
© J. Marques-Silva

LOGIC-BASED EXPLAINABLE ARTIFICIAL INTELLIGENCE

Joao Marques-Silva

ICREA, Univ. Lleida, Catalunya, Spain

ESSAI, Athens, Greece, July 2024

Lecture 03

© J. Marques-Silva 2 / 43

Recapitulate second lecture

• Rigorous definitions of abductive and contrastive explanations

• Example algorithm for finding one AXp/CXp

• Explanations for DTs

• Explanations for XpGs

• Explanations for monotonic classifiers

© J. Marques-Silva 3 / 43

Recapitulate second lecture

• Rigorous definitions of abductive and contrastive explanations

• Example algorithm for finding one AXp/CXp

• Explanations for DTs

• Explanations for XpGs

• Explanations for monotonic classifiers

© J. Marques-Silva 3 / 43

Recapitulate second lecture

• Rigorous definitions of abductive and contrastive explanations

• Example algorithm for finding one AXp/CXp

• Explanations for DTs

• Explanations for XpGs

• Explanations for monotonic classifiers

© J. Marques-Silva 3 / 43

Recapitulate second lecture

• Rigorous definitions of abductive and contrastive explanations

• Example algorithm for finding one AXp/CXp

• Explanations for DTs

• Explanations for XpGs

• Explanations for monotonic classifiers

© J. Marques-Silva 3 / 43

Recapitulate second lecture

• Rigorous definitions of abductive and contrastive explanations

• Example algorithm for finding one AXp/CXp

• Explanations for DTs

• Explanations for XpGs

• Explanations for monotonic classifiers

© J. Marques-Silva 3 / 43

Recap AXps/CXps: DT example

• Instance: ((0, 0, 1, 0, 0), 0)

• One AXp: t1, 4, 5u
• All CXps:

• I1: t5u
• I2: t4u
• I3: t2, 5u
• I4: t2, 4u
• I5: t1u
• L = tt1u, t4u, t5uu

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

P t0u

P t0u

P t0u P t1u

P t0u

P t0u P t1u

P t1u

P t1u

P t0u

P t0u P t1u

P t1u

P t1u
1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 4 / 43

Recap AXps/CXps: DT example

• Instance: ((0, 0, 1, 0, 0), 0)
• One AXp: t1, 4, 5u

• All CXps:

• I1: t5u
• I2: t4u
• I3: t2, 5u
• I4: t2, 4u
• I5: t1u
• L = tt1u, t4u, t5uu

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

P t0u

P t0u

P t0u P t1u

P t0u

P t0u P t1u

P t1u

P t1u

P t0u

P t0u P t1u

P t1u

P t1u
1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 4 / 43

Recap AXps/CXps: DT example

• Instance: ((0, 0, 1, 0, 0), 0)
• One AXp: t1, 4, 5u
• All CXps:

• I1: t5u
• I2: t4u
• I3: t2, 5u
• I4: t2, 4u
• I5: t1u
• L = tt1u, t4u, t5uu

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

P t0u

P t0u

P t0u P t1u

P t0u

P t0u P t1u

P t1u

P t1u

P t0u

P t0u P t1u

P t1u

P t1u
1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 4 / 43

Recap AXps/CXps: DT example

• Instance: ((0, 0, 1, 0, 0), 0)
• One AXp: t1, 4, 5u
• All CXps:

• I1: t5u

• I2: t4u
• I3: t2, 5u
• I4: t2, 4u
• I5: t1u
• L = tt1u, t4u, t5uu

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

P t0u

P t0u

P t0u P t1u

P t0u

P t0u P t1u

P t1u

P t1u

P t0u

P t0u P t1u

P t1u

P t1u
1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 4 / 43

Recap AXps/CXps: DT example

• Instance: ((0, 0, 1, 0, 0), 0)
• One AXp: t1, 4, 5u
• All CXps:

• I1: t5u
• I2: t4u

• I3: t2, 5u
• I4: t2, 4u
• I5: t1u
• L = tt1u, t4u, t5uu

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

P t0u

P t0u

P t0u P t1u

P t0u

P t0u P t1u

P t1u

P t1u

P t0u

P t0u P t1u

P t1u

P t1u
1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 4 / 43

Recap AXps/CXps: DT example

• Instance: ((0, 0, 1, 0, 0), 0)
• One AXp: t1, 4, 5u
• All CXps:

• I1: t5u
• I2: t4u
• I3: t2, 5u

• I4: t2, 4u
• I5: t1u
• L = tt1u, t4u, t5uu

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

P t0u

P t0u

P t0u P t1u

P t0u

P t0u P t1u

P t1u

P t1u

P t0u

P t0u P t1u

P t1u

P t1u
1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 4 / 43

Recap AXps/CXps: DT example

• Instance: ((0, 0, 1, 0, 0), 0)
• One AXp: t1, 4, 5u
• All CXps:

• I1: t5u
• I2: t4u
• I3: t2, 5u
• I4: t2, 4u

• I5: t1u
• L = tt1u, t4u, t5uu

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

P t0u

P t0u

P t0u P t1u

P t0u

P t0u P t1u

P t1u

P t1u

P t0u

P t0u P t1u

P t1u

P t1u
1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 4 / 43

Recap AXps/CXps: DT example

• Instance: ((0, 0, 1, 0, 0), 0)
• One AXp: t1, 4, 5u
• All CXps:

• I1: t5u
• I2: t4u
• I3: t2, 5u
• I4: t2, 4u
• I5: t1u

• L = tt1u, t4u, t5uu

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

P t0u

P t0u

P t0u P t1u

P t0u

P t0u P t1u

P t1u

P t1u

P t0u

P t0u P t1u

P t1u

P t1u
1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 4 / 43

Recap AXps/CXps: DT example

• Instance: ((0, 0, 1, 0, 0), 0)
• One AXp: t1, 4, 5u
• All CXps:

• I1: t5u
• I2: t4u
• I3: t2, 5u
• I4: t2, 4u
• I5: t1u
• L = tt1u, t4u, t5uu

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

P t0u

P t0u

P t0u P t1u

P t0u

P t0u P t1u

P t1u

P t1u

P t0u

P t0u P t1u

P t1u

P t1u
1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 4 / 43

Recap AXps/CXps: DL example

R1: IF (x1 = 1) THEN 0

R2: ELSE IF (x2 = 1) THEN 1

R3: ELSE IF (x4 = 1) THEN 0

RDEF: ELSE THEN 1

• Instance: (v, c) = ((0, 0, 1, 2), 1)

• AXp’s: t1, 4u (prediction unchanged)
• CXp’s:

• t1u, by flipping the value of feature 1
• t4u, by flipping the value of feature 4
• But also, tt1u, t4uu by MHS duality

Entry x1 x2 x3 x4 Rule κ1(x)
00 0 0 0 0 RDEF 1
01 0 0 0 1 R3 0
02 0 0 0 2 RDEF 1
03 0 0 1 0 RDEF 1
04 0 0 1 1 R3 0
05 0 0 1 2 RDEF 1
06 0 1 0 0 R2 1
07 0 1 0 1 R2 1
08 0 1 0 2 R2 1
09 0 1 1 0 R2 1
10 0 1 1 1 R2 1
11 0 1 1 2 R2 1
12 1 0 0 0 R1 0
13 1 0 0 1 R1 0
14 1 0 0 2 R1 0
15 1 0 1 0 R1 0
16 1 0 1 1 R1 0
17 1 0 1 2 R1 0
18 1 1 0 0 R1 0
19 1 1 0 1 R1 0
20 1 1 0 2 R1 0
21 1 1 1 0 R1 0
22 1 1 1 1 R1 0
23 1 1 1 2 R1 0

© J. Marques-Silva 5 / 43

Recap AXps/CXps: DL example

R1: IF (x1 = 1) THEN 0

R2: ELSE IF (x2 = 1) THEN 1

R3: ELSE IF (x4 = 1) THEN 0

RDEF: ELSE THEN 1

• Instance: (v, c) = ((0, 0, 1, 2), 1)

• AXp’s: t1, 4u (prediction unchanged)
• CXp’s:

• t1u, by flipping the value of feature 1
• t4u, by flipping the value of feature 4
• But also, tt1u, t4uu by MHS duality

Entry x1 x2 x3 x4 Rule κ1(x)
00 0 0 0 0 RDEF 1
01 0 0 0 1 R3 0
02 0 0 0 2 RDEF 1
03 0 0 1 0 RDEF 1
04 0 0 1 1 R3 0
05 0 0 1 2 RDEF 1
06 0 1 0 0 R2 1
07 0 1 0 1 R2 1
08 0 1 0 2 R2 1
09 0 1 1 0 R2 1
10 0 1 1 1 R2 1
11 0 1 1 2 R2 1
12 1 0 0 0 R1 0
13 1 0 0 1 R1 0
14 1 0 0 2 R1 0
15 1 0 1 0 R1 0
16 1 0 1 1 R1 0
17 1 0 1 2 R1 0
18 1 1 0 0 R1 0
19 1 1 0 1 R1 0
20 1 1 0 2 R1 0
21 1 1 1 0 R1 0
22 1 1 1 1 R1 0
23 1 1 1 2 R1 0

© J. Marques-Silva 5 / 43

Plan for this course

• Lecture 01 – units:
• #01: Foundations

• Lecture 02 – units:
• #02: Principles of symbolic XAI – feature selection
• #03: Tractability in symbolic XAI (& myth of interpretability)

• Lecture 03 – units:
• #04: Intractability in symbolic XAI (& myth of model-agnostic XAI)
• #05: Explainability queries

• Lecture 04 – units:
• #06: Advanced topics

• Lecture 05 – units:
• #07: Principles of symbolic XAI – feature attribution (& myth of Shapley values in XAI)
• #08: Conclusions & research directions

© J. Marques-Silva 6 / 43

Some comments...

© J. Marques-Silva 7 / 43

Some necessary comments...

• Std question: Can we apply symbolic XAI to this highly complex ML model XYZ?

• Most likely answer: No!

• Would you...

• ride in a car that fails to break 10% of the time, or that fails to turn 20% of the time?
• fly with a airliner whose planes crash in about 1% of its flights?
• undergo an optional surgery that might be life-threatening in about 5% of the cases?

• For high-risk and safety-critical domains:
• Would you use an ML model that you cannot explain with rigor, and whose heuristic
explanations are likely to be wrong, and so debugging/understanding with rigor is all but
impossible?

• What is the bottom line?
• For high-risk and safety-critical domains, one ought to deploy models that can be explained
with rigor

• If that means using a fairly unexciting NN with up to 100K neurons, that is the cost of trust; for
anything else, one is trying his/her luck, in situations that could become catastrophic!

• More examples next...

© J. Marques-Silva 8 / 43

Some necessary comments...

• Std question: Can we apply symbolic XAI to this highly complex ML model XYZ?
• Most likely answer: No!

• Would you...

• ride in a car that fails to break 10% of the time, or that fails to turn 20% of the time?
• fly with a airliner whose planes crash in about 1% of its flights?
• undergo an optional surgery that might be life-threatening in about 5% of the cases?

• For high-risk and safety-critical domains:
• Would you use an ML model that you cannot explain with rigor, and whose heuristic
explanations are likely to be wrong, and so debugging/understanding with rigor is all but
impossible?

• What is the bottom line?
• For high-risk and safety-critical domains, one ought to deploy models that can be explained
with rigor

• If that means using a fairly unexciting NN with up to 100K neurons, that is the cost of trust; for
anything else, one is trying his/her luck, in situations that could become catastrophic!

• More examples next...

© J. Marques-Silva 8 / 43

Some necessary comments...

• Std question: Can we apply symbolic XAI to this highly complex ML model XYZ?
• Most likely answer: No! But ...

• Would you...

• ride in a car that fails to break 10% of the time, or that fails to turn 20% of the time?
• fly with a airliner whose planes crash in about 1% of its flights?
• undergo an optional surgery that might be life-threatening in about 5% of the cases?

• For high-risk and safety-critical domains:
• Would you use an ML model that you cannot explain with rigor, and whose heuristic
explanations are likely to be wrong, and so debugging/understanding with rigor is all but
impossible?

• What is the bottom line?
• For high-risk and safety-critical domains, one ought to deploy models that can be explained
with rigor

• If that means using a fairly unexciting NN with up to 100K neurons, that is the cost of trust; for
anything else, one is trying his/her luck, in situations that could become catastrophic!

• More examples next...

© J. Marques-Silva 8 / 43

Some necessary comments...

• Std question: Can we apply symbolic XAI to this highly complex ML model XYZ?
• Most likely answer: No! But ...

• Would you...
• ride in a car that fails to break 10% of the time, or that fails to turn 20% of the time?

• fly with a airliner whose planes crash in about 1% of its flights?
• undergo an optional surgery that might be life-threatening in about 5% of the cases?

• For high-risk and safety-critical domains:
• Would you use an ML model that you cannot explain with rigor, and whose heuristic
explanations are likely to be wrong, and so debugging/understanding with rigor is all but
impossible?

• What is the bottom line?
• For high-risk and safety-critical domains, one ought to deploy models that can be explained
with rigor

• If that means using a fairly unexciting NN with up to 100K neurons, that is the cost of trust; for
anything else, one is trying his/her luck, in situations that could become catastrophic!

• More examples next...

© J. Marques-Silva 8 / 43

Some necessary comments...

• Std question: Can we apply symbolic XAI to this highly complex ML model XYZ?
• Most likely answer: No! But ...

• Would you...
• ride in a car that fails to break 10% of the time, or that fails to turn 20% of the time?
• fly with a airliner whose planes crash in about 1% of its flights?

• undergo an optional surgery that might be life-threatening in about 5% of the cases?

• For high-risk and safety-critical domains:
• Would you use an ML model that you cannot explain with rigor, and whose heuristic
explanations are likely to be wrong, and so debugging/understanding with rigor is all but
impossible?

• What is the bottom line?
• For high-risk and safety-critical domains, one ought to deploy models that can be explained
with rigor

• If that means using a fairly unexciting NN with up to 100K neurons, that is the cost of trust; for
anything else, one is trying his/her luck, in situations that could become catastrophic!

• More examples next...

© J. Marques-Silva 8 / 43

Some necessary comments...

• Std question: Can we apply symbolic XAI to this highly complex ML model XYZ?
• Most likely answer: No! But ...

• Would you...
• ride in a car that fails to break 10% of the time, or that fails to turn 20% of the time?
• fly with a airliner whose planes crash in about 1% of its flights?
• undergo an optional surgery that might be life-threatening in about 5% of the cases?

• For high-risk and safety-critical domains:
• Would you use an ML model that you cannot explain with rigor, and whose heuristic
explanations are likely to be wrong, and so debugging/understanding with rigor is all but
impossible?

• What is the bottom line?
• For high-risk and safety-critical domains, one ought to deploy models that can be explained
with rigor

• If that means using a fairly unexciting NN with up to 100K neurons, that is the cost of trust; for
anything else, one is trying his/her luck, in situations that could become catastrophic!

• More examples next...

© J. Marques-Silva 8 / 43

Some necessary comments...

• Std question: Can we apply symbolic XAI to this highly complex ML model XYZ?
• Most likely answer: No! But ...

• Would you...
• ride in a car that fails to break 10% of the time, or that fails to turn 20% of the time?
• fly with a airliner whose planes crash in about 1% of its flights?
• undergo an optional surgery that might be life-threatening in about 5% of the cases?

• For high-risk and safety-critical domains:
• Would you use an ML model that you cannot explain with rigor, and whose heuristic
explanations are likely to be wrong, and so debugging/understanding with rigor is all but
impossible?

• What is the bottom line?
• For high-risk and safety-critical domains, one ought to deploy models that can be explained
with rigor

• If that means using a fairly unexciting NN with up to 100K neurons, that is the cost of trust; for
anything else, one is trying his/her luck, in situations that could become catastrophic!

• More examples next...

© J. Marques-Silva 8 / 43

Some necessary comments...

• Std question: Can we apply symbolic XAI to this highly complex ML model XYZ?
• Most likely answer: No! But ...

• Would you...
• ride in a car that fails to break 10% of the time, or that fails to turn 20% of the time?
• fly with a airliner whose planes crash in about 1% of its flights?
• undergo an optional surgery that might be life-threatening in about 5% of the cases?

• For high-risk and safety-critical domains:
• Would you use an ML model that you cannot explain with rigor, and whose heuristic
explanations are likely to be wrong, and so debugging/understanding with rigor is all but
impossible?

• What is the bottom line?
• For high-risk and safety-critical domains, one ought to deploy models that can be explained
with rigor

• If that means using a fairly unexciting NN with up to 100K neurons, that is the cost of trust; for
anything else, one is trying his/her luck, in situations that could become catastrophic!

• More examples next...

© J. Marques-Silva 8 / 43

Some necessary comments...

• Std question: Can we apply symbolic XAI to this highly complex ML model XYZ?
• Most likely answer: No! But ...

• Would you...
• ride in a car that fails to break 10% of the time, or that fails to turn 20% of the time?
• fly with a airliner whose planes crash in about 1% of its flights?
• undergo an optional surgery that might be life-threatening in about 5% of the cases?

• For high-risk and safety-critical domains:
• Would you use an ML model that you cannot explain with rigor, and whose heuristic
explanations are likely to be wrong, and so debugging/understanding with rigor is all but
impossible?

• What is the bottom line?
• For high-risk and safety-critical domains, one ought to deploy models that can be explained
with rigor

• If that means using a fairly unexciting NN with up to 100K neurons, that is the cost of trust; for
anything else, one is trying his/her luck, in situations that could become catastrophic!

• More examples next...
© J. Marques-Silva 8 / 43

Priceless optimal sparse decision trees (OSDT) – & non-optimality!... [HRS19]

Source: Xiyang Hu, Cynthia Rudin, Margo I. Seltzer:
Optimal Sparse Decision Trees.
NeurIPS 2019: 7265-7273

© J. Marques-Silva 9 / 43

Priceless optimal sparse decision trees (OSDT) – & non-optimality!... [HRS19]

Source: Xiyang Hu, Cynthia Rudin, Margo I. Seltzer:
Optimal Sparse Decision Trees.
NeurIPS 2019: 7265-7273

© J. Marques-Silva 9 / 43

Priceless optimal sparse decision trees (OSDT) – & non-optimality!... [HRS19]

Source: Xiyang Hu, Cynthia Rudin, Margo I. Seltzer:
Optimal Sparse Decision Trees.
NeurIPS 2019: 7265-7273

An optimal tool that
produces non-optimal DTs...!?

© J. Marques-Silva 9 / 43

BTW, highly problematic decision trees also in precision medicine...

Source: G. Valdes, J.M. Luna, E. Eaton, C.B. Simone, L.H. Ungar, & T.D. Solberg.
MediBoost: a patient stratification tool for interpretable decision making in the era of precision medicine.
Scientific reports, 6(1):1-8, 2016.

© J. Marques-Silva 10 / 43

BTW, highly problematic decision trees also in precision medicine...

Source: G. Valdes, J.M. Luna, E. Eaton, C.B. Simone, L.H. Ungar, & T.D. Solberg.
MediBoost: a patient stratification tool for interpretable decision making in the era of precision medicine.
Scientific reports, 6(1):1-8, 2016.

© J. Marques-Silva 10 / 43

BTW, highly problematic decision trees also in precision medicine...

Source: G. Valdes, J.M. Luna, E. Eaton, C.B. Simone, L.H. Ungar, & T.D. Solberg.
MediBoost: a patient stratification tool for interpretable decision making in the era of precision medicine.
Scientific reports, 6(1):1-8, 2016.

And massive
path redundancy!

© J. Marques-Silva 10 / 43

And more comments...

• Previous slides: two examples of obviously buggy DTs

• However, it is relatively simple to implement tree learners

• Can one really trust the operation of more complex ML models, even those subject to
extensive testing?

• And how to debug complex ML models if heuristic explanations are also incorrect (more
later)?

• For trustworthy AI, there exists no alternative to rigorous logic-based explanations!

© J. Marques-Silva 11 / 43

And more comments...

• Previous slides: two examples of obviously buggy DTs

• However, it is relatively simple to implement tree learners

• Can one really trust the operation of more complex ML models, even those subject to
extensive testing?

• And how to debug complex ML models if heuristic explanations are also incorrect (more
later)?

• For trustworthy AI, there exists no alternative to rigorous logic-based explanations!

© J. Marques-Silva 11 / 43

And more comments...

• Previous slides: two examples of obviously buggy DTs

• However, it is relatively simple to implement tree learners

• Can one really trust the operation of more complex ML models, even those subject to
extensive testing?

• And how to debug complex ML models if heuristic explanations are also incorrect (more
later)?

• For trustworthy AI, there exists no alternative to rigorous logic-based explanations!

© J. Marques-Silva 11 / 43

And more comments...

• Previous slides: two examples of obviously buggy DTs

• However, it is relatively simple to implement tree learners

• Can one really trust the operation of more complex ML models, even those subject to
extensive testing?

• And how to debug complex ML models if heuristic explanations are also incorrect (more
later)?

• For trustworthy AI, there exists no alternative to rigorous logic-based explanations!

© J. Marques-Silva 11 / 43

And more comments...

• Previous slides: two examples of obviously buggy DTs

• However, it is relatively simple to implement tree learners

• Can one really trust the operation of more complex ML models, even those subject to
extensive testing?

• And how to debug complex ML models if heuristic explanations are also incorrect (more
later)?

• For trustworthy AI, there exists no alternative to rigorous logic-based explanations!

© J. Marques-Silva 11 / 43

Unit #04

(Efficient) Intractability in Symbolic XAI

An encoding for DLs – components

R1: IF (τ1) THEN d1
R2: ELSE IF (τ2) THEN d2

¨ ¨ ¨

Rj: ELSE IF (τj) THEN dj
¨ ¨ ¨

Rn: ELSE IF (τn) THEN dn
RDEF: ELSE THEN dn+1

• Clauses for encoding ϕ: Eϕ(z1, . . .), such that z1 = 1 iff ϕ = 1

• For τj: Eτj(tj, . . .)
• For xi = vi: Exi=vi(li, . . .)
• Let ej = 1 iff dj matches c

© J. Marques-Silva 12 / 43

An encoding for DLs – components

R1: IF (τ1) THEN d1
R2: ELSE IF (τ2) THEN d2

¨ ¨ ¨

Rj: ELSE IF (τj) THEN dj
¨ ¨ ¨

Rn: ELSE IF (τn) THEN dn
RDEF: ELSE THEN dn+1

• Clauses for encoding ϕ: Eϕ(z1, . . .), such that z1 = 1 iff ϕ = 1

• For τj: Eτj(tj, . . .)
• For xi = vi: Exi=vi(li, . . .)
• Let ej = 1 iff dj matches c

• Prediction change with rule up to Rj (with dj ­= c), if τj* K and τk(K, for 1 ď k ă j, with
ek = 1: [

fj Ø
(
tj ^

ľ

1ďkăj,ek=1
␣tk

)]
© J. Marques-Silva 12 / 43

An encoding for DLs – components

R1: IF (τ1) THEN d1
R2: ELSE IF (τ2) THEN d2

¨ ¨ ¨

Rj: ELSE IF (τj) THEN dj
¨ ¨ ¨

Rn: ELSE IF (τn) THEN dn
RDEF: ELSE THEN dn+1

• Clauses for encoding ϕ: Eϕ(z1, . . .), such that z1 = 1 iff ϕ = 1

• For τj: Eτj(tj, . . .)
• For xi = vi: Exi=vi(li, . . .)
• Let ej = 1 iff dj matches c

• Require that at least one fj, with ej = 0 and 1 ď j ď n, to be consistent (i.e. some rule up to
j with prediction other than c to fire):(

ł

1ďjďn,ej=0
fj
)

© J. Marques-Silva 12 / 43

An encoding for DLs – components

R1: IF (τ1) THEN d1
R2: ELSE IF (τ2) THEN d2

¨ ¨ ¨

Rj: ELSE IF (τj) THEN dj
¨ ¨ ¨

Rn: ELSE IF (τn) THEN dn
RDEF: ELSE THEN dn+1

• The set of soft clauses is given by: S fi t(li), i = 1, . . . ,mu
• The set of hard clauses is given by:

B fi
ľ

1ďiďm
Exi=vi(li, . . .)^

ľ

1ďjďn
Eτj(tj, . . .)^

ľ

1ďjďn,ej=0

(
fj Ø

(
tj ^

ľ

1ďkăj,ek=1
␣tk

))
^

(
ł

1ďjďn,ej=0
fj
)

• B Y S (K
• MUSes are AXp’s & MCSes are CXp’s

© J. Marques-Silva 13 / 43

Outline – Unit #04

Explaining Decision Lists

Myth #02: Model-Agnostic Explainability

Progress Report on Symbolic XAI

What is model-agnostic explainability?

• Wildly popular XAI approach [RSG16, LL17, RSG18]

• Feature attribution: LIME, SHAP, ... [RSG16, LL17]

• Feature selection: Anchors, ... [RSG18]

• Q: Are model-agnostic explanations rigorous?

© J. Marques-Silva 14 / 43

What is model-agnostic explainability?

• Wildly popular XAI approach [RSG16, LL17, RSG18]

• Feature attribution: LIME, SHAP, ... [RSG16, LL17]

• Feature selection: Anchors, ... [RSG18]

• Q: Are model-agnostic explanations rigorous?

© J. Marques-Silva 14 / 43

What is model-agnostic explainability?

• Wildly popular XAI approach [RSG16, LL17, RSG18]

• Feature attribution: LIME, SHAP, ... [RSG16, LL17]

• Feature selection: Anchors, ... [RSG18]

• Q: Are model-agnostic explanations rigorous?

© J. Marques-Silva 14 / 43

Easy to spot problems – BT for zoo dataset

& Anchor

[INM19b, Ign20]

amphibian

tail?

-0.0547288768

0.007924526

yes

no

bird

feathers?

0.285283029

-0.0547288768

yes

no

bug

6 legs?

0.184210524

-0.0552432425

yes

no

fish

fins?

0.19463414

-0.0549824126

yes

no

invertebrate

backbone?

-0.0550289042

0.108808279

yes

no

mammal

milk?

0.311460674

-0.0536704734

yes

no

reptile

venomous?

0.028965516

-0.0444687866

yes

no

© J. Marques-Silva 15 / 43

Easy to spot problems – BT for zoo dataset

& Anchor

[INM19b, Ign20]

amphibian

tail?

-0.0547288768

0.007924526

yes

no

bird

feathers?

0.285283029

-0.0547288768

yes

no

bug

6 legs?

0.184210524

-0.0552432425

yes

no

fish

fins?

0.19463414

-0.0549824126

yes

no

invertebrate

backbone?

-0.0550289042

0.108808279

yes

no

mammal

milk?

0.311460674

-0.0536704734

yes

no

reptile

venomous?

0.028965516

-0.0444687866

yes

no

• Example instance:

(& Anchor picks): [RSG18]

IF (animal_name = pitviper)^␣hair^␣feathers^ eggs^␣milk^
␣airborne^␣aquatic^ predator^␣toothed^ backbone^ breathes^
venomous^␣fins^ (legs = 0)^ tail^␣domestic^␣catsize

THEN (class = reptile)

© J. Marques-Silva 15 / 43

Easy to spot problems – BT for zoo dataset & Anchor [INM19b, Ign20]

amphibian

tail?

-0.0547288768

0.007924526

yes

no

bird

feathers?

0.285283029

-0.0547288768

yes

no

bug

6 legs?

0.184210524

-0.0552432425

yes

no

fish

fins?

0.19463414

-0.0549824126

yes

no

invertebrate

backbone?

-0.0550289042

0.108808279

yes

no

mammal

milk?

0.311460674

-0.0536704734

yes

no

reptile

venomous?

0.028965516

-0.0444687866

yes

no

• Example instance (& Anchor picks): [RSG18]

IF (animal_name = pitviper)^␣hair^␣feathers^ eggs^␣milk^
␣airborne^␣aquatic^ predator^␣toothed^ backbone^ breathes^
venomous^␣fins^ (legs = 0)^ tail^␣domestic^␣catsize

THEN (class = reptile)

© J. Marques-Silva 15 / 43

Easy to spot problems – BT for zoo dataset & Anchor [INM19b, Ign20]

amphibian

tail?

-0.0547288768

0.007924526

yes

no

bird

feathers?

0.285283029

-0.0547288768

yes

no

bug

6 legs?

0.184210524

-0.0552432425

yes

no

fish

fins?

0.19463414

-0.0549824126

yes

no

invertebrate

backbone?

-0.0550289042

0.108808279

yes

no

mammal

milk?

0.311460674

-0.0536704734

yes

no

reptile

venomous?

0.028965516

-0.0444687866

yes

no

• Explanation obtained with Anchor: [RSG18]

IF ␣hair^␣milk^␣toothed^␣fins
THEN (class = reptile)

© J. Marques-Silva 15 / 43

Easy to spot problems – BT for zoo dataset & Anchor [INM19b, Ign20]

amphibian

tail?

-0.0547288768

0.007924526

yes

no

bird

feathers?

0.285283029

-0.0547288768

yes

no

bug

6 legs?

0.184210524

-0.0552432425

yes

no

fish

fins?

0.19463414

-0.0549824126

yes

no

invertebrate

backbone?

-0.0550289042

0.108808279

yes

no

mammal

milk?

0.311460674

-0.0536704734

yes

no

reptile

venomous?

0.028965516

-0.0444687866

yes

no

• But, explanation incorrectly “explains” another instance (from training data!)

IF (animal_name = toad)^␣hair^␣feathers^ eggs^␣milk^
␣airborne^␣aquatic^␣predator^␣toothed^ backbone^ breathes^
␣venomous^␣fins^ (legs = 4)^␣tail^␣domestic^␣catsize

THEN (class = amphibian)

© J. Marques-Silva 15 / 43

Model-agnostic explainers cannot be trusted [INM19b]

Incorrect explanations:
Classifier for deciding bank loans

Two samples: Bessie– (v1, Y) and Clive– (v2,N)
Explanation X: age=45, salary= 50K
And,
X is consistent with Bessie– (v1, Y)
X is consistent with Clive– (v2,N)

6 different outcomes & same explanation !?

© J. Marques-Silva 16 / 43

Model-agnostic explainers cannot be trusted [INM19b]

Incorrect explanations:
Classifier for deciding bank loans
Two samples: Bessie– (v1, Y) and Clive– (v2,N)

Explanation X: age=45, salary= 50K
And,
X is consistent with Bessie– (v1, Y)
X is consistent with Clive– (v2,N)

6 different outcomes & same explanation !?

© J. Marques-Silva 16 / 43

Model-agnostic explainers cannot be trusted [INM19b]

Incorrect explanations:
Classifier for deciding bank loans
Two samples: Bessie– (v1, Y) and Clive– (v2,N)
Explanation X: age=45, salary= 50K

And,
X is consistent with Bessie– (v1, Y)
X is consistent with Clive– (v2,N)

6 different outcomes & same explanation !?

© J. Marques-Silva 16 / 43

Model-agnostic explainers cannot be trusted [INM19b]

Incorrect explanations:
Classifier for deciding bank loans
Two samples: Bessie– (v1, Y) and Clive– (v2,N)
Explanation X: age=45, salary= 50K
And,
X is consistent with Bessie– (v1, Y)
X is consistent with Clive– (v2,N)

6 different outcomes & same explanation !?

© J. Marques-Silva 16 / 43

Model-agnostic explainers cannot be trusted [INM19b]

Incorrect explanations:
Classifier for deciding bank loans
Two samples: Bessie– (v1, Y) and Clive– (v2,N)
Explanation X: age=45, salary= 50K
And,
X is consistent with Bessie– (v1, Y)
X is consistent with Clive– (v2,N)

6 different outcomes & same explanation !?

© J. Marques-Silva 16 / 43

How to validate model-agnostic explanations

• For feature selection, checking rigor is easy

• Let X be the features reported by model-agnostic tool

• Check whether X is a (rigorous) (W)AXp:
1. X is sufficient for prediction:

@(x P F).
ľ

jPX
(xj = vj)Ñ(κ(x) = c)

2. And, X is subset-minimal:

@(t P X).D(x P F).
ľ

jP(X zttu)
(xj = vj)Ñ(κ(x) ­= c)

Depending on logic encoding used for classifier, different automated reasoners can be
employed

• Approach is bounded by scalability of rigorous explanations...

© J. Marques-Silva 17 / 43

How to validate model-agnostic explanations

• For feature selection, checking rigor is easy

• Let X be the features reported by model-agnostic tool

• Check whether X is a (rigorous) (W)AXp:
1. X is sufficient for prediction:

@(x P F).
ľ

jPX
(xj = vj)Ñ(κ(x) = c)

2. And, X is subset-minimal:

@(t P X).D(x P F).
ľ

jP(X zttu)
(xj = vj)Ñ(κ(x) ­= c)

Depending on logic encoding used for classifier, different automated reasoners can be
employed

• Approach is bounded by scalability of rigorous explanations...

© J. Marques-Silva 17 / 43

How to validate model-agnostic explanations

• For feature selection, checking rigor is easy

• Let X be the features reported by model-agnostic tool

• Check whether X is a (rigorous) (W)AXp:
1. X is sufficient for prediction:

@(x P F).
ľ

jPX
(xj = vj)Ñ(κ(x) = c)

2. And, X is subset-minimal:

@(t P X).D(x P F).
ľ

jP(X zttu)
(xj = vj)Ñ(κ(x) ­= c)

Depending on logic encoding used for classifier, different automated reasoners can be
employed

• Approach is bounded by scalability of rigorous explanations...

© J. Marques-Silva 17 / 43

How to validate model-agnostic explanations

• For feature selection, checking rigor is easy

• Let X be the features reported by model-agnostic tool

• Check whether X is a (rigorous) (W)AXp:
1. X is sufficient for prediction:

@(x P F).
ľ

jPX
(xj = vj)Ñ(κ(x) = c)

2. And, X is subset-minimal:

@(t P X).D(x P F).
ľ

jP(X zttu)
(xj = vj)Ñ(κ(x) ­= c)

Depending on logic encoding used for classifier, different automated reasoners can be
employed

• Approach is bounded by scalability of rigorous explanations...

© J. Marques-Silva 17 / 43

How serious is the lack of rigor of model-agnostic explanations?

• Obs: Lack of rigor of model-agnostic explanations known since 2019 [INM19b, Ign20, YIS+23]

• Results for boosted trees, due to non-scalability with NNs [CG16]

• Some results for Anchors [RSG18]

Dataset % Incorrect % Redundant % Correct
adult 80.5% 1.6% 17.9%
lending 3.0% 0.0% 97.0%
rcdv 99.4% 0.4% 0.2%

compas 84.4% 1.7% 13.9%
german 99.7% 0.2% 0.1%

• Obs: Results are not positive even if we count how often prediction changes [NSM+19]

• In this case, BNNs were used, to allow for model counting...

• For feature attribution we proposed different ways of assessing rigor [INM19b, NSM+19, Ign20, YIS+23]

© J. Marques-Silva 18 / 43

How serious is the lack of rigor of model-agnostic explanations?

• Obs: Lack of rigor of model-agnostic explanations known since 2019 [INM19b, Ign20, YIS+23]

• Results for boosted trees, due to non-scalability with NNs [CG16]

• Some results for Anchors [RSG18]

Dataset % Incorrect % Redundant % Correct
adult 80.5% 1.6% 17.9%
lending 3.0% 0.0% 97.0%
rcdv 99.4% 0.4% 0.2%

compas 84.4% 1.7% 13.9%
german 99.7% 0.2% 0.1%

• Obs: Results are not positive even if we count how often prediction changes [NSM+19]

• In this case, BNNs were used, to allow for model counting...

• For feature attribution we proposed different ways of assessing rigor [INM19b, NSM+19, Ign20, YIS+23]

© J. Marques-Silva 18 / 43

How serious is the lack of rigor of model-agnostic explanations?

• Obs: Lack of rigor of model-agnostic explanations known since 2019 [INM19b, Ign20, YIS+23]

• Results for boosted trees, due to non-scalability with NNs [CG16]

• Some results for Anchors [RSG18]

Dataset % Incorrect % Redundant % Correct
adult 80.5% 1.6% 17.9%
lending 3.0% 0.0% 97.0%
rcdv 99.4% 0.4% 0.2%

compas 84.4% 1.7% 13.9%
german 99.7% 0.2% 0.1%

• Obs: Results are not positive even if we count how often prediction changes [NSM+19]

• In this case, BNNs were used, to allow for model counting...

• For feature attribution we proposed different ways of assessing rigor [INM19b, NSM+19, Ign20, YIS+23]

© J. Marques-Silva 18 / 43

How serious is the lack of rigor of model-agnostic explanations?

• Obs: Lack of rigor of model-agnostic explanations known since 2019 [INM19b, Ign20, YIS+23]

• Results for boosted trees, due to non-scalability with NNs [CG16]

• Some results for Anchors [RSG18]

Dataset % Incorrect % Redundant % Correct
adult 80.5% 1.6% 17.9%
lending 3.0% 0.0% 97.0%
rcdv 99.4% 0.4% 0.2%

compas 84.4% 1.7% 13.9%
german 99.7% 0.2% 0.1%

• Obs: Results are not positive even if we count how often prediction changes [NSM+19]

• In this case, BNNs were used, to allow for model counting...

• For feature attribution we proposed different ways of assessing rigor [INM19b, NSM+19, Ign20, YIS+23]

© J. Marques-Silva 18 / 43

How serious is the lack of rigor of model-agnostic explanations?

• Obs: Lack of rigor of model-agnostic explanations known since 2019 [INM19b, Ign20, YIS+23]

• Results for boosted trees, due to non-scalability with NNs [CG16]

• Some results for Anchors [RSG18]

Dataset % Incorrect % Redundant % Correct
adult 80.5% 1.6% 17.9%
lending 3.0% 0.0% 97.0%
rcdv 99.4% 0.4% 0.2%

compas 84.4% 1.7% 13.9%
german 99.7% 0.2% 0.1%

• Obs: Results are not positive even if we count how often prediction changes [NSM+19]

• In this case, BNNs were used, to allow for model counting...

• For feature attribution we proposed different ways of assessing rigor [INM19b, NSM+19, Ign20, YIS+23]

© J. Marques-Silva 18 / 43

Incorrect explanations are ubiquitous & likely... [NSM+19]

© J. Marques-Silva 19 / 43

Outline – Unit #04

Explaining Decision Lists

Myth #02: Model-Agnostic Explainability

Progress Report on Symbolic XAI

Efficacy map – progress until 2022 [MI22, Mar22, MS23]

[INM19b, Ign20, IIM20, MGC+20, MGC+21, HIIM21, IMS21, IM21, CM21, HII+22, IISMS22]

NBCs

Monotonic

d-DNNF

GDFs

DTs
XpGs

DLs

RFs
BTs

NNs

BNs

Practical scalability (effectiveness)
Effective Ineffective

Co
m
pu
ta
tio
na
lc
om

pl
ex
ity

Co
m
pu
ta
tio
na
lly
ha
rd

Po
ly
-t
im
e

Computing one XP • Formal explanations efficient for several
families of classifiers

• Polynomial-time:
• Naive-Bayes classifiers (NBCs) [MGC+20]

• Decision trees (DTs) [IIM20, HIIM21]

• XpG’s: DTs, OBDDs, OMDDs, etc. [HIIM21]

• Monotonic classifiers [MGC+21]

• Propositional languages (e.g. d-DNNF, ...) [HII+22]

• Additional results [CM21, HII+22]

• Comp. hard, but effective (efficient in practice):
• Random forests (RFs) [IMS21]

• Decision lists (DLs) [IM21]

• Boosted trees (BTs) [INM19b, Ign20, IISMS22]

• Comp. hard, and ineffective (hard in practice):
• Neural networks (NNs) [INM19a]

• Bayesian networks (BNs) [SCD18]

© J. Marques-Silva 20 / 43

Efficacy map – recent progress [HM23]

[INM19b, Ign20, IIM20, MGC+20, MGC+21, HIIM21, IMS21, IM21, CM21, HII+22, IISMS22]

NBCs

Monotonic

d-DNNF

GDFs

DTs
XpGs

DLs

RFs
BTs

NNs

BNs

Practical scalability (effectiveness)
Effective Ineffective

Co
m
pu
ta
tio
na
lc
om

pl
ex
ity

Co
m
pu
ta
tio
na
lly
ha
rd

Po
ly
-t
im
e

Computing one XP • Formal explanations efficient for several
families of classifiers

• Polynomial-time:
• Naive-Bayes classifiers (NBCs) [MGC+20]

• Decision trees (DTs) [IIM20, HIIM21]

• XpG’s: DTs, OBDDs, OMDDs, etc. [HIIM21]

• Monotonic classifiers [MGC+21]

• Propositional languages (e.g. d-DNNF, ...) [HII+22]

• Additional results [CM21, HII+22]

• Comp. hard, but effective (efficient in practice):
• Random forests (RFs) [IMS21]

• Decision lists (DLs) [IM21]

• Boosted trees (BTs) [INM19b, Ign20, IISMS22]

• Comp. hard, but some practical scalability:
• Neural networks (NNs) [HM23]

• Comp. hard, and ineffective (hard in practice):
• Bayesian networks (BNs) [SCD18]

© J. Marques-Silva 21 / 43

Results for RFs in 2021 (with SAT) [IMS21]

Dataset (#F #C #I) RF CNF SAT oracle AXp (RFxpl) Anchor

D #N %A #var #cl MxS MxU #S #U Mx m avg %w avg %w
ann-thyroid (21 3 718)4 2192 98 17854 29230 0.12 0.15 2 18 0.36 0.05 0.13 96 0.32 4

appendicitis (7 2 43) 6 1920 90 5181 10085 0.02 0.02 4 3 0.05 0.01 0.03 100 0.48 0

banknote (4 2 138)5 2772 97 8068 16776 0.01 0.01 2 2 0.03 0.02 0.02 100 0.19 0

biodegradation (41 2 106)5 4420 88 11007 23842 0.31 1.05 17 22 2.27 0.04 0.29 97 4.07 3

heart-c (13 2 61) 5 3910 85 5594 11963 0.04 0.02 6 7 0.07 0.01 0.04 100 0.85 0

ionosphere (34 2 71) 5 2096 87 7174 14406 0.02 0.02 22 11 0.11 0.02 0.03 100 12.43 0

karhunen (64 10 200)5 6198 91 36708 70224 1.06 1.41 35 29 14.64 0.65 2.78 100 28.15 0

letter (16 26 398)8 44304 82 28991 68148 1.97 3.31 8 8 6.91 0.24 1.61 70 2.48 30

magic (10 2 381)6 9840 84 29530 66776 0.51 1.84 6 4 2.13 0.07 0.14 99 0.91 1

new-thyroid (5 3 43) 5 1766 100 17443 28134 0.03 0.01 3 2 0.08 0.03 0.05 100 0.36 0

pendigits (16 10 220)6 12004 95 30522 59922 2.40 1.32 10 6 4.11 0.14 0.94 96 3.68 4

ring (20 2 740)6 6188 89 19114 42362 0.27 0.44 11 9 1.25 0.05 0.25 92 7.25 8

segmentation (19 7 42) 4 1966 90 21288 35381 0.11 0.17 8 10 0.53 0.11 0.31 100 4.13 0

shuttle (9 7 1160)3 1460 99 18669 29478 0.11 0.08 2 7 0.34 0.05 0.14 99 0.42 1

sonar (60 2 42) 5 2614 88 9938 20537 0.04 0.06 36 24 0.43 0.04 0.09 100 23.02 0

spectf (44 2 54) 5 2306 88 6707 13449 0.07 0.06 20 24 0.34 0.02 0.07 100 8.12 0

texture (40 11 550)5 5724 87 34293 64187 0.79 0.63 23 17 3.24 0.19 0.93 100 28.13 0

twonorm (20 2 740)5 6266 94 21198 46901 0.08 0.08 12 8 0.28 0.06 0.10 100 5.73 0

vowel (13 11 198)6 10176 90 44523 88696 1.66 2.11 8 5 4.52 0.15 1.15 66 1.67 34

waveform-40 (40 3 500)5 6232 83 30438 58380 0.50 0.86 15 25 7.07 0.11 0.88 100 11.93 0

wpbc (33 2 78) 5 2432 76 9078 18675 1.00 1.53 20 13 5.33 0.03 0.65 79 3.91 21

© J. Marques-Silva 22 / 43

Results for NNs in 2019 (with SMT/MILP) [INM19a]

Dataset Minimal explanation Minimum explanation

size SMT (s) MILP (s) size SMT (s) MILP (s)

australian (14)
m 1 0.03 0.05 — — —
a 8.79 1.38 0.33 — — —
M 14 17.00 1.43 — — —

backache (32)
m 13 0.13 0.14 — — —
a 19.28 5.08 0.85 — — —
M 26 22.21 2.75 — — —

breast-cancer (9)
m 3 0.02 0.04 3 0.02 0.03
a 5.15 0.65 0.20 4.86 2.18 0.41
M 9 6.11 0.41 9 24.80 1.81

cleve (13)
m 4 0.05 0.07 4 — 0.07
a 8.62 3.32 0.32 7.89 — 5.14
M 13 60.74 0.60 13 — 39.06

hepatitis (19)
m 6 0.02 0.04 4 0.01 0.04
a 11.42 0.07 0.06 9.39 4.07 2.89
M 19 0.26 0.20 19 27.05 22.23

voting (16)
m 3 0.01 0.02 3 0.01 0.02
a 4.56 0.04 0.13 3.46 0.3 0.25
M 11 0.10 0.37 11 1.25 1.77

spect (22)
m 3 0.02 0.02 3 0.02 0.04
a 7.31 0.13 0.07 6.44 1.61 0.67
M 20 0.88 0.29 20 8.97 10.73

© J. Marques-Silva 23 / 43

Results for NNs in 2019 (with SMT/MILP) [INM19a]

Dataset Minimal explanation Minimum explanation

size SMT (s) MILP (s) size SMT (s) MILP (s)

australian (14)
m 1 0.03 0.05 — — —
a 8.79 1.38 0.33 — — —
M 14 17.00 1.43 — — —

backache (32)
m 13 0.13 0.14 — — —
a 19.28 5.08 0.85 — — —
M 26 22.21 2.75 — — —

breast-cancer (9)
m 3 0.02 0.04 3 0.02 0.03
a 5.15 0.65 0.20 4.86 2.18 0.41
M 9 6.11 0.41 9 24.80 1.81

cleve (13)
m 4 0.05 0.07 4 — 0.07
a 8.62 3.32 0.32 7.89 — 5.14
M 13 60.74 0.60 13 — 39.06

hepatitis (19)
m 6 0.02 0.04 4 0.01 0.04
a 11.42 0.07 0.06 9.39 4.07 2.89
M 19 0.26 0.20 19 27.05 22.23

voting (16)
m 3 0.01 0.02 3 0.01 0.02
a 4.56 0.04 0.13 3.46 0.3 0.25
M 11 0.10 0.37 11 1.25 1.77

spect (22)
m 3 0.02 0.02 3 0.02 0.04
a 7.31 0.13 0.07 6.44 1.61 0.67
M 20 0.88 0.29 20 8.97 10.73

First rigorous approach
for explaining NNs !

© J. Marques-Silva 23 / 43

Results for NNs in 2019 (with SMT/MILP) [INM19a]

Dataset Minimal explanation Minimum explanation

size SMT (s) MILP (s) size SMT (s) MILP (s)

australian (14)
m 1 0.03 0.05 — — —
a 8.79 1.38 0.33 — — —
M 14 17.00 1.43 — — —

backache (32)
m 13 0.13 0.14 — — —
a 19.28 5.08 0.85 — — —
M 26 22.21 2.75 — — —

breast-cancer (9)
m 3 0.02 0.04 3 0.02 0.03
a 5.15 0.65 0.20 4.86 2.18 0.41
M 9 6.11 0.41 9 24.80 1.81

cleve (13)
m 4 0.05 0.07 4 — 0.07
a 8.62 3.32 0.32 7.89 — 5.14
M 13 60.74 0.60 13 — 39.06

hepatitis (19)
m 6 0.02 0.04 4 0.01 0.04
a 11.42 0.07 0.06 9.39 4.07 2.89
M 19 0.26 0.20 19 27.05 22.23

voting (16)
m 3 0.01 0.02 3 0.01 0.02
a 4.56 0.04 0.13 3.46 0.3 0.25
M 11 0.10 0.37 11 1.25 1.77

spect (22)
m 3 0.02 0.02 3 0.02 0.04
a 7.31 0.13 0.07 6.44 1.61 0.67
M 20 0.88 0.29 20 8.97 10.73

First rigorous approach
for explaining NNs !

Scales to (a few)
tens of neurons...

© J. Marques-Silva 23 / 43

Results for NNs in 2023 (using Marabou [KHI+19]) [HM23]

DNN points |AXp| #Calls Time #TO |AXp| #Calls Time #TO

ϵ = 0.1 ϵ = 0.05

ACASXU_1_5
#1 3 5 185.9 0 2 5 113.8 0
#2 2 5 273.8 0 1 5 33.2 0
#3 0 5 714.2 0 0 5 4.3 0

ACASXU_3_1
#1 0 5 2219.3 0 0 5 14.2 0
#2 2 5 4263.5 1 0 5 1853.1 0
#3 1 5 581.8 0 0 5 355.9 0

ACASXU_3_2
#1 3 5 13739.3 2 1 5 6890.1 1
#2 3 5 226.4 0 2 5 125.1 0
#3 2 5 1740.6 0 2 5 173.6 0

ACASXU_3_5
#1 4 5 43.6 0 2 5 59.4 0
#2 3 5 5039.4 0 2 5 4303.8 1
#3 2 5 5574.9 1 2 5 2660.3 0

ACASXU_3_6
#1 1 5 6225.0 1 0 5 51.0 0
#2 3 5 4957.2 1 2 5 1897.3 0
#3 1 5 196.1 0 1 5 919.2 0

ACASXU_3_7
#1 3 5 6256.2 0 4 5 26.9 0
#2 4 5 311.3 0 1 5 6958.6 1
#3 2 5 7756.5 1 1 5 7807.6 1

ACASXU_4_1
#1 2 5 12413.0 2 1 5 5090.5 1
#2 1 5 5035.1 1 0 5 2335.6 0
#3 4 5 1237.3 0 4 5 1143.4 0

ACASXU_4_2
#1 4 5 15.9 0 4 5 12.1 0
#2 3 5 1507.6 0 1 5 111.3 0
#3 2 5 5641.6 2 0 5 1639.1 0

Scales to a few
hundred neurons

© J. Marques-Silva 24 / 43

Results for NNs in 2023 (using Marabou [KHI+19]) [HM23]

DNN points |AXp| #Calls Time #TO |AXp| #Calls Time #TO

ϵ = 0.1 ϵ = 0.05

ACASXU_1_5
#1 3 5 185.9 0 2 5 113.8 0
#2 2 5 273.8 0 1 5 33.2 0
#3 0 5 714.2 0 0 5 4.3 0

ACASXU_3_1
#1 0 5 2219.3 0 0 5 14.2 0
#2 2 5 4263.5 1 0 5 1853.1 0
#3 1 5 581.8 0 0 5 355.9 0

ACASXU_3_2
#1 3 5 13739.3 2 1 5 6890.1 1
#2 3 5 226.4 0 2 5 125.1 0
#3 2 5 1740.6 0 2 5 173.6 0

ACASXU_3_5
#1 4 5 43.6 0 2 5 59.4 0
#2 3 5 5039.4 0 2 5 4303.8 1
#3 2 5 5574.9 1 2 5 2660.3 0

ACASXU_3_6
#1 1 5 6225.0 1 0 5 51.0 0
#2 3 5 4957.2 1 2 5 1897.3 0
#3 1 5 196.1 0 1 5 919.2 0

ACASXU_3_7
#1 3 5 6256.2 0 4 5 26.9 0
#2 4 5 311.3 0 1 5 6958.6 1
#3 2 5 7756.5 1 1 5 7807.6 1

ACASXU_4_1
#1 2 5 12413.0 2 1 5 5090.5 1
#2 1 5 5035.1 1 0 5 2335.6 0
#3 4 5 1237.3 0 4 5 1143.4 0

ACASXU_4_2
#1 4 5 15.9 0 4 5 12.1 0
#2 3 5 1507.6 0 1 5 111.3 0
#3 2 5 5641.6 2 0 5 1639.1 0

Scales to a few
hundred neurons

© J. Marques-Silva 24 / 43

More recent results (from 2024)... [IHM+24]

Model Deletion SwiftXplain

avgC nCalls Len Mn Mx avg TO avgC nCalls Len FD% Mn Mx avg
gtsrb-dense 0.06 1024 448 52.0 76.3 63.1 0 0.23 54 447 77.4 10.8 14.0 12.2

gtsrb-convSmall 0.06 1024 309 59.2 82.6 65.1 0 0.22 74 313 39.7 15.1 19.5 16.2

gtsrb-conv — — — — — — 100 96.49 45 174 33.2 3858.7 6427.7 4449.4

mnist-denseSmall 0.28 784 177 190.9 420.3 220.4 0 0.77 111 180 15.5 77.6 104.4 85.1

mnist-dense 0.19 784 231 138.1 179.9 150.6 0 0.75 183 229 11.5 130.1 145.5 136.8

mnist-convSmall — — — — — — 100 98.56 52 116 21.3 4115.2 6858.3 5132.8

Scales to tens of
thousands of neurons!

Largest for MNIST: 10142 neurons
Largest for GSTRB: 94308 neurons

© J. Marques-Silva 25 / 43

More recent results (from 2024)... [IHM+24]

Model Deletion SwiftXplain

avgC nCalls Len Mn Mx avg TO avgC nCalls Len FD% Mn Mx avg
gtsrb-dense 0.06 1024 448 52.0 76.3 63.1 0 0.23 54 447 77.4 10.8 14.0 12.2

gtsrb-convSmall 0.06 1024 309 59.2 82.6 65.1 0 0.22 74 313 39.7 15.1 19.5 16.2

gtsrb-conv — — — — — — 100 96.49 45 174 33.2 3858.7 6427.7 4449.4

mnist-denseSmall 0.28 784 177 190.9 420.3 220.4 0 0.77 111 180 15.5 77.6 104.4 85.1

mnist-dense 0.19 784 231 138.1 179.9 150.6 0 0.75 183 229 11.5 130.1 145.5 136.8

mnist-convSmall — — — — — — 100 98.56 52 116 21.3 4115.2 6858.3 5132.8

Scales to tens of
thousands of neurons!

Largest for MNIST: 10142 neurons
Largest for GSTRB: 94308 neurons

© J. Marques-Silva 25 / 43

More recent results (from 2024)... [IHM+24]

Model Deletion SwiftXplain

avgC nCalls Len Mn Mx avg TO avgC nCalls Len FD% Mn Mx avg
gtsrb-dense 0.06 1024 448 52.0 76.3 63.1 0 0.23 54 447 77.4 10.8 14.0 12.2

gtsrb-convSmall 0.06 1024 309 59.2 82.6 65.1 0 0.22 74 313 39.7 15.1 19.5 16.2

gtsrb-conv — — — — — — 100 96.49 45 174 33.2 3858.7 6427.7 4449.4

mnist-denseSmall 0.28 784 177 190.9 420.3 220.4 0 0.77 111 180 15.5 77.6 104.4 85.1

mnist-dense 0.19 784 231 138.1 179.9 150.6 0 0.75 183 229 11.5 130.1 145.5 136.8

mnist-convSmall — — — — — — 100 98.56 52 116 21.3 4115.2 6858.3 5132.8

Scales to tens of
thousands of neurons!

Largest for MNIST: 10142 neurons
Largest for GSTRB: 94308 neurons

© J. Marques-Silva 25 / 43

Unit #05

Queries in Symbolic XAI

Outline – Unit #05

Enumeration of Explanations

Feature Necessity & Relevancy

How to navigate the space of XPs?

• Goal: iteratively list yet unlisted XPs (either AXp’s or CXp’s)

• Complexity results:
• For NBCs: enumeration with polynomial delay [MGC+20]

• For monotonic classifiers: enumeration is computationally hard [MGC+21]

• Recall: for DTs, enumeration of CXp’s is in P [HIIM21, IIM22]

• There are algorithms for direct enumeration of CXp’s
• Akin to enumerating MCSes

• No known algorithms for direct enumeration of AXp’s [MM20]

• Akin to enumerating MUSes
• Enumeration of MCSes + dualization often not realistic [LS08, FK96]

• There can be too many CXp’s...
• Best solution is a MARCO-like algorithm (for enumerating MUSes) [LPMM16]

• On-demand enumeration of AXp’s/CXp’s

© J. Marques-Silva 26 / 43

How to navigate the space of XPs?

• Goal: iteratively list yet unlisted XPs (either AXp’s or CXp’s)

• Complexity results:
• For NBCs: enumeration with polynomial delay [MGC+20]

• For monotonic classifiers: enumeration is computationally hard [MGC+21]

• Recall: for DTs, enumeration of CXp’s is in P [HIIM21, IIM22]

• There are algorithms for direct enumeration of CXp’s
• Akin to enumerating MCSes

• No known algorithms for direct enumeration of AXp’s [MM20]

• Akin to enumerating MUSes
• Enumeration of MCSes + dualization often not realistic [LS08, FK96]

• There can be too many CXp’s...
• Best solution is a MARCO-like algorithm (for enumerating MUSes) [LPMM16]

• On-demand enumeration of AXp’s/CXp’s

© J. Marques-Silva 26 / 43

How to navigate the space of XPs?

• Goal: iteratively list yet unlisted XPs (either AXp’s or CXp’s)

• Complexity results:
• For NBCs: enumeration with polynomial delay [MGC+20]

• For monotonic classifiers: enumeration is computationally hard [MGC+21]

• Recall: for DTs, enumeration of CXp’s is in P [HIIM21, IIM22]

• There are algorithms for direct enumeration of CXp’s
• Akin to enumerating MCSes

• No known algorithms for direct enumeration of AXp’s [MM20]

• Akin to enumerating MUSes
• Enumeration of MCSes + dualization often not realistic [LS08, FK96]

• There can be too many CXp’s...
• Best solution is a MARCO-like algorithm (for enumerating MUSes) [LPMM16]

• On-demand enumeration of AXp’s/CXp’s

© J. Marques-Silva 26 / 43

How to navigate the space of XPs?

• Goal: iteratively list yet unlisted XPs (either AXp’s or CXp’s)

• Complexity results:
• For NBCs: enumeration with polynomial delay [MGC+20]

• For monotonic classifiers: enumeration is computationally hard [MGC+21]

• Recall: for DTs, enumeration of CXp’s is in P [HIIM21, IIM22]

• There are algorithms for direct enumeration of CXp’s
• Akin to enumerating MCSes

• No known algorithms for direct enumeration of AXp’s [MM20]

• Akin to enumerating MUSes

• Enumeration of MCSes + dualization often not realistic [LS08, FK96]

• There can be too many CXp’s...
• Best solution is a MARCO-like algorithm (for enumerating MUSes) [LPMM16]

• On-demand enumeration of AXp’s/CXp’s

© J. Marques-Silva 26 / 43

How to navigate the space of XPs?

• Goal: iteratively list yet unlisted XPs (either AXp’s or CXp’s)

• Complexity results:
• For NBCs: enumeration with polynomial delay [MGC+20]

• For monotonic classifiers: enumeration is computationally hard [MGC+21]

• Recall: for DTs, enumeration of CXp’s is in P [HIIM21, IIM22]

• There are algorithms for direct enumeration of CXp’s
• Akin to enumerating MCSes

• No known algorithms for direct enumeration of AXp’s [MM20]

• Akin to enumerating MUSes
• Enumeration of MCSes + dualization often not realistic [LS08, FK96]

• There can be too many CXp’s...

• Best solution is a MARCO-like algorithm (for enumerating MUSes) [LPMM16]

• On-demand enumeration of AXp’s/CXp’s

© J. Marques-Silva 26 / 43

How to navigate the space of XPs?

• Goal: iteratively list yet unlisted XPs (either AXp’s or CXp’s)

• Complexity results:
• For NBCs: enumeration with polynomial delay [MGC+20]

• For monotonic classifiers: enumeration is computationally hard [MGC+21]

• Recall: for DTs, enumeration of CXp’s is in P [HIIM21, IIM22]

• There are algorithms for direct enumeration of CXp’s
• Akin to enumerating MCSes

• No known algorithms for direct enumeration of AXp’s [MM20]

• Akin to enumerating MUSes
• Enumeration of MCSes + dualization often not realistic [LS08, FK96]

• There can be too many CXp’s...
• Best solution is a MARCO-like algorithm (for enumerating MUSes) [LPMM16]

• On-demand enumeration of AXp’s/CXp’s

© J. Marques-Silva 26 / 43

Recall computing one AXp/CXp – oneXP

Input: Predicate P, parameterized by T ,M
Output: One XP S

1: procedure oneXP(P)
2: S Ð F Ź Initialization: P(S) holds
3: for i P F do Ź Loop invariant: P(S) holds
4: if P(Sztiu) then
5: S Ð Sztiu Ź Update S only if P(Sztiu) holds
6: return S Ź Returned set S : P(S) holds

© J. Marques-Silva 27 / 43

Generic oracle-based enumeration algorithm

Input: Parameters Paxp , Pcxp , T , F , κ, v

1: HÐH Ź H defined on set U = tu1, . . . , umu; initially no constraints
2: repeat
3: (outc, u)Ð SAT(H) Ź Use SAT oracle to pick assignment s.t. known constraints in H
4: if outc = true then
5: S Ð ti P F | ui = 0u Ź S : fixed features
6: U Ð ti P F | ui = 1u Ź U : universal features; F = S Y U
7: if Pcxp(U ; T ,F , κ, v) then Ź U = FzS Ě some CXp
8: P Ð oneXP(U ;Pcxp, T ,F , κ, v)
9: reportCXp(P)

10: HÐ HY t(_iPP␣ui)u Ź P Ď U : one 1-value variable must be 0 in future iterations
11: else Ź S Ě some AXp
12: P Ð oneXP(S;Paxp, T ,F , κ, v)
13: reportAXp(P)

14: HÐ HY t(_iPPui)u Ź P Ď S : one 0-value variable must be 1 in future iterations
15: until outc = false

© J. Marques-Silva 28 / 43

DT classifier – example run of enumerator

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

P t0u

P t0u

P t0u P t1u

P t0u

P t0u P t1u

P t1u

P t1u

P t0u

P t0u P t1u

P t1u

P t1u
1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

• Instance: (v, c) = ((0, 0, 1, 0, 1), 1)

x3 x5 x1 x2 x4 κ2(x)

1 1 0 0 0 1
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1

x3 x5 x1 x2 x4 κ2(x)
0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 1

Iter. u S Pcxp(¨) AXp CXp Clause Resulting H

1 (1, 1, 1, 1, 1) H 1 – t3u (␣u3) t(␣u3)u

2 (1, 1, 0, 1, 1) t3u 1 – t5u (␣u5) t(␣u3), (␣u5)u

3 (1, 1, 0, 1, 0) t3, 5u 0 t3, 5u – (u3 _ u5) t(␣u3), (␣u5), (u3_u5)u

5 [outc = false] – – – – – t(␣u3), (␣u5), (u3_u5)u

© J. Marques-Silva 29 / 43

DT classifier – another example run of enumerator

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

P t0u

P t0u

P t0u P t1u

P t0u

P t0u P t1u

P t1u

P t1u

P t0u

P t0u P t1u

P t1u

P t1u
1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

• Instance: (v, c) = ((0, 0, 1, 0, 1), 1)

x3 x5 x1 x2 x4 κ2(x)

1 1 0 0 0 1
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1

x3 x5 x1 x2 x4 κ2(x)
0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 1

Iter. u S Pcxp(¨) AXp CXp Clause Resulting H

1 (0, 0, 0, 0, 0) t1, 2, 3, 4, 5u 0 t3, 5u – (u3 _ u5) t(u3 _ u5)u

2 (0, 0, 1, 0, 0) t1, 2, 4, 5u 1 – t3u (␣u3) t(u3 _ u5), (␣u3)u

3 (0, 0, 1, 0, 1) t1, 2, 4u 1 – t5u (␣u5) t(u3_u5), (␣u3), (␣u5)u

5 [outc = false] – – – – – t(u3_u5), (␣u3), (␣u5)u

© J. Marques-Silva 30 / 43

DTs admit more efficient algorithms

• Recall:
• Given instance (v, c), create set I
• For each path Pk with prediction d ­= c:

• Let Ik denote the features with literals inconsistent with v
• Add Ik to I

• Remove from I the sets that have a proper subset in I ,
and duplicates

• I is the set of CXp’s – algorithm runs in poly-time

• For AXp’s: run std dualization algorithm [FK96]
• Obs: starting hypergraph is poly-size!
• And each MHS is an AXp

• Example:
• I1 = t3u

• I2 = t5u

• I3 = t2, 5u

• 6 keep I1 an I2
• AXp’s: MHSes yield tt3, 5uu

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

P t0u

P t0u

P t0u P t1u

P t0u

P t0u P t1u

P t1u

P t1u

P t0u

P t0u P t1u

P t1u

P t1u
1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 31 / 43

DTs admit more efficient algorithms

• Recall:
• Given instance (v, c), create set I
• For each path Pk with prediction d ­= c:

• Let Ik denote the features with literals inconsistent with v
• Add Ik to I

• Remove from I the sets that have a proper subset in I ,
and duplicates

• I is the set of CXp’s – algorithm runs in poly-time
• For AXp’s: run std dualization algorithm [FK96]

• Obs: starting hypergraph is poly-size!
• And each MHS is an AXp

• Example:
• I1 = t3u

• I2 = t5u

• I3 = t2, 5u

• 6 keep I1 an I2
• AXp’s: MHSes yield tt3, 5uu

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

P t0u

P t0u

P t0u P t1u

P t0u

P t0u P t1u

P t1u

P t1u

P t0u

P t0u P t1u

P t1u

P t1u
1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 31 / 43

DTs admit more efficient algorithms

• Recall:
• Given instance (v, c), create set I
• For each path Pk with prediction d ­= c:

• Let Ik denote the features with literals inconsistent with v
• Add Ik to I

• Remove from I the sets that have a proper subset in I ,
and duplicates

• I is the set of CXp’s – algorithm runs in poly-time
• For AXp’s: run std dualization algorithm [FK96]

• Obs: starting hypergraph is poly-size!
• And each MHS is an AXp

• Example:
• I1 = t3u

• I2 = t5u

• I3 = t2, 5u

• 6 keep I1 an I2
• AXp’s: MHSes yield tt3, 5uu

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

P t0u

P t0u

P t0u P t1u

P t0u

P t0u P t1u

P t1u

P t1u

P t0u

P t0u P t1u

P t1u

P t1u
1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 31 / 43

Outline – Unit #05

Enumeration of Explanations

Feature Necessity & Relevancy

(Conditioned) Classifier Decision Problem ((C)CDP)

[HCM+23]

• Given c P K, CDP is to decide whether the following statement holds:

D(x P F).(κ(x) = c)

• Given S Ď F , instance (v, c), CCDP is to decide whether the following statement holds:

D(x P F).
ľ

iPS
(xi = vi)^ (κ(x) = c)

• Claim: (C)CDP is in polynomial-time for DTs, decision graphs, monotonic classifiers,
among others

• Claim: (C)CDP is in NP-complete for DLs, RFs, BTs, boolean NNs and BNNs

© J. Marques-Silva 32 / 43

(Conditioned) Classifier Decision Problem ((C)CDP)

[HCM+23]

• Given c P K, CDP is to decide whether the following statement holds:

D(x P F).(κ(x) = c)

• Given S Ď F , instance (v, c), CCDP is to decide whether the following statement holds:

D(x P F).
ľ

iPS
(xi = vi)^ (κ(x) = c)

• Claim: (C)CDP is in polynomial-time for DTs, decision graphs, monotonic classifiers,
among others

• Claim: (C)CDP is in NP-complete for DLs, RFs, BTs, boolean NNs and BNNs

© J. Marques-Silva 32 / 43

(Conditioned) Classifier Decision Problem ((C)CDP)

[HCM+23]

• Given c P K, CDP is to decide whether the following statement holds:

D(x P F).(κ(x) = c)

• Given S Ď F , instance (v, c), CCDP is to decide whether the following statement holds:

D(x P F).
ľ

iPS
(xi = vi)^ (κ(x) = c)

• Claim: (C)CDP is in polynomial-time for DTs, decision graphs, monotonic classifiers,
among others

• Claim: (C)CDP is in NP-complete for DLs, RFs, BTs, boolean NNs and BNNs

© J. Marques-Silva 32 / 43

(Conditioned) Classifier Decision Problem ((C)CDP)

[HCM+23]

• Given c P K, CDP is to decide whether the following statement holds:

D(x P F).(κ(x) = c)

• Given S Ď F , instance (v, c), CCDP is to decide whether the following statement holds:

D(x P F).
ľ

iPS
(xi = vi)^ (κ(x) = c)

• Claim: (C)CDP is in polynomial-time for DTs, decision graphs, monotonic classifiers,
among others

• Claim: (C)CDP is in NP-complete for DLs, RFs, BTs, boolean NNs and BNNs

© J. Marques-Silva 32 / 43

(Conditioned) Classifier Decision Problem ((C)CDP)

[HCM+23]

• Given c P K, CDP is to decide whether the following statement holds:

D(x P F).(κ(x) = c)

• Given S Ď F , instance (v, c), CCDP is to decide whether the following statement holds:

D(x P F).
ľ

iPS
(xi = vi)^ (κ(x) = c)

• Claim: (C)CDP is in polynomial-time for DTs, decision graphs, monotonic classifiers,
among others

• Claim: (C)CDP is in NP-complete for DLs, RFs, BTs, boolean NNs and BNNs

© J. Marques-Silva 32 / 43

Feature necessity

• Consider instance (v, c)
• Sets of all AXp’s & CXp’s:

A := tX Ď F |AXp(X)u

C := tX Ď F | CXp(X)u

A: encodes the set of all irreducible rules for prediction c given v

• Features common to all AXps in A and all CXps in C:

NA :=
Ş

XPA X

NC :=
Ş

XPC X
• NA and NC need not be equal

• A = tt1u, t2, 3uu

• A feature i is necessary for abductive explanations (AXp-necessary) if i P NA

• A feature i is necessary for contrastive explanations (CXp-necessary) if i P NC

© J. Marques-Silva 33 / 43

Feature necessity

• Consider instance (v, c)
• Sets of all AXp’s & CXp’s:

A := tX Ď F |AXp(X)u

C := tX Ď F | CXp(X)u

A: encodes the set of all irreducible rules for prediction c given v

• Features common to all AXps in A and all CXps in C:

NA :=
Ş

XPA X

NC :=
Ş

XPC X

• NA and NC need not be equal
• A = tt1u, t2, 3uu

• A feature i is necessary for abductive explanations (AXp-necessary) if i P NA

• A feature i is necessary for contrastive explanations (CXp-necessary) if i P NC

© J. Marques-Silva 33 / 43

Feature necessity

• Consider instance (v, c)
• Sets of all AXp’s & CXp’s:

A := tX Ď F |AXp(X)u

C := tX Ď F | CXp(X)u

A: encodes the set of all irreducible rules for prediction c given v

• Features common to all AXps in A and all CXps in C:

NA :=
Ş

XPA X

NC :=
Ş

XPC X
• NA and NC need not be equal

• A = tt1u, t2, 3uu

• A feature i is necessary for abductive explanations (AXp-necessary) if i P NA

• A feature i is necessary for contrastive explanations (CXp-necessary) if i P NC

© J. Marques-Silva 33 / 43

Feature necessity

• Consider instance (v, c)
• Sets of all AXp’s & CXp’s:

A := tX Ď F |AXp(X)u

C := tX Ď F | CXp(X)u

A: encodes the set of all irreducible rules for prediction c given v

• Features common to all AXps in A and all CXps in C:

NA :=
Ş

XPA X

NC :=
Ş

XPC X
• NA and NC need not be equal

• A = tt1u, t2, 3uu

• A feature i is necessary for abductive explanations (AXp-necessary) if i P NA

• A feature i is necessary for contrastive explanations (CXp-necessary) if i P NC

© J. Marques-Silva 33 / 43

Feature necessity

• Consider instance (v, c)
• Sets of all AXp’s & CXp’s:

A := tX Ď F |AXp(X)u

C := tX Ď F | CXp(X)u

A: encodes the set of all irreducible rules for prediction c given v

• Features common to all AXps in A and all CXps in C:

NA :=
Ş

XPA X

NC :=
Ş

XPC X
• NA and NC need not be equal

• A = tt1u, t2, 3uu

• A feature i is necessary for abductive explanations (AXp-necessary) if i P NA

• A feature i is necessary for contrastive explanations (CXp-necessary) if i P NC

© J. Marques-Silva 33 / 43

More on feature necessity

[HCM+23]

• Claim #01: t P F is AXp-necessary iff ttu is a CXp
• Claim #02: t P F is CXp-necessary iff ttu is a AXp

• Claim #03: CXp-necessity is in P if CCDP is in P
• I.e. this is the case for DTs, DGs, and monotonic classifiers, among others

• Claim #04: AXp-necessity of t P F is in P if t has a domain size which is
polynomially-bounded on instance size

• This holds for any classifier!
• Let u be obtained from v by replacing the constant vt by some variable ut P Dt

• Feature t is AXp-necessary if κ(u) ­= κ(v) for some value ut P Dt

© J. Marques-Silva 34 / 43

More on feature necessity

[HCM+23]

• Claim #01: t P F is AXp-necessary iff ttu is a CXp

• Claim #02: t P F is CXp-necessary iff ttu is a AXp

• Claim #03: CXp-necessity is in P if CCDP is in P
• I.e. this is the case for DTs, DGs, and monotonic classifiers, among others

• Claim #04: AXp-necessity of t P F is in P if t has a domain size which is
polynomially-bounded on instance size

• This holds for any classifier!
• Let u be obtained from v by replacing the constant vt by some variable ut P Dt

• Feature t is AXp-necessary if κ(u) ­= κ(v) for some value ut P Dt

© J. Marques-Silva 34 / 43

More on feature necessity

[HCM+23]

• Claim #01: t P F is AXp-necessary iff ttu is a CXp
• Claim #02: t P F is CXp-necessary iff ttu is a AXp

• Claim #03: CXp-necessity is in P if CCDP is in P
• I.e. this is the case for DTs, DGs, and monotonic classifiers, among others

• Claim #04: AXp-necessity of t P F is in P if t has a domain size which is
polynomially-bounded on instance size

• This holds for any classifier!
• Let u be obtained from v by replacing the constant vt by some variable ut P Dt

• Feature t is AXp-necessary if κ(u) ­= κ(v) for some value ut P Dt

© J. Marques-Silva 34 / 43

More on feature necessity

[HCM+23]

• Claim #01: t P F is AXp-necessary iff ttu is a CXp
• Claim #02: t P F is CXp-necessary iff ttu is a AXp

• Claim #03: CXp-necessity is in P if CCDP is in P
• I.e. this is the case for DTs, DGs, and monotonic classifiers, among others

• Claim #04: AXp-necessity of t P F is in P if t has a domain size which is
polynomially-bounded on instance size

• This holds for any classifier!
• Let u be obtained from v by replacing the constant vt by some variable ut P Dt

• Feature t is AXp-necessary if κ(u) ­= κ(v) for some value ut P Dt

© J. Marques-Silva 34 / 43

More on feature necessity

[HCM+23]

• Claim #01: t P F is AXp-necessary iff ttu is a CXp
• Claim #02: t P F is CXp-necessary iff ttu is a AXp

• Claim #03: CXp-necessity is in P if CCDP is in P
• I.e. this is the case for DTs, DGs, and monotonic classifiers, among others

• Claim #04: AXp-necessity of t P F is in P if t has a domain size which is
polynomially-bounded on instance size

• This holds for any classifier!
• Let u be obtained from v by replacing the constant vt by some variable ut P Dt

• Feature t is AXp-necessary if κ(u) ­= κ(v) for some value ut P Dt

© J. Marques-Silva 34 / 43

More on feature necessity

[HCM+23]

• Claim #01: t P F is AXp-necessary iff ttu is a CXp
• Claim #02: t P F is CXp-necessary iff ttu is a AXp

• Claim #03: CXp-necessity is in P if CCDP is in P
• I.e. this is the case for DTs, DGs, and monotonic classifiers, among others

• Claim #04: AXp-necessity of t P F is in P if t has a domain size which is
polynomially-bounded on instance size

• This holds for any classifier!

• Let u be obtained from v by replacing the constant vt by some variable ut P Dt

• Feature t is AXp-necessary if κ(u) ­= κ(v) for some value ut P Dt

© J. Marques-Silva 34 / 43

More on feature necessity

[HCM+23]

• Claim #01: t P F is AXp-necessary iff ttu is a CXp
• Claim #02: t P F is CXp-necessary iff ttu is a AXp

• Claim #03: CXp-necessity is in P if CCDP is in P
• I.e. this is the case for DTs, DGs, and monotonic classifiers, among others

• Claim #04: AXp-necessity of t P F is in P if t has a domain size which is
polynomially-bounded on instance size

• This holds for any classifier!
• Let u be obtained from v by replacing the constant vt by some variable ut P Dt

• Feature t is AXp-necessary if κ(u) ­= κ(v) for some value ut P Dt

© J. Marques-Silva 34 / 43

An example

• Instance (v, c) = ((0, 0, 0, 0), 0)

• Is feature 1 AXp-necessary?

• Does there exist u1, such that κ(u1, 0, 0, 0) ­= κ(0, 0, 0, 0)?
• Yes! Thus, feature 1 is AXp-necessary

• Is feature 3 AXp-necessary?

• Does there exist u3, such that κ(0, 0,u3, 0) ­= κ(0, 0, 0, 0)?
• No! Thus, feature 3 is not AXp-necessary

• Confirmation:

• CXps:
• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 35 / 43

An example

• Instance (v, c) = ((0, 0, 0, 0), 0)

• Is feature 1 AXp-necessary?

• Does there exist u1, such that κ(u1, 0, 0, 0) ­= κ(0, 0, 0, 0)?
• Yes! Thus, feature 1 is AXp-necessary

• Is feature 3 AXp-necessary?

• Does there exist u3, such that κ(0, 0,u3, 0) ­= κ(0, 0, 0, 0)?
• No! Thus, feature 3 is not AXp-necessary

• Confirmation:

• CXps:
• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 35 / 43

An example

• Instance (v, c) = ((0, 0, 0, 0), 0)

• Is feature 1 AXp-necessary?
• Does there exist u1, such that κ(u1, 0, 0, 0) ­= κ(0, 0, 0, 0)?

• Yes! Thus, feature 1 is AXp-necessary
• Is feature 3 AXp-necessary?

• Does there exist u3, such that κ(0, 0,u3, 0) ­= κ(0, 0, 0, 0)?
• No! Thus, feature 3 is not AXp-necessary

• Confirmation:

• CXps:
• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 35 / 43

An example

• Instance (v, c) = ((0, 0, 0, 0), 0)

• Is feature 1 AXp-necessary?
• Does there exist u1, such that κ(u1, 0, 0, 0) ­= κ(0, 0, 0, 0)?
• Yes! Thus, feature 1 is AXp-necessary

• Is feature 3 AXp-necessary?

• Does there exist u3, such that κ(0, 0,u3, 0) ­= κ(0, 0, 0, 0)?
• No! Thus, feature 3 is not AXp-necessary

• Confirmation:

• CXps:
• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 35 / 43

An example

• Instance (v, c) = ((0, 0, 0, 0), 0)

• Is feature 1 AXp-necessary?
• Does there exist u1, such that κ(u1, 0, 0, 0) ­= κ(0, 0, 0, 0)?
• Yes! Thus, feature 1 is AXp-necessary

• Is feature 3 AXp-necessary?

• Does there exist u3, such that κ(0, 0,u3, 0) ­= κ(0, 0, 0, 0)?
• No! Thus, feature 3 is not AXp-necessary

• Confirmation:

• CXps:
• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 35 / 43

An example

• Instance (v, c) = ((0, 0, 0, 0), 0)

• Is feature 1 AXp-necessary?
• Does there exist u1, such that κ(u1, 0, 0, 0) ­= κ(0, 0, 0, 0)?
• Yes! Thus, feature 1 is AXp-necessary

• Is feature 3 AXp-necessary?
• Does there exist u3, such that κ(0, 0,u3, 0) ­= κ(0, 0, 0, 0)?

• No! Thus, feature 3 is not AXp-necessary

• Confirmation:

• CXps:
• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 35 / 43

An example

• Instance (v, c) = ((0, 0, 0, 0), 0)

• Is feature 1 AXp-necessary?
• Does there exist u1, such that κ(u1, 0, 0, 0) ­= κ(0, 0, 0, 0)?
• Yes! Thus, feature 1 is AXp-necessary

• Is feature 3 AXp-necessary?
• Does there exist u3, such that κ(0, 0,u3, 0) ­= κ(0, 0, 0, 0)?
• No! Thus, feature 3 is not AXp-necessary

• Confirmation:

• CXps:
• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 35 / 43

An example

• Instance (v, c) = ((0, 0, 0, 0), 0)

• Is feature 1 AXp-necessary?
• Does there exist u1, such that κ(u1, 0, 0, 0) ­= κ(0, 0, 0, 0)?
• Yes! Thus, feature 1 is AXp-necessary

• Is feature 3 AXp-necessary?
• Does there exist u3, such that κ(0, 0,u3, 0) ­= κ(0, 0, 0, 0)?
• No! Thus, feature 3 is not AXp-necessary

• Confirmation:
• CXps:
• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 35 / 43

An example

• Instance (v, c) = ((0, 0, 0, 0), 0)

• Is feature 1 AXp-necessary?
• Does there exist u1, such that κ(u1, 0, 0, 0) ­= κ(0, 0, 0, 0)?
• Yes! Thus, feature 1 is AXp-necessary

• Is feature 3 AXp-necessary?
• Does there exist u3, such that κ(0, 0,u3, 0) ­= κ(0, 0, 0, 0)?
• No! Thus, feature 3 is not AXp-necessary

• Confirmation:
• CXps: tt1u, t2u, t3, 4uu
• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 35 / 43

An example

• Instance (v, c) = ((0, 0, 0, 0), 0)

• Is feature 1 AXp-necessary?
• Does there exist u1, such that κ(u1, 0, 0, 0) ­= κ(0, 0, 0, 0)?
• Yes! Thus, feature 1 is AXp-necessary

• Is feature 3 AXp-necessary?
• Does there exist u3, such that κ(0, 0,u3, 0) ­= κ(0, 0, 0, 0)?
• No! Thus, feature 3 is not AXp-necessary

• Confirmation:
• CXps: tt1u, t2u, t3, 4uu
• AXps: tt1, 2, 3u, t1, 2, 4uu

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 35 / 43

Feature relevancy

• Consider instance (v, c)
• Sets of all AXp’s & CXp’s:

A := tX Ď F |AXp(X)u

C := tX Ď F | CXp(X)u

• Features occurring in some AXp in A and in some CXp in C:

FA :=
Ť

XPA X

FC :=
Ť

XPC X

• Claim: FA = FC
• I.e. a feature exists in some AXp iff it exists in some CXp

• A feature i P F is relevant if i P FA (and so, if i P FC)
• A feature is relevant if it is included in some AXp (or CXp)

• A feature i P F is irrelevant if i R FA (and so, if i R FC)
• A feature is irrelevant if it is not included in any AXp (or CXp)

© J. Marques-Silva 36 / 43

Feature relevancy

• Consider instance (v, c)
• Sets of all AXp’s & CXp’s:

A := tX Ď F |AXp(X)u

C := tX Ď F | CXp(X)u

• Features occurring in some AXp in A and in some CXp in C:

FA :=
Ť

XPA X

FC :=
Ť

XPC X

• Claim: FA = FC
• I.e. a feature exists in some AXp iff it exists in some CXp

• A feature i P F is relevant if i P FA (and so, if i P FC)
• A feature is relevant if it is included in some AXp (or CXp)

• A feature i P F is irrelevant if i R FA (and so, if i R FC)
• A feature is irrelevant if it is not included in any AXp (or CXp)

© J. Marques-Silva 36 / 43

Feature relevancy

• Consider instance (v, c)
• Sets of all AXp’s & CXp’s:

A := tX Ď F |AXp(X)u

C := tX Ď F | CXp(X)u

• Features occurring in some AXp in A and in some CXp in C:

FA :=
Ť

XPA X

FC :=
Ť

XPC X

• Claim: FA = FC
• I.e. a feature exists in some AXp iff it exists in some CXp

• A feature i P F is relevant if i P FA (and so, if i P FC)
• A feature is relevant if it is included in some AXp (or CXp)

• A feature i P F is irrelevant if i R FA (and so, if i R FC)
• A feature is irrelevant if it is not included in any AXp (or CXp)

© J. Marques-Silva 36 / 43

Feature relevancy

• Consider instance (v, c)
• Sets of all AXp’s & CXp’s:

A := tX Ď F |AXp(X)u

C := tX Ď F | CXp(X)u

• Features occurring in some AXp in A and in some CXp in C:

FA :=
Ť

XPA X

FC :=
Ť

XPC X

• Claim: FA = FC
• I.e. a feature exists in some AXp iff it exists in some CXp

• A feature i P F is relevant if i P FA (and so, if i P FC)
• A feature is relevant if it is included in some AXp (or CXp)

• A feature i P F is irrelevant if i R FA (and so, if i R FC)
• A feature is irrelevant if it is not included in any AXp (or CXp)

© J. Marques-Silva 36 / 43

Feature relevancy

• Consider instance (v, c)
• Sets of all AXp’s & CXp’s:

A := tX Ď F |AXp(X)u

C := tX Ď F | CXp(X)u

• Features occurring in some AXp in A and in some CXp in C:

FA :=
Ť

XPA X

FC :=
Ť

XPC X

• Claim: FA = FC
• I.e. a feature exists in some AXp iff it exists in some CXp

• A feature i P F is relevant if i P FA (and so, if i P FC)
• A feature is relevant if it is included in some AXp (or CXp)

• A feature i P F is irrelevant if i R FA (and so, if i R FC)
• A feature is irrelevant if it is not included in any AXp (or CXp)

© J. Marques-Silva 36 / 43

An example

• Consider the classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• (v, c) = ((0, 0, 0, 1), 1)

• A = tt4uu = C
• Why?

• If 4 fixed, then prediction must be 1
• If 4 is allowed to change, then prediction changes
• Values of 1, 2, 3 not used to fix/change the prediction

• Feature 4 is relevant, since it is included in one (and the only) AXp/CXp

• Features 1, 2, 3 are irrelevant, since there are not included in any AXp/CXp

• Obs: irrelevant features are absolutely unimportant !
We could propose some other explanation by adding features 1, 2 or 3 to AXp t4u, but
prediction would remain unchanged for any value assigned to those features

• And we aim for irreducibility (Occam’s razor is a mainstay of AI/ML)

© J. Marques-Silva 37 / 43

An example

• Consider the classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• (v, c) = ((0, 0, 0, 1), 1)

• A = tt4uu = C
• Why?

• If 4 fixed, then prediction must be 1
• If 4 is allowed to change, then prediction changes
• Values of 1, 2, 3 not used to fix/change the prediction

• Feature 4 is relevant, since it is included in one (and the only) AXp/CXp

• Features 1, 2, 3 are irrelevant, since there are not included in any AXp/CXp

• Obs: irrelevant features are absolutely unimportant !
We could propose some other explanation by adding features 1, 2 or 3 to AXp t4u, but
prediction would remain unchanged for any value assigned to those features

• And we aim for irreducibility (Occam’s razor is a mainstay of AI/ML)

© J. Marques-Silva 37 / 43

An example

• Consider the classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• (v, c) = ((0, 0, 0, 1), 1)

• A = tt4uu = C
• Why?

• If 4 fixed, then prediction must be 1
• If 4 is allowed to change, then prediction changes
• Values of 1, 2, 3 not used to fix/change the prediction

• Feature 4 is relevant, since it is included in one (and the only) AXp/CXp

• Features 1, 2, 3 are irrelevant, since there are not included in any AXp/CXp

• Obs: irrelevant features are absolutely unimportant !
We could propose some other explanation by adding features 1, 2 or 3 to AXp t4u, but
prediction would remain unchanged for any value assigned to those features

• And we aim for irreducibility (Occam’s razor is a mainstay of AI/ML)

© J. Marques-Silva 37 / 43

An example

• Consider the classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• (v, c) = ((0, 0, 0, 1), 1)

• A = tt4uu = C
• Why?

• If 4 fixed, then prediction must be 1
• If 4 is allowed to change, then prediction changes
• Values of 1, 2, 3 not used to fix/change the prediction

• Feature 4 is relevant, since it is included in one (and the only) AXp/CXp

• Features 1, 2, 3 are irrelevant, since there are not included in any AXp/CXp

• Obs: irrelevant features are absolutely unimportant !
We could propose some other explanation by adding features 1, 2 or 3 to AXp t4u, but
prediction would remain unchanged for any value assigned to those features

• And we aim for irreducibility (Occam’s razor is a mainstay of AI/ML)

© J. Marques-Silva 37 / 43

Deciding feature relevancy

• Deciding feature relevancy is in ΣP
2 – intuition:

• Pick a set of features P containing t (i.e. existential quantification), such that,

• P is a WAXp (i.e. universal quantification)
• Pzttu is a not a WAXp (i.e. universal quantification again)
• Thus, we can decide feature relevancy with D@ alternation

• For DTs, deciding feature relevancy is in P; Why?

• Obs: We know that FA = FC; thus

• Computing all CXps in polynomial-time decides feature relevancy

• General case: best solution is to exploit abstraction refinement

© J. Marques-Silva 38 / 43

Deciding feature relevancy

• Deciding feature relevancy is in ΣP
2 – intuition:

• Pick a set of features P containing t (i.e. existential quantification), such that,

• P is a WAXp (i.e. universal quantification)
• Pzttu is a not a WAXp (i.e. universal quantification again)
• Thus, we can decide feature relevancy with D@ alternation

• For DTs, deciding feature relevancy is in P; Why?

• Obs: We know that FA = FC; thus

• Computing all CXps in polynomial-time decides feature relevancy

• General case: best solution is to exploit abstraction refinement

© J. Marques-Silva 38 / 43

Deciding feature relevancy

• Deciding feature relevancy is in ΣP
2 – intuition:

• Pick a set of features P containing t (i.e. existential quantification), such that,

• P is a WAXp (i.e. universal quantification)
• Pzttu is a not a WAXp (i.e. universal quantification again)
• Thus, we can decide feature relevancy with D@ alternation

• For DTs, deciding feature relevancy is in P; Why?

• Obs: We know that FA = FC; thus

• Computing all CXps in polynomial-time decides feature relevancy

• General case: best solution is to exploit abstraction refinement

© J. Marques-Silva 38 / 43

Deciding feature relevancy

• Deciding feature relevancy is in ΣP
2 – intuition:

• Pick a set of features P containing t (i.e. existential quantification), such that,
• P is a WAXp (i.e. universal quantification)

• Pzttu is a not a WAXp (i.e. universal quantification again)
• Thus, we can decide feature relevancy with D@ alternation

• For DTs, deciding feature relevancy is in P; Why?

• Obs: We know that FA = FC; thus

• Computing all CXps in polynomial-time decides feature relevancy

• General case: best solution is to exploit abstraction refinement

© J. Marques-Silva 38 / 43

Deciding feature relevancy

• Deciding feature relevancy is in ΣP
2 – intuition:

• Pick a set of features P containing t (i.e. existential quantification), such that,
• P is a WAXp (i.e. universal quantification)
• Pzttu is a not a WAXp (i.e. universal quantification again)

• Thus, we can decide feature relevancy with D@ alternation

• For DTs, deciding feature relevancy is in P; Why?

• Obs: We know that FA = FC; thus

• Computing all CXps in polynomial-time decides feature relevancy

• General case: best solution is to exploit abstraction refinement

© J. Marques-Silva 38 / 43

Deciding feature relevancy

• Deciding feature relevancy is in ΣP
2 – intuition:

• Pick a set of features P containing t (i.e. existential quantification), such that,
• P is a WAXp (i.e. universal quantification)
• Pzttu is a not a WAXp (i.e. universal quantification again)
• Thus, we can decide feature relevancy with D@ alternation

• For DTs, deciding feature relevancy is in P; Why?

• Obs: We know that FA = FC; thus

• Computing all CXps in polynomial-time decides feature relevancy

• General case: best solution is to exploit abstraction refinement

© J. Marques-Silva 38 / 43

Deciding feature relevancy

• Deciding feature relevancy is in ΣP
2 – intuition:

• Pick a set of features P containing t (i.e. existential quantification), such that,
• P is a WAXp (i.e. universal quantification)
• Pzttu is a not a WAXp (i.e. universal quantification again)
• Thus, we can decide feature relevancy with D@ alternation

• For DTs, deciding feature relevancy is in P; Why?

• Obs: We know that FA = FC; thus

• Computing all CXps in polynomial-time decides feature relevancy

• General case: best solution is to exploit abstraction refinement

© J. Marques-Silva 38 / 43

Deciding feature relevancy

• Deciding feature relevancy is in ΣP
2 – intuition:

• Pick a set of features P containing t (i.e. existential quantification), such that,
• P is a WAXp (i.e. universal quantification)
• Pzttu is a not a WAXp (i.e. universal quantification again)
• Thus, we can decide feature relevancy with D@ alternation

• For DTs, deciding feature relevancy is in P; Why?
• Obs: We know that FA = FC; thus

• Computing all CXps in polynomial-time decides feature relevancy

• General case: best solution is to exploit abstraction refinement

© J. Marques-Silva 38 / 43

Deciding feature relevancy

• Deciding feature relevancy is in ΣP
2 – intuition:

• Pick a set of features P containing t (i.e. existential quantification), such that,
• P is a WAXp (i.e. universal quantification)
• Pzttu is a not a WAXp (i.e. universal quantification again)
• Thus, we can decide feature relevancy with D@ alternation

• For DTs, deciding feature relevancy is in P; Why?
• Obs: We know that FA = FC; thus

• Computing all CXps in polynomial-time decides feature relevancy

• General case: best solution is to exploit abstraction refinement

© J. Marques-Silva 38 / 43

Deciding feature relevancy

• Deciding feature relevancy is in ΣP
2 – intuition:

• Pick a set of features P containing t (i.e. existential quantification), such that,
• P is a WAXp (i.e. universal quantification)
• Pzttu is a not a WAXp (i.e. universal quantification again)
• Thus, we can decide feature relevancy with D@ alternation

• For DTs, deciding feature relevancy is in P; Why?
• Obs: We know that FA = FC; thus

• Computing all CXps in polynomial-time decides feature relevancy

• General case: best solution is to exploit abstraction refinement

© J. Marques-Silva 38 / 43

Abstraction refinement for feature relevancy

• Claim: X Ď F and t P X . If WAXp(X) holds and WAXp(X zttu) does not hold, then
any AXp Z Ď X Ď F must contain feature t.

Proof:

• Let Z Ď X Ď F be an AXp such that t R Z .
• Then Z Ď X zttu.
• But then, by monotonicity, WAXp(X zttu) must hold (i.e. any superset of Z is a
weak AXp); hence a contradiction.

• Approach:

• Repeatedly guess weak WAXp candidates X , with t P X [e.g. use SAT oracle]
• Check that WAXp condition holds for X : WAXp(X) ; and [e.g. use WAXp oracle]
• Check that WAXp condition fails for X zttu: ␣WAXp(X zttu) [e.g. use WAXp oracle]
• Block counterexamples in both cases

© J. Marques-Silva 39 / 43

Abstraction refinement for feature relevancy

• Claim: X Ď F and t P X . If WAXp(X) holds and WAXp(X zttu) does not hold, then
any AXp Z Ď X Ď F must contain feature t.

Proof:

• Let Z Ď X Ď F be an AXp such that t R Z .
• Then Z Ď X zttu.
• But then, by monotonicity, WAXp(X zttu) must hold (i.e. any superset of Z is a
weak AXp); hence a contradiction.

• Approach:

• Repeatedly guess weak WAXp candidates X , with t P X [e.g. use SAT oracle]
• Check that WAXp condition holds for X : WAXp(X) ; and [e.g. use WAXp oracle]
• Check that WAXp condition fails for X zttu: ␣WAXp(X zttu) [e.g. use WAXp oracle]
• Block counterexamples in both cases

© J. Marques-Silva 39 / 43

Abstraction refinement for feature relevancy

• Claim: X Ď F and t P X . If WAXp(X) holds and WAXp(X zttu) does not hold, then
any AXp Z Ď X Ď F must contain feature t.

Proof:
• Let Z Ď X Ď F be an AXp such that t R Z .

• Then Z Ď X zttu.
• But then, by monotonicity, WAXp(X zttu) must hold (i.e. any superset of Z is a
weak AXp); hence a contradiction.

• Approach:

• Repeatedly guess weak WAXp candidates X , with t P X [e.g. use SAT oracle]
• Check that WAXp condition holds for X : WAXp(X) ; and [e.g. use WAXp oracle]
• Check that WAXp condition fails for X zttu: ␣WAXp(X zttu) [e.g. use WAXp oracle]
• Block counterexamples in both cases

© J. Marques-Silva 39 / 43

Abstraction refinement for feature relevancy

• Claim: X Ď F and t P X . If WAXp(X) holds and WAXp(X zttu) does not hold, then
any AXp Z Ď X Ď F must contain feature t.

Proof:
• Let Z Ď X Ď F be an AXp such that t R Z .
• Then Z Ď X zttu.

• But then, by monotonicity, WAXp(X zttu) must hold (i.e. any superset of Z is a
weak AXp); hence a contradiction.

• Approach:

• Repeatedly guess weak WAXp candidates X , with t P X [e.g. use SAT oracle]
• Check that WAXp condition holds for X : WAXp(X) ; and [e.g. use WAXp oracle]
• Check that WAXp condition fails for X zttu: ␣WAXp(X zttu) [e.g. use WAXp oracle]
• Block counterexamples in both cases

© J. Marques-Silva 39 / 43

Abstraction refinement for feature relevancy

• Claim: X Ď F and t P X . If WAXp(X) holds and WAXp(X zttu) does not hold, then
any AXp Z Ď X Ď F must contain feature t.

Proof:
• Let Z Ď X Ď F be an AXp such that t R Z .
• Then Z Ď X zttu.
• But then, by monotonicity, WAXp(X zttu) must hold (i.e. any superset of Z is a
weak AXp); hence a contradiction.

• Approach:

• Repeatedly guess weak WAXp candidates X , with t P X [e.g. use SAT oracle]
• Check that WAXp condition holds for X : WAXp(X) ; and [e.g. use WAXp oracle]
• Check that WAXp condition fails for X zttu: ␣WAXp(X zttu) [e.g. use WAXp oracle]
• Block counterexamples in both cases

© J. Marques-Silva 39 / 43

Abstraction refinement for feature relevancy

• Claim: X Ď F and t P X . If WAXp(X) holds and WAXp(X zttu) does not hold, then
any AXp Z Ď X Ď F must contain feature t.

Proof:
• Let Z Ď X Ď F be an AXp such that t R Z .
• Then Z Ď X zttu.
• But then, by monotonicity, WAXp(X zttu) must hold (i.e. any superset of Z is a
weak AXp); hence a contradiction.

• Approach:

• Repeatedly guess weak WAXp candidates X , with t P X [e.g. use SAT oracle]
• Check that WAXp condition holds for X : WAXp(X) ; and [e.g. use WAXp oracle]
• Check that WAXp condition fails for X zttu: ␣WAXp(X zttu) [e.g. use WAXp oracle]
• Block counterexamples in both cases

© J. Marques-Silva 39 / 43

Abstraction refinement for feature relevancy

• Claim: X Ď F and t P X . If WAXp(X) holds and WAXp(X zttu) does not hold, then
any AXp Z Ď X Ď F must contain feature t.

Proof:
• Let Z Ď X Ď F be an AXp such that t R Z .
• Then Z Ď X zttu.
• But then, by monotonicity, WAXp(X zttu) must hold (i.e. any superset of Z is a
weak AXp); hence a contradiction.

• Approach:
• Repeatedly guess weak WAXp candidates X , with t P X [e.g. use SAT oracle]

• Check that WAXp condition holds for X : WAXp(X) ; and [e.g. use WAXp oracle]
• Check that WAXp condition fails for X zttu: ␣WAXp(X zttu) [e.g. use WAXp oracle]
• Block counterexamples in both cases

© J. Marques-Silva 39 / 43

Abstraction refinement for feature relevancy

• Claim: X Ď F and t P X . If WAXp(X) holds and WAXp(X zttu) does not hold, then
any AXp Z Ď X Ď F must contain feature t.

Proof:
• Let Z Ď X Ď F be an AXp such that t R Z .
• Then Z Ď X zttu.
• But then, by monotonicity, WAXp(X zttu) must hold (i.e. any superset of Z is a
weak AXp); hence a contradiction.

• Approach:
• Repeatedly guess weak WAXp candidates X , with t P X [e.g. use SAT oracle]
• Check that WAXp condition holds for X : WAXp(X) ; and [e.g. use WAXp oracle]

• Check that WAXp condition fails for X zttu: ␣WAXp(X zttu) [e.g. use WAXp oracle]
• Block counterexamples in both cases

© J. Marques-Silva 39 / 43

Abstraction refinement for feature relevancy

• Claim: X Ď F and t P X . If WAXp(X) holds and WAXp(X zttu) does not hold, then
any AXp Z Ď X Ď F must contain feature t.

Proof:
• Let Z Ď X Ď F be an AXp such that t R Z .
• Then Z Ď X zttu.
• But then, by monotonicity, WAXp(X zttu) must hold (i.e. any superset of Z is a
weak AXp); hence a contradiction.

• Approach:
• Repeatedly guess weak WAXp candidates X , with t P X [e.g. use SAT oracle]
• Check that WAXp condition holds for X : WAXp(X) ; and [e.g. use WAXp oracle]
• Check that WAXp condition fails for X zttu: ␣WAXp(X zttu) [e.g. use WAXp oracle]

• Block counterexamples in both cases

© J. Marques-Silva 39 / 43

Abstraction refinement for feature relevancy

• Claim: X Ď F and t P X . If WAXp(X) holds and WAXp(X zttu) does not hold, then
any AXp Z Ď X Ď F must contain feature t.

Proof:
• Let Z Ď X Ď F be an AXp such that t R Z .
• Then Z Ď X zttu.
• But then, by monotonicity, WAXp(X zttu) must hold (i.e. any superset of Z is a
weak AXp); hence a contradiction.

• Approach:
• Repeatedly guess weak WAXp candidates X , with t P X [e.g. use SAT oracle]
• Check that WAXp condition holds for X : WAXp(X) ; and [e.g. use WAXp oracle]
• Check that WAXp condition fails for X zttu: ␣WAXp(X zttu) [e.g. use WAXp oracle]
• Block counterexamples in both cases

© J. Marques-Silva 39 / 43

A general abstraction refinement algorithm

Input: Instance v, Target Feature t; Feature Set F , Classifier κ
1: function FRPCGR(v, t;F , κ)
2: HÐH Ź H overapproximates the subsets of F that do not contain an AXp containing t
3: repeat
4: (outc, s)Ð SAT(H, st) Ź Use SAT oracle to pick candidate WAXp containing t
5: if outc = true then
6: P Ð ti P F | si = 1u Ź Set P is the candidate WAXp, and t P P
7: D Ð ti P F | si = 0u Ź Set D contains the features not included in P
8: if ␣WAXp(P) then Ź Is P not a WAXp?
9: HÐ HY newPosCl(D; t, κ) Ź P is not a WAXp; must pick some non-picked feature
10: else Ź P is a WAXp
11: if ␣WAXp(Pzttu) then Ź P without t not a WAXp?
12: reportWeakAXp(P) Ź Feature t is included in any AXp X Ď P
13: return true
14: HÐ HY newNegCl(P; t, κ) Ź WAXp(Pzttu) holds; some feature in P must not be picked
15: until outc = false
16: return false Ź If H becomes inconsistent, then there is no AXp that contains t

© J. Marques-Silva 40 / 43

An example: feature relevancy for DT, using abstraction refinement

x1

x2

x3

x4

2 0

0

1

1

P t0u

P t0u

P t0u

P t0u P t1u

P t1u

P t1u

P t1u

1

2

4

6

8 9

7

5

3 • Instance: (v, c) = ((1, 1, 1, 1), 1)

• Is t = 1 relevant?

t = 1

s P WAXp(P) WAXp(Pzttu) Return? Clause

(1, 1, 1, 1) t1, 2, 3, 4u ! ! —— (␣u2 _␣u3 _␣u4)
(1, 1, 0, 1) t1, 2, 4u ! ! —— (␣u2 _␣u4)
(1, 1, 0, 0) t1, 2u ! ! —— (␣u2)
(1, 0, 0, 0) t1u ! % true ——

© J. Marques-Silva 41 / 43

An example: feature relevancy for DT, using abstraction refinement

x1

x2

x3

x4

2 0

0

1

1

P t0u

P t0u

P t0u

P t0u P t1u

P t1u

P t1u

P t1u

1

2

4

6

8 9

7

5

3 • Instance: (v, c) = ((1, 1, 1, 1), 1)

• Is t = 1 relevant?

t = 1

s P WAXp(P) WAXp(Pzttu) Return? Clause

(1, 1, 1, 1) t1, 2, 3, 4u ! ! —— (␣u2 _␣u3 _␣u4)
(1, 1, 0, 1) t1, 2, 4u ! ! —— (␣u2 _␣u4)
(1, 1, 0, 0) t1, 2u ! ! —— (␣u2)
(1, 0, 0, 0) t1u ! % true ——

© J. Marques-Silva 41 / 43

Another example

x1

x2

x3

x4

2 0

0

1

1

P t0u

P t0u

P t0u

P t0u P t1u

P t1u

P t1u

P t1u

1

2

4

6

8 9

7

5

3 • Instance: (v, c) = ((1, 1, 1, 1), 1)

• Is t = 4 relevant?

t = 4

s P WAXp(P) WAXp(Pzttu) Return? Clause

(1, 1, 1, 1) t1, 2, 3, 4u ! ! —— (␣u1 _␣u2 _␣u3)
(1, 1, 0, 1) t1, 2, 4u ! ! —— (␣u1 _␣u2)
(1, 0, 0, 1) t1, 4u ! ! —— (␣u1)
(0, 1, 0, 1) t2, 4u ! ! —— (␣u2)
(0, 0, 0, 1) t4u % — —— (u1 _ u2 _ u3)
(0, 0, 1, 1) t3, 4u % — —— (u1 _ u2)

[outc = false] —— — — false ——

© J. Marques-Silva 42 / 43

Another example

x1

x2

x3

x4

2 0

0

1

1

P t0u

P t0u

P t0u

P t0u P t1u

P t1u

P t1u

P t1u

1

2

4

6

8 9

7

5

3 • Instance: (v, c) = ((1, 1, 1, 1), 1)

• Is t = 4 relevant?

t = 4

s P WAXp(P) WAXp(Pzttu) Return? Clause

(1, 1, 1, 1) t1, 2, 3, 4u ! ! —— (␣u1 _␣u2 _␣u3)
(1, 1, 0, 1) t1, 2, 4u ! ! —— (␣u1 _␣u2)
(1, 0, 0, 1) t1, 4u ! ! —— (␣u1)
(0, 1, 0, 1) t2, 4u ! ! —— (␣u2)
(0, 0, 0, 1) t4u % — —— (u1 _ u2 _ u3)
(0, 0, 1, 1) t3, 4u % — —— (u1 _ u2)

[outc = false] —— — — false ——

© J. Marques-Silva 42 / 43

Questions?

© J. Marques-Silva 43 / 43

© J. Marques-Silva 44 / 43

References i

[CG16] Tianqi Chen and Carlos Guestrin.
XGBoost: A scalable tree boosting system.
In KDD, pages 785–794, 2016.

[CM21] Martin C. Cooper and Joao Marques-Silva.
On the tractability of explaining decisions of classifiers.
In CP, October 2021.

[FK96] Michael L. Fredman and Leonid Khachiyan.
On the complexity of dualization of monotone disjunctive normal forms.
J. Algorithms, 21(3):618–628, 1996.

[HCM+23] Xuanxiang Huang, Martin C. Cooper, António Morgado, Jordi Planes, and João Marques-Silva.
Feature necessity & relevancy in ML classifier explanations.
In TACAS, pages 167–186, 2023.

[HII+22] Xuanxiang Huang, Yacine Izza, Alexey Ignatiev, Martin Cooper, Nicholas Asher, and Joao Marques-Silva.
Tractable explanations for d-DNNF classifiers.
In AAAI, February 2022.

© J. Marques-Silva 45 / 43

References ii

[HIIM21] Xuanxiang Huang, Yacine Izza, Alexey Ignatiev, and Joao Marques-Silva.
On efficiently explaining graph-based classifiers.
In KR, November 2021.
Preprint available from https://arxiv.org/abs/2106.01350.

[HM23] Xuanxiang Huang and João Marques-Silva.
From robustness to explainability and back again.
CoRR, abs/2306.03048, 2023.

[HRS19] Xiyang Hu, Cynthia Rudin, and Margo Seltzer.
Optimal sparse decision trees.
In NeurIPS, pages 7265–7273, 2019.

[Ign20] Alexey Ignatiev.
Towards trustable explainable AI.
In IJCAI, pages 5154–5158, 2020.

[IHM+24] Yacine Izza, Xuanxiang Huang, Antonio Morgado, Jordi Planes, Alexey Ignatiev, and Joao Marques-Silva.
Distance-restricted explanations: Theoretical underpinnings & efficient implementation.
CoRR, abs/2405.08297, 2024.

© J. Marques-Silva 46 / 43

https://arxiv.org/abs/2106.01350

References iii

[IIM20] Yacine Izza, Alexey Ignatiev, and Joao Marques-Silva.
On explaining decision trees.
CoRR, abs/2010.11034, 2020.

[IIM22] Yacine Izza, Alexey Ignatiev, and João Marques-Silva.
On tackling explanation redundancy in decision trees.
J. Artif. Intell. Res., 75:261–321, 2022.

[IISMS22] Alexey Ignatiev, Yacine Izza, Peter J. Stuckey, and Joao Marques-Silva.
Using MaxSAT for efficient explanations of tree ensembles.
In AAAI, February 2022.

[IM21] Alexey Ignatiev and Joao Marques-Silva.
SAT-based rigorous explanations for decision lists.
In SAT, pages 251–269, July 2021.

[IMS21] Yacine Izza and Joao Marques-Silva.
On explaining random forests with SAT.
In IJCAI, pages 2584–2591, July 2021.

[INM19a] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva.
Abduction-based explanations for machine learning models.
In AAAI, pages 1511–1519, 2019.

© J. Marques-Silva 47 / 43

References iv

[INM19b] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva.
On validating, repairing and refining heuristic ML explanations.
CoRR, abs/1907.02509, 2019.

[KHI+19] Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth Shah,
Shantanu Thakoor, Haoze Wu, Aleksandar Zeljic, David L. Dill, Mykel J. Kochenderfer, and Clark W. Barrett.
The marabou framework for verification and analysis of deep neural networks.
In CAV, pages 443–452, 2019.

[LL17] Scott M. Lundberg and Su-In Lee.
A unified approach to interpreting model predictions.
In NIPS, pages 4765–4774, 2017.

[LPMM16] Mark H. Liffiton, Alessandro Previti, Ammar Malik, and Joao Marques-Silva.
Fast, flexible MUS enumeration.
Constraints, 21(2):223–250, 2016.

[LS08] Mark H. Liffiton and Karem A. Sakallah.
Algorithms for computing minimal unsatisfiable subsets of constraints.
J. Autom. Reasoning, 40(1):1–33, 2008.

© J. Marques-Silva 48 / 43

References v

[Mar22] João Marques-Silva.
Logic-based explainability in machine learning.
In Reasoning Web, pages 24–104, 2022.

[MGC+20] Joao Marques-Silva, Thomas Gerspacher, Martin C. Cooper, Alexey Ignatiev, and Nina Narodytska.
Explaining naive bayes and other linear classifiers with polynomial time and delay.
In NeurIPS, 2020.

[MGC+21] Joao Marques-Silva, Thomas Gerspacher, Martinc C. Cooper, Alexey Ignatiev, and Nina Narodytska.
Explanations for monotonic classifiers.
In ICML, pages 7469–7479, July 2021.

[MI22] João Marques-Silva and Alexey Ignatiev.
Delivering trustworthy AI through formal XAI.
In AAAI, pages 12342–12350, 2022.

[MM20] João Marques-Silva and Carlos Mencía.
Reasoning about inconsistent formulas.
In IJCAI, pages 4899–4906, 2020.

[MS23] Joao Marques-Silva.
Disproving XAI myths with formal methods – initial results.
In ICECCS, 2023.

© J. Marques-Silva 49 / 43

References vi

[NSM+19] Nina Narodytska, Aditya A. Shrotri, Kuldeep S. Meel, Alexey Ignatiev, and Joao Marques-Silva.
Assessing heuristic machine learning explanations with model counting.
In SAT, pages 267–278, 2019.

[RSG16] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin.
”why should I trust you?”: Explaining the predictions of any classifier.
In KDD, pages 1135–1144, 2016.

[RSG18] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin.
Anchors: High-precision model-agnostic explanations.
In AAAI, pages 1527–1535. AAAI Press, 2018.

[SCD18] Andy Shih, Arthur Choi, and Adnan Darwiche.
A symbolic approach to explaining bayesian network classifiers.
In IJCAI, pages 5103–5111, 2018.

[YIS+23] Jinqiang Yu, Alexey Ignatiev, Peter J. Stuckey, Nina Narodytska, and Joao Marques-Silva.
Eliminating the impossible, whatever remains must be true: On extracting and applying background
knowledge in the context of formal explanations.
In AAAI, 2023.

© J. Marques-Silva 50 / 43

	(Efficient) Intractability in Symbolic XAI
	Explaining Decision Lists
	Myth #02: Model-Agnostic Explainability
	Progress Report on Symbolic XAI
	Progress in Formal Explainability

	Queries in Symbolic XAI
	Enumeration of Explanations
	Enumeration of Explanations

	Feature Necessity & Relevancy
	Feature Necessity & Relevancy

