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Recapitulate fourth lecture

• Monotonic classifiers vs. weighted voting games

• Advanced topics:
• Inflated explanations
• Probabilistic explanations
• Constrained explanations
• Distance-restricted explanations
• Explanations using surrogate models
• Certified explainability
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Monotonicity & WCGs

• Every WVG G, described by [q;n1, . . . ,nm], can be represented as a monotonically
increasing boolean classifierM = (F , t0, 1um, t0, 1u, κ), such that:

• Each voter i is mapped to a boolean feature i, such that feature i takes value 1 if voter i votes
Yes; otherwise it takes value 0;

• The classification function κ : F Ñ t0, 1u is defined by:

κ(x) =
#

1 if
řm

i=1 nixi ě q

0 otherwise

• The target instance is (1, 1); and
• Each minimal winning coalition C corresponds to an AXp of E = (M, (1, 1))

6 WVGs can be analyzed by studying the AXps/CXps of monotonically increasing boolean
classifiers
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Another WVG

• WVG: [25; 10, 9, 7, 1, 1, 1, 1, 1, 1]

• Computing the AXps:
• Winning coalitions must include both 1 and 2
• We can pick 3 or, alternatively, all the other ones

• AXps:

A = tt1, 2, 3u, t1, 2, 4, 5, 6, 7, 8, 9uu

• CXps:

C = tt1u, t2u, t3, 4u, t3, 5u, t3, 6u, t3, 7u, t3, 8u, t3, 9u, u

• Q: How should features be ranked in terms of importance?
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Plan for this course – light at the end of the tunnel...

• Lecture 01 – units:
• #01: Foundations

• Lecture 02 – units:
• #02: Principles of symbolic XAI – feature selection
• #03: Tractability in symbolic XAI (& myth of interpretability)

• Lecture 03 – units:
• #04: Intractability in symbolic XAI (& myth of model-agnostic XAI)
• #05: Explainability queries

• Lecture 04 – units:
• #06: Advanced topics

• Lecture 05 – units:
• #07: Principles of symbolic XAI – feature attribution (& myth of Shapley values in XAI)
• #08: Conclusions & research directions
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Unit #07

Principles of Symbolic XAI – Feature Attribution



Detour: Standard SHAP Intro (from another course...)
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What are Shapley values?

• First proposed in game theory in the early 50s by L. S. Shapley [Sha53]

• Measures the contribution of each player to a cooperative game

• Application in XAI since the 2000s [LC01, SK10, SK14, DSZ16, LL17, ABBM21, VLSS21, VLSS22, ABBM23]

• Popularized by SHAP [LL17]

• Used for feature attribution, i.e. relative feature importance

• Shapley values are becoming ubiquitous in XAI... – E.g. see slides from other XAI course...

• Q: Do Shapley values for XAI really provide a rigorous measure of feature importance?
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How are Shapley values used in explainability?

• Instance: (v, c)

• Υ: 2F Ñ 2F defined by, [ABBM21, ABBM23]

Υ(S) = tx P F | ^iPS xi = viu

Υ(S) gives points in feature space having the features in S fixed to their values in v
• ϕ: 2F Ñ R defined by,

ϕ(S) = 1/2|FzS|
ÿ

xPΥ(S)
κ(x) = υe(S)

ϕ(S) represents the expected value of the classifier on the points given by Υ(S)
• Sc: F Ñ R defined by,

Sc(i) =
ÿ

SĎ(Fztiu)

|S|!(|F | ´ |S| ´ 1)!

|F |!
ˆ (ϕ(S Y tiu)´ ϕ(S))

For all subsets of features, excluding i, compute the expected value of the classifier, with
and without i fixed, weighted by 1

n
( n

|S|

)´1

• Obs: Uniform distribution assumed; it suffices for our purposes
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Marginal contribution
(in SHAP lingo)!
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How are Shapley values computed in practice?

• Exact evaluation is computationally (very) hard [VLSS21, ABBM21, VLSS22, ABBM23, HMS24]

• SHAP proposes a sample-based approach; with no guarantees of rigor [LL17]

• Recent experiments revealed little to no correlation between Shapley values and SHAP’s
results [HM23a]

• Polynomial-time algorithm for deterministic decomposable boolean circuits [ABBM21]

• Polynomial-time algorithm for boolean functions represented with a truth-table [HM23a]
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What do Shapley values tell in terms of feature importance?

• [SK10] reads:
“According to the 2nd axiom, if two features values have an identical influence on the
prediction they are assigned contributions of equal size. The 3rd axiom says that if a
feature has no influence on the prediction it is assigned a contribution of 0.”
(Obs: the axioms refer to the axiomatic characterization of Shapley values.)

• And [SK10] also reads:
“When viewed together, these properties ensure that any effect the features might have
on the classifiers output will be reflected in the generated contributions, which effectively
deals with the issues of previous general explanation methods.”

• Obs: Shapley values are defined axiomatically, i.e. no immediate relationship with
AXp’s/CXp’s or with feature (ir)relevancy

• Qs: can we have irrelevant features with a non-zero Shapley value, and/or relevant features
with a Shapley of zero?

• Recall: relevant features occur in some AXp/CXp; irrelevant features do not occur in any AXp/CXp
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Outline – Unit #07

Exact Shapley Values for XAI

Myth #03: Shapley Values for XAI

Corrected SHAP Scores

Voting Power & Power Indices

Feature Importance Scores



Shapley values vs. feature (ir)relevancy – identified issues [HM23a, HM23b, HM23c, MH23, HMS24, MSH24]

• Boolean classifier, instance (v, c), and some i, i1, i2 P F :

• Issue I1 occurs if,
Irrelevant(i) ^ (Sv(i) ­= 0)

• Issue I2 occurs if,
Irrelevant(i1) ^ Relevant(i2) ^ (|Sv(i1)| ą |Sv(i2)|)

• Issue I3 occurs if,
Relevant(i) ^ (Sv(i) = 0)

• Issue I4 occurs if,

[Irrelevant(i1) ^ (Sv(i1) ­= 0)] ^ [Relevant(i2) ^ (Sv(i2) = 0)]

• Issue I5 occurs if,
[Irrelevant(i) ^ @1ďjďm,j­=i (|Sv(j)| ă |Sv(i)|)]
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• Boolean classifier, instance (v, c), and some i, i1, i2 P F :
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Any of these issues is a cause
of (serious) concern per se!
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Some stats – all boolean functions with 4 variables [HM23a, HM23b, HM23c, MH23, HMS24, MSH24]

Issue-related metric Value Recap issue

# of functions 65536
# number of instances 1048576

# of I1 issues 781696
# of functions with I1 issues 65320
% I1 issues / function 99.67 [Irrelevant(i) ^ (Sv(i) ­= 0)]

# of I2 issues 105184
# of functions with I2 issues 40448
% I2 issues / function 61.72 [Irrelevant(i1) ^ Relevant(i2) ^ (|Sv(i1)| ą |Sv(i2)|)]

# of I3 issues 43008
# of functions with I3 issues 7800
% I3 issues / function 11.90 [Relevant(i) ^ (Sv(i) = 0)]

# of I4 issues 5728
# of functions with I4 issues 2592
% I4 issues / function 3.96 [Irrelevant(i1) ^ (Sv(i1) ­= 0)] ^ [Relevant(i2) ^ (Sv(i2) = 0)]

# of I5 issues 1664
# of functions with I5 issues 1248
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Previous results do matter! Let’s go non-boolean...
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2 0 0 1 4 2
3 0 0 2 0 0
4 0 1 0 0 0
5 0 1 1 7 3
6 0 1 2 0 0
7 1 0 0 1 1
8 1 0 1 1 1
9 1 0 2 1 1
10 1 1 0 1 1
11 1 1 1 1 1
12 1 1 2 1 1
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XPs: AXps/CXps
DT AXps CXps
DT1 t1u t1u

DT2 t1u t1u

Adversarial Examples
DT l0-minimal AEs
DT1 t1u

DT2 t1u

Shapley values
DT Sc(1) Sc(2) Sc(3)
DT1 0.000 0.083 -0.500

!!!

DT2 0.278 0.028 -0.222

!!

6 Shapley values can mislead
human decision-makers !

Sv issues also occur
in practice [HM23c]
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Computing XPs – make sense...
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Computing XPs, AEs & Svs – what???
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Another example – arbitrary mistakes!

[LHAMS24]

x1

x2

1 ´ 6α 1 + 2α

1

P t0u

P t0u P t1u

P t1u

1

2

4 5

3

• Instance: ((1, 1), 1)
• Obs: α ­= 1

• Sc(1) = 0

• Sc(2) = α

© J. Marques-Silva 15 / 40



Another example – arbitrary mistakes!

[LHAMS24]

x1

x2

1 ´ 6α 1 + 2α

1

P t0u

P t0u P t1u

P t1u

1

2

4 5

3

• Instance: ((1, 1), 1)
• Obs: α ­= 1

• Sc(1) = 0

• Sc(2) = α

© J. Marques-Silva 15 / 40



Another example – arbitrary mistakes!

[LHAMS24]

x1

x2

1 ´ 6α 1 + 2α

1

P t0u

P t0u P t1u

P t1u

1

2

4 5

3

• Instance: ((1, 1), 1)
• Obs: α ­= 1

• Sc(1) = 0

• Sc(2) = α

© J. Marques-Silva 15 / 40



Another example – arbitrary mistakes!

[LHAMS24]

x1

x2

1 ´ 6α 1 + 2α

1

P t0u

P t0u P t1u

P t1u

1

2

4 5

3

• Instance: ((1, 1), 1)
• Obs: α ­= 1

• Sc(1) = 0

• Sc(2) = α (you can pick the α...)

© J. Marques-Silva 15 / 40



Another example – arbitrary mistakes!
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x1

x2

1 ´ 6α 1 + 2α
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• Instance: ((1, 1), 1)
• Obs: α ­= 1

• Sc(1) = 0

• Sc(2) = α (you can pick the α...)

Example devised by O. Letoffe, PhD student at IRIT
© J. Marques-Silva 15 / 40



More detail

row x1 x2 ρ(x) ρa(x)
α = 1/2

ρb(x)
α = 1/4

1 0 0 1´ 6α ´2 ´1/2

2 0 1 1 + 2α 2 3/2

3 1 0 1 1 1
4 1 1 1 1 1

x1

x2

1 ´ 6α 1 + 2α

1

P t0u

P t0u P t1u

P t1u

1

2

4 5

3

S rows(S) υe(S)

H 1, 2, 3, 4 1´ α

tx1u 3, 4 1

tx2u 2, 4 1 + α

tx1, x2u 4 1

i = 1

S υe(S) υe(S Y t1u) ∆1(S) ς(S) ς(S)ˆ∆1(S)

H 1´ α 1 α 1/2 α/2

t2u 1 + α 1 ´α 1/2 ´α/2

ScE(1) = 0
i = 2

S υe(S) υe(S Y t2u) ∆2(S) ς(S) ς(S)ˆ∆2(S)

H 1´ α 1 + α 2α 1/2 α

t1u 1 1 0 1/2 0

ScE(2) = α
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Outline – Unit #07

Exact Shapley Values for XAI

Myth #03: Shapley Values for XAI

Corrected SHAP Scores

Voting Power & Power Indices

Feature Importance Scores



Corrected SHAP scores & feature importance scores

[LHMS24, LHAMS24]

• Is the theory of Shapley values incorrect?

• What is inadequate is the characteristic function used in XAI [SK10, SK14, LL17]

• In XAI: characteristic function uses the expected value
• This defines the marginal contribution in SHAP lingo...

• Replace characteristic function based on expected values by new characteristic function
based on AXps/WAXps [LHMS24]

• Resulting scores are (still) Shapley values & identified issues no longer observed

• Observed tight connection between feature attribution and power indices from a priori
voting power

• Feature importance scores: [LHAMS24]

• Generalize recent axiomatic aggregations [BIL+24]

• Adapt best known power indices
• Devise new scores for XAI
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An initial compromise

[LHAMS24]

• Replace the characteristic function used for SHAP scores:

υe(S) := E[τ(x) | xS = vS ]

• Recall the similarity predicate:

σ(x) =
#

1 if (κ(x) = κ(v))
0 otherwise

• The new characteristic function becomes:
υs(S) := E[σ(x) | xS = vS ]

• Issues with non-boolean classifiers disappear; issues with boolean classifiers remain

• Developed SSHAP prototype using SHAP’s code base [LHMS24]
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Fixing the known issues of SHAP scores

• New characteristic function (based on WAXps):

υa(S) :=

#

1 if E[σ(x) | xS = vS ] = 1

0 otherwise

• Recall: E[σ(x) | xS = vS ] = 1 holds iff S is a WAXp

• Known issues of SHAP scores guaranteed not to occur

• Corrected SHAP scores reveal tight connection between XAI by feature selection (i.e.
WAXps) and feature attribution
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Outline – Unit #07

Exact Shapley Values for XAI

Myth #03: Shapley Values for XAI

Corrected SHAP Scores

Voting Power & Power Indices

Feature Importance Scores



Recap: weighted voting games

• General set up of weighted voting games:

• Assembly A of voters, with m = |A|

• Each voter i P A votes Yes with ni votes; otherwise no votes are counte (and he/she votes No)

• A coalition is a subset of voters, C Ď A
• Quota q is the sum of votes required for a proposal to be approved

• Coalitions leading to sums not less than q are winning coalitions

• A weighted voting game (WVG) is a tuple [q;n1, . . . ,nm]
• Example: [12; 4, 4, 4, 2, 2, 1]

• Problem: find a measure of importance of each voter !
• I.e. measure the a priori voting power of each voter
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What are power indices?

• Power indices assign a measure of importance to each voter

• Many power indices proposed over the years:
• Penrose [Pen46]

• Shapley-Shubik [SS54]

• Banzhaf [BI65]

• Coleman [Col71]

• Johnston [Joh78]

• Deegan-Packel [DP78]

• Holler-Packel [HP83]

• Andjiga [ACL03]

• Responsability* [CH04, BIL+24]

• ...
• What characterizes power indices?

• Account for the cases when voter is critical for a winning coalition
• E.g. in previous example, Luxembourg is never critical for a winning coalition

• Account for whether coalition is subset-minimal or cardinality-minimal
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Towards defining power indices

• Understanding criticality (used at least since 1954): [SS54]

• Since the work of Shapley-Shubik [SS54], the criticality of a voter has been accounted for:
“Our definition of the power of an individual member depends on the chance he has of being
critical to the success of a winning coalition.”

• This means that a voter i is critical when:
• If the voter votes Yes, then we have a winning coalition; and
• If the voter votes No, then we have a losing coalition.

• Understanding (subset-)minimal winning coalitions:

• A winning coalition is subset-minimal if removing any single voter results in a losing coalition
• A winning coalition is cardinality-minimal if it has the smallest cardinality among
subset-minimal winning coalitions

• Recall that minimal winning coalitions can be obtained by computing the AXps of a
monotonically increasing boolean classifier
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Example power indices I

[LHAMS24]

• Necessary definitions (using formal XAI notation...):
WAi(E) = tS Ď F |WAXp(S; E)^ i P Su
WCi(E) = tS Ď F |WCXp(S; E)^ i P Su

Ai(E) = tS Ď F |AXp(S; E)^ i P Su
Ci(E) = tS Ď F | CXp(S; E)^ i P Su

• Definitions of WA, WC, A, and C mimic the ones above, but without specifying a voter

• Power indices of Holler-Packel and Deegan-Packel: [HP83, DP78]

ScH(i; E) =
ÿ

SPAi(E)
(1/|A(E)|)

ScD(i; E) =
ÿ

SPAi(E)
(1/(|S| ˆ |A(E)|))

• Obs: One only needs the AXps
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Example power indices II

• Additional definitions:
Crit(i,S; E) := WAXp(S; E)^␣WAXp(Sztiu; E)

• Power indices of Shapley-Shubik, Banzhaf and Johnston: [SS54, BI65, Joh78]

ScS(i; E) =
ÿ

SĎF^Crit(i,S;E)

(
1/

(
|F | ˆ

(|F | ´ 1

|S| ´ 1

)))
ScB(i; E) =

ÿ

SĎF^Crit(i,S;E)
(1/2|F|´1)

ScJ(i; E) =
ÿ

SĎF^Crit(i,S;E)
(1/∆(S))

• One needs the WAXps to find critical voters...
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Example #01

• WVG: [9; 9, 2, 2, 2, 2, 1, 1]

• AXps:
1
2 3 4 5 6
2 3 4 5 7

• Holler-Packel scores: x0.333, 0.667, 0.667, 0.667, 0.667, 0.333, 0.333y
• Banzhaf scores (normalized): x0.813, 0.040, 0.040, 0.040, 0.040, 0.013, 0.013y
• Shapley-Shubik scores: x0.810, 0.043, 0.043, 0.043, 0.043, 0.010, 0.010y

• Different relative orders of voter importance... which ones seem more realistic?
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Example #02

• WVG: [16; 10, 6, 4, 2, 2]

• AXps:
1 2

1 3 4

1 3 5

• Deegan-Packel scores: x0.389, 0.167, 0.222, 0.111, 0.111y
• Banzhaf scores (normalized): x0.524, 0.238, 0.143, 0.048, 0.048y
• Shapley-Shubik scores: x0.617, 0.200, 0.117, 0.033, 0.033y

• Different relative orders of voter importance... which ones seem more realistic?
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Example #03

• WVG: [6; 4, 2, 1, 1, 1, 1]

• AXps:
2 3 4 5 6
1 3 4
1 4 5
1 4 6
1 3 6
1 5 6
1 2
1 3 5

• Deegan-Packel scores: x0.312, 0.087, 0.150, 0.150, 0.150, 0.150y
• Banzhaf scores (normalized): x0.542, 0.125, 0.083, 0.083, 0.083, 0.083y
• Shapley-Shubik scores: x0.533, 0.133, 0.083, 0.083, 0.083, 0.083y

• Different relative orders of voter importance... which ones seem more realistic?
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Example #04

• WVG: [21; 12, 9, 4, 4, 1, 1, 1]

• AXps:
1 2
1 3 4 5
1 3 4 6
1 3 4 7

• Deegan-Packel scores: x0.312, 0.125, 0.188, 0.188, 0.062, 0.062, 0.062y
• Banzhaf scores (normalized): x0.481, 0.309, 0.086, 0.086, 0.012, 0.012, 0.012y
• Shapley-Shubik scores: x0.574, 0.257, 0.074, 0.074, 0.007, 0.007, 0.007y

• Different relative orders of voter importance... which ones seem more realistic?
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Outline – Unit #07

Exact Shapley Values for XAI

Myth #03: Shapley Values for XAI

Corrected SHAP Scores

Voting Power & Power Indices

Feature Importance Scores



From power indices to feature importance scores

• A Feature Importance Score (FIS) is a measure of feature importance in XAI,
parameterizable on an explanation problem and a chosen characteristic function

• Explanation problem: (M, (v, q))
• Define characteristic function using explanation problem (more next slide)

• Obs: Can adapt (generalized) power indices as templates for feature importance scores

• Obs: Can devise new templates and/or new FISs
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Some examples (1 of 2)

• More notation:
∆i(S; E , υ) = υ(S; E)´ υ(Sztiu; E)

• Can use any characteristic function, including those presented earlier in this lecture

• Some templates:
• Shapley-Shubik:

TScS(i; E , υ) :=
ÿ

SPtT ĎF | iPT u

(
∆i(S; E , υ)

|F | ˆ
(

|F|´1
|S|´1

))
• Banzhaf:

TScB(i; E , υ) :=
ÿ

SPtT ĎF | iPT u

(
∆i(S; E , υ)

2|F|´1

)

• Can use other templates

• Can devise FISs without exploiting existing templates
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Some examples (2 of 2)

• Recall WAXp based characteristic function:

υa(S) :=

#

1 if E[σ(x) | xS = vS ] = 1

0 otherwise

• Some FISs:
• Shapley-Shubik:

ScS(i; E) := TScS(i; E , υa) :=
ÿ

SPtT ĎF | iPT u

(
∆i(S; E , υa)

|F | ˆ
(

|F|´1
|S|´1

))

• Banzhaf:
ScB(i; E) := TScB(i; E , υa) :=

ÿ

SPtT ĎF | iPT u

(
∆i(S; E , υa)

2|F|´1

)
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A concrete example

• AXps: tt1, 3, 4u, t2, 3, 4uu

• Feature attribution:

• SS: x0.083, 0.083, 0.417, 0.417y

• B (norm.): x0.125, 0.125, 0.375, 0.375y

• J (norm.): x0.111, 0.111, 0.389, 0.389y

• HP: x0.167, 0.167, 0.333, 0.333y

• DP: x0.167, 0.167, 0.333, 0.333y

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1
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= 0 = 1
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Questions?
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Conclusions & Research Directions
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Some Words of Concern

Conclusions & Research Directions



Can heuristic XAI’s myths be stopped?

LIME on 2023/05/31:
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What’s the bottom line?

• (Heuristic) XAI research experiences a persistent “Don’t Look Up” moment...

BTW, there are a multitude
of proposed uses of
LIME/SHAP in medicine... "
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Some unsettling works...

• For DTs:
• One AXp in polynomial-time [IIM20, HIIM21, IIM22]

• All CXps in polynomial-time [HIIM21, IIM22]
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Some unsettling works...

• For DTs:
• One AXp in polynomial-time [IIM20, HIIM21, IIM22]

• All CXps in polynomial-time [HIIM21, IIM22]

Plenty of redundancy
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Conclusions

• Covered logic-based (aka symbolic, aka formal) XAI & its recent progress:
• Abductive & contrastive explanations
• Reviewed their computation in practice
• Duality & enumeration
• Other explainability queries – feature necessity & relevancy

• Showed that formal XAI disproves some myths of (heuristic) XAI:
• Explainability using intrinsic interpretability is a myth
• The rigor of model-agnostic explanations is a myth
• The rigor of SHAP scores as a measure of relative feature importance is a myth

• Demonstrated tight connection between (rigorous) feature selection and (rigorous)
feature attribution in XAI

• Symbolic XAI exhibits links with many fields of research:
machine learning, artificial intelligence, formal methods, automated reasoning,
optimization, computational social choice (& game theory), etc.
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Research directions

• Scalabilitty, scalability, and scalability

• Probabilitistic explanations

• Distance-restricted explanations

• Rigorous feature attribution

• Preferred explanations

• Certified XAI tools

• New topics from discussions with participants of ESSAI’24 – Thank you!

• ... And trying to curb the massive momentum of (heuristic) XAI myths!
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What this course covered

• Lecture 01 – units:
• #01: Foundations

• Lecture 02 – units:
• #02: Principles of symbolic XAI – feature selection
• #03: Tractability in symbolic XAI (& myth of interpretability)

• Lecture 03 – units:
• #04: Intractability in symbolic XAI (& myth of model-agnostic XAI)
• #05: Explainability queries

• Lecture 04 – units:
• #06: Advanced topics

• Lecture 05 – units:
• #07: Principles of symbolic XAI – feature attribution (& myth of Shapley values in XAI)
• #08: Conclusions & research directions
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Q & A

Acknowledgment: joint work with X. Huang, Y. Izza, O. Létoffé, A. Ignatiev, N. Narodytska, M.
Cooper, N. Asher, A. Morgado, J. Planes, et al.
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