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Recapitulate third lecture

• Logic encoding for explaining DLs
• And status of (in)tractability in logic-based XAI

• Query: enumeration of explanations

• Query: feature necessity, AXp & CXp

• Query: feature relevancy
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Recap example

• Instance (v, c) = ((0, 0, 0, 0), 0)

• Is feature 1 AXp-necessary?

• Does there exist u1, such that κ(u1, 0, 0, 0) ­= κ(0, 0, 0, 0)?
• Yes! Thus, feature 1 is AXp-necessary (i.e. singleton CXp)

• Is feature 3 AXp-necessary?

• Does there exist u3, such that κ(0, 0,u3, 0) ­= κ(0, 0, 0, 0)?
• No! Thus, feature 3 is not AXp-necessary

• Are there CXp-necessary features?

• No! There are no singleton AXps

• Confirmation:

• CXps: (2 is also AXp-necessary)
• AXps:
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Recap example – a different instance

• Instance (v, c) = ((1, 1, 1, 1), 1)
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Another example – feature necessity & relevancy

• Classifier: F = t1, 2, 3, 4, 5u; Di = t0, 1u, i = 1, . . . , 5; K = t0, 1u

κ(x1, x2, x3, x4, x5) :=

#

1 IF (10x1 + 5x2 + 5x3 + 2x4 + x5 ě 15)
0 otherwise

• Instance: ((1, 1, 1, 1, 1), 1)

• Obs: If x1 = 0, then κ(x) = 0; i.e. must consider only x1 = 1

• Hint: Can construct restricted truth-table

• All AXps:
• All CXps:
• AXp-necessary:
• CXp-necessary:
• Relevant:
• Irrelevant:
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Yet another example – feature necessity & relevancy

• Classifier: F = t1, 2, 3, 4, 5u; Di = t0, 1u, i = 1, . . . , 5; K = t0, 1u
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Some use cases

Q: How to decide whether some protected feature occurs in some explanation?

• Decide feature relevancy

Q: How to decide whether some protected feature occurs in all explanations?

• Decide feature necessity

Q: What can we do if human decision maker finds computed AXp/CXp to be
unsatisfactory?

• Partially enumerate AXps/CXps, exploiting bias in enumeration
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Plan for this course

• Lecture 01 – units:
• #01: Foundations

• Lecture 02 – units:
• #02: Principles of symbolic XAI – feature selection
• #03: Tractability in symbolic XAI (& myth of interpretability)

• Lecture 03 – units:
• #04: Intractability in symbolic XAI (& myth of model-agnostic XAI)
• #05: Explainability queries

• Lecture 04 – units:
• #06: Advanced topics

• Lecture 05 – units:
• #07: Principles of symbolic XAI – feature attribution (& myth of Shapley values in XAI)
• #08: Conclusions & research directions
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Detour: Monotonic Classification & Voting Power
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Monotonically increasing boolean classifiers

• Monotonic classifierM = (F ,F,K, κ), such that each Di = t0, 1u and K = t0, 1u are
ordered (i.e. 0 ă 1), and

• κ(1) = 1 ;
• Non-constant classifier, i.e. κ(0) = 0 ; and
• κ(x1) ď κ(x2) when x1 ď x2

• Let v1, v2 P F be such that κ(v1) = κ(v2) = 1, and v1 ď v2

Define the explanation problems:
• E1 = (M, (v1, 1))

• E2 = (M, (v2, 1))

• E1 = (M, ((1, . . . , 1), 1)) = (M, (1, 1))

• Then,
• If WAXp(S; E1) holds, then WAXp(S; E2) holds; in particular:
• A(E1) contains all the AXps of any instance of the form (vr, 1)

• Why?
¨ Pick any explanation problem Er with instance (vr, 1)
¨ Start from 1 = (1, 1, . . . , 1)

¨ Remove features that take value 0 in vr ; we still have an WAXp
¨ Then compute any AXp starting from features taking value 1 in vr
6 Suffices to find explanations for E1 (or alternatively, the global explanations for prediction 1)

© J. Marques-Silva 11 / 44



Monotonically increasing boolean classifiers

• Monotonic classifierM = (F ,F,K, κ), such that each Di = t0, 1u and K = t0, 1u are
ordered (i.e. 0 ă 1), and

• κ(1) = 1 ;
• Non-constant classifier, i.e. κ(0) = 0 ; and
• κ(x1) ď κ(x2) when x1 ď x2

• Let v1, v2 P F be such that κ(v1) = κ(v2) = 1, and v1 ď v2

Define the explanation problems:
• E1 = (M, (v1, 1))

• E2 = (M, (v2, 1))

• E1 = (M, ((1, . . . , 1), 1)) = (M, (1, 1))

• Then,
• If WAXp(S; E1) holds, then WAXp(S; E2) holds; in particular:
• A(E1) contains all the AXps of any instance of the form (vr, 1)

• Why?
¨ Pick any explanation problem Er with instance (vr, 1)
¨ Start from 1 = (1, 1, . . . , 1)

¨ Remove features that take value 0 in vr ; we still have an WAXp
¨ Then compute any AXp starting from features taking value 1 in vr
6 Suffices to find explanations for E1 (or alternatively, the global explanations for prediction 1)

© J. Marques-Silva 11 / 44



Monotonically increasing boolean classifiers

• Monotonic classifierM = (F ,F,K, κ), such that each Di = t0, 1u and K = t0, 1u are
ordered (i.e. 0 ă 1), and

• κ(1) = 1 ;
• Non-constant classifier, i.e. κ(0) = 0 ; and
• κ(x1) ď κ(x2) when x1 ď x2

• Let v1, v2 P F be such that κ(v1) = κ(v2) = 1, and v1 ď v2

Define the explanation problems:
• E1 = (M, (v1, 1))

• E2 = (M, (v2, 1))

• E1 = (M, ((1, . . . , 1), 1)) = (M, (1, 1))

• Then,
• If WAXp(S; E1) holds, then WAXp(S; E2) holds; in particular:
• A(E1) contains all the AXps of any instance of the form (vr, 1)

• Why?
¨ Pick any explanation problem Er with instance (vr, 1)
¨ Start from 1 = (1, 1, . . . , 1)

¨ Remove features that take value 0 in vr ; we still have an WAXp
¨ Then compute any AXp starting from features taking value 1 in vr
6 Suffices to find explanations for E1 (or alternatively, the global explanations for prediction 1)

© J. Marques-Silva 11 / 44



Monotonically increasing boolean classifiers

• Monotonic classifierM = (F ,F,K, κ), such that each Di = t0, 1u and K = t0, 1u are
ordered (i.e. 0 ă 1), and

• κ(1) = 1 ;
• Non-constant classifier, i.e. κ(0) = 0 ; and
• κ(x1) ď κ(x2) when x1 ď x2

• Let v1, v2 P F be such that κ(v1) = κ(v2) = 1, and v1 ď v2

Define the explanation problems:
• E1 = (M, (v1, 1))

• E2 = (M, (v2, 1))

• E1 = (M, ((1, . . . , 1), 1)) = (M, (1, 1))

• Then,
• If WAXp(S; E1) holds, then WAXp(S; E2) holds; in particular:
• A(E1) contains all the AXps of any instance of the form (vr, 1)

• Why?
¨ Pick any explanation problem Er with instance (vr, 1)
¨ Start from 1 = (1, 1, . . . , 1)

¨ Remove features that take value 0 in vr ; we still have an WAXp
¨ Then compute any AXp starting from features taking value 1 in vr
6 Suffices to find explanations for E1 (or alternatively, the global explanations for prediction 1)

© J. Marques-Silva 11 / 44



An example

• ML modelM = (F ,F,K, κ):
• Boolean classifier: K = t0, 1u
• Defined on 6 boolean features: F = t1, 2, 3, 4, 5, 6u

• I.e. Di = t0, 1u, i = 1, . . . , 6

• With classification function:

κ(x1, x2, x3, x4, x5, x6) :=

#

1 IF (4x1 + 4x2 + 4x3 + 2x4 + 2x5 + x6 ě 12)
0 otherwise

• κ is a monotonically increasing boolean function

• We are interested in identifying the AXps ofM, given the instance ((1, 1, 1, 1, 1, 1), 1)

• Or alternatively, the global AXps for prediction 1
• For example, with order x1, 2, 3, 4, 5, 6y:

• Feature 1: can be dropped
• Feature 2: can no longer be dropped; keep
• Feature 3: can no longer be dropped; keep
• Feature 4: can no longer be dropped; keep
• Feature 5: can no longer be dropped; keep
• Feature 6: can be dropped
• AXp: t2, 3, 4, 5u
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All AXps & all CXps...

• Classifier:

κ(x1, x2, x3, x4, x5, x6) :=

#

1 IF (4x1 + 4x2 + 4x3 + 2x4 + 2x5 + x6 ě 12)
0 otherwise

• Instance: (1, 1)

• Computing the AXps:
• Must pick 2 out of features t1, 2, 3u
• If only 2 out of features t1, 2, 3u picked, then we must pick both features 4 and 5
• Feature 6 is never matters, i.e. it is irrelevant...

• AXps:

A = tt1, 2, 3u, t1, 2, 4, 5u, t1, 3, 4, 5u, t2, 3, 4, 5uu

• CXps:

C = tt1, 2u, t1, 3u, t2, 3u, t1, 4u, t1, 5u, t2, 4u, t2, 5u, t3, 4u, t3, 5uu

© J. Marques-Silva 13 / 44



All AXps & all CXps...

• Classifier:

κ(x1, x2, x3, x4, x5, x6) :=

#

1 IF (4x1 + 4x2 + 4x3 + 2x4 + 2x5 + x6 ě 12)
0 otherwise

• Instance: (1, 1)

• Computing the AXps:
• Must pick 2 out of features t1, 2, 3u
• If only 2 out of features t1, 2, 3u picked, then we must pick both features 4 and 5
• Feature 6 is never matters, i.e. it is irrelevant...

• AXps:

A = tt1, 2, 3u, t1, 2, 4, 5u, t1, 3, 4, 5u, t2, 3, 4, 5uu

• CXps:

C = tt1, 2u, t1, 3u, t2, 3u, t1, 4u, t1, 5u, t2, 4u, t2, 5u, t3, 4u, t3, 5uu

© J. Marques-Silva 13 / 44



All AXps & all CXps...

• Classifier:

κ(x1, x2, x3, x4, x5, x6) :=

#

1 IF (4x1 + 4x2 + 4x3 + 2x4 + 2x5 + x6 ě 12)
0 otherwise

• Instance: (1, 1)

• Computing the AXps:
• Must pick 2 out of features t1, 2, 3u
• If only 2 out of features t1, 2, 3u picked, then we must pick both features 4 and 5
• Feature 6 is never matters, i.e. it is irrelevant...

• AXps:

A = tt1, 2, 3u, t1, 2, 4, 5u, t1, 3, 4, 5u, t2, 3, 4, 5uu

• CXps:

C = tt1, 2u, t1, 3u, t2, 3u, t1, 4u, t1, 5u, t2, 4u, t2, 5u, t3, 4u, t3, 5uu

© J. Marques-Silva 13 / 44



All AXps & all CXps...

• Classifier:

κ(x1, x2, x3, x4, x5, x6) :=

#

1 IF (4x1 + 4x2 + 4x3 + 2x4 + 2x5 + x6 ě 12)
0 otherwise

• Instance: (1, 1)

• Computing the AXps:
• Must pick 2 out of features t1, 2, 3u
• If only 2 out of features t1, 2, 3u picked, then we must pick both features 4 and 5
• Feature 6 is never matters, i.e. it is irrelevant...

• AXps:
A = tt1, 2, 3u, t1, 2, 4, 5u, t1, 3, 4, 5u, t2, 3, 4, 5uu

• CXps:

C = tt1, 2u, t1, 3u, t2, 3u, t1, 4u, t1, 5u, t2, 4u, t2, 5u, t3, 4u, t3, 5uu

© J. Marques-Silva 13 / 44



All AXps & all CXps...

• Classifier:

κ(x1, x2, x3, x4, x5, x6) :=

#

1 IF (4x1 + 4x2 + 4x3 + 2x4 + 2x5 + x6 ě 12)
0 otherwise

• Instance: (1, 1)

• Computing the AXps:
• Must pick 2 out of features t1, 2, 3u
• If only 2 out of features t1, 2, 3u picked, then we must pick both features 4 and 5
• Feature 6 is never matters, i.e. it is irrelevant...

• AXps:
A = tt1, 2, 3u, t1, 2, 4, 5u, t1, 3, 4, 5u, t2, 3, 4, 5uu

• CXps:

C = tt1, 2u, t1, 3u, t2, 3u, t1, 4u, t1, 5u, t2, 4u, t2, 5u, t3, 4u, t3, 5uu

© J. Marques-Silva 13 / 44



All AXps & all CXps...

• Classifier:

κ(x1, x2, x3, x4, x5, x6) :=

#

1 IF (4x1 + 4x2 + 4x3 + 2x4 + 2x5 + x6 ě 12)
0 otherwise

• Instance: (1, 1)

• Computing the AXps:
• Must pick 2 out of features t1, 2, 3u
• If only 2 out of features t1, 2, 3u picked, then we must pick both features 4 and 5
• Feature 6 is never matters, i.e. it is irrelevant...

• AXps:
A = tt1, 2, 3u, t1, 2, 4, 5u, t1, 3, 4, 5u, t2, 3, 4, 5uu

• CXps:
C = tt1, 2u, t1, 3u, t2, 3u, t1, 4u, t1, 5u, t2, 4u, t2, 5u, t3, 4u, t3, 5uu

© J. Marques-Silva 13 / 44



What is a priori voting power?

• General set-up of weighted voting games:

• Assembly A of voters, with m = |A|
• Each voter i P A votes Yes with ni votes; otherwise no votes are counted (and he/she votes No)

• A coalition is a subset of voters, C Ď A
• Quota q is the sum of votes required for a proposal to be approved

• Coalitions leading to sums not less than q are winning coalitions

• A weighted voting game (WVG) is a tuple [q;n1, . . . ,nm]
• Example: [12; 4, 4, 4, 2, 2, 1]

• Problem: find a measure of importance of each voter !
• I.e. measure the a priori voting power of each voter
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An example – EEC (EU) members voting power in 1958

Coutry Acronym # Votes
France F 4
Germany D 4
Italy I 4

Belgium B 2
Netherlands N 2
Luxembourg L 1

Quota: 12

• WVG: [12; 4, 4, 4, 2, 2, 1]
• Q: What should be the voting power of
Luxembourg?

• Can Luxembourg (L) matter for some
winning coalition?

• Perhaps surprisingly, answer is No!
• In 1958, Luxembourg was a dummy
voter/player
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Understanding weighted voting games

• Obs: A WVG is a monotonically increasing boolean classifier
• Each subset-minimal winning coalition is an AXp of the instance (1, 1)

• Recall EEC voting example:
Coutry Acronym # Votes
France F 4
Germany D 4
Italy I 4

Belgium B 2
Netherlands N 2
Luxembourg L 1

Quota: 12

• The corresponding classifier is:

κ(x1, x2, x3, x4, x5, x6) :=

#

1 IF (4x1 + 4x2 + 4x3 + 2x4 + 2x5 + x6 ě 12)
0 otherwise

which we have seen before! E.g. t2, 3, 4, 5u is an AXp & feature 6 (L) is irrelevant
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Another example

• WVG: [ 21; 12, 9, 4, 4, 1, 1, 1 ]

• Computing the AXps:
• Must include feature 1; sum of weights of others equals 20...
• Either include feature 2, or features 3 and 4, plus any one of features 5, 6, 7

• AXps:

A = tt1, 2u, t1, 3, 4, 5u, t1, 3, 4, 6u, t1, 3, 4, 7uu

• CXps:

C = tt1u, t2, 3u, t2, 4u, t2, 5, 6, 7uu

• Q: How should features be ranked in terms of importance?
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Yet another example

• WVG: [ 16; 9, 9, 7, 3, 1, 1 ]

• Computing the AXps:
• Sum of any pair of the first three features (i.e. voters) exceeds/matches the quota
• The other features never matter

• AXps:

A = tt1, 2u, t1, 3u, t2, 3uu

• CXps:

C = tt1, 2u, t1, 3u, t2, 3uu

• Obs: features (resp. voters) 4, 5 and 6 are irrelevant (resp. dummy)
• Q: How should features be ranked in terms of importance?
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Why should we care about voting power?

• SHAP scores, i.e. the use of Shapley values for XAI, exhibit critical theoretical flaws
(more tomorrow) [MSH24, HMS24, HM23b]

• Recently, we have devised ways of correcting SHAP scores [LHMS24]

• In turn, this revealed novel connections between logic-based XAI and a priori voting
power [LHAMS24]

• Homework:
• Create your own weighted voting games;
• Compute the sets of AXps and CXps; and
• Assess the importance of features and how they compare to each other
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Unit #06

Advanced Topics



General definition of prediction sufficiency

• Instance (v, c)
• Let S Ď F :

• Recall,
Υ(S; v) = tx P F | xS = vSu

• S Ď F suffices for prediction c if:

@(x P F).(x P Υ(S; v))Ñ(σ(x))

• Obs: a WAXp is just one possible example
• But there are other ways to study prediction sufficiency:

• One can envision defining other sets of points Γ, parameterized by E = (M, (v, c));
S Ď F suffices for prediction c if:

@(x P F).(x P Γ(S; E))Ñ(σ(x))

• And one can also envision generalizations of σ!

© J. Marques-Silva 20 / 44



Outline – Unit #06

Changing Assumptions

Inflated Explanations

Probabilistic Explanations

Constrained Explanations

Distance-Restricted Explanations

Additional Topics



Towards more expressive explanations – inflated explanations

[IISM24]

• Recall:
WAXp(X ) := @(x P F).

ľ

jPX
(xj = vj)Ñ(κ(x) = c)

• For non-boolean features, use of =may convey little information, e.g. with real-valued features,
having x1 = 1.157 does not help in understanding what values of feature 1 are also acceptable

• Inflated explanations allow for more expressive literals, i.e. = replaced with P, and
individual values replaced by ranges of values

• Operational definition: Given an AXp, expand set of values of each feature, in some chosen
order, such that the set of picked features remains unchanged
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Inflated explanations – an example

[IIM22]

x1

Y x2

x3

x1

Y N

Y

N

P t4..MxPu P t0..3u

P tMnA..25u

P t0u

P t2, 3u P t0, 1u

P t1u

P t26..MxAu

1

2
3

4

6

8 9

7

5

• Explanation for ((2, 20, 0), Y)? (Obs: MnA = 18;MxP ą 4)

• AXp: t1, 2u
• Default interpretation:

@(x P F).(x1 = 2^ x2 = 20)Ñ(κ(x) = Y)

• Corresponding rule:

IF (x1 = 2^ x2 = 20) THEN (κ(x) = Y)

• With inflated explanations:

@(x P F).(x1 P t2..MxPu ^ x2 P tMnA..25u)Ñ(κ(x) = Y)

• Corresponding rule:

IF (x1 P t2..MxPu ^ x2 P tMnA..25u) THEN (κ(x) = Y)
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Approach

• Compute AXp X
• For each feature:

• Categorical: iteratively add elements to literal
• Ordinal:

• Expand literal for larger values;
• Expand literal for smaller values

• Obs: More complex alternative is to find AXp and expand domains simultaneously
• This is conjectured to change the complexity class of finding one explanation
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Probabilistic (formal) explanations

[WMHK21, IIN+22, IHI+22, ABOS22, IHI+23, IMM24]

• Explanation size is critical for human understanding [Mil56]

• Probabilistic explanations provide smaller explanations, by trading off rigor of
explanation by explanation size

• Definition of weak probabilistic AXp X Ď F :

WPAXp(X ) := Pr(κ(x) = c) | xX = vX ) ě δ

• Obs: xX = vX requires points x P F to match the values of v for the features dictated by X
• Obs: for δ = 1 we obtain a WAXp
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Definitions

• Weak probabilistic AXp (WPAXp):

WeakPAXp(X ;F, κ, v, c, δ) :=

Prx(κ(x) = c | xX = vX ) ě δ :=
|tx P F : κ(x) = c^ (xX = vX )u|

|tx P F : (xX = vX )u|
ě δ

• Probabilistic AXp (PAXp):

PAXp(X ;F, κ, v, c, δ) :=

WeakPAXp(X ;F, κ, v, c, δ)^ @(X 1 Ĺ X ).␣WeakPAXp(X 1;F, κ, v, c, δ)

• Locally-minimal PAXp (LmPAXp):

LmPAXp(X ;F, κ, v, c, δ) :=

WeakPAXp(X ;F, κ, v, c, δ)^ @(j P X ).␣WeakPAXp(X ztju;F, κ, v, c, δ)
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Definitions

• Weak probabilistic AXp (WPAXp): – definition is non-monotonic

WeakPAXp(X ;F, κ, v, c, δ) :=

Prx(κ(x) = c | xX = vX ) ě δ :=
|tx P F : κ(x) = c^ (xX = vX )u|

|tx P F : (xX = vX )u|
ě δ

• Probabilistic AXp (PAXp):

PAXp(X ;F, κ, v, c, δ) :=

WeakPAXp(X ;F, κ, v, c, δ)^ @(X 1 Ĺ X ).␣WeakPAXp(X 1;F, κ, v, c, δ)

• Locally-minimal PAXp (LmPAXp): – may differ from PAXp due to non-monotonicity

LmPAXp(X ;F, κ, v, c, δ) :=

WeakPAXp(X ;F, κ, v, c, δ)^ @(j P X ).␣WeakPAXp(X ztju;F, κ, v, c, δ)
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What is known about PAXps?

• Obs: Definition of WPAXp is non-monotonic (from previous slide)

• Standard algorithms for finding one AXp cannot be used

• For DTs, finding on PAXp is computationally hard [ABOS22]

• In general, complexity is unwiedly [WMHK21]

• Recent dedicated algorithms for simple ML models [IHI+23]

• Recent approximate algorithms for complex ML models [IMM24]
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Results for decision trees

Dataset
MinPAXp LmPAXp Anchor

DT Path δ Length Prec Time Length Prec mĎ Time D Length Prec Time

N A M m avg M m avg avg avg M m avg avg avg M m avg FRP avg avg
100 11 3 6.8 100 2.34 11 3 6.9 100 100 0.00 d 12 2 7.0 26.8 76.8 0.96

adult 1241 89 14 3 10.7 95 11 3 6.2 98.4 5.36 11 3 6.3 98.6 99.0 0.01 u 12 3 10.0 29.4 93.7 2.20

90 11 2 5.6 94.6 4.64 11 2 5.8 95.2 96.4 0.01

100 12 1 4.4 100 0.35 12 1 4.4 100 100 0.00 d 31 1 4.8 58.1 32.9 3.10

dermatology 71 100 13 1 5.1 95 12 1 4.1 99.7 0.37 12 1 4.1 99.7 99.3 0.00 u 34 1 13.1 43.2 87.2 25.13

90 11 1 4.0 98.8 0.35 11 1 4.0 98.8 100 0.00

100 12 2 4.8 100 0.93 12 2 4.9 100 100 0.00 d 36 2 7.9 44.8 69.4 1.94

kr-vs-kp 231 100 14 3 6.6 95 11 2 3.9 98.1 0.97 11 2 4.0 98.1 100 0.00 u 12 2 3.6 16.6 97.3 1.81

90 10 2 3.2 95.4 0.92 10 2 3.3 95.4 99.0 0.00

100 12 4 8.2 100 16.06 11 4 8.2 100 100 0.00 d 16 3 13.2 43.1 71.3 12.22

letter 3261 93 14 4 11.8 95 12 4 8.0 99.6 18.28 11 4 8.0 99.5 100 0.00 u 16 3 13.7 47.3 66.3 10.15

90 12 4 7.7 97.7 16.35 10 4 7.8 97.8 100 0.00

100 14 3 6.4 100 0.92 14 3 6.5 100 100 0.00 d 35 2 8.6 55.4 33.6 5.43

soybean 219 100 16 3 7.3 95 14 3 6.4 99.8 0.95 14 3 6.4 99.8 100 0.00 u 35 3 19.2 66.0 75.0 38.96

90 14 3 6.1 98.1 0.94 14 3 6.1 98.2 98.5 0.00

0 12 3 7.4 100 1.23 12 3 7.5 100 100 0.01 d 38 2 6.3 65.3 63.3 24.12

spambase 141 99 14 3 8.5 95 9 1 3.7 96.1 2.16 9 1 3.8 96.5 100 0.01 u 57 3 28.0 86.2 65.3 834.70

90 6 1 2.4 92.4 2.15 8 1 2.4 92.2 100 0.01

Table 1: Assessing explanations of MinPAXp, LmPAXp and Anchor for DTs. (For each dataset, we run the explainers on
500 samples randomly picked or all samples if there are less than 500.) In column DT, N and A denote, resp., the
number of nodes and the training accuracy of the DT. Column δ reports (in %) the value of the threshold δ. In column
Path, avg (resp. M and m) denotes the average (resp. max. and min.) depth of paths consistent with the instances. In
column Length, avg (resp. M and m) denotes the average (resp. max. and min.) length of the explanations; and FRP
denotes the avg. % of features in Anchor’s explanations that do not belong to the consistent paths. Prec reports (in
%) the average precision (defined in (??)) of resulting explanations. mĎ shows the number in (%) of LmPAXp’s that are
subset-minimal, i.e. PAXp’s. Time reports (in seconds) the average runtime to compute an explanation. Finally, D
indicates which distribution is applied on data given to Anchor: either data distribution (denoted by d) or uniform
distribution (denoted by u).

© J. Marques-Silva 27 / 44



Results for naive Bayes classifiers

Dataset (#F #I) NBC AXp LmPAXpď9 LmPAXpď7 LmPAXpď4

A% Length δ Length Precision W% Time Length Precision W% Time Length Precision W% Time

adult (13 200) 81.37 6.8˘ 1.2

98 6.8˘ 1.1 100˘ 0.0 100 0.003 6.3˘ 0.9 99.61˘ 0.6 96 0.023 4.8˘ 1.3 98.73˘ 0.5 48 0.059

95 6.8˘ 1.1 99.99˘ 0.2 100 0.074 5.9˘ 1.0 98.87˘ 1.8 99 0.058 3.9˘ 1.0 96.93˘ 1.1 80 0.071

93 6.8˘ 1.1 99.97˘ 0.4 100 0.104 5.7˘ 1.3 98.34˘ 2.6 100 0.086 3.4˘ 0.9 95.21˘ 1.6 90 0.093

90 6.8˘ 1.1 99.95˘ 0.6 100 0.164 5.5˘ 1.4 97.86˘ 3.4 100 0.100 3.0˘ 0.8 93.46˘ 1.5 94 0.103

agaricus (23 200) 95.41 10.3˘ 2.5

98 7.7˘ 2.7 99.12˘ 0.8 92 0.593 6.4˘ 3.0 98.75˘ 0.6 87 0.763 6.0˘ 3.1 98.67˘ 0.5 29 0.870

95 6.9˘ 3.1 97.62˘ 2.1 95 0.954 5.3˘ 3.2 96.59˘ 1.6 92 1.273 4.8˘ 3.3 96.24˘ 1.2 55 1.217

93 6.5˘ 3.1 96.65˘ 2.8 95 1.112 4.8˘ 3.1 95.38˘ 1.9 93 1.309 4.3˘ 3.1 94.92˘ 1.3 64 1.390

90 5.9˘ 3.3 94.95˘ 4.1 96 1.332 4.0˘ 3.0 92.60˘ 2.8 95 1.598 3.6˘ 2.8 92.08˘ 1.7 76 1.830

chess (37 200) 88.34 12.1˘ 3.7

98 8.1˘ 4.1 99.27˘ 0.6 64 0.383 5.9˘ 4.9 98.70˘ 0.4 64 0.454 5.7˘ 5.0 98.65˘ 0.4 46 0.457

95 7.7˘ 3.8 98.51˘ 1.4 68 0.404 5.5˘ 4.4 97.90˘ 0.9 64 0.483 5.3˘ 4.5 97.85˘ 0.8 46 0.478

93 7.3˘ 3.5 97.56˘ 2.4 68 0.419 5.0˘ 4.1 96.26˘ 2.2 64 0.485 4.8˘ 4.1 96.21˘ 2.1 64 0.493

90 7.3˘ 3.5 97.29˘ 2.9 70 0.413 4.9˘ 4.0 95.99˘ 2.6 64 0.483 4.8˘ 4.0 95.93˘ 2.5 64 0.543

vote (17 81) 89.66 5.3˘ 1.4

98 5.3˘ 1.4 100˘ 0.0 100 0.000 5.3˘ 1.3 99.95˘ 0.2 100 0.007 4.6˘ 1.1 99.60˘ 0.4 64 0.014

95 5.3˘ 1.4 100˘ 0.0 100 0.000 5.3˘ 1.3 99.93˘ 0.3 100 0.008 4.1˘ 1.0 98.25˘ 1.7 64 0.018

93 5.3˘ 1.4 100˘ 0.0 100 0.000 5.2˘ 1.3 99.78˘ 1.1 100 0.012 4.1˘ 0.9 98.10˘ 1.9 64 0.018

90 5.3˘ 1.4 100˘ 0.0 100 0.000 5.2˘ 1.3 99.78˘ 1.1 100 0.012 4.0˘ 1.2 97.24˘ 3.1 64 0.022

kr-vs-kp (37 200) 88.07 12.2˘ 3.9

98 7.8˘ 4.2 99.19˘ 0.5 64 0.387 6.5˘ 4.7 98.99˘ 0.4 64 0.427 6.1˘ 4.9 98.88˘ 0.3 43 0.457

95 7.3˘ 3.9 98.29˘ 1.4 64 0.416 6.0˘ 4.3 97.89˘ 1.1 64 0.453 5.5˘ 4.5 97.79˘ 0.9 43 0.462

93 6.9˘ 3.5 97.21˘ 2.5 69 0.422 5.6˘ 3.8 96.82˘ 2.2 64 0.448 5.2˘ 4.0 96.71˘ 2.1 43 0.468

90 6.8˘ 3.5 96.65˘ 3.1 69 0.418 5.4˘ 3.8 95.69˘ 3.0 64 0.468 5.0˘ 4.0 95.59˘ 2.8 61 0.487

mushroom (23 200) 95.51 10.7˘ 2.3

98 7.5˘ 2.4 98.99˘ 0.7 90 0.641 6.5˘ 2.6 98.74˘ 0.5 83 0.751 6.3˘ 2.7 98.70˘ 0.4 18 0.828

95 6.5˘ 2.6 97.35˘ 1.8 96 1.011 5.1˘ 2.5 96.52˘ 1.0 90 1.130 5.0˘ 2.5 96.39˘ 0.8 54 1.113

93 5.8˘ 2.8 95.77˘ 2.7 96 1.257 4.4˘ 2.5 94.67˘ 1.6 94 1.297 4.2˘ 2.4 94.48˘ 1.3 65 1.324

90 5.3˘ 3.0 94.01˘ 3.9 97 1.455 3.8˘ 2.3 92.36˘ 2.2 96 1.543 3.6˘ 2.2 92.07˘ 1.6 76 1.650

threeOf9 (10 103) 83.13 4.2˘ 0.4

98 4.2˘ 0.4 100˘ 0.0 100 0.000 4.2˘ 0.4 100˘ 0.0 100 0.000 4.2˘ 0.4 100˘ 0.0 78 0.001

95 4.2˘ 0.4 100˘ 0.0 100 0.000 4.2˘ 0.4 100˘ 0.0 100 0.000 4.0˘ 0.2 99.23˘ 1.4 100 0.002

93 4.2˘ 0.4 100˘ 0.0 100 0.000 4.2˘ 0.4 100˘ 0.0 100 0.000 3.9˘ 0.2 99.20˘ 1.5 100 0.002

90 4.2˘ 0.4 100˘ 0.0 100 0.000 4.2˘ 0.4 100˘ 0.0 100 0.000 3.8˘ 0.4 98.29˘ 3.3 100 0.003

xd6 (10 176) 81.36 4.5˘ 0.9

98 4.5˘ 0.8 100˘ 0.0 100 0.000 4.5˘ 0.8 100˘ 0.0 100 0.000 4.5˘ 0.8 100˘ 0.0 73 0.001

95 4.5˘ 0.8 100˘ 0.0 100 0.000 4.5˘ 0.8 100˘ 0.0 100 0.000 4.5˘ 0.8 100˘ 0.0 73 0.001

93 4.5˘ 0.8 100˘ 0.0 100 0.000 4.5˘ 0.8 100˘ 0.0 100 0.000 4.3˘ 0.4 98.30˘ 2.7 73 0.001

90 4.5˘ 0.8 100˘ 0.0 100 0.000 4.5˘ 0.8 100˘ 0.0 100 0.000 4.3˘ 0.4 98.30˘ 2.7 73 0.002

mamo (14 53) 80.21 4.9˘ 0.8

98 4.9˘ 0.7 100˘ 0.0 100 0.000 4.9˘ 0.7 100˘ 0.0 100 0.000 4.6˘ 0.6 99.66˘ 0.5 53 0.007

95 4.9˘ 0.7 100˘ 0.0 100 0.000 4.9˘ 0.7 100˘ 0.0 100 0.000 3.9˘ 0.6 97.80˘ 1.6 85 0.009

93 4.9˘ 0.7 100˘ 0.0 100 0.000 4.9˘ 0.7 100˘ 0.0 100 0.000 3.9˘ 0.6 97.68˘ 1.7 85 0.009

90 4.9˘ 0.7 100˘ 0.0 100 0.000 4.9˘ 0.7 100˘ 0.0 100 0.000 3.6˘ 0.8 96.18˘ 3.2 96 0.011

tumor (16 104) 83.21 5.3˘ 0.9

98 5.3˘ 0.8 100˘ 0.0 100 0.000 5.2˘ 0.7 99.96˘ 0.2 100 0.008 4.1˘ 0.7 99.41˘ 0.5 91 0.012

95 5.3˘ 0.8 100˘ 0.0 100 0.000 5.2˘ 0.6 99.83˘ 0.7 100 0.012 3.2˘ 0.6 96.02˘ 1.5 94 0.016

93 5.3˘ 0.8 100˘ 0.0 100 0.000 5.2˘ 0.6 99.74˘ 1.2 100 0.014 3.1˘ 0.7 95.50˘ 1.4 95 0.016

90 5.3˘ 0.8 100˘ 0.0 100 0.000 5.1˘ 0.7 99.67˘ 1.4 100 0.016 3.0˘ 0.6 95.30˘ 1.6 95 0.017

Table 2: Assessing LmPAXp explanations for NBCs. Columns #F and #I show, respectively, number of features and
tested instances in the Dataset. Column A% reports (in %) the training accuracy of the classifier. Column δ reports (in
%) the value of the parameter δ. LmPAXpď9 , LmPAXpď7 and LmPAXpď4 denote, respectively, LmPAXp’s of (target)
length 9, 7 and 4. Columns Length and Precision report, respectively, the average explanation length and the average
explanation precision (˘ denotes the standard deviation). W% shows (in %) the number of success/wins where the
explanation size is less than or equal to the target size. Finally, the average runtime to compute an explanation is
shown (in seconds) in Time. (Note that the reported average time is the mean of runtimes for instances for which we
effectively computed an approximate explanation, namely instances that have AXp’s of length longer than the target
length; whereas for the remaining instances the trimming process is skipped and the runtime is 0 sec, thus we
exclude them when calculating the average.)
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Results for decision diagrams

Dataset #I #F δ

MinPAXp LmPAXp

OMDD Length Prec Time Length Prec mĎ Time

#N A% M m avg avg avg M m avg avg avg
100 9 6 8.0 100 24.24 9 6 7.9 100 100 1.57

lending 100 9 1103 81.7 95 9 5 7.8 99.7 21.48 9 6 7.8 99.8 100 1.49
90 9 4 7.2 96 24.65 9 5 7.4 97.0 100 1.48

100 6 4 5.1 100 0.10 6 4 5.1 100 100 0.03
monk2 100 6 70 79.3 95 6 4 5.1 100 0.09 6 4 5.1 100 100 0.03

90 6 3 4.8 98.1 0.09 6 3 4.8 98.1 100 0.03

100 8 4 6.1 100 0.26 8 4 6.2 100 100 0.04
postoperative 74 8 109 80 95 8 2 6.0 99.3 0.25 8 2 6.0 99.3 100 0.04

90 8 2 5.3 95.9 0.23 8 2 5.4 96.6 94.6 0.04

100 9 5 7.7 100 3.60 9 5 7.8 100 100 0.38
tic_tac_toe 100 9 424 70.3 95 9 5 7.5 99.5 3.24 9 5 7.7 99.6 99.0 0.38

90 9 3 7.3 98.3 4.06 9 3 7.5 98.6 98.0 0.38

100 9 4 4.6 100 0.10 9 4 4.6 100 100 0.03
xd6 100 9 76 83.1 95 9 3 3.8 97 0.09 9 3 3.8 97.0 99.0 0.03

90 9 3 3.3 94.8 0.10 9 3 3.4 94.6 100 0.03

Table 3: Assessing MinPAXp and LmPAXp explanations of OMDDs. Columns #I, #F denote, resp. the number of tested
instances and the number of features. In column OMDD, N and A denote, resp., the number of nodes and the test
accuracy of the OMDD. Column δ reports (in %) the value of the threshold δ. In column Length, avg (resp. M and m)
denotes the average (resp. max. and min.) length of the explanations. Prec reports (in %) the average precision
(defined in (??)) of resulting explanations. mĎ shows the number in (%) of LmPAXp’s that are subset-minimal, i.e.
PAXp’s. Time reports (in seconds) the average runtime to compute an explanation.
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Remarks on LmPAXps

[IHI+23]

• LmPAXps ignore non-monotonicity, and so overapproximate PAXps
• Theoretical guarantees, but may be reducible

• For DTs, computation of LmPAXps is in P

• Experimental results confirm LmPAXps match PAXps in most cases

• Recent results on approximating LmPAXps for RFs [IMM24]
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Not all inputs may be possible – input constraints

[GR22, YIS+23]

• The (implicit) assumption that all inputs are possible is often unrealistic
• I.e. it may be impossible for some points in feature space to be observed

• Infer constraints on the inputs
• Learn simple rules relating inputs
• Represent rules as a constraint set, e.g. C(x)

• Redefine WAXps/WCXps to account for input constraints:

@(x P F).
[
ľ

jPX
(xj = vj)^ C(x)

]
Ñ(κ(x) = c)

D(x P F).
[
ľ

jPX
(xj = vj)^ C(x)

]
^ (κ(x) ­= c)

• Compute AXps/CXps given new definitions

• Constrained AXps/CXps find other applications!
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An example

• Instance: ((1, 1, 1, 1), 1)

• Unconstrained AXps:

• AXps:

• Constrained AXps:

• If feature 3 is fixed (with value 1), then feature 4
must be assigned value 1

• If feature 4 is fixed (with value 1), then feature 3
must be assigned value 1

• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

• Constraint: t(x3Ñ x4), (x4Ñ x3)u
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How to tackle poor performance on NNs?

• For NNs, computation of plain AXps scales to a few tens of neurons [INM19a]

• But, robustness tools scale for much larger NNs

• Q: can we relate AXps with adversarial examples?
• Obs: we already proved some basic (duality) properties for global explanations [INM19b]

• Change definition of WAXp/WCXp to account for lp distance to v:

@(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
Ñ(σ(x))

D(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
^ (␣σ(x))

• Norm lp is arbitrary, e.g. Hamming, Manhattan, Euclidean, etc.
• Distance-restricted explanations: dAXp/dCXp
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An example – DT & instance ((1, 1, 1, 1), 1)

• Plain AXps/CXps:

• AXps?
• CXps?

• Distance-restricted AXps/CXps, dAXp/dCXp, with
Hamming distance (l0) and ϵ = 1:

• Points of interest:
t(1, 1, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)u

• dAXps?
• dCXps?

• Given ϵ, larger adversarial examples are excluded
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• Points of interest:
t(1, 1, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)u

• dAXps? tt3, 4uu
• dCXps? tt3u, t4uu

• Given ϵ, larger adversarial examples are excluded

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 34 / 44



An example – DT & instance ((1, 1, 1, 1), 1)

• Plain AXps/CXps:
• AXps? tt1, 3, 4u, t2, 3, 4uu
• CXps? tt1, 2u, t3u, t4uu

• Distance-restricted AXps/CXps, dAXp/dCXp, with
Hamming distance (l0) and ϵ = 1:

• Points of interest:
t(1, 1, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)u

• dAXps? tt3, 4uu
• dCXps? tt3u, t4uu

• Given ϵ, larger adversarial examples are excluded

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 34 / 44



Another example – DT & instance ((1, 1, 1, 1), 1)

• Plain AXps/CXps:

• AXps?
• CXps?

• Distance-restricted AXps/CXps, dAXp/dCXp, with
Hamming distance (l0) and ϵ = 1:

• Points of interest:
t(1, 1, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)u

• Constant function...
• dAXps?
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Relating explanations with adversarial examples

• Distance-restricted WAXps/WCXps:

@(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
Ñ(σ(x))

D(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
^ (␣σ(x))

• Given norm lp and distance ϵ, there exists a (distance-restricted) WCXp iff there exists an
adversarial example

• Use robustness tool to decide existence of WCXp
• But, WAXp decided given non existence of CXp!

• Efficiency of distance-restricted explanations correlates with efficiency of finding
adversarial examples

• One can use most complete robustness tools, e.g. VNN-COMP [BMB+23]

• Clear scalability improvements for explaining NNs (see next) [HM23a, WWB23, IHM+24a, IHM+24b]
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Basic algorithm [HM23a]

Input: Arguments: ϵ; Parameters: E , p
Output: One dAXp S

1: function FindAXpDel(ϵ; E ,p)
2: S Ð F Ź Initially, no feature is allowed to change
3: for i P F do Ź Invariant: dWAXp(S)
4: S Ð Sztiu
5: outcÐ FindAdvEx(ϵ,S; E ,p)
6: if outc then
7: S Ð S Y tiu
8: return S Ź dWAXp(S)^minimal(S)Ñ dAXp(S)

• Obs: Efficiency of logic-based XAI tracks efficiency of robustness tools
• Limitation: Running time grows with number of features
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Results for NNs in 2023 (using Marabou [KHI+19]) [HM23a]

DNN points |AXp| #Calls Time #TO |AXp| #Calls Time #TO

ϵ = 0.1 ϵ = 0.05

ACASXU_1_5
#1 3 5 185.9 0 2 5 113.8 0
#2 2 5 273.8 0 1 5 33.2 0
#3 0 5 714.2 0 0 5 4.3 0

ACASXU_3_1
#1 0 5 2219.3 0 0 5 14.2 0
#2 2 5 4263.5 1 0 5 1853.1 0
#3 1 5 581.8 0 0 5 355.9 0

ACASXU_3_2
#1 3 5 13739.3 2 1 5 6890.1 1
#2 3 5 226.4 0 2 5 125.1 0
#3 2 5 1740.6 0 2 5 173.6 0

ACASXU_3_5
#1 4 5 43.6 0 2 5 59.4 0
#2 3 5 5039.4 0 2 5 4303.8 1
#3 2 5 5574.9 1 2 5 2660.3 0

ACASXU_3_6
#1 1 5 6225.0 1 0 5 51.0 0
#2 3 5 4957.2 1 2 5 1897.3 0
#3 1 5 196.1 0 1 5 919.2 0

ACASXU_3_7
#1 3 5 6256.2 0 4 5 26.9 0
#2 4 5 311.3 0 1 5 6958.6 1
#3 2 5 7756.5 1 1 5 7807.6 1

ACASXU_4_1
#1 2 5 12413.0 2 1 5 5090.5 1
#2 1 5 5035.1 1 0 5 2335.6 0
#3 4 5 1237.3 0 4 5 1143.4 0

ACASXU_4_2
#1 4 5 15.9 0 4 5 12.1 0
#2 3 5 1507.6 0 1 5 111.3 0
#3 2 5 5641.6 2 0 5 1639.1 0

Scales to a few
hundred neurons
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Recent improvements

Input: Arguments: ϵ; Parameters: E , p
Output: One dAXp S

1: function FindAXpDel(ϵ; E ,p)
2: S Ð F Ź Initially, no feature is allowed to change
3: for i P F do Ź Invariant: dWAXp(S)
4: S Ð Sztiu
5: outcÐ FindAdvEx(ϵ,S; E ,p)
6: if outc then
7: S Ð S Y tiu
8: return S Ź dWAXp(S)^minimal(S)Ñ dAXp(S)

• To drop features from S Ď F , it is open whether paralellization might be applicable
• Algorithm FindAXpDel is mostly sequential (see above)
• Exploit parallelization for other algorithms, e.g. dichotomic search [IHM+24b]

• However, to decide whether S is an AXp, we can exploit parallelization:
• Recall: AXp(X ) := WAXp(X )^ @(t P X ).␣WAXp(X zttu)
• Each ␣WAXp(¨) (and also WAXp(¨)) check can be run in parallel!
• Do this opportunistically, i.e. when set S is expected to be AXp [IHM+24b]
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More recent results (from 2024)... [IHM+24a, IHM+24b]

Model Deletion SwiftXplain

avgC nCalls Len Mn Mx avg TO avgC nCalls Len FD% Mn Mx avg
gtsrb-dense 0.06 1024 448 52.0 76.3 63.1 0 0.23 54 447 77.4 10.8 14.0 12.2

gtsrb-convSmall 0.06 1024 309 59.2 82.6 65.1 0 0.22 74 313 39.7 15.1 19.5 16.2

gtsrb-conv — — — — — — 100 96.49 45 174 33.2 3858.7 6427.7 4449.4

mnist-denseSmall 0.28 784 177 190.9 420.3 220.4 0 0.77 111 180 15.5 77.6 104.4 85.1

mnist-dense 0.19 784 231 138.1 179.9 150.6 0 0.75 183 229 11.5 130.1 145.5 136.8

mnist-convSmall — — — — — — 100 98.56 52 116 21.3 4115.2 6858.3 5132.8

Scales to tens of
thousands of neurons!

Largest for MNIST: 10142 neurons
Largest for GSTRB: 94308 neurons
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Outline – Unit #06

Changing Assumptions

Inflated Explanations

Probabilistic Explanations

Constrained Explanations

Distance-Restricted Explanations

Additional Topics



Surrogate models in logic-based XAI

[BAMT21]

• Motivation:
• Logic-based XAI does not yet scale for highly complex ML models
• Surrogate models find many uses in ML, for approximating complex models

• Approach:
• Train a surrogate model, e.g. DT, RF/TE, small(er) NN, etc.
• Target high accuracy of surrogate model

• Explain the surrogate model
• Compute rigorous explanation: plain AXp, probabilistic AXp,

• Report computed explanation as explanation for the complex ML model
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Certified explainer (for monotonic classification)

[HM23c]

• The implementation of a correct algorithm may not be correct
• Even comprehensive testing of implemented algorithms does not guarantee correctness

• Certification of implementations is one possible alternative

• Formalize algorithm, e.g. explanations for monotonic classifiers, e.g. using Coq
• Prove that formalized algorithm is correct
• Extract certified algorithm from proof of correctness

• Downsides:
• Efficiency of certified algorithm
• Dedicated algorithm for each explainer

• Certification envisioned for any explainability algorithm
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Plan for this course – light at the end of the tunnel...

• Lecture 01 – units:
• #01: Foundations

• Lecture 02 – units:
• #02: Principles of symbolic XAI – feature selection
• #03: Tractability in symbolic XAI (& myth of interpretability)

• Lecture 03 – units:
• #04: Intractability in symbolic XAI (& myth of model-agnostic XAI)
• #05: Explainability queries

• Lecture 04 – units:
• #06: Advanced topics

• Lecture 05 – units:
• #07: Principles of symbolic XAI – feature attribution (& myth of Shapley values in XAI)
• #08: Conclusions & research directions

© J. Marques-Silva 43 / 44



Questions?
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