus.

THEOREM 6.4. GL is more expressive than AThut not as expressive as AMC.
AMC is not as expressive as GL.

A syntactic fragment of GL different from ATL/ATLis studied irmodule check-
ing [Kupferman et al. 2001]. There, one considers formulas of the @AY, with
a single outermost strategy quantifier followed by a CTL or €fdtmulaé. The
GL formula{a)) ¢ (b)) © pinvolves strategies for two different playeesandb,
and is not equivalent to any formula with a single outermost strategy quantifier.
It follows that GL is more expressive than module checking. Thus, from an ex-
pressiveness point of view, alternating-time temporal logics and module checking
identify incomparable fragments of game logic. In Kupferman et al. [2001], it
is shown that the module-checking problem is EXPTIME-complete for CTL and
2EXPTIME-complete for CTL, and the structure complexity of both problems is
PTIME. Hence, from a computational point of view, ATL is advantageous.

6.2.2 GL Model Checking. The model-checking problem for Gasks, given
a game structuré& and a GL (state) formula, for the set of states of that
satisfy ¢. The model-checking problem for CTlcan be solved by repeatedly
applying, in a bottom-up fashion, an LTL model-checking procedure on subformu-
las [Emerson and Lei 1985]. The same technique can be used in order to solve the
model-checking problem for GL by repeatedly applying the €fibdule-checking
algorithm from Kupferman et al. [2001]. The complexity of CTrhodule checking
then implies the following.

THEOREM 6.5. The model-checking problem for GL is 2EXPTIME-complete.
For GL formulas of bounded size, the model-checking problem is PTIME-complete.

7. Incomplete Information

According to our definition of ATL, every player has complete information about
the state of a game structure. In certain modeling situations it may be appropriate,
however, to assume that a player can observe only a subset of the propositions. Then,

Alternating-Time Temporal Logic 707

the strategy of the player can depend only on the observable part of the history of
the game. In this section we study such players with incomplete information. Using
known results on multi-player games with incomplete information, we show that
this setting is much more complex than the setting with complete information.
Our main result is negative: we show that the ATL model-checking problem is
undecidable for cooperating players with incomplete information. We present this
result for the special case of turn-based synchronous game structures.

7.1. GAME STRUCTURES WITHINCOMPLETEINFORMATION. A turn-based syn-
chronous game structure with incomplete informai®a pair(S, P) that consists
of a turn-based synchronous game structbee(k, Q, I, , o, R) and a vector
P ={IT, | 1 <a <Kk} of k setsIT, C IT of propositions, one for each player. Recall
thato is a map from the statgd to the players = {1, ..., k} such that at statg, it
is the turn of playet (q), andR C Q x Q is a total transition relation. Thabserv-
ability vector Pdefines for each playere ¥ the sefl1, of proposition®bservable
bya. For each playest € 3, we assume that there is a propositfmne I, such that
[pa]l ={0a | o(q) =a}. Thus, playea can observe when itis its turn, but it might not
observer(q) for statesy with o(q) # a. Consider a playes € X. A subset C I1,
is called ama-view, and the set o&-views is denoted/, = 2=, The functionr,
maps each statg € Q to the corresponding-view 4(q) =7 (q) N I, and the
functiontz maps each statpe Q to the setrs(q) = 7 (q)\I1, of propositions that
hold in g but a cannot observe. The function, is extended to computations in
the natural way: il = qo, Q1, Oz, . . . , thenma(A) = 7a(qo), 7a(dr), wa(q2), . . . We
require that whenever it is playais turn, then the transition relation can influence
only propositions thaa can observe, and is independent of propositions dhat
cannot observe. An exception are propositions of the fpgmfor b € X, which
may became valid in the target state. Formally, we require that the following two
conditions hold for all playera € ¥ and all statesy;, ¢;, 0 € Q:

(1) If o(q1) =aandR(as, q), thenma(ds) = wa(01)\{ Po(q))}-
(2) If o (1) =0 (0z) = @ andma(th) = 7a(d2) and R(qu, qy), thenR(a, gp) for all
statest}, with 7a(d) = a(dy) andma(d)\{ Po(qy} = 7a(d2)-

In other words, we can view the transition relatiRmas a vector oplayer transition
relations R C V, x Va,, one for each playes € X. The player transition relation
R, specifies for each-view a set of possible successowiews: for alla-viewsv
andv’, we haveR,(v, V') iff for any and all pairgq, q') of states witho(q) =a and
ma(q) =V andm,(q') =V andms(q) = 73(d")\{ Ps(q)}, We haveR(q, q').

7.2. ATL wiTH INCOMPLETE INFORMATION. When we specify properties of
a game structure with incomplete information using ATL formulas, we restrict
ourselves to a syntactic fragment of ATL. To see why, consider the ATL formula
{@)< p, for a propositiorp ¢ I, that cannot be observed by plagefThe formula
requires player to have a strategy to reach a state in which the proposjtion
is true. Asa cannot observe, this requirement makes no sense. Consequently,
whenever a set of players is supposed to attain a certain task, we require that each
player in the set can observe the propositions that are involved in the task. This
includes all propositions that appear in the task as well as all propositions that
are observable by players appearing in the task. Consider, for example, for the
ATL formula (a)) ¢ {b) < p, for two playersa andb. If a cannot observe all

708 R. ALUR ET AL.

propositions thab can observe, thes cannot determine whether its task, to reach
a state that satisfigh)) ¢ p, is accomplished. Hence, we require thetC I1,, as
well asp € I,

Formally, given an observability vectd?, we define for each ATL formula
the seinvp(¢) C IT of involved propositionsThe definition proceeds by induction
on the structure of the formula:

* invp(p) = {p}, for propositionsp € IT.

¢ invp(—g) =invp(y).

* iINVp(p1 V @2) =inVp(p1) Uinve(p2).

o invp({ANO @) =inve(p) U Uyca Ma.

* Ian(((A» O QD) = ian((p) U UaeA Ia.

o invp({ANp1Upz) =invp(p1) Uinve(p2) U (Usea Ma.

The ATL formulag is well-formedwith respect to the observability vectBrif the
following two conditions hold:

(1) Forevery subformula af of the form{A)O 6 or ({ A) 06, and for every player
ac A, we havenvp(6) C I1,.

(2) For every subformula af of the form{{A)6; U6,, and for every playes € A,
we haveinv(6,) U inv(6,) C I1,.

Note that if the formula({A) v is well-formed, then each player ik can observe
all propositions that are observable by players that appegar ut it may not be
able to observe some propositions that are observable by other players in

When we interpret an ATL formul@ over a turn-based synchronous game struc-
ture (S, P) with incomplete information, we require thatis well-formed with
respect toP. The definition of the satisfaction relation is the same as in the case
of complete information (see Section 3.2), except for the following definitions of
strategies and outcomes. Novsteategyfor playera € is afunctionf,: V- — V,
that maps every nonempty, finite sequeraaf a-views to ana-view such that if
the lasta-view of « is v, then Ry(v, fa(x)). Thus, the strategyf, looks at the
a-views of a finite computation prefix and suggestsaaview for the next state
(the suggestion is followed if it is the turn of play&). Given a state € Q, a set
AC X of players, and a sdtp={f, | a € A} of strategies, one for each player
in A, a computation. =, d1, 02, . . . IS in anoutcomein out(q, F,) if gg=q and
for all positionsi > 0, if o(q) € A, thenm,(gi+1) = fa(ra(A[0, i])) for a=o(q).
Thus, for exampleq = (A)O ¢ iff either o(q) € A and there exists a(q)-view
v C I, (g such that for all stateg with R(q, q") andz,q)(qQ") =V, we havey’ = ¢,
oro(q) ¢ A and for all stateg’ with R(q, '), we havey’ = ¢.

The model-checking problem for turn-based synchronous ATL with incomplete
informationasks, given a turn-based synchronous game stru¢gife) with in-
complete information, and an ATL formwathat is well-formed with respect 18,
for the set of states db that satisfyyp.

THEOREM 7.1. The model-checking problem for turn-based synchronous ATL
with incomplete information is undecidable.

PROOF The outcome problem for multi-player games with incomplete
information has been proved undecidable by M. Yannakakis (personal com-
munication). This problem is identical to the model-checking problem for the

Alternating-Time Temporal Logic 709

ATL formula ({(A)) © p on a turn-based synchronous game structure with incom-
plete information. [J

We note that for Fair ATL over turn-based asynchronous game structures with
weak-fairness constraints for the scheduler, and incomplete information for the
other players, proving undecidability is easier, and follows from undecidability
results on asynchronous multi-player games with incomplete information [Peterson
and Reif 1979; Pnueli and Rosner 1990].

7.3. SNGLE-PLAYER ATL WITH INCOMPLETE INFORMATION. Single-player
ATL is the fragment of ATL in which every path quantifier is parameterized by a sin-
gleton set of players. In this case, players cannot cooperate, and the model-checking
problem is decidable also for incomplete information. There is an exponential price
to be paid, however, over the setting with complete information.

THEOREM 7.2. The model-checking problem for single-player turn-based syn-
chronous ATL with incomplete information is EXPTIME-complete. The problem is
EXPTIME-hard even for a fixed formula.

PROOF. We start with the upper bound. Given a turn-based synchronous game
structure(S, P) with incomplete information and a single-player ATL formyla
that is well-formed with respect t&, we label the states @ with subformulas
of ¢, starting as usual from the innermost subformulas. For subformulas generated
by the rules §1-S2), the labeling procedure is straightforward. For subformulas
generated byg3), we proceed as follows.

Let S, = (2, Va, 14, id, 0,3, Ry) be the game structuigas observed by player
id is the identity function, and for all statese V,, defineo,(v) =1 if pyev, and
oa(V) =2 otherwise. Note tha§, is a 2-player game structure—player 1 corre-
sponds to playea, and player 2 corresponds to all other players—and player 1
has complete information in this game. We construct the extended game struc-
ture S, = (2, Va, I}, 7}, 0a, Ra) by adding the following new propositions. If
¢'={(a)o o or¢'=(a) o, thenTl; =115 U {pg} with [py]g =[0]s,; that is,
the new propositionp, represents the label that corresponds to the proper subfor-
mulad. Similarly, if " = (@))61 U6, thenlly = [MaU{pg,, Ps,} With[pg,]g =[61]s,
and [pg,]g =[62]s,- Sincey is well-formed with respect t®, player 1 can solve the
ATL model-checking problems for the subformutg®,, andd, in S,, and thus can
observe the propositions Ii},. In particular, if9, 61, or 6, contain a path quantifier
{(b) with b=£ a, thenIly, C I1,, and the game structu® refines the game struc-
tureS,. If o' = (@) O 0, lete” = (1)O py; if ¢’ = (@) 00, lety” = (1)) O ps; and
if @' = (@)1 UO,, lete” = (1)) po, U po,- Thenq = ¢’ in Siff ma(q) =¢” in .. In
particular, given a winning strategy for playefrom stateq in S, we can construct
a winning strategy for player 1 from statg(q) in S, and vice-versa. Since the
size of §, is exponential in the size &, membership in EXPTIME follows from
Theorem 5.2.

For the lower bound, we observe that the model-checking problem for the ATL
formula {(1))© p on a turn-based synchronous game structure with two players and
incomplete information is identical to the outcome problem for 2-player games
with incomplete information. The latter problem is known to be EXPTIME-hard
[Reif 1984]. [

710 R. ALUR ET AL.

TABLE I. MODEL-CHECKING COMPLEXITY RESULTS
| || Closed Systems

Open Systemg

ATL joint complexity PTIME PTIME
[Clarke et al. 1986] O(m-¢)

ATL structure complexity NLOGSPACE PTIME
[Kupferman et al. 2000]

Weakly-Fair ATL joint complexity PTIME PTIME
[Clarke et al. 1986] o(m? - w2 - ¢)

Weakly-Fair ATL structure complexity || NLOGSPACE PTIME
[Kupferman and Vardi 1995]

Strongly-Fair ATL joint complexity PTIME PSPACE
[Clarke et al. 1986] mOM™) . ¢

Strongly-Fair ATL structure complexity| PTIME PSPACE
[Kupferman and Vardi 1998]

ATL* joint complexity PSPACE 2EXPTIME
[Clarke et al. 1986] m2>®

ATL* structure complexity NLOGSPACE PTIME
[Kupferman et al. 2000]

8. Conclusions

Methods for reasoning about closed systems are, in general, not applicable for rea-
soning about open systems. The verification problem for open systems, more than
it corresponds to the model-checking problem for temporal logics, corresponds, in
the case of linear time, to thealizability problem [Abadi et al. 1989; Pnueli and
Rosner 1989a, 1989b], and in the case of branching time, tmtuile-checking
problem [Kupferman et al. 2001], that is, to a search for winning strategies. While
existing methods for the verification of open systems do not avoid the compu-
tational price caused by solving infinite games, the logic ATL introduced here
identifies a class of verification problems for open systems for which it suffices
to solve iterated finite games. The ensuing linear model-checking complexity for
ATL shows that despite the pessimistic results achieved in this area so far, there
is still a great deal of interesting reasoning about open systems that can be per-
formed efficiently.

While closed systems are naturally modeled as Kripke structures (labeled tran-
sition systems), a general model for open systems, which can accommodate a wide
variety of notions of composition, is the concurrent game structure. Closed sys-
tems correspond to the special case of a single player. In this case, game structures
degenerate to Kripke structures, ATL degenerates to CTL, Fair ATL to Fair CTL,
and ATL* to CTL*. Our model-checking complexity results are summarized in
Table I. All complexities in the table denote tight bounds, wherés the size
of the structurew is the number of fairness constraints, ahd the length of
the formula.

ACKNOWLEDGMENTS. We thank Luca de Alfaro, Kousha Etessami, Salvatore La
Torre, P. Madhusudan, Amir Pnueli, Moshe Vardi, Thomas Wilke, and Mihalis
Yannakakis for helpful discussions. We also thank Freddy Mang for comments on
a draft of this manuscript.

Alternating-Time Temporal Logic 711

REFERENCES

ABADI, M., AND LAMPORT, L. 1995. Conjoining specification&CM Trans. Prog. Lang. Syst. 13,
507-534.

ABADI, M., LAMPORT, L., AND WOLPER P. 1989. Realizable and unrealizable concurrent program spec-
ifications. InProc. 16th International Colloquium on Automata, Languages and Programrbéetjure
Notes in Computer Science, vol. 372. Springer-Verlag, 1-17.

ALUR, R.,DEALFARO, L., GROSU, R., HENZINGER T. A., KANG, M., KIRSCH, C. M., MAJUMDAR, R., MANG,

F. Y. C.,AND WANG, B. Y. 2001. sMocHA: A model-checking tool that exploits design structure. In
Proc. 23rd International Conference on Software EngineerlB§E Computer Society Press, 835—-836.

ALUR, R.,AND HENZINGER T. A. 1999. Reactive modules. Formal Methods in System Design, 15
7-48.

ALUR, R., HENZINGER T. A., MANG, F. Y. C., QuDEER, S. K., RAJAMANI, S. K.,AND TASIRAN, S. 1998.
MocHA: Modularity in model checking. IfProc. 10th International Conference, Computer Aided Veri-
fication Lecture Notes in Computer Science, vol. 1427. Springer-Verlag, 521-525.

ALUR, R., LA TORRE, S.,AND MADHUSUDAN, P. 2002. Playing games with boxes and diamonds. Tech.
Rep., Univ. Pennsylvania.

BEER|, C. 1980. On the membership problem for functional and multivalued dependencies in relational
databaseACM Trans. Datab. Syst, 241-259.

BRYANT, R. E. 1992. Symbolic Boolean manipulation with ordered binary-decision diagraGid.
Comput. Surv. 243, 293-318.

BUCHI, J. RAND LANDWEBER, L. H. 1969. Solving sequential conditions by finite-state strate@iass.
AMS 138295-311.

BURCH, J. R., QARKE, E. M., MCMILLAN, K. L., DIiLL, D. L., AND HWANG, L. J. 1992. Symbolic model
checking: 18° states and beyond. Inf. Comput. 982, 142—-170.

CHANDRA, A. K., KOzEeN, D. C.,AND STOCKMEYER, L. J. 1981. AlternationJ. ACM 281, 114-133.
CLARKE, E. M., AND EMERSON E. A. 1981. Design and synthesis of synchronization skeletons using
branching-time temporal logic. IRroc. Workshop on Logic of Programisecture Notes in Computer

Science, vol. 131. Springer-Verlag, 52—-71.

CLARKE, E. M., BMERSON E. A.,AND SISTLA, A. P. 1986. Automatic verification of finite-state concur-
rent systems using temporal logic specificatiogh&M Trans. Progr. Lang. Syst, &, 244-263.

CLEAVELAND, R.,AND STEFFEN B. 1991. A linear-time model-checking algorithm for the alternation-
free modalu-calculus. InProc. 3rd International Conference on Computer Aided VerificatiGetture
Notes in Computer Science, vol. 575. Springer-Verlag, 48-58.

Dam, M. 1994. CTL and ECTL* as fragments of the modal-calculus.Theoret. Comput. Sci. 126
77-96.

DE ALFARO, L., HENZINGER T. A., AND MAJUMDAR, R. 2001a. From verification to control: Dynamic
programs for omega-regular objectivesPioc. 16th Annual Symposium on Logic in Computer Science
IEEE Computer Society Press, 279-299.

DE ALFARO, L., HENZINGER T. A., AND MANG, F. Y. C. 2000. The control of synchronous systems. In
Proc. 11th International Conference on Concurrency Thebgcture Notes in Computer Science, vol.
1877. Springer-Verlag, 458-473.

DE ALFARO, L., HENZINGER T. A., AND MANG, F. Y. C. 2001b. The control of synchronous systems,
Part Il. In Proc. 12th International Conference on Concurrency Thedscture Notes in Computer
Science, vol. 2154. Springer-Verlag, 566—-580.

DiLL, D. L. 1989. Trace Theory for Automatic Hierarchical Verification of Speed-Independent Circuits
MIT Press.

EMERSON E. A. 1990. Temporal and modal logic.tandbook of Theoretical Computer Sciened. B.

J. van Leeuwen, Ed. Elsevier, 997-1072.

EMERSON E. A., AND HALPERN, J. Y. 1986. Sometimes and not never revisited: On branching versus
linear time.J. ACM 33 1, 151-178.

EMERSON E. A.,AND JUTLA, C. 1988. The complexity of tree automata and logics of prograni&da.
29th Symp. on Foundations of Computer ScieHEEE Computer Society Press, 328-337.

EMERSON E. A., AND LEI, C.-L. 1985. Modalities for model checking: Branching-time logic strikes
back. InProc. 20th Symp. on Principles of Programming Languagé&M Press, 84-96.

EMERSON E. A., AND LEI, C.-L. 1986. Efficient model checking in fragments of the propositional
u-calculus. InProc. 1st Symp. on Logic in Computer Scied&EE Computer Society Press, 267-278.

712 R. ALUR ET AL.

EMERSON E. A.,AND SISTLA, A. P. 1984. Deciding branching-time logic.Bmoc. 16th Symp. on Theory
of ComputingACM Press, 14-24.

ETESSAMI, K., WILKE, T., AND SCHULLER, R. A. 2001. Fair simulation relations, parity games, and
state space reduction foruBfi automata. InProc. 28th International Colloquium on Automata,
Languages and Programmind_ecture Notes in Computer Science, vol. 2076. Springer-Verlag,
694-707.

FIsCHER M. J.,AND LADNER, R. E. 1979. Propositional dynamic logic of regular prograin§€omput.
Syst. Sci. 18194-211.

GAWLICK, R., EGALA, R., S0GAARD-ANDERSEN J.,AND LYNCH, N. A. 1994. Liveness in timed and
untimed systems. IRroc. 21st International Colloquium on Automata, Languages and Programming
Lecture Notes in Computer Science, vol. 820. Springer-Verlag, 166-177.

GUREVICH, Y., AND HARRINGTON, L. 1982. Trees, automata, and game$ioc. 14th Symp. on Theory
of ComputingACM Press, 60-65.

HALPERN, J. Y. AND FAGIN, R. 1989. Modeling knowledge and action in distributed systddnsrib.
Comput. 34, 159-179.

HoARE, C. A. R. 1985. Communicating Sequential Processegentice-Hall.

HoLzMANN, G. J. 1997. The model checker SPIEEE Trans. Softw. Eng. 23, 279-295.

IMMERMAN, N. 1981. Number of quantifiers is better than number of tape de@mput. Syst. Sci. 22,
384-406.

JURDZINSKI, M. 2000. Small progress measures for solving parity gameRrdo. 17th Symp. on The-
oretical Aspects of Computer Scientecture Notes in Computer Science, vol. 1770. Springer-Verlag,
290-301.

Kozen, D. 1983. Results on the propositionaicalculus.Theoret. Comput. Sci. 2333-354.
KuPFERMAN, O.,AND VARDI, M. Y. 1995. On the complexity of branching modular model checking. In
Proc. 6th International Conference on Concurrency Thehscture Notes in Computer Science, vol.

962. Springer-Verlag, 408-422.

KUPFERMAN, O. AND VARDI, M. Y. 1998. \Verification of fair transition system€hicago J. Theoret.
Comput. Sci. 199&.

KUPFERMAN, O., VARDI, M. Y., AND WOLPER P. 2000. An automata-theoretic approach to branching-
time model checkingl. ACM 47 2, 312-360.

KUPFERMAN, O., VARDI, M. Y., AND WoLPER P. 2001. Module checkinglnf. Comput. 164
322-344.

LICHTENSTEIN, O., AND PNUELI, A. 1985. Checking that finite state concurrent programs satisfy their
linear specification. liProc. 12th Symp. on Principles of Programming Languag&M Press, 97-107.

LYNCH, N. A. 1996. Distributed AlgorithmsMorgan-Kaufmann.

McCMILLAN, K. L. 1993. Symbolic Model Checkindlluwer Academic Publishers.

PARIKH, R. 1983. Propositional game logic. Rroc. 24th Symp. on Foundations of Computer Science
IEEE Computer Society Press, 195-200.

PETERSON G. L.,AND REIF, J.H. 1979. Multiple-person alternation.Pnoc. 20st Symp. on Foundations
of Computer SciencéEEE Computer Society Press, 348—-363.

PNUELI, A. 1977. The temporal logic of programs. Broc. 18th Symp. on Foundations of Computer
SciencelEEE Computer Society Press, 46-57.

PNUELI, A., AND ROSNER R. 1989a. On the synthesis of a reactive modulePioc. 16th Symp. on
Principles of Programming Language&CM Press, 179-190.

PNUELI, A., AND ROSNER R. 1989b. On the synthesis of an asynchronous reactive moduRotn
16th International Colloquium on Automata, Languages and Programriigcture Notes in Computer
Science, vol. 372. Springer-Verlag, 652—671.

PNUELI, A., AND ROSNER R. 1990. Distributed reactive systems are hard to synthesiZeroln 31st
Symp. on Foundations of Computer SciedE&E Computer Society Press, 746-757.

QUEILLE, J. P.AND SIFAKIS, J. 1981. Specification and verification of concurrent system&8ag In
Proc. 5th International Symp. on Programminggcture Notes in Computer Science, vol. 137. Springer-
Verlag, 337-351.

RaBIN, M. O. 1972. Automata on Infinite Objects and Church’s ProbleéRegional Conference Series
in Mathematicsvol. 13., AMS.

RAMADGE, P.,AND WONHAM, W. 1989. The control of discrete event systeti$EE Transactions on
Control Theory 7781-98.

ReiF, J. H. 1984. The complexity of two-player games of incomplete informatio€omput. Syst.
Sci. 29 274-301.

Alternating-Time Temporal Logic 713

ROSNER R. 1992. Modular synthesis of reactive systems. Ph.D. dissertation, Weizmann Institute of
Science, Rehovot, Israel.

SHAPLEY, L. S. 1953. Stochastic games.Rmoc. Nat. Acad. Sci39, 1095-1100.

THomMAS, W. 1990. Automata on infinite objectslandbook of Theoretical Computer Scieneel. B,
J. van Leeuwen, Ed. Elsevier, 165-191.

THomAs, W. 1995. On the synthesis of strategies in infinite gameBrae. 12th Symp. on Theoretical
Aspects of Computer Scientecture Notes in Computer Science, vol. 900. Springer-Verlag, 1-13.

RECEIVED JUNE2002;REVISED AUGUST2002;ACCEPTED AUGUST2002

Journal of the ACM, Vol. 49, No. 5, September 2002.

