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Recapitulate second lecture

• Rigorous definitions of abductive and contrastive explanations

• Example algorithm for finding one AXp/CXp

• Explanations for DTs

• Explanations for XpGs

• Explanations for monotonic classifiers

© J. Marques-Silva 3 / 43



Recapitulate second lecture

• Rigorous definitions of abductive and contrastive explanations

• Example algorithm for finding one AXp/CXp

• Explanations for DTs

• Explanations for XpGs

• Explanations for monotonic classifiers

© J. Marques-Silva 3 / 43



Recapitulate second lecture

• Rigorous definitions of abductive and contrastive explanations

• Example algorithm for finding one AXp/CXp

• Explanations for DTs

• Explanations for XpGs

• Explanations for monotonic classifiers

© J. Marques-Silva 3 / 43



Recapitulate second lecture

• Rigorous definitions of abductive and contrastive explanations

• Example algorithm for finding one AXp/CXp

• Explanations for DTs

• Explanations for XpGs

• Explanations for monotonic classifiers

© J. Marques-Silva 3 / 43



Recapitulate second lecture

• Rigorous definitions of abductive and contrastive explanations

• Example algorithm for finding one AXp/CXp

• Explanations for DTs

• Explanations for XpGs

• Explanations for monotonic classifiers

© J. Marques-Silva 3 / 43



Recap AXps/CXps: DT example

• Instance: ((0, 0, 1, 0, 0), 0)

• One AXp: t1, 4, 5u
• All CXps:

• I1: t5u
• I2: t4u
• I3: t2, 5u
• I4: t2, 4u
• I5: t1u
• L = tt1u, t4u, t5uu
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Recap AXps/CXps: DL example

R1: IF (x1 = 1) THEN 0

R2: ELSE IF (x2 = 1) THEN 1

R3: ELSE IF (x4 = 1) THEN 0

RDEF: ELSE THEN 1

• Instance: (v, c) = ((0, 0, 1, 2), 1)

• AXp’s: t1, 4u (prediction unchanged)
• CXp’s:

• t1u, by flipping the value of feature 1
• t4u, by flipping the value of feature 4
• But also, tt1u, t4uu by MHS duality

Entry x1 x2 x3 x4 Rule κ1(x)
00 0 0 0 0 RDEF 1
01 0 0 0 1 R3 0
02 0 0 0 2 RDEF 1
03 0 0 1 0 RDEF 1
04 0 0 1 1 R3 0
05 0 0 1 2 RDEF 1
06 0 1 0 0 R2 1
07 0 1 0 1 R2 1
08 0 1 0 2 R2 1
09 0 1 1 0 R2 1
10 0 1 1 1 R2 1
11 0 1 1 2 R2 1
12 1 0 0 0 R1 0
13 1 0 0 1 R1 0
14 1 0 0 2 R1 0
15 1 0 1 0 R1 0
16 1 0 1 1 R1 0
17 1 0 1 2 R1 0
18 1 1 0 0 R1 0
19 1 1 0 1 R1 0
20 1 1 0 2 R1 0
21 1 1 1 0 R1 0
22 1 1 1 1 R1 0
23 1 1 1 2 R1 0
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Plan for this course

• Lecture 01 – units:
• #01: Foundations

• Lecture 02 – units:
• #02: Principles of symbolic XAI – feature selection
• #03: Tractability in symbolic XAI (& myth of interpretability)

• Lecture 03 – units:
• #04: Intractability in symbolic XAI (& myth of model-agnostic XAI)
• #05: Explainability queries

• Lecture 04 – units:
• #06: Advanced topics

• Lecture 05 – units:
• #07: Principles of symbolic XAI – feature attribution (& myth of Shapley values in XAI)
• #08: Conclusions & research directions
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Some comments...
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Some necessary comments...

• Std question: Can we apply symbolic XAI to this highly complex ML model XYZ?

• Most likely answer: No!

• Would you...

• ride in a car that fails to break 10% of the time, or that fails to turn 20% of the time?
• fly with a airliner whose planes crash in about 1% of its flights?
• undergo an optional surgery that might be life-threatening in about 5% of the cases?

• For high-risk and safety-critical domains:
• Would you use an ML model that you cannot explain with rigor, and whose heuristic
explanations are likely to be wrong, and so debugging/understanding with rigor is all but
impossible?

• What is the bottom line?
• For high-risk and safety-critical domains, one ought to deploy models that can be explained
with rigor

• If that means using a fairly unexciting NN with up to 100K neurons, that is the cost of trust; for
anything else, one is trying his/her luck, in situations that could become catastrophic!

• More examples next...
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Priceless optimal sparse decision trees (OSDT) – & non-optimality!... [HRS19]

Source: Xiyang Hu, Cynthia Rudin, Margo I. Seltzer:
Optimal Sparse Decision Trees.
NeurIPS 2019: 7265-7273
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Priceless optimal sparse decision trees (OSDT) – & non-optimality!... [HRS19]

Source: Xiyang Hu, Cynthia Rudin, Margo I. Seltzer:
Optimal Sparse Decision Trees.
NeurIPS 2019: 7265-7273

An optimal tool that
produces non-optimal DTs...!?
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BTW, highly problematic decision trees also in precision medicine...

Source: G. Valdes, J.M. Luna, E. Eaton, C.B. Simone, L.H. Ungar, & T.D. Solberg.
MediBoost: a patient stratification tool for interpretable decision making in the era of precision medicine.
Scientific reports, 6(1):1-8, 2016.
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BTW, highly problematic decision trees also in precision medicine...

Source: G. Valdes, J.M. Luna, E. Eaton, C.B. Simone, L.H. Ungar, & T.D. Solberg.
MediBoost: a patient stratification tool for interpretable decision making in the era of precision medicine.
Scientific reports, 6(1):1-8, 2016.

And massive
path redundancy!
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And more comments...

• Previous slides: two examples of obviously buggy DTs

• However, it is relatively simple to implement tree learners

• Can one really trust the operation of more complex ML models, even those subject to
extensive testing?

• And how to debug complex ML models if heuristic explanations are also incorrect (more
later)?

• For trustworthy AI, there exists no alternative to rigorous logic-based explanations!
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Unit #04

(Efficient) Intractability in Symbolic XAI



An encoding for DLs – components

R1: IF (τ1) THEN d1
R2: ELSE IF (τ2) THEN d2

¨ ¨ ¨

Rj: ELSE IF (τj) THEN dj
¨ ¨ ¨

Rn: ELSE IF (τn) THEN dn
RDEF: ELSE THEN dn+1

• Clauses for encoding ϕ: Eϕ(z1, . . .), such that z1 = 1 iff ϕ = 1

• For τj: Eτj(tj, . . .)
• For xi = vi: Exi=vi(li, . . .)
• Let ej = 1 iff dj matches c
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• Prediction change with rule up to Rj (with dj ­= c), if τj* K and τk( K, for 1 ď k ă j, with
ek = 1: [

fj Ø
(
tj ^

ľ

1ďkăj,ek=1
␣tk

)]
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R2: ELSE IF (τ2) THEN d2

¨ ¨ ¨

Rj: ELSE IF (τj) THEN dj
¨ ¨ ¨

Rn: ELSE IF (τn) THEN dn
RDEF: ELSE THEN dn+1

• Clauses for encoding ϕ: Eϕ(z1, . . .), such that z1 = 1 iff ϕ = 1

• For τj: Eτj(tj, . . .)
• For xi = vi: Exi=vi(li, . . .)
• Let ej = 1 iff dj matches c

• Require that at least one fj, with ej = 0 and 1 ď j ď n, to be consistent (i.e. some rule up to
j with prediction other than c to fire):(

ł

1ďjďn,ej=0
fj
)
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An encoding for DLs – components

R1: IF (τ1) THEN d1
R2: ELSE IF (τ2) THEN d2

¨ ¨ ¨

Rj: ELSE IF (τj) THEN dj
¨ ¨ ¨

Rn: ELSE IF (τn) THEN dn
RDEF: ELSE THEN dn+1

• The set of soft clauses is given by: S fi t(li), i = 1, . . . ,mu
• The set of hard clauses is given by:

B fi
ľ

1ďiďm
Exi=vi(li, . . .)^

ľ

1ďjďn
Eτj(tj, . . .)^

ľ

1ďjďn,ej=0

(
fj Ø

(
tj ^

ľ

1ďkăj,ek=1
␣tk

))
^

(
ł

1ďjďn,ej=0
fj
)

• B Y S ( K
• MUSes are AXp’s & MCSes are CXp’s
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Outline – Unit #04

Explaining Decision Lists

Myth #02: Model-Agnostic Explainability

Progress Report on Symbolic XAI



What is model-agnostic explainability?

• Wildly popular XAI approach [RSG16, LL17, RSG18]

• Feature attribution: LIME, SHAP, ... [RSG16, LL17]

• Feature selection: Anchors, ... [RSG18]

• Q: Are model-agnostic explanations rigorous?
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Easy to spot problems – BT for zoo dataset

& Anchor

[INM19b, Ign20]

amphibian

tail?

-0.0547288768

0.007924526

yes

no

bird

feathers?

0.285283029

-0.0547288768

yes

no

bug

6 legs?

0.184210524

-0.0552432425

yes

no

fish

fins?

0.19463414

-0.0549824126

yes

no

invertebrate

backbone?

-0.0550289042

0.108808279

yes

no

mammal

milk?

0.311460674

-0.0536704734

yes

no

reptile

venomous?

0.028965516

-0.0444687866

yes

no
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• Example instance:

(& Anchor picks): [RSG18]

IF (animal_name = pitviper)^␣hair^␣feathers^ eggs^␣milk^
␣airborne^␣aquatic^ predator^␣toothed^ backbone^ breathes^
venomous^␣fins^ (legs = 0)^ tail^␣domestic^␣catsize

THEN (class = reptile)
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yes
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yes
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• Explanation obtained with Anchor: [RSG18]

IF ␣hair^␣milk^␣toothed^␣fins
THEN (class = reptile)
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0.028965516
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yes
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• But, explanation incorrectly “explains” another instance (from training data!)

IF (animal_name = toad)^␣hair^␣feathers^ eggs^␣milk^
␣airborne^␣aquatic^␣predator^␣toothed^ backbone^ breathes^
␣venomous^␣fins^ (legs = 4)^␣tail^␣domestic^␣catsize

THEN (class = amphibian)
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Model-agnostic explainers cannot be trusted [INM19b]

Incorrect explanations:
Classifier for deciding bank loans

Two samples: Bessie– (v1, Y) and Clive– (v2,N)
Explanation X: age=45, salary= 50K
And,
X is consistent with Bessie– (v1, Y)
X is consistent with Clive– (v2,N)

6 different outcomes & same explanation !?
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How to validate model-agnostic explanations

• For feature selection, checking rigor is easy

• Let X be the features reported by model-agnostic tool

• Check whether X is a (rigorous) (W)AXp:
1. X is sufficient for prediction:

@(x P F).
ľ

jPX
(xj = vj)Ñ(κ(x) = c)

2. And, X is subset-minimal:

@(t P X ).D(x P F).
ľ

jP(X zttu)
(xj = vj)Ñ(κ(x) ­= c)

Depending on logic encoding used for classifier, different automated reasoners can be
employed

• Approach is bounded by scalability of rigorous explanations...
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How serious is the lack of rigor of model-agnostic explanations?

• Obs: Lack of rigor of model-agnostic explanations known since 2019 [INM19b, Ign20, YIS+23]

• Results for boosted trees, due to non-scalability with NNs [CG16]

• Some results for Anchors [RSG18]

Dataset % Incorrect % Redundant % Correct
adult 80.5% 1.6% 17.9%
lending 3.0% 0.0% 97.0%
rcdv 99.4% 0.4% 0.2%

compas 84.4% 1.7% 13.9%
german 99.7% 0.2% 0.1%

• Obs: Results are not positive even if we count how often prediction changes [NSM+19]

• In this case, BNNs were used, to allow for model counting...

• For feature attribution we proposed different ways of assessing rigor [INM19b, NSM+19, Ign20, YIS+23]
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Incorrect explanations are ubiquitous & likely... [NSM+19]
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Outline – Unit #04

Explaining Decision Lists

Myth #02: Model-Agnostic Explainability

Progress Report on Symbolic XAI



Efficacy map – progress until 2022 [MI22, Mar22, MS23]

[INM19b, Ign20, IIM20, MGC+20, MGC+21, HIIM21, IMS21, IM21, CM21, HII+22, IISMS22]

NBCs

Monotonic

d-DNNF

GDFs

DTs
XpGs

DLs

RFs
BTs

NNs

BNs

Practical scalability (effectiveness)
Effective Ineffective

Co
m
pu
ta
tio
na
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m
pu
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lly
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Po
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Computing one XP • Formal explanations efficient for several
families of classifiers

• Polynomial-time:
• Naive-Bayes classifiers (NBCs) [MGC+20]

• Decision trees (DTs) [IIM20, HIIM21]

• XpG’s: DTs, OBDDs, OMDDs, etc. [HIIM21]

• Monotonic classifiers [MGC+21]

• Propositional languages (e.g. d-DNNF, ...) [HII+22]

• Additional results [CM21, HII+22]

• Comp. hard, but effective (efficient in practice):
• Random forests (RFs) [IMS21]

• Decision lists (DLs) [IM21]

• Boosted trees (BTs) [INM19b, Ign20, IISMS22]

• Comp. hard, and ineffective (hard in practice):
• Neural networks (NNs) [INM19a]

• Bayesian networks (BNs) [SCD18]
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Efficacy map – recent progress [HM23]

[INM19b, Ign20, IIM20, MGC+20, MGC+21, HIIM21, IMS21, IM21, CM21, HII+22, IISMS22]
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Computing one XP • Formal explanations efficient for several
families of classifiers

• Polynomial-time:
• Naive-Bayes classifiers (NBCs) [MGC+20]

• Decision trees (DTs) [IIM20, HIIM21]

• XpG’s: DTs, OBDDs, OMDDs, etc. [HIIM21]

• Monotonic classifiers [MGC+21]

• Propositional languages (e.g. d-DNNF, ...) [HII+22]

• Additional results [CM21, HII+22]

• Comp. hard, but effective (efficient in practice):
• Random forests (RFs) [IMS21]

• Decision lists (DLs) [IM21]

• Boosted trees (BTs) [INM19b, Ign20, IISMS22]

• Comp. hard, but some practical scalability:
• Neural networks (NNs) [HM23]

• Comp. hard, and ineffective (hard in practice):
• Bayesian networks (BNs) [SCD18]
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Results for RFs in 2021 (with SAT) [IMS21]

Dataset (#F #C #I) RF CNF SAT oracle AXp (RFxpl) Anchor

D #N %A #var #cl MxS MxU #S #U Mx m avg %w avg %w
ann-thyroid ( 21 3 718)4 2192 98 17854 29230 0.12 0.15 2 18 0.36 0.05 0.13 96 0.32 4

appendicitis ( 7 2 43) 6 1920 90 5181 10085 0.02 0.02 4 3 0.05 0.01 0.03 100 0.48 0

banknote ( 4 2 138)5 2772 97 8068 16776 0.01 0.01 2 2 0.03 0.02 0.02 100 0.19 0

biodegradation ( 41 2 106)5 4420 88 11007 23842 0.31 1.05 17 22 2.27 0.04 0.29 97 4.07 3

heart-c ( 13 2 61) 5 3910 85 5594 11963 0.04 0.02 6 7 0.07 0.01 0.04 100 0.85 0

ionosphere ( 34 2 71) 5 2096 87 7174 14406 0.02 0.02 22 11 0.11 0.02 0.03 100 12.43 0

karhunen ( 64 10 200)5 6198 91 36708 70224 1.06 1.41 35 29 14.64 0.65 2.78 100 28.15 0

letter ( 16 26 398)8 44304 82 28991 68148 1.97 3.31 8 8 6.91 0.24 1.61 70 2.48 30

magic ( 10 2 381)6 9840 84 29530 66776 0.51 1.84 6 4 2.13 0.07 0.14 99 0.91 1

new-thyroid ( 5 3 43) 5 1766 100 17443 28134 0.03 0.01 3 2 0.08 0.03 0.05 100 0.36 0

pendigits ( 16 10 220)6 12004 95 30522 59922 2.40 1.32 10 6 4.11 0.14 0.94 96 3.68 4

ring ( 20 2 740)6 6188 89 19114 42362 0.27 0.44 11 9 1.25 0.05 0.25 92 7.25 8

segmentation ( 19 7 42) 4 1966 90 21288 35381 0.11 0.17 8 10 0.53 0.11 0.31 100 4.13 0

shuttle ( 9 7 1160)3 1460 99 18669 29478 0.11 0.08 2 7 0.34 0.05 0.14 99 0.42 1

sonar ( 60 2 42) 5 2614 88 9938 20537 0.04 0.06 36 24 0.43 0.04 0.09 100 23.02 0

spectf ( 44 2 54) 5 2306 88 6707 13449 0.07 0.06 20 24 0.34 0.02 0.07 100 8.12 0

texture ( 40 11 550)5 5724 87 34293 64187 0.79 0.63 23 17 3.24 0.19 0.93 100 28.13 0

twonorm ( 20 2 740)5 6266 94 21198 46901 0.08 0.08 12 8 0.28 0.06 0.10 100 5.73 0

vowel ( 13 11 198)6 10176 90 44523 88696 1.66 2.11 8 5 4.52 0.15 1.15 66 1.67 34

waveform-40 ( 40 3 500)5 6232 83 30438 58380 0.50 0.86 15 25 7.07 0.11 0.88 100 11.93 0

wpbc ( 33 2 78) 5 2432 76 9078 18675 1.00 1.53 20 13 5.33 0.03 0.65 79 3.91 21
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Results for NNs in 2019 (with SMT/MILP) [INM19a]

Dataset Minimal explanation Minimum explanation

size SMT (s) MILP (s) size SMT (s) MILP (s)

australian (14)
m 1 0.03 0.05 — — —
a 8.79 1.38 0.33 — — —
M 14 17.00 1.43 — — —

backache (32)
m 13 0.13 0.14 — — —
a 19.28 5.08 0.85 — — —
M 26 22.21 2.75 — — —

breast-cancer (9)
m 3 0.02 0.04 3 0.02 0.03
a 5.15 0.65 0.20 4.86 2.18 0.41
M 9 6.11 0.41 9 24.80 1.81

cleve (13)
m 4 0.05 0.07 4 — 0.07
a 8.62 3.32 0.32 7.89 — 5.14
M 13 60.74 0.60 13 — 39.06

hepatitis (19)
m 6 0.02 0.04 4 0.01 0.04
a 11.42 0.07 0.06 9.39 4.07 2.89
M 19 0.26 0.20 19 27.05 22.23

voting (16)
m 3 0.01 0.02 3 0.01 0.02
a 4.56 0.04 0.13 3.46 0.3 0.25
M 11 0.10 0.37 11 1.25 1.77

spect (22)
m 3 0.02 0.02 3 0.02 0.04
a 7.31 0.13 0.07 6.44 1.61 0.67
M 20 0.88 0.29 20 8.97 10.73
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m 3 0.01 0.02 3 0.01 0.02
a 4.56 0.04 0.13 3.46 0.3 0.25
M 11 0.10 0.37 11 1.25 1.77

spect (22)
m 3 0.02 0.02 3 0.02 0.04
a 7.31 0.13 0.07 6.44 1.61 0.67
M 20 0.88 0.29 20 8.97 10.73

First rigorous approach
for explaining NNs !
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Results for NNs in 2019 (with SMT/MILP) [INM19a]
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First rigorous approach
for explaining NNs !

Scales to (a few)
tens of neurons...
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Results for NNs in 2023 (using Marabou [KHI+19]) [HM23]

DNN points |AXp| #Calls Time #TO |AXp| #Calls Time #TO

ϵ = 0.1 ϵ = 0.05

ACASXU_1_5
#1 3 5 185.9 0 2 5 113.8 0
#2 2 5 273.8 0 1 5 33.2 0
#3 0 5 714.2 0 0 5 4.3 0

ACASXU_3_1
#1 0 5 2219.3 0 0 5 14.2 0
#2 2 5 4263.5 1 0 5 1853.1 0
#3 1 5 581.8 0 0 5 355.9 0

ACASXU_3_2
#1 3 5 13739.3 2 1 5 6890.1 1
#2 3 5 226.4 0 2 5 125.1 0
#3 2 5 1740.6 0 2 5 173.6 0

ACASXU_3_5
#1 4 5 43.6 0 2 5 59.4 0
#2 3 5 5039.4 0 2 5 4303.8 1
#3 2 5 5574.9 1 2 5 2660.3 0

ACASXU_3_6
#1 1 5 6225.0 1 0 5 51.0 0
#2 3 5 4957.2 1 2 5 1897.3 0
#3 1 5 196.1 0 1 5 919.2 0

ACASXU_3_7
#1 3 5 6256.2 0 4 5 26.9 0
#2 4 5 311.3 0 1 5 6958.6 1
#3 2 5 7756.5 1 1 5 7807.6 1

ACASXU_4_1
#1 2 5 12413.0 2 1 5 5090.5 1
#2 1 5 5035.1 1 0 5 2335.6 0
#3 4 5 1237.3 0 4 5 1143.4 0

ACASXU_4_2
#1 4 5 15.9 0 4 5 12.1 0
#2 3 5 1507.6 0 1 5 111.3 0
#3 2 5 5641.6 2 0 5 1639.1 0

Scales to a few
hundred neurons
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More recent results (from 2024)... [IHM+24]

Model Deletion SwiftXplain

avgC nCalls Len Mn Mx avg TO avgC nCalls Len FD% Mn Mx avg
gtsrb-dense 0.06 1024 448 52.0 76.3 63.1 0 0.23 54 447 77.4 10.8 14.0 12.2

gtsrb-convSmall 0.06 1024 309 59.2 82.6 65.1 0 0.22 74 313 39.7 15.1 19.5 16.2

gtsrb-conv — — — — — — 100 96.49 45 174 33.2 3858.7 6427.7 4449.4

mnist-denseSmall 0.28 784 177 190.9 420.3 220.4 0 0.77 111 180 15.5 77.6 104.4 85.1

mnist-dense 0.19 784 231 138.1 179.9 150.6 0 0.75 183 229 11.5 130.1 145.5 136.8

mnist-convSmall — — — — — — 100 98.56 52 116 21.3 4115.2 6858.3 5132.8

Scales to tens of
thousands of neurons!

Largest for MNIST: 10142 neurons
Largest for GSTRB: 94308 neurons
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Unit #05

Queries in Symbolic XAI



Outline – Unit #05

Enumeration of Explanations

Feature Necessity & Relevancy



How to navigate the space of XPs?

• Goal: iteratively list yet unlisted XPs (either AXp’s or CXp’s)

• Complexity results:
• For NBCs: enumeration with polynomial delay [MGC+20]

• For monotonic classifiers: enumeration is computationally hard [MGC+21]

• Recall: for DTs, enumeration of CXp’s is in P [HIIM21, IIM22]

• There are algorithms for direct enumeration of CXp’s
• Akin to enumerating MCSes

• No known algorithms for direct enumeration of AXp’s [MM20]

• Akin to enumerating MUSes
• Enumeration of MCSes + dualization often not realistic [LS08, FK96]

• There can be too many CXp’s...
• Best solution is a MARCO-like algorithm (for enumerating MUSes) [LPMM16]

• On-demand enumeration of AXp’s/CXp’s
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Recall computing one AXp/CXp – oneXP

Input: Predicate P, parameterized by T ,M
Output: One XP S

1: procedure oneXP(P)
2: S Ð F Ź Initialization: P(S) holds
3: for i P F do Ź Loop invariant: P(S) holds
4: if P(Sztiu) then
5: S Ð Sztiu Ź Update S only if P(Sztiu) holds
6: return S Ź Returned set S : P(S) holds
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Generic oracle-based enumeration algorithm

Input: Parameters Paxp , Pcxp , T , F , κ, v

1: HÐH Ź H defined on set U = tu1, . . . , umu; initially no constraints
2: repeat
3: (outc, u)Ð SAT(H) Ź Use SAT oracle to pick assignment s.t. known constraints in H
4: if outc = true then
5: S Ð ti P F | ui = 0u Ź S : fixed features
6: U Ð ti P F | ui = 1u Ź U : universal features; F = S Y U
7: if Pcxp(U ; T ,F , κ, v) then Ź U = FzS Ě some CXp
8: P Ð oneXP(U ;Pcxp, T ,F , κ, v)
9: reportCXp(P)

10: HÐ HY t(_iPP␣ui)u Ź P Ď U : one 1-value variable must be 0 in future iterations
11: else Ź S Ě some AXp
12: P Ð oneXP(S;Paxp, T ,F , κ, v)
13: reportAXp(P)

14: HÐ HY t(_iPPui)u Ź P Ď S : one 0-value variable must be 1 in future iterations
15: until outc = false
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DT classifier – example run of enumerator

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

P t0u

P t0u

P t0u P t1u

P t0u

P t0u P t1u

P t1u

P t1u

P t0u

P t0u P t1u

P t1u

P t1u
1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

• Instance: (v, c) = ((0, 0, 1, 0, 1), 1)

x3 x5 x1 x2 x4 κ2(x)

1 1 0 0 0 1
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1

x3 x5 x1 x2 x4 κ2(x)
0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 1

Iter. u S Pcxp(¨) AXp CXp Clause Resulting H

1 (1, 1, 1, 1, 1) H 1 – t3u (␣u3) t(␣u3)u

2 (1, 1, 0, 1, 1) t3u 1 – t5u (␣u5) t(␣u3), (␣u5)u

3 (1, 1, 0, 1, 0) t3, 5u 0 t3, 5u – (u3 _ u5) t(␣u3), (␣u5), (u3_u5)u

5 [outc = false] – – – – – t(␣u3), (␣u5), (u3_u5)u
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DT classifier – another example run of enumerator

x1
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• Instance: (v, c) = ((0, 0, 1, 0, 1), 1)

x3 x5 x1 x2 x4 κ2(x)

1 1 0 0 0 1
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1

x3 x5 x1 x2 x4 κ2(x)
0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 1

Iter. u S Pcxp(¨) AXp CXp Clause Resulting H

1 (0, 0, 0, 0, 0) t1, 2, 3, 4, 5u 0 t3, 5u – (u3 _ u5) t(u3 _ u5)u

2 (0, 0, 1, 0, 0) t1, 2, 4, 5u 1 – t3u (␣u3) t(u3 _ u5), (␣u3)u

3 (0, 0, 1, 0, 1) t1, 2, 4u 1 – t5u (␣u5) t(u3_u5), (␣u3), (␣u5)u

5 [outc = false] – – – – – t(u3_u5), (␣u3), (␣u5)u
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DTs admit more efficient algorithms

• Recall:
• Given instance (v, c), create set I
• For each path Pk with prediction d ­= c:

• Let Ik denote the features with literals inconsistent with v
• Add Ik to I

• Remove from I the sets that have a proper subset in I ,
and duplicates

• I is the set of CXp’s – algorithm runs in poly-time

• For AXp’s: run std dualization algorithm [FK96]
• Obs: starting hypergraph is poly-size!
• And each MHS is an AXp

• Example:
• I1 = t3u

• I2 = t5u

• I3 = t2, 5u

• 6 keep I1 an I2
• AXp’s: MHSes yield tt3, 5uu
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Outline – Unit #05

Enumeration of Explanations

Feature Necessity & Relevancy



(Conditioned) Classifier Decision Problem ((C)CDP)

[HCM+23]

• Given c P K, CDP is to decide whether the following statement holds:

D(x P F).(κ(x) = c)

• Given S Ď F , instance (v, c), CCDP is to decide whether the following statement holds:

D(x P F).
ľ

iPS
(xi = vi)^ (κ(x) = c)

• Claim: (C)CDP is in polynomial-time for DTs, decision graphs, monotonic classifiers,
among others

• Claim: (C)CDP is in NP-complete for DLs, RFs, BTs, boolean NNs and BNNs
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Feature necessity

• Consider instance (v, c)
• Sets of all AXp’s & CXp’s:

A := tX Ď F |AXp(X )u

C := tX Ď F | CXp(X )u

A: encodes the set of all irreducible rules for prediction c given v

• Features common to all AXps in A and all CXps in C:

NA :=
Ş

XPA X

NC :=
Ş

XPC X
• NA and NC need not be equal

• A = tt1u, t2, 3uu

• A feature i is necessary for abductive explanations (AXp-necessary) if i P NA

• A feature i is necessary for contrastive explanations (CXp-necessary) if i P NC
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More on feature necessity

[HCM+23]

• Claim #01: t P F is AXp-necessary iff ttu is a CXp
• Claim #02: t P F is CXp-necessary iff ttu is a AXp

• Claim #03: CXp-necessity is in P if CCDP is in P
• I.e. this is the case for DTs, DGs, and monotonic classifiers, among others

• Claim #04: AXp-necessity of t P F is in P if t has a domain size which is
polynomially-bounded on instance size

• This holds for any classifier!
• Let u be obtained from v by replacing the constant vt by some variable ut P Dt

• Feature t is AXp-necessary if κ(u) ­= κ(v) for some value ut P Dt
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An example

• Instance (v, c) = ((0, 0, 0, 0), 0)

• Is feature 1 AXp-necessary?

• Does there exist u1, such that κ(u1, 0, 0, 0) ­= κ(0, 0, 0, 0)?
• Yes! Thus, feature 1 is AXp-necessary

• Is feature 3 AXp-necessary?

• Does there exist u3, such that κ(0, 0,u3, 0) ­= κ(0, 0, 0, 0)?
• No! Thus, feature 3 is not AXp-necessary

• Confirmation:

• CXps:
• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3
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Feature relevancy

• Consider instance (v, c)
• Sets of all AXp’s & CXp’s:

A := tX Ď F |AXp(X )u

C := tX Ď F | CXp(X )u

• Features occurring in some AXp in A and in some CXp in C:

FA :=
Ť

XPA X

FC :=
Ť

XPC X

• Claim: FA = FC
• I.e. a feature exists in some AXp iff it exists in some CXp

• A feature i P F is relevant if i P FA (and so, if i P FC)
• A feature is relevant if it is included in some AXp (or CXp)

• A feature i P F is irrelevant if i R FA (and so, if i R FC)
• A feature is irrelevant if it is not included in any AXp (or CXp)
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An example

• Consider the classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• (v, c) = ((0, 0, 0, 1), 1)

• A = tt4uu = C
• Why?

• If 4 fixed, then prediction must be 1
• If 4 is allowed to change, then prediction changes
• Values of 1, 2, 3 not used to fix/change the prediction

• Feature 4 is relevant, since it is included in one (and the only) AXp/CXp

• Features 1, 2, 3 are irrelevant, since there are not included in any AXp/CXp

• Obs: irrelevant features are absolutely unimportant !
We could propose some other explanation by adding features 1, 2 or 3 to AXp t4u, but
prediction would remain unchanged for any value assigned to those features

• And we aim for irreducibility (Occam’s razor is a mainstay of AI/ML)
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Deciding feature relevancy

• Deciding feature relevancy is in ΣP
2 – intuition:

• Pick a set of features P containing t (i.e. existential quantification), such that,

• P is a WAXp (i.e. universal quantification)
• Pzttu is a not a WAXp (i.e. universal quantification again)
• Thus, we can decide feature relevancy with D@ alternation

• For DTs, deciding feature relevancy is in P; Why?

• Obs: We know that FA = FC; thus

• Computing all CXps in polynomial-time decides feature relevancy

• General case: best solution is to exploit abstraction refinement
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Abstraction refinement for feature relevancy

• Claim: X Ď F and t P X . If WAXp(X ) holds and WAXp(X zttu) does not hold, then
any AXp Z Ď X Ď F must contain feature t.

Proof:

• Let Z Ď X Ď F be an AXp such that t R Z .
• Then Z Ď X zttu.
• But then, by monotonicity, WAXp(X zttu) must hold (i.e. any superset of Z is a
weak AXp); hence a contradiction.

• Approach:

• Repeatedly guess weak WAXp candidates X , with t P X [e.g. use SAT oracle]
• Check that WAXp condition holds for X : WAXp(X ) ; and [e.g. use WAXp oracle]
• Check that WAXp condition fails for X zttu: ␣WAXp(X zttu) [e.g. use WAXp oracle]
• Block counterexamples in both cases
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A general abstraction refinement algorithm

Input: Instance v, Target Feature t; Feature Set F , Classifier κ
1: function FRPCGR(v, t;F , κ)
2: HÐH Ź H overapproximates the subsets of F that do not contain an AXp containing t
3: repeat
4: (outc, s)Ð SAT(H, st) Ź Use SAT oracle to pick candidate WAXp containing t
5: if outc = true then
6: P Ð ti P F | si = 1u Ź Set P is the candidate WAXp, and t P P
7: D Ð ti P F | si = 0u Ź Set D contains the features not included in P
8: if ␣WAXp(P) then Ź Is P not a WAXp?
9: HÐ HY newPosCl(D; t, κ) Ź P is not a WAXp; must pick some non-picked feature
10: else Ź P is a WAXp
11: if ␣WAXp(Pzttu) then Ź P without t not a WAXp?
12: reportWeakAXp(P) Ź Feature t is included in any AXp X Ď P
13: return true
14: HÐ HY newNegCl(P; t, κ) Ź WAXp(Pzttu) holds; some feature in P must not be picked
15: until outc = false
16: return false Ź If H becomes inconsistent, then there is no AXp that contains t
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An example: feature relevancy for DT, using abstraction refinement

x1

x2

x3

x4

2 0

0

1

1

P t0u

P t0u

P t0u

P t0u P t1u

P t1u

P t1u

P t1u

1

2

4

6

8 9

7

5

3 • Instance: (v, c) = ((1, 1, 1, 1), 1)

• Is t = 1 relevant?

t = 1

s P WAXp(P) WAXp(Pzttu) Return? Clause

(1, 1, 1, 1) t1, 2, 3, 4u ! ! —— (␣u2 _␣u3 _␣u4)
(1, 1, 0, 1) t1, 2, 4u ! ! —— (␣u2 _␣u4)
(1, 1, 0, 0) t1, 2u ! ! —— (␣u2)
(1, 0, 0, 0) t1u ! % true ——
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Another example

x1

x2

x3

x4

2 0

0

1

1

P t0u

P t0u

P t0u

P t0u P t1u

P t1u

P t1u

P t1u

1

2

4

6

8 9

7

5

3 • Instance: (v, c) = ((1, 1, 1, 1), 1)

• Is t = 4 relevant?

t = 4

s P WAXp(P) WAXp(Pzttu) Return? Clause

(1, 1, 1, 1) t1, 2, 3, 4u ! ! —— (␣u1 _␣u2 _␣u3)
(1, 1, 0, 1) t1, 2, 4u ! ! —— (␣u1 _␣u2)
(1, 0, 0, 1) t1, 4u ! ! —— (␣u1)
(0, 1, 0, 1) t2, 4u ! ! —— (␣u2)
(0, 0, 0, 1) t4u % — —— (u1 _ u2 _ u3)
(0, 0, 1, 1) t3, 4u % — —— (u1 _ u2)

[outc = false] —— — — false ——
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(0, 0, 1, 1) t3, 4u % — —— (u1 _ u2)

[outc = false] —— — — false ——
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Questions?
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