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Recapitulate first lecture

- ML models: classification & regression

- Glimpse of heuristic XAl

- Answers to Why? questions as logic rules
- Logic-based reasoning of ML models

- Apparent difficulties with explaining interpretable models
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Plan for this course

-+ Lecture 01 - units:
- #01: Foundations

- Lecture 02 - units:

- #02: Principles of symbolic XAl - feature selection
- #03: Tractability in symbolic XAl (& myth of interpretability)

- Lecture 03 — units:

- #04: Intractability in symbolic XAl (& myth of model-agnostic XAl)
- #05: Explainability queries

- Lecture 04 - units:
- #06: Advanced topics

-+ Lecture 05 - units:

- #07: Principles of symbolic XAl - feature attribution (& myth of Shapley values in XAl)
- #08: Conclusions & research directions
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Unit #02

Principles of Symbolic XAl - Feature Selection



What is an explanation?

- Notation:

Original DT (pm
Rewritten DT

@\ Mapping
Long / Short 1// 0 -
@»’ x1 =1 iff Length = Long
m xo =1 iff Thread = New
New / mmw up j/ N x3 = 1 iff Author = Known
() k() =1 iff &'(---) = Reads
» #(-) =0 iff #/(---) = Skips
unknown Known @K .
:

- What is an explanation?

Reads
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What is an explanation?

- Notation:

Original DT tpm7
Rewritten DT

@\ Mapping
Long / Short 1// 0 -
/ x1 = 1 iff Length = Long

m @ X9 = 1 iff Thread = New
New / mmw up j/ N x3 = 1 iff Author = Known
() R(:) =1 iff &(---) = Reads
» #(-) =0 iff &'(---) = Skips
Unknowr n Known @K .
;

- What is an explanation?
- Answer to question “Why (the prediction)?” is a rule:
Explanation: set of literals (or just features) in <COND>; irreducibility matters!

Reads

IF <COND> THEN k(x) =c¢

- E.g.: explanation for v = (—x1, =X2,X3)?
- Itis the case that, IF —x1 A —=X2 A x3 THEN k(x) =1

- One possible explanation is {—x1, —x2,x3} or simply {1, 2, 3}
5/ 47
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The similarity predicate

- Recall ML models for classification & regression:
- Classification: Mc¢ = (F,F,K, k)
- Regression: Mg = (F,F,V,p)
- General: M = (F,F,T,7)
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The similarity predicate

- Recall ML models for classification & regression:
- Classification: M¢ = (F,F, K, k)
- Regression: Mg = (F,F,V,p)
- General: M = (F,F,T,7)

- Similarity predicate: o : F — {T, 1}
- Classification: o(x) == [k(x) = (V)]
- Obs: For boolean classifiers, no need for o

- Regression: o(x) == [|p(x) — p(v)| < d], where § is user-specified

- Bottom line:
Reason about symbolic explainability by abstracting away type of ML model
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Abductive explanations - answering Why? questions

- Instance (v,q), i.e. c = 7(v)
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Abductive explanations - answering Why? questions

- Instance (v,q), i.e.c = 7(v)

- Abductive explanation (AXp, Pl-explanation): [scot8, INMI9a
- Subset-minimal set of features X < F sufficient for ensuring prediction

WAXp(X) = VY(xeF). /\jex(x,- =) >(0(x))

- Defining AXp (from weak AXps, WAXps):

AXP(X) := WAXP(X) A V(X' < X).—~WAXp(X')

- But, WAXp is monotone; hence,

AXP(X) = WAXP(X) A V(t € X).~WAXp(X\{t})

- Finding one AXp (example algorithm; many more exist): (MA20
- Let X = F, i.e. fix all features
- Invariant: WAXp(X') must hold. Why?
- Analyze features in any order, one feature i at a time
- If WAXp(X\{i}) holds, then remove i from X, i.e. i becomes free
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A simple example - AXp’s

- Classifier:
4

K(X17X2?X3?X4) = \/ Xj

=il
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A simple example - AXp’s

- Classifier:
4

’L{(X17X27X33X4> = \/ Xj

=il

- Pointv = (0,0,0,1) with prediction x(v) = 1. AXp?

- Define ¥ ={1,2,3,4} = F

- Can feature 1 be removed, i.e. V(x € {0, 1}%).=Xa A —X3 A X4 — K(X1, X2, X3,X4)? Yes
- Can feature 2 be removed, i.e. V(x € {0,1}%).—x3 A X4 — K(X1, X2, X3,X4)? Yes

- Can feature 3 be removed, i.e. V(x € {0,1}*).x4 — (X1, X2, X3,X4)? YeS

- Can feature 4 be removed, i.e. V(x € {0, 1}*).T — r(X1, X2, X3,X4)? NO

- AXp X = {4}

- In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners
- Obs: for some classes of classifiers, poly-time algorithms exist

Recap weak AXp: V(x € F). Ajcx (x; = vj) —(o(x))
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- Notation x5 = vgs:
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- Definition of Y(S):
T(S) = {xel|xs=vs}

- Expected value, non-real-valued features:

E[r(x)|xs = vs] = l/ms?”‘zxms;vﬁ(x)
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- Notation x5 = vgs:

ks =vs] = A\xi=v)

- Definition of Y(S):
T(S) = {xel|xs=vs}

- Expected value, non-real-valued features:

E[r(x)|xs = vs] = 1/\T<s;v>\ZXGT(S;V)T(X)

- Expected value, real-valued features:

E[7(x)|xs =vs] = 1/1(s;v) L(S_ )T(X)dx

© J. Marques-Silva 9/ 47



Other definitions of WAXps/AXps

- Using probabilities, non-real-valued features: (WMHKZ1, 1HI 22, ABOS22, IHI 23

WAXp(S) = Pr(o(x)|xs=vs) =1
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Other definitions of WAXps/AXps

- Using probabilities, non-real-valued features: (WMHKZ1, 1HI 22, ABOS22, IHI 23

WAXp(S) = Pr(o(x)|xs=vs) =1

- Using expected values:

WAXp(S) E[o(x) | xs = vs] = 1

- Definition of AXp remains unchanged
- This is true when comparing against 1
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Constrastive explanations — answering Why not? questions

- Instance (v, ¢), i.e. ¢ = k(v)
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- Contrastive explanation (Cxp): Mil19, INAM20
- Subset-minimal set of features Y < F sufficient for changing prediction

WCXp(Y) = 3(xeF). /\W(xj =v)) A (—o(x))

- Defining CXp:

CXp(Y) == WCXp(Y) A V(' < V).—WCXp())

- But, WCXp is also monotone; hence,

Xp(Y) = WCXp(Y) A ¥(t € V).—WCXp(W\{t})

. Flndlng one CXp: [MM20
- Let Y = F, i.e. free all features
- Invariant: WCXp(Y’) must hold. Why?
- Analyze features in any order, one feature i at a time
- IfWCXp(Y\{i}) holds, then remove i from Y, i.e. i is becomes fixed
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A simple example - CXp's

- Classifier:
4

K(X1, X2, X3,Xq) = \/ Xi

=1

- Point v = (0,0,0,1) with prediction x(v) =1
- Define Y ={1,2,3,4} = F
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- Can feature 2 be removed, i.e. 3(x € {0, 1}%).=x1 A —X2 A —K(X1, X2, X3,X4)?

Recap weak CXp: 3(x € ). Ajgy, (X; = V) A (—o(x))
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- Point v = (0,0,0,1) with prediction x(v) =1
- Define Y ={1,2,3,4} = F
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- Classifier:

- Point v = (0,0,0,1) with prediction x(v) =1
- Define Y ={1,2,3,4} = F
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A simple example - CXp's

- Classifier:

- Point v = (0,0,0,1) with prediction x(v) =1
- Define Y ={1,2,3,4} = F

- Can feature 1 be removed, i.e. 3(x € {0,1}*).—x1 A —k(X1, X2, X3,X4)? Yes
- Can feature 2 be removed, i.e. 3(x € {0, 1}%).=x; A —X2 A —K(X1, X2, X3,X4)? Yes

X1 A T X9 A TX3 A “K(Xl,XQ,Xg,XZl)? Yes

—_ — ~— —

(
- Can feature 3 be removed, i.e. 3(x € {0, 1}*
- Can feature 4 be removed, i.e. 3(x € {0,1}*
- Xp Y = {4}
- Obs: AXp is MHS of CXp and vice-versa...

TX] A TXg A TX3 A Xg A —R(X1, X2, X3,X4)? NO

Recap weak CXp: 3(x € ). Ajgy, (X; = V) A (—o(x))
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Other definitions of WCXps/CXps

- Using probabilities, non-real-valued features:

WCXp(S) = Pr(o(x)|xs=vs) <1
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Other definitions of WCXps/CXps

- Using probabilities, non-real-valued features:

WCXp(S) = Pr(o(x)|xs=vs) <1

- Using expected values:

WCXp(S)

Elo(x)|xs =vs] <1

- Definition of CXp remains unchanged
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Detour: global explanations

- AXps and CXps are defined locally (because of v) but hold globally

- Localized explanations
- Can be viewed as attempt at formalizing local explanations [RSG16, LL17, RSG18]

- One can define explanations without picking a given point in feature space
- Let g € T, and refefine the similarity predicate:
- Classification: o(x) = [k(x) = q]
- Regression: o(x) = [|k(x) — g| < 4], d is user-specified
cletl={(x;=vVvi)|ie F AnvieV}
- Let S ¢ L be a subset of literals that does not repeat features, i.e. S is not inconsistent
- Then, S is a global AXp if,

V(xel). /\(X’:v’)ES(X, =v;) —(o(x))

- Counterexamples are minimal hitting sets of global AXps and vice-versa (INM19b]
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Duality in explainability — basic results

[INAM20, Mar22]
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- Claim:
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(MHS) of the set of CXps

- Claim:
S C Fisa Xp iffit is a minimal hitting set (MHS)
of the set of AXps

- An example, (v,c) = ((0,0,1,0,1),1):
- AXps: {{3,5}}
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- Claim:
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(MHS) of the set of CXps

- Claim:
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- An example, (v,c) = ((0,0,1,0,1),1):
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- Claim:
S < Fisan AXp iff it is @ minimal hitting set
(MHS) of the set of CXps

- Claim:
S C Fisa Xp iffit is a minimal hitting set (MHS)
of the set of AXps

- An example, (v,c) = ((0,0,1,0,1),1):
- AXps: {{3,5}}
- Chps: {{3}, {5}}
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Duality in explainability — basic results

- Claim:
S < Fisan AXp iff it is @ minimal hitting set
(MHS) of the set of CXps

- Claim:
S C Fisa Xp iffit is a minimal hitting set (MHS)
of the set of AXps

- An example, (v,c) = ((0,0,1,0,1),1):
- AXps: {{3,5}}
- Xps: {{3}, {5}}
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- Each CXp is an MHS of the set of AXps
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Duality in explainability — basic results

- Claim:
S < Fisan AXp iff it is @ minimal hitting set
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- Claim:
S C Fisa Xp iffit is a minimal hitting set (MHS)
of the set of AXps

- An example, (v,c) = ((0,0,1,0,1),1):
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Duality in explainability — basic results

- Claim:
S < Fisan AXp iff it is @ minimal hitting set
(MHS) of the set of CXps

- Claim:
S C Fisa Xp iffit is a minimal hitting set (MHS)
of the set of AXps

- An example, (v,c) = ((0,0,1,0,1),1):

- AXps: {{3,5}}

-+ Xps: {{3}, {5}}

- Each AXp is an MHS of the set of CXps

- Each CXp is an MHS of the set of AXps

- BTW,
- {2,5} isnota CXp
- {1,2,3,4,5},{1,2,3,5} and {1, 3,5} are not AXps
- Why?
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Computational problems in (formal) explainability

Compute one abductive/contrastive explanation
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Computational problems in (formal) explainability

Compute one abductive/contrastive explanation

- Enumerate all abductive/contrastive explanations

- Decide whether feature included in all abductive/contrastive explanations

- Decide whether feature included in some abductive/contrastive explanation
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Computing one AXp/CXp

- Encode classifier into suitable logic representation 7 & pick suitable reasoner
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Computing one AXp/CXp

- Encode classifier into suitable logic representation 7 & pick suitable reasoner
- For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds
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Computing one AXp/CXp

- Encode classifier into suitable logic representation 7 & pick suitable reasoner

- For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds
- For CXp: start from S = F and drop (i.e. fix) features from S while WCXp condition holds

- Monotone predicates for WAXp & WCXp:

Paxp(S) = = €O ([(Aies(i =) A (=0 Posp(8) = €O ([(Aiemsi =) A (mo@)] )
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Computing one AXp/CXp

- Encode classifier into suitable logic representation 7 & pick suitable reasoner

- For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds

- For CXp: start from S = F and drop (i.e. fix) features from S while WCXp condition holds
predicates for WAXp & WCXp:

Paxp(S) = = €O ([(Aies(i =) A (=0 Posp(8) = €O ([(Aiemsi =) A (mo@)] )

Input: Predicate P, parameterized by 7, M
Output: One XP S

1. procedure oneXP(P)

2 S F = Initialization: P(S) holds
3: forie F do = Loop invariant: P(S) holds
4 if P(S\{i}) then

5 S < S\{i} > Update S only if P(S\{i}) holds

6: return S > Returned set S: P(S) holds
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Computing one AXp/CXp

- Encode classifier into suitable logic representation 7 & pick suitable reasoner

- For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds

- For CXp: start from S = F and drop (i.e. fix) features from S while WCXp condition holds
predicates for WAXp & WCXp:

Paxp(S) = = €O ([(Aies(i =) A (=0 Posp(8) = €O ([(Aiemsi =) A (mo@)] )

Input: Predicate P, parameterized by 7, M
Output: One XP S

1. procedure oneXP(P)

2 S F Exploiting MSMP, i.e. = Initialization: P(S) holds
3 forie Fdo basic algorithm used = Loop invariant: P(S) holds
4 if P(S\{i}) then for different problems.

5 S < S\{i} > Update S only if P(S\{i}) holds

6: return S > Returned set S: P(S) holds
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Detour: More Connections with Automated Reasoning

© J. Marques-Silva



Prime implicants & implicates

- A conjunction of literals = (which will be viewed as a set of literals where convenient) is a
prime implicant of some function ¢ if,

1. mE@
2. Foranyn’ < m, 7' ¥ @
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Prime implicants & implicates

- A conjunction of literals = (which will be viewed as a set of literals where convenient) is a
prime implicant of some function ¢ if,

1. mE@
2. Foranyn’ < m, 7' ¥ @

- Example:
- F=1{0,1}3
. (,D(X1,X2,X3) = X1 A X2 VX1 A X3
- Clearly, x1 A Xa = ¢
- Also, x1 H p and xa £ ¢
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Prime implicants & implicates

- A conjunction of literals = (which will be viewed as a set of literals where convenient) is a
prime implicant of some function ¢ if,

1. mE@
2. Foranyn’ < m, 7' ¥ @

- Example:
- F=1{0,1}3
. (,D(X1,X2,X3) = X1 A X2 VX1 A X3
- Clearly, x1 A Xa = ¢
- Also, x1 H p and xa £ ¢

- A disjunction of literals n (also viewed as a set of literals where convenient) is a prime
implicate of some function ¢ if

1. pEn
2. Foranyn' < n, o# 7
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Reasoning about inconsistency (mzol

- Formula 7 = B u S, with
- B: background knowledge (base), i.e. hard constraints
- S: additional (inconsistent) knowledge, i.e. soft constraints
- And, TE L
© BEg B ={(x1VvXa),(x1 v—x3)}, S = {(—x1), (—x2), (X3)}
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Reasoning about inconsistency (mzol

- Formula 7 = B u S, with
- B: background knowledge (base), i.e. hard constraints
- S: additional (inconsistent) knowledge, i.e. soft constraints
- And, TE L
© B8 B={(x1VvX2),(x1 v —x3)}, S = {(—x1), (—x2), (X3)}
- Minimal unsatisfiable subset (MUS):
- Subset-minimalsetid = S, st BullE L
©Eg U ={(—x1), (—x2)}
- Minimal correction subset (MCS):
- Subset-minimalsetC € §,st. Bu (S\C) ¥ L
cEgC={(-x)}
- Duality:
- MUSes are minimal-hitting sets (MHSes) of the MCSes, and vice-versa [Reig7]
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Reasoning about inconsistency (mzol

- Formula 7 = B u S, with
- B: background knowledge (base), i.e. hard constraints
- S: additional (inconsistent) knowledge, i.e. soft constraints
- And, TE L
© B8 B={(x1VvX2),(x1 v —x3)}, S = {(—x1), (—x2), (X3)}
- Minimal unsatisfiable subset (MUS):
- Subset-minimalsetid = S, st BullE L
©Eg U ={(—x1), (—x2)}
- Minimal correction subset (MCS):
- Subset-minimalsetC € §,st. Bu (S\C) ¥ L
cEgC={(-x)}
- Duality:
- MUSes are minimal-hitting sets (MHSes) of the MCSes, and vice-versa [Reig7]

- Variants:
- Smallest(-cost) MCS, i.e. complement of maximum(-cost) satisfiability (MaxSAT)
- Smallest(-cost) MUS
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Computing AXps (resp. CXps) as MUSes (resp. MCSes)

- Recap:

WAXp(X) = VY(xeF)./\
WCXp(Y) = 3xeF). A\
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Computing AXps (resp. CXps) as MUSes (resp. MCSes)

- Recap:

WAXp(X) = VY(xeF)./\
WCXp(Y) = 3xeF). A\

- Let,

- Hard constraints, B:
B = nier (Si—(Xi = Vi) A Encoder(—o(x))
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Computing AXps (resp. CXps) as MUSes (resp. MCSes)

- Recap:

WAXp(X) = V(xeF). /\jeX(xj =vj) —(0(x))
WCXp(Y) = 3I(xeF). /\jw(x, =) A (—o(x))

- Let,

- Hard constraints, B:
B = nier (Si—(Xi = Vi) A Encoder(—o(x))

- Soft constraints: S = {s;|i e F}
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Computing AXps (resp. CXps) as MUSes (resp. MCSes)

- Recap:

WAXp(X) = VY(xeF)./\
WCXp(Y) = 3xeF). A\

- Let,
- Hard constraints, B:
B = nier (Si—(Xi = Vi) A Encoder(—o(x))

- Soft constraints: S = {s;|i e F}

- Claim: Each MUS of (B, S) is an AXp & each MCS of (B,S) is a CXp
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Computing AXps (resp. CXps) as MUSes (resp. MCSes)

- Recap:

WAXp(X) = VY(xeF)./\
WCXp(Y) = 3xeF). A\

- Let,
- Hard constraints, B:
B = nier (Si—(Xi = Vi) A Encoder(—o(x))

- Soft constraints: S = {s;|i e F}

- Claim: Each MUS of (B, S) is an AXp & each MCS of (B,S) is a CXp
- Can use MUS/MCS algorithms for AXps/CXps
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Tractability in Symbolic XAl



Outline - Unit #03

Explanations for Decision Trees



DT explanations

middle-middle=x

g
Q
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DT explanations
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g
Q

- Run Pl-explanation algorithm based on
NP-oracles

- Worst-case exponential time
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DT explanations

© J. Marques-Silva

middle-middle=x

g
Q

- Run Pl-explanation algorithm based on

NP-oracles
- Worst-case exponential time

- For prediction 1, it suffices to ensure all

paths with prediction 0 remain
inconsistent

22/ 47



DT explanations in polynomial time

middle-middle=x

Q

- Run Pl-explanation algorithm based on
NP-oracles

- Worst-case exponential time
- For prediction 1, it suffices to ensure all
paths with prediction 0 remain
inconsistent

- le. find a subset-minimal hitting set of
all 0 paths; these are the features to
keep

- E.g BR and TR suffice for prediction

- Well-known to be solvable in
polynomial time [£G95]
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XAl Queries for DTs



Answering queries in DTs

- Finding one AXp in polynomial-time - covered
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- Finding one AXp in polynomial-time - covered
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- Finding all CXps in polynomial-time
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Answering queries in DTs

- Finding one AXp in polynomial-time - covered
- Finding one CXp in polynomial-time

- Finding all CXps in polynomial-time; hence, finding one CXp also in polynomial-time
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Answering queries in DTs

- Finding one AXp in polynomial-time - covered
- Finding one CXp in polynomial-time
- Finding all CXps in polynomial-time; hence, finding one CXp also in polynomial-time

- Practically efficient enumeration of AXps - later
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Finding all CXps in polynomial-time

- Basic algorithm:
- L=
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- Basic algorithm:
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Finding all CXps in polynomial-time

- Basic algorithm:
- L=
- For each leaf node not predicting g:
- T features with literals inconsistent with v
- AddZto L
- Remove from £ non-minimal sets
- L contains all the CXps of the DT
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Finding all CXps in polynomial-time

- Basic algorithm:
- L=
- For each leaf node not predicting g:

- T features with literals inconsistent with v
- AddZto L

- Remove from £ non-minimal sets
- L contains all the CXps of the DT

- Example: instance is ((1,1,1,1),1)
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Finding all CXps in polynomial-time

- Basic algorithm:
- L=
- For each leaf node not predicting g:

- T features with literals inconsistent with v
- AddZto L

- Remove from £ non-minimal sets
- L contains all the CXps of the DT

- Example: instance is ((1,1,1,1),1)
- Add {1,2} to £
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Finding all CXps in polynomial-time

- Basic algorithm:
- L=
- For each leaf node not predicting g:

- T features with literals inconsistent with v
- AddZto L

- Remove from £ non-minimal sets

- L contains all the CXps of the DT
- Example: instance is ((1,1,1,1),1)

- Add {1,2} to £

- Add {1,3} to £
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Finding all CXps in polynomial-time

- Basic algorithm:
- L=
- For each leaf node not predicting g:
- T features with literals inconsistent with v
- AddZto L
- Remove from £ non-minimal sets
- L contains all the CXps of the DT

- Example: instance is ((1,1,1,1),1)
- Add {1,2} to £
- Add {1,3}to £
- Add {1,4} to £

24 | 47

© J. Marques-Silva



Finding all CXps in polynomial-time

- Basic algorithm:
- L=
- For each leaf node not predicting g:
- T features with literals inconsistent with v
- AddZto L
- Remove from £ non-minimal sets
- L contains all the CXps of the DT

- Example: instance is ((1,1,1,1),1)
- Add {1,2} to £
- Add {1,3}to £
- Add {1,4} to £
- Add {3} to £
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- Add {1,3} to £
- Add {1,4} to L
- Add {3} to £
- Add {4} to £
- Remove from £: {1,3} and {1, 4}
-« Xps: {{1,2}, {3}, {4}}
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Finding all CXps in polynomial-time

- Basic algorithm:
- L=
- For each leaf node not predicting g:
- T features with literals inconsistent with v
- AddZto L
- Remove from £ non-minimal sets
- L contains all the CXps of the DT
- Example: instance is ((1,1,1,1),1)
- Add {1,2} to £
- Add {1,3} to £
- Add {1,4} to L
- Add {3} to £
- Add {4} to £
- Remove from £: {1,3} and {1, 4}
-+ Xps: {{1,2}, {3}, {4}}
- AXps: {{1,3,4},{2,3,4}}, by computing all MHSes
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Outline - Unit #03

Myth #01: Intrinsic Interpretability



Are interpretable models really interpretable? - DTs

- Case of optimal decision tree (DT) HRs19]
- Explanation for (0,0, 1,0, 1), with prediction 1?
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- Clearly, IF =x1 A =X2 A X3 A —Xa A X5 THEN k(x) =1
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Are interpretable models really interpretable? - DTs

- Case of optimal decision tree (DT) HRs19]
- Explanation for (0,0, 1,0, 1), with prediction 1?
- Clearly, IF —=x1 A =X2 A X3 A —Xa A X5 THEN k(x) =1
- But, x1, X2, X4 are irrelevant for the prediction:
X3 X5 X1 X2 Xa H(X)

1000

PR R R R R R
N Y
[ e = e
m R, O ORr KL O
O R OFr O R
e  E G
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Are interpretable models really interpretable? - DTs

- Case of optimal decision tree (DT) HRs19]
- Explanation for (0,0, 1,0, 1), with prediction 1?
- Clearly, IF —=x1 A =X2 A X3 A —Xa A X5 THEN k(x) =1
- But, X1, X2, X4 are irrelevant for the prediction:
X3 X5 X1 X2 Xa H(X)

1000

PR R R R R R
N Y
[ e = e
m R, O ORr KL O
O R OFr O R
e  E G

c.one AXp is {3,5}
Compare with {1, 2, 3,4, 5}...
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Are interpretable models really interpretable? - large DTs

[GzMm20]
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Are interpretable models really interpretable? - large DTs

[GzMm20]

Path with 19 internal nodes.

By manual inspection, at least
10 literals are redundant!

(And at least 9 features dropped)
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Are interpretable models really interpretable? - large DTs

[GzMm20]

Path with 19 internal nodes.

By manual inspection, at least
10 literals are redundant!

(And at least 9 features dropped)

© ). Marques-Silva

And the cognitive limits of human
decision makers are well-known [Mil56]

26 [ 47



Are interpretable models really interpretable? - large DTs

Redundancy can be arbitrary large
on path length [IIM20, HIIM21, 1IM22]

[GzMm20]

Path with 19 internal nodes.

By manual inspection, at least
10 literals are redundant!

(And at least 9 features dropped)

© ). Marques-Silva

And the cognitive limits of human
decision makers are well-known [Mil56]
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Are interpretable models really interpretable? — arbitrary redundancy gz, i, i

- Classifier, with xq, ..., xn € {0, 1}:
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Are interpretable models really interpretable? — arbitrary redundancy gz, i, i

- Classifier, with xq, ..., xn € {0, 1}:

- Build DT, by picking variables in order {iy, s, ..., imy, permutation of (1,2,..., m):
e{()} U (oo E{O}m e {1} m

e {1} e {1} e {1} € {0}

0]
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Are interpretable models really interpretable? — arbitrary redundancy gz, i, i

Classifier, with xq,...,xm € {0, 1}:
- Build DT, by picking variables in order {iy, s, ..., imy, permutation of (1,2,..., m):

e{O} ey (oo e{o}/Xim\ € {1) A
e {1} e {1} e {1} e {0}

- Point: (Xj,, Xi,, - - - ,xim_l,x,-m) = (0707...,07 1), and prediction 1
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Are interpretable models really interpretable? — arbitrary redundancy gz, i, i

- Classifier, with xq, ..., xn € {0, 1}:
- Build DT, by picking variables in order {iy, s, ..., imy, permutation of (1,2,..., m):

e {0} a 767{9}7 777777 i e {0} m e {1} m
<t ¢ e (1) ¢ (0)

- Point: (Xi,, Xiy, - - -5 Xip,_15Xi,) = (0,0,...,0,1), and prediction 1

- Explanation using path in DT: {iy,i2,...,im}, i.€.

X, =0 AX,=0)A.c.onXi,_, =0)A (X, =1) > K(X1,...,Xm)
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Are interpretable models really interpretable? — arbitrary redundancy gz, i, i

- Classifier, with xq, ..., xn € {0, 1}:
- Build DT, by picking variables in order {iy, s, ..., imy, permutation of (1,2,..., m):

e {0} a 767{9}7 777777 i e {0} m e {1} m
€ {1} e {1} e {1} c (0}
0]

- Point: (Xi,, Xiy, - - -5 Xip,_15Xi,) = (0,0,...,0,1), and prediction 1

- Explanation using path in DT: {iy,i2,...,im}, i.€.
X, =0 AX,=0)A.c.onXi,_, =0)A (X, =1) > K(X1,...,Xm)

But {i,,} suffices for prediction, i.e. V(x € {0,1}™).(x;, ) — k(x)
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Are interpretable models really interpretable? — arbitrary redundancy gz, i, i

- Classifier, with xq, ..., xn € {0, 1}:
- Build DT, by picking variables in order {iy, s, ..., imy, permutation of (1,2,..., m):

e {0} a 767{9}7 777777 i e {0} m e {1} m
€ {1} e {1} e {1} c (0}
0]

- Point: (Xi,, Xiy, - - -5 Xip,_15Xi,) = (0,0,...,0,1), and prediction 1

- Explanation using path in DT: {iy,i2,...,im}, i.€.
X, =0 AX,=0)A.c.onXi,_, =0)A (X, =1) > K(X1,...,Xm)

But {i,,} suffices for prediction, i.e. V(x € {0,1}™).(x;, ) — k(x)
- AXp’s can be arbitrarily smaller than paths in (optimal) DTs! M20, 122]
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Explanation redundancy in DTs is ubiquitous - published DT examples (a2l

DT Ref D #N #P YR %C %m %M Yavg
[Alp14, Ch. 09, Fig. 9.1] 2 5 3 33 25 50 50 50
[Alp16, Ch. 03, Fig. 3.2] 2 5 3 33 25 50 50 50
[Bra20, Ch. 01, Fig. 1.3] 4 9 5 60 25 25 50 36
[BA97, Figure 1] 3 12 7 14 8 33 33 33
[BBHK10, Ch. 08, Fig. 8.2] 37 4 25 12 50 50 50
[BFOS84, Ch. 01, Fig. 1.1] 3 7 4 50 25 33 33 33
[DLO1, Ch. 01, Fig. 1.2a] 2 5 3 33 25 33 33 33
[DLO1, Ch. 01, Fig. 1.2b] 2 5 3 33 25 33 33 33
[KMND20, Ch. 04, Fig. 4.14] 3 7 4 25 12 50 50 50
[KMND20, Sec. 4.7, Ex. 4] 2 5 3 33 25 50 50 50
[Quig3, Ch. 01, Fig. 1.3] 3 12 7 28 17 33 50 41
[RMOS, Ch. 01, Fig. 1.5] 3 9 5 2 12 33 33 33
[RMQS, Ch. 01, Fig. 1.4] 3 7 4 50 25 33 33 33
[WFHP17, Ch. 01, Fig. 1.2] 3 7 4 25 12 50 50 50
[VLET 16, Figure 4] 6 39 20 65 63 20 40 33
[Fla12, Ch. 02, Fig. 2.1(right)]l 2 5 3 33 25 50 50 50
[Kot13, Figure 1] 3 10 6 33 11 33 33 33
[Mor82, Figure 1] 3 9 5 8 75 33 50 41
[PM17, Ch. 07, Fig. 7.4] 3 7 4 50 25 33 33 33
[RN10, Ch. 18, Fig. 18.6] 4 12 8 25 6 25 33 29
[SB14, Ch. 18, Page 212] 2 5 3 33 25 50 50 50
[zho12, Ch. 01, Fig. 1.3] 2 5 3 33 25 33 33 33
[BHOO9, Figure 1b] 4 13 7 71 50 33 50 36
[Zho21, Ch. 04, Fig. 4.3] 4 14 9 11 2 25 25 25
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that are not minimal XPs — Russell&Norvig's book

/
12
French -~ Thai
-7 Italian Burger
e

/ Yes
/

No

- Explanation for (P, H, T, W) = (Full, Yes, Thai, No)?

© J. Marques-Silva
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Many DTs have paths that are not minimal XPs — Zhou's book

isy > 0.73?

- Explanation for (x,y) = (1.25, —1.13)7?
Obs: True explanations can be computed for categorical, integer or real-valued features !
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Many DTs have paths that are not minimal XPs — Alpaydin’s book

[Alp14]

- Explanation for (xq,x2) = (e, 8), with @ > wyg and 8 < wyg?
Obs: True explanations can be computed for categorical, integer or real-valued features !
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that are not minimal XPs - S.-S.&B.-D.s book

other 7 Pale Grade
///
Not Tasty @
Other , Gives2Pressume
’ Not Tasty ‘ ’ Tasty ‘

- Explanation for (color, softness) = (Pale Grade, Other)?
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Many DTs have paths that are not minimal XPs — Poole&Mackworth’s book

[PM17]

Unknown , Known
/

- Explanation for (L, T,A) = (Short, Follow-Up, Unknown)?
- Explanation for (L, T,A) = (Short, Follow-Up, Known)?
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[1IM20, HIIM21, 1IM22]

© J. Marques-Silva

Dataset (#F  #S) Al m
D #N %A #P YR %C %m %M %avg D #N %A #P YR %C %m %M Yavg

adult (12 6061) 6 83 78 42 33 25 20 40 25 17 509 73 255 75 91 10 66 22
anneal (38 886) 6 29 99 15 26 16 16 33 21 9 31 100 16 25 4 12 20 16
backache (32 180) 4 17 72 9 33 39 25 33 30 3 9 91 5 80 87 50 66 54
bank (19 36293) 6 113 88 57 5 12 16 20 18 19 1467 86 734 69 64 7 63 27
biodegradation (41 1052) 5 19 65 10 30 1 25 50 33 8 7176 36 50 8§ 14 40 21
cancer (9 449) 6 37 87 19 36 9 20 25 21 5 21 84 11 54 10 25 50 37
car (6 1728) 6 43 96 22 8 89 20 80 45 11 57 98 29 65 41 16 50 30
colic (22 357) 6 55 81 28 46 6 16 33 20 4 17 80 9 33 27 25 25 25
compas (11 1155) 6 77 34 39 17 8 16 20 17 15 183 37 92 66 43 12 60 27
contraceptive (9 1425) 6 99 49 50 8 2 20 60 37 17 385 48 193 27 32 12 66 21
dermatology (34 366) 6 33 90 17 23 3 16 33 21 7 17 9 9 22 0 14 20 17
divorce (54 150) 5 15 9 8 50 19 20 33 24 2 5 96 3 33 16 50 50 50
german (21 10000 6 25 61 13 38 10 20 40 29 10 99 72 50 46 13 12 40 22
heart-c (13 302) 6 43 65 22 36 18 20 33 22 4 15 75 8 87 8 25 50 34
heart-h (13 293) 6 37 59 19 31 4 20 40 24 8 25 77 13 61 60 20 50 32
kr-vs-kp (36 3196) 6 49 96 25 80 75 16 60 33 13 67 99 34 79 43 7 70 35
lending (9 5082) 6 45 73 23 73 80 16 50 25 14 507 65 254 69 80 12 75 25
letter (16 18668) 6 127 58 64 1 0 20 20 20 46 4857 68 2429 6 7 6 25 9
lymphography (18 148) 6 61 76 31 35 25 16 33 21 6 21 8 11 9 0 16 16 16
mortality (118 13442) 6 111 74 56 8 14 16 20 17 26 865 76 433 61 61 7 54 19
mushroom (22 8124) 6 39 100 20 80 44 16 33 24 5 23 100 12 50 31 20 40 25
pendigits (16 10992) 6 121 88 61 O 0o - = = 38 937 85 469 25 86 6 25 11
promoters (58 106) 1 3 9 2 0 0 — — — 3] 9 81 5 20 14 33 33 33
recidivism (15 3998) 6 105 61 53 28 22 16 33 18 15 611 51 306 53 38 9 44 16
seismic_bumps (18 2578) 6 37 89 19 42 19 20 33 24 8 39 93 20 60 79 20 60 42
shuttle (9 5800) 6 63 99 32 28 7 20 33 23 23 159 99 80 33 9 14 50 30
soybean (35 623) 6 63 8 32 9 5 25 25 25 16 71 89 36 22 1 9 12 10
spambase (57 4210) 6 63 75 32 37 12 16 33 19 15 143 91 72 76 98 7 58 25
spect (22 228) 6 45 82 23 60 51 20 50 35 6 15 86 8 87 98 50 83 65
splice (2 3178) 3 7 50 4 0 0o - — — 88 177 55 89 0 ® = - —
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Are interpretable models really interpretable? - DLs (512

Ry : IF (X1 A X3) THEN  k(x)=1
Ro : ELSEIF (X2 A Xa A Xg) THEN k(x)=0
R3 : ELSE IF (—‘Xl A X;;) THEN ,‘i(x) =1
Ry : ELSE IF (Xa A X6) THEN  k(x) =0
Rs : ELSEIF  (—=Xx1 A —x3) THEN k(x)=1
Re : ELSE IF (X6) THEN  k(x) =0
Rper : ELSE Kk(x) =1

- Instance: ((0,1,0,1,0,1),0), i.e. rule Ry fires

© J. Marques-Silva 31/ 47



Are interpretable models really interpretable? - DLs (512

Ry : IF (X1 A X3) THEN  k(x)=1
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Re : ELSE IF (X6) THEN  k(x) =0
Rper : ELSE Kk(x) =1
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- What is the abductive explanation?
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Are interpretable models really interpretable? - DLs (512

Ry : IF (X1 A X3) THEN  k(x)=1
Ro : ELSEIF (X2 A Xa A Xg) THEN k(x)=0
R3 : ELSE IF (—‘Xl A X;;) THEN ,‘i(x) =1
Ry : ELSE IF (Xa A X6) THEN  k(x) =0
Rs : ELSEIF  (—=Xx1 A —x3) THEN k(x)=1
Re : ELSE IF (X6) THEN  k(x) =0
Rper : ELSE Kk(x) =1

- Instance: ((0,1,0,1,0,1),0), i.e. rule Ry fires
- What is the abductive explanation?
- Recall: one AXp is {3,4,6}
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Are interpretable models really interpretable? - DLs (512

Ry : IF (X1 A X3) THEN  k(x)=1
Ro : ELSEIF (X2 A Xa A Xg) THEN k(x)=0
R3 : ELSE IF (—‘Xl A X;;) THEN ,‘i(x) =1
Ry : ELSE IF (Xa A X6) THEN  k(x) =0
Rs : ELSEIF  (—=Xx1 A —x3) THEN k(x)=1
Re : ELSE IF (X6) THEN  k(x) =0
Rper : ELSE Kk(x) =1

- Instance: ((0,1,0,1,0,1),0), i.e. rule Ry fires
- What is the abductive explanation?
- Recall: one AXp is {3,4,6}
- Why?
- We need 3 (or 1) so that Ry cannot fire
- With 3, we do not need 2, since with 4 and 6 fixed, then Ry is guaranteed to fire
- Some questions:

- Would average human decision maker be able to understand the AXp?
- Would he/she be able to compute one AXp, by manual inspection?
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Are interpretable models really interpretable? - DLs (512

Ry : IF (X1 A X3) THEN  k(x)=1
Ro : ELSEIF (X2 A Xa A Xg) THEN k(x)=0
R3 : ELSE IF (—‘Xl A X;;) THEN ,‘i(x) =1
Ry : ELSE IF (Xa A X6) THEN  k(x) =0
Rs : ELSEIF  (—=Xx1 A —x3) THEN k(x)=1
Re : ELSE IF (X6) THEN  k(x) =0
Rper : ELSE Kk(x) =1

- Instance: ((0,1,0,1,0,1),0), i.e. rule Ry fires
- What is the abductive explanation?
- Recall: one AXp is {3,4,6}
- Why?
- We need 3 (or 1) so that Ry cannot fire
- With 3, we do not need 2, since with 4 and 6 fixed, then Ry is guaranteed to fire
- Some questions:

- Would average human decision maker be able to understand the AXp?
- Would he/she be able to compute one AXp, by manual inspection?
(BTW, we have proved that computing one AXp for DLs is computationally hard...) [IM21, MS123]
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Are interpretable models really interpretable? - DTs/DLs in practice

100 : ;
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Outline - Unit #03

Detour: From Decision Trees to Explained Decision Sets



From DTs to explained DSs

- Decision sets raise a number of issues:

- Overlap: Two rules with different predictions can fire on the same input
- Incomplete coverage: For some inputs, no rule may fire

- A default rule defeats the purpose of unordered rules
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From DTs to explained DSs

- Decision sets raise a number of issues:

- Overlap: Two rules with different predictions can fire on the same input
- Incomplete coverage: For some inputs, no rule may fire

- A default rule defeats the purpose of unordered rules

- A DS without overlap and complete coverage computes a classification function

- And explaining DSs is computationally hard...

- One can extract explained DSs from DTs

- Extract one AXp (viewed as a logic rule) from each path in DT
- Resulting rules are non-overlapping, and cover feature space
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Example
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Example

Ro1: IF
Roz2: IF
Ros: IF
Roq: IF
Ros: IF
Rog: IF
Ro7: IF
Ros: IF
Rog: IF
Rio: IF
Ryp: IF
Ri2: IF

P THEN k() =Y

A A PITHEN k(-) = N
PANAVAZ=1]THEN (-) =N
PANAVAZ=2ASAG THEN k() =N
AANZ=2ASAGTHEN k() =Y
D
A
A

ANAVAZ=2ASAH THEN k(:) =N
AZ=2ASAHACTHENK(:) =Y
AZ=2AHAGITHEN k() =Y
PANAVAZ=2ACAGTHENk(-) =N
AAZ=0]THEN k() =Y
AAV]THEN k(1) =Y
A AN THEN k(:) =Y
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Outline - Unit #03

Explanations for Decision Graphs



Explanation graphs — overview of results

- Concept of explanation graph (XpG)

- Explanations of decision trees reducible to XpG's

- Explanations of decision graphs reducible to XpG's
- Explanations of OBDDs reducible to XpG's

- Explanations of OMDDs reducible to XpG's

- Explanations (AXp's and CXp's) of XpG's computed in polynomial time

© J. Marques-Silva 35/ 47



Example of XpG - DTs

- DT, point: (O, L,Y,P); prediction T:

€ {N}

e {0}/ 2

e {W,T} € {P,F}

€ {H} > \€ {L, M}

e{n}/ ®\e W

12
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Example of XpG - OMDDs

- OMBBD; point: (0, 1,2); prediction R: - XpG:

© J. Marques-Silva 37/ 47



Finding one AXp for XpGs - polynomial time

- Algorithm (with no inconsistent paths): - XpG:
S—F
For each feature i in F
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Finding one AXp for XpGs - polynomial time

- Algorithm (with no inconsistent paths): - XpG:
S—F
For each feature i in F
Drop feature i from S, i.e. i is free

© J. Marques-Silva 38 / 47



Finding one AXp for XpGs - polynomial time

- Algorithm (with no inconsistent paths): - XpG:
S—F
For each feature i in F

Drop feature i from S, i.e. i is free
If path to some 0 not blocked by
0-valued literals, then

Add feature i back to S
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Finding one AXp for XpGs - polynomial time

- Algorithm (with no inconsistent paths): - XpG:
S—F
For each feature i in F

Drop feature i from S, i.e. i is free
If path to some 0 not blocked by
0-valued literals, then

Add feature i back to S
Return S
- Example:
- S§={1,2,3}
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Finding one AXp for XpGs - polynomial time

- Algorithm (with no inconsistent paths): - XpG:
S—F
For each feature i in F

Drop feature i from S, i.e. i is free
If path to some 0 not blocked by
0-valued literals, then

Add feature i back to S
Return &
- Example:
- S =1{1,2,3}
- Feature 1 cannot be dropped, e.g.

S3—>S2—>5S1 —0

© J. Marques-Silva 38 / 47



Finding one AXp for XpGs - polynomial time

- Algorithm (with no inconsistent paths): - XpG:
S—F
For each feature i in F

Drop feature i from S, i.e. i is free
If path to some 0 not blocked by
0-valued literals, then

Add feature i back to S
Return &
- Example:
- S =1{1,2,3}
- Feature 1 cannot be dropped, e.g.
S3—>S2 —S1 —0

- Both features 2 and 3 dropped from S
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Finding one AXp for XpGs - polynomial time

- Algorithm (with no inconsistent paths): - XpG:
S—F
For each feature i in F

Drop feature i from S, i.e. i is free
If path to some 0 not blocked by
0-valued literals, then

Add feature i back to S
Return &
- Example:
- S =1{1,2,3}
- Feature 1 cannot be dropped, e.g.
S3—S2 —>51 —0
- Both features 2 and 3 dropped from S
- Return § = {1}
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Outline - Unit #03

Explanations for Monotonic Classifiers



Example monotonic classifier - (v, ¢) = ((10, 10,5, 0),A)

mect21]

Variable Meaning Range
k() =M Student grade € {A,B,C,D,E F}
S Final score € {0,...,10}
Feat.id  Feat.var. Feat. name Domain
1 Q Quiz {0,...,10}
2 X Exam {0,...,10}
3 H Homework {0,...,10}
4 R Project {0,...,10}
M = ITE(S>9,A,ITE(S > 7,B,ITE(S = 5,C,ITE(S > 4, D, ite(S = 2,E, F)))))
S = max[0.3xQ+0.6 xX+0.1xH,R]

Also, FXESD<C<B<xA
And, KZ(Xl) < H(Xg) if X1 < Xo
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Explaining monotonic classifiers

- Instance (v, )
- Domain forie F: A(i) < xj < p(i)
- ldea: refine lower and upper bounds on the prediction

- viand vy
- Utilities:
- FixAttr(i):
Ve (Vigy ooy Vige vy Vi)
VU — (Vupy.ees Viyooay V)

(A, B) — (A\{i}, B {i})
return (vi, vy, A, B)

- FreeAttr(i):
Vi < (VL17---7)\(i)7"'7VLN)
Vuy < (VUla"'uu(i)w'wVUN)

(A, B) « (A\{i}, B u {i})
return (vi, vy, A, B)

© J. Marques-Silva 40 [ 47



Computing one AXp

v — (Vi,..., W)

20 vy «— (Vi,..., W) > Ensures: k(v.) = k(vy)
3 (C,D,P)«— (F, &, D) > S: Some possible seed
4 forall ieSdo

5: (vi,vy,C, D) « FreeAttr(i,v, v, vy,C,D) = Require: x(v.) = k(vy), given S
6: forall ie F\S do = Loop inv.: k(vy) = k(vy)
7: (v, vy,C, D) < FreeAttr(i,v,v.,vy,C, D)

8: if k(v)) = r(vy) then = If invariant broken, fix it
9: (vi,vu, D, P) « FixAttr(i,v, v, vy, D, P)

10: return P

- Obs: S = ¢ for computing a single AXp/CXp
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Computing one AXp - example

- A()=0and u(i) =10
- v = (10,10,5,0), with (v) = A
- Q: find one AXp (CXp is similar)

Feat. Initial values Changed values Predictions Dec. Resulting values

\'a vy v vy k(vi) k(vy) v vy
| 1 ](10,10,5,0) (10,10,50) | (0,1050) (10,1050) | ¢ A | vV |(10,10,50) (10,10,5,0) |
| 2 ](10,10,5,0) (10,10,50) | (10,050) (10,050) | £ A | vV |(10,10,50) (10,10,5,0) |
| 3 ](10,10,5,0) (10,10,5,0) | (10,10,0,0) (10,10,10,0) | A A | X ](10,10,0,0) (10,10,10,0) |
| 4 ](10,10,0,0) (10,10,10,0) | (10,10,0,0) (10,10,10,10)| A A | X |(10,10,0,0) (10,10,10,10) |
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Outline - Unit #03

Review examples



Recap computation of (W)AXps/(W)CXps

WAXp(X) = V(xeF). /\jex(x, — ) —>(0(x))
WCXp(Y) = 3I(xel). /\W(xj =) A (—o(x))
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Recap computation of (W)AXps/(W)CXps

WAXp(X) = V(xeF). /\jex(x, — ) —>(0(x))
WCXp(Y) = 3I(xel). /\W(xj =) A (—o(x))

Input: Predicate P, parameterized by 7, M
Output: One XP S

1. procedure oneXP(P)

2 S—F = Initialization: P(S) holds
3: for ie F do = Loop invariant: P(S) holds
4 if P(S\{i}) then

5 S <« S\{i} = Update S only if P(S\{i}) holds

6: return S > Returned set S: P(S) holds
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Review exercise — one AXp for example DT

- Instance: (v,c) =((1,2,1,2),Y)

© J. Marques-Silva 44 | 47



Review exercise — one AXp for example DT

- Instance: (v,c) =((1,2,1,2),Y)

- Finding on AXp:
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Review exercise — one AXp for example DT

- Instance: (v,c) =((1,2,1,2),Y)

- Finding on AXp:
- 1st path inconsistent: Hy = {3}
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Review exercise — one AXp for example DT

- Instance: (v,c) =((1,2,1,2),Y)

- Finding on AXp:
- 1st path inconsistent: Hy = {3}
- 2nd path inconsistent: Hy = {2}
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Review exercise — one AXp for example DT

- Instance: (v,c) =((1,2,1,2),Y)

- Finding on AXp:
- 1st path inconsistent: Hy = {3}
- 2nd path inconsistent: Hy = {2}
- 3rd path inconsistent: Hz = {1}
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Review exercise — one AXp for example DT

- Instance: (v,c) =((1,2,1,2),Y)

- Finding on AXp:
- 1st path inconsistent: Hy = {3}
- 2nd path inconsistent: Hy = {2}
- 3rd path inconsistent: Hz = {1}
- 4th path inconsistent: Hy = {1}
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Review exercise — one AXp for example DT

- Instance: (v,c) =((1,2,1,2),Y)

- Finding on AXp:
- 1st path inconsistent: Hy = {3}
- 2nd path inconsistent: Hy = {2}
- 3rd path inconsistent: Hz = {1}
- 4th path inconsistent: Hy = {1}

+ AXp is MHS of H; sets: {1,2, 3}
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Review exercise — all CXps & AXps for example DT

- Instance: (v,c) =((1,2,1,2),Y)

© J. Marques-Silva 45 [ 47



Review exercise — all CXps & AXps for example DT

- Instance: (v,c) =((1,2,1,2),Y)

- Finding CXps:
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Review exercise — all CXps & AXps for example DT

- Instance: (v,c) =((1,2,1,2),Y)

- Finding CXps:
- Ist path: Iy = {3}
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Review exercise — all CXps & AXps for example DT

- Instance: (v,c) =((1,2,1,2),Y)

- Finding CXps:
- Ist path: Iy = {3}
- 2nd path: I, = {2}
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Review exercise — all CXps & AXps for example DT

- Instance: (v,c) =((1,2,1,2),Y)

- Finding CXps:
- Ist path: Iy = {3}
- 2nd path: I, = {2}
- 3rd path: I3 = {1}

© J. Marques-Silva 45 [ 47



Review exercise — all CXps & AXps for example DT

- Instance: (v,c) =((1,2,1,2),Y)

- Finding CXps:
- Ist path: Iy = {3}
- 2nd path: I, = {2}
- 3rd path: I3 = {1}
- 4th path: Iy = {1}
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Review exercise — all CXps & AXps for example DT

- Instance: (v,c) =((1,2,1,2),Y)

- Finding CXps:
- Ist path: Iy = {3}
- 2nd path: I, = {2}
- 3rd path: I3 = {1}
- 4th path: Iy = {1}
CL={1},{2, 8} =C
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Review exercise — all CXps & AXps for example DT

- Instance: (v,c) =((1,2,1,2),Y)

- Finding CXps:
- Ist path: Iy = {3}
- 2nd path: I, = {2}
- 3rd path: I3 = {1}
- 4th path: Iy = {1}
- L={{1},{2},{3}} =C
- Finding AXps:
(i.e. all MHSes of sets in C
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Review exercise — all CXps & AXps for example DT

- Instance: (v,c) =((1,2,1,2),Y)

- Finding CXps:
- Ist path: Iy = {3}
- 2nd path: I, = {2}
- 3rd path: I3 = {1}
- 4th path: Iy = {1}
- L={{1},{2},{3}} =C
- Finding AXps:
(i.e. all MHSes of sets in C
- A={{1,2,3}}
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Another review exercise — one AXp for example DL

- DL:
Ry : IF (X1 A X3) THEN k(x)=0
Ro : ELSE IF (X1 A X5) THEN k(x)=0
Rs : ELSE IF (X2 A Xq) THEN k(x) =1
Ry : ELSE IF (X1 A X7) THEN k(x)=0
Rs : ELSEIF  (—=x4 AXs) THEN k(x)=1
Re : ELSEIF  (—=Xx4 A —Xg) THEN k(x)=1
R7 : ELSEIF  (=X2 AXg) THEN k(x)=1
Roer : ELSE k(x) =0
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Another review exercise — one AXp for example DL

- DL:
Ry : IF (X1 A X3) THEN k(x)=0
Ro : ELSE IF (X1 A X5) THEN k(x)=0
Rs : ELSE IF (X2 A Xq) THEN k(x) =1
Ry : ELSE IF (X1 A X7) THEN k(x)=0
Rs : ELSEIF  (—=x4 AXs) THEN k(x)=1
Re : ELSEIF  (—=Xx4 A —Xg) THEN k(x)=1
R7 : ELSEIF  (=X2 AXg) THEN k(x)=1
Roer : ELSE k(x) =0

- Instance: v=(0,1,0,1,0,1,0)
- The prediction is 1, due to Rs
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Another review exercise — one AXp for example DL

- DL:
Ry : IF (X1 A X3) THEN k(x)=0
Ro : ELSE IF (X1 A X5) THEN k(x)=0
Rs : ELSE IF (X2 A Xq) THEN k(x) =1
Ry : ELSE IF (X1 A X7) THEN k(x)=0
Rs : ELSEIF  (—=x4 AXs) THEN k(x)=1
Re : ELSEIF  (—=Xx4 A —Xg) THEN k(x)=1
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- The prediction is 1, due to Rs

- AXp:
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Another review exercise — one AXp for example DL

- DL:
Ry : IF (X1 A X3) THEN k(x)=0
Ro : ELSE IF (X1 A X5) THEN k(x)=0
Rs : ELSE IF (X2 A Xq) THEN k(x) =1
Ry : ELSE IF (X1 A X7) THEN k(x)=0
Rs : ELSEIF  (—=x4 AXs) THEN k(x)=1
Re : ELSEIF  (—=Xx4 A —Xg) THEN k(x)=1
R7 : ELSEIF  (=X2 AXg) THEN k(x)=1
Roer : ELSE k(x) =0

- Instance: v=(0,1,0,1,0,1,0)
- The prediction is 1, due to Rs

- AXp: {1,2}
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Another review exercise — one AXp for example DL

- DL:
Ry : IF (X1 A X3) THEN k(x)=0
Ro : ELSEIF (X1 AX5) THEN k(x)=0
Ry : ELSEIF (o AXa) THEN s(x) =1
Ry : ELSEIF (xi Ax;) THEN w(x)=0
Rs : ELSEIF  (—=x4 AXs) THEN k(x)=1
Re : ELSEIF (—x4 A —Xg) THEN s(x) =1
R7: ELSEIF  (—x2 AXg) THEN k(x)=1
Rogr:  ELSE K(x) =0

- Instance: v=(0,1,0,1,0,1,0)
- The prediction is 1, due to Rs

- AXp: {1,2}
- Quiz: write down the constraints and confirm AXp with SAT solver

© J. Marques-Silva 46 | 47



Questions?

© J. Marques-Silva



BLACK BOX MODELS

My ML MODEL..

IS LKE A
(BLACK) BOX OF
CHOCOLATES.

BUT WHY?
I NEVER KNOW WHAT

"M GONNa GET.

01686 & hiip Yemxioedt!

Marques-Silva



References i

[ABOS22] Marcelo Arenas, Pablo Barceld, Miguel A. Romero Orth, and Bernardo Subercaseaux.
On computing probabilistic explanations for decision trees.
In NeurlPS, 2022.

[Alp14] Ethem Alpaydin.
Introduction to machine learning.
MIT press, 2014.

[Alp16]  Ethem Alpaydin.
Machine Learning: The New Al.
MIT Press, 2016.

[BA97] Leonard A. Breslow and David W. Aha.
Simplifying decision trees: A survey.
Knowledge Eng. Review, 12(1):1-40, 1997.

[BBHK10] Michael R. Berthold, Christian Borgelt, Frank Hoppner, and Frank Klawonn.
Guide to Intelligent Data Analysis - How to Intelligently Make Sense of Real Data, volume 42 of Texts in
Computer Science.
Springer, 2010.

© J. Marques-Silva 49 | 47



References ii

[BFOS84]

[BHO09]

[Bra20]

[DLO1]

[EG95]

[Fla12]

© J. Marques-Silva

Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone.
Classification and Regression Trees.
Wadsworth, 1984.

Christian Bessiere, Emmanuel Hebrard, and Barry O'Sullivan.
Minimising decision tree size as combinatorial optimisation.
In CP, pages 173-187, 20009.

Max Bramer.
Principles of Data Mining, 4th Edition.
Undergraduate Topics in Computer Science. Springer, 2020.

Saso Dzeroski and Nada Lavrac, editors.
Relational data mining.
Springer, 2001.

Thomas Eiter and Georg Gottlob.
Identifying the minimal transversals of a hypergraph and related problems.
SIAM J. Comput., 24(6):1278-1304, 1995.

Peter A. Flach.

Machine Learning - The Art and Science of Algorithms that Make Sense of Data.

Cambridge University Press, 2012.

50 / 47



References iii

[GZM20]

[HIIM21]

[Hm23]

[HRS19]

[IHI+22]

© J. Marques-Silva

Mohammad M. Ghiasi, Sohrab Zendehboudi, and Ali Asghar Mohsenipour.
Decision tree-based diagnosis of coronary artery disease: CART model.
Comput. Methods Programs Biomed., 192:105400, 2020.

Xuanxiang Huang, Yacine lzza, Alexey Ignatiev, and Joao Marques-Silva.
On efficiently explaining graph-based classifiers.

In KR, November 2021.

Preprint available from https://arxiv.org/abs/2106.01356.

Xuanxiang Huang and Joao Marques-Silva.
From decision trees to explained decision sets.
In ECAI, pages 1100-1108, 2023.

Xiyang Hu, Cynthia Rudin, and Margo Seltzer.
Optimal sparse decision trees.
In NeurlPS, pages 7265-7273, 2019.

Yacine Izza, Xuanxiang Huang, Alexey Ignatiev, Nina Narodytska, Martin C. Cooper, and Joao Marques-Silva.
On computing probabilistic abductive explanations.
CoRR, abs/2212.05990, 2022.

51/ 47


https://arxiv.org/abs/2106.01350

References iv

[IHIT23] Yacine Izza, Xuanxiang Huang, Alexey Ignatiev, Nina Narodytska, Martin C. Cooper, and Jodo Marques-Silva.
On computing probabilistic abductive explanations.
Int. J. Approx. Reason., 159:108939, 2023.

[11M20] Yacine Izza, Alexey Ignatiev, and Joao Marques-Silva.
On explaining decision trees.
CoRR, abs/201011034, 2020.

[11M22] Yacine lzza, Alexey Ignatiev, and Jodo Marques-Silva.
On tackling explanation redundancy in decision trees.
J. Artif. Intell. Res., 75:261-321, 2022.

[IM21] Alexey Ignatiev and Joao Marques-Silva.
SAT-based rigorous explanations for decision lists.
In SAT, pages 251-269, July 2021.

[INAM20] Alexey Ignatiev, Nina Narodytska, Nicholas Asher, and Jodo Marques-Silva.
From contrastive to abductive explanations and back again.
In AIXIA, pages 335-355, 2020.

[INM19a] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva.
Abduction-based explanations for machine learning models.
In AAAI, pages 1511-1519, 2019.

© J. Marques-Silva 52/ 47



References v

[INM19b] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva.
On relating explanations and adversarial examples.
In NeurlPS, pages 15857-15867, 2019.

[KMND20] John D Kelleher, Brian Mac Namee, and Aoife D'arcy.
Fundamentals of machine learning for predictive data analytics: algorithms, worked examples, and case
studies.
MIT Press, 2020.

[Kot13] Sotiris B. Kotsiantis.

Decision trees: a recent overview.
Artif. Intell. Rev., 39(4):261-283, 2013.

[Lu17] Scott M. Lundberg and Su-In Lee.
A unified approach to interpreting model predictions.
In NIPS, pages 4765-4774, 2017.

[Mar22]  Jodo Marques-Silva.
Logic-based explainability in machine learning.
In Reasoning Web, pages 24-104, 2022.

© J. Marques-Silva 53/ 47



References vi

[Mar24]  Joao Marques-Silva.
Logic-based explainability: Past, present & future.
CORR, abs /240611873, 2024.

[MGC*T21] Joao Marques-Silva, Thomas Gerspacher, Martinc C. Cooper, Alexey Ignatiev, and Nina Narodytska.
Explanations for monotonic classifiers.
In ICML, pages 7469-7479, July 2021.
[Mil56] George A Miller.
The magical number seven, plus or minus two: Some limits on our capacity for processing information.
Psychological review, 63(2):81-97, 1956.
[Mil19]  Tim Miller.
Explanation in artificial intelligence: Insights from the social sciences.
Artif. Intell., 267:1-38, 2019.
[MM20]  Jodo Marques-Silva and Carlos Mencia.
Reasoning about inconsistent formulas.
In IJCAI, pages 4899-4906, 2020.
[Mor82]  Bernard M. E. Moret.

Decision trees and diagrams.
ACM Comput. Surv., 14(4):593-623, 1982.

© J. Marques-Silva 54 [ 47



References vii

[MSI23]  Joao Marques-Silva and Alexey Ignatiev.
No silver bullet: interpretable ml models must be explained.
Frontiers in Artificial Intelligence, 6, 2023.

[PM17] David Poole and Alan K. Mackworth.
Artificial Intelligence - Foundations of Computational Agents.
CUP, 2017.

[Qui93] ) Ross Quinlan.
C4.5: programs for machine learning.
Morgan-Kaufmann, 1993.

[Rei87] Raymond Reiter.
A theory of diagnosis from first principles.
Artif. Intell., 32(1):57-95, 1987.

[RM08] Lior Rokach and Oded Z Maimon.
Data mining with decision trees: theory and applications.
World scientific, 2008.

[RN10] Stuart J. Russell and Peter Norvig.
Artificial Intelligence - A Modern Approach.
Pearson Education, 2010.

Marques-Silva 55/ 47



References viii

[RSG16]

[RSG18]

[SB14]

[SCD18]

[VLE*16]

Marques-Silva

Marco Talio Ribeiro, Sameer Singh, and Carlos Guestrin.
"why should | trust you?”: Explaining the predictions of any classifier.
In KDD, pages 1135-1144, 2016.

Marco Talio Ribeiro, Sameer Singh, and Carlos Guestrin.
Anchors: High-precision model-agnostic explanations.
In AAAI, pages 1527-1535. AAAI Press, 2018.

Shai Shalev-Shwartz and Shai Ben-David.
Understanding Machine Learning - From Theory to Algorithms.
Cambridge University Press, 2014.

Andy Shih, Arthur Choi, and Adnan Darwiche.
A symbolic approach to explaining bayesian network classifiers.
In IJCAI, pages 5103-5111, 2018.

Gilmer Valdes, José Marcio Luna, Eric Eaton, Charles B Simone, Lyle H Ungar, and Timothy D Solberg.
MediBoost: a patient stratification tool for interpretable decision making in the era of precision
medicine.

Scientific reports, 6(1):1-8, 2016.

56 | 47



References ix

[WFHP17] lan H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal.
Data Mining.
Morgan Kaufmann, 2017.
[WMHK21] Stephan Waldchen, Jan MacDonald, Sascha Hauch, and Gitta Kutyniok.
The computational complexity of understanding binary classifier decisions.
J. Artif. Intell. Res., 70:351-387, 2021.

[Zho12]  Zhi-Hua Zhou.
Ensemble methods: foundations and algorithms.
CRC press, 2012.
[Zho21]  Zhi-Hua Zhou.
Machine Learning.
Springer, 2021.

© J. Marques-Silva 57 [ 47



	Principles of Symbolic XAI – Feature Selection
	Definitions of Explanations
	Duality Properties
	Computational Problems

	Tractability in Symbolic XAI
	Explanations for Decision Trees
	XAI Queries for DTs
	Myth #01: Intrinsic Interpretability
	Detour: From Decision Trees to Explained Decision Sets
	Explanations for Decision Graphs
	Explanations for Monotonic Classifiers
	Review examples


