## LOGIC-BASED EXPLAINABLE ARTIFICIAL INTELLIGENCE

Joao Marques-Silva

ICREA, Univ. Lleida, Catalunya, Spain

ESSAI, Athens, Greece, July 2024

# Lecture 02

• ML models: classification & regression

- ML models: classification & regression
- Glimpse of heuristic XAI

- ML models: classification & regression
- Glimpse of heuristic XAI
- Answers to Why? questions as logic rules

- ML models: classification & regression
- Glimpse of heuristic XAI
- Answers to Why? questions as logic rules
- Logic-based reasoning of ML models

- ML models: classification & regression
- Glimpse of heuristic XAI
- Answers to Why? questions as logic rules
- Logic-based reasoning of ML models
- Apparent difficulties with explaining interpretable models

- Lecture 01 units:
  - #01: Foundations
- Lecture 02 units:
  - #02: Principles of symbolic XAI feature selection
  - #03: Tractability in symbolic XAI (& myth of interpretability)
- Lecture 03 units:
  - #04: Intractability in symbolic XAI (& myth of model-agnostic XAI)
  - #05: Explainability queries
- Lecture 04 units:
  - #06: Advanced topics
- Lecture 05 units:
  - #07: Principles of symbolic XAI feature attribution (& myth of Shapley values in XAI)
  - #08: Conclusions & research directions

## Unit #02

# Principles of Symbolic XAI – Feature Selection

• Notation:



• What is an explanation?



| Ma         | apping                                             |
|------------|----------------------------------------------------|
| <i>X</i> 1 | = 1 iff Length $=$ Long                            |
| $X_2$      | = 1 iff Thread $=$ New                             |
| $X_3$      | = 1 iff Author $=$ Known                           |
| $\kappa($  | $(\cdot) = 1$ iff $\kappa'(\cdots) = \text{Reads}$ |
| $\kappa($  | $(\cdot) = 0$ iff $\kappa'(\cdots) = $ Skips       |

• Notation:



Rewritten DT 0 1 0

| _ |                                                     |
|---|-----------------------------------------------------|
| _ | Mapping                                             |
|   | $x_1 = 1$ iff Length = Long                         |
|   | $x_2 = 1$ iff Thread = New                          |
|   | $x_3 = 1$ iff Author = Known                        |
|   | $\kappa(\cdot)=1$ iff $\kappa'(\cdots)={\rm Reads}$ |
|   | $\kappa(\cdot) = 0$ iff $\kappa'(\cdots) = Skips$   |
| _ |                                                     |

- What is an explanation?
  - Answer to question "Why (the prediction)?" is a rule: IF <COND> THEN  $\kappa(\mathbf{x}) = c$

Notation:





| Mapping                                     |       |
|---------------------------------------------|-------|
| $x_1 = 1$ iff Length = Lo                   | 0     |
| $x_2 = 1$ iff Thread = Ne                   | 9W    |
| $x_3 = 1$ iff Author = Kr                   | nown  |
| $\kappa(\cdot) = 1$ iff $\kappa'(\cdots) =$ | Reads |
| $\kappa(\cdot) = 0$ iff $\kappa'(\cdots) =$ | Skips |

- What is an explanation?
  - Answer to question "Why (the prediction)?" is a rule: IF <COND> THEN  $\kappa(\mathbf{x}) = c$

Explanation: set of literals (or just features) in <COND>; irreducibility matters! .

Notation:





| - | Mapping                                                                                                              |
|---|----------------------------------------------------------------------------------------------------------------------|
| - | $x_1 = 1$ iff Length = Long<br>$x_2 = 1$ iff Thread = New                                                            |
|   | $x_2 = 1$ iff Author = Known                                                                                         |
|   | $\kappa(\cdot) = 1$ iff $\kappa'(\cdots) = \text{Reads}$<br>$\kappa(\cdot) = 0$ iff $\kappa'(\cdots) = \text{Skips}$ |

- What is an explanation?
  - Answer to question "Why (the prediction)?" is a rule: IF <COND> THEN  $\kappa(\mathbf{x}) = c$
- - Explanation: set of literals (or just features) in <COND>; irreducibility matters! .
  - **E.g.**: explanation for  $\mathbf{v} = (\neg x_1, \neg x_2, x_3)$ ?

Notation:





| _ | Mapping                                                                                                                                                        |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | $x_1 = 1$ iff Length = Long                                                                                                                                    |
|   | $x_2 = 1$ iff Thread = New<br>$x_3 = 1$ iff Author = Known                                                                                                     |
|   | $\begin{split} \kappa(\cdot) &= 1  \text{iff} \ \kappa'(\cdots) = \text{Reads} \\ \kappa(\cdot) &= 0  \text{iff} \ \kappa'(\cdots) = \text{Skips} \end{split}$ |

- What is an explanation?
  - Answer to question "Why (the prediction)?" is a rule: IF <COND> THEN  $\kappa(\mathbf{x}) = c$

- Explanation: set of literals (or just features) in <COND>; irreducibility matters! .
- **E.g.**: explanation for  $\mathbf{v} = (\neg x_1, \neg x_2, x_3)$ ?
  - It is the case that, IF  $\neg x_1 \land \neg x_2 \land x_3$  THEN  $\kappa(\mathbf{x}) = 1$

Notation:





| Mapping                                                             |
|---------------------------------------------------------------------|
| $x_1 = 1$ iff Length = Long                                         |
| $x_2 = 1$ iff Thread = New                                          |
| $x_3 = 1$ iff Author = Known                                        |
| $\kappa(\cdot) = 1$ iff $\kappa'(\cdot \cdot \cdot) = \text{Reads}$ |
| $\kappa(\cdot)=0$ iff $\kappa'(\cdots)={ m Skips}$                  |

- What is an explanation?
  - Answer to question "Why (the prediction)?" is a rule: IF <COND> THEN  $\kappa(\mathbf{x}) = c$

- Explanation: set of literals (or just features) in <COND>; irreducibility matters! .
- **E.g.**: explanation for  $\mathbf{v} = (\neg x_1, \neg x_2, x_3)$ ?
  - It is the case that, IF  $\neg x_1 \land \neg x_2 \land x_3$  THEN  $\kappa(\mathbf{x}) = 1$
  - One possible explanation is  $\{\neg x_1, \neg x_2, x_3\}$  or simply  $\{1, 2, 3\}$

### The similarity predicate

[Mar24]

- Recall ML models for classification & regression:
  - Classification:  $\mathcal{M}_{C} = (\mathcal{F}, \mathbb{F}, \mathcal{K}, \kappa)$
  - Regression:  $\mathcal{M}_{R} = (\mathcal{F}, \mathbb{F}, \mathbb{V}, \rho)$
  - General:  $\mathcal{M} = (\mathcal{F}, \mathbb{F}, \mathbb{T}, \tau)$

### The similarity predicate

- Recall ML models for classification & regression:
  - Classification:  $\mathcal{M}_{\mathcal{C}} = (\mathcal{F}, \mathbb{F}, \mathcal{K}, \kappa)$
  - Regression:  $\mathcal{M}_{R} = (\mathcal{F}, \mathbb{F}, \mathbb{V}, \rho)$
  - · General:  $\mathcal{M} = (\mathcal{F}, \mathbb{F}, \mathbb{T}, \tau)$

#### • Similarity predicate: $\sigma : \mathbb{F} \to \{\top, \bot\}$

- Classification:  $\sigma(\mathbf{x}) \coloneqq [\kappa(\mathbf{x}) = \kappa(\mathbf{v})]$ 
  - + Obs: For boolean classifiers, no need for  $\sigma$
- Regression:  $\sigma(\mathbf{x}) \coloneqq [|\rho(\mathbf{x}) \rho(\mathbf{v})| \le \delta]$ , where  $\delta$  is user-specified

### The similarity predicate

- $\cdot\,$  Recall ML models for classification & regression:
  - Classification:  $\mathcal{M}_{\mathcal{C}} = (\mathcal{F}, \mathbb{F}, \mathcal{K}, \kappa)$
  - Regression:  $\mathcal{M}_{R} = (\mathcal{F}, \mathbb{F}, \mathbb{V}, \rho)$
  - · General:  $\mathcal{M} = (\mathcal{F}, \mathbb{F}, \mathbb{T}, \tau)$

#### • Similarity predicate: $\sigma : \mathbb{F} \to \{\top, \bot\}$

- Classification:  $\sigma(\mathbf{x}) \coloneqq [\kappa(\mathbf{x}) = \kappa(\mathbf{v})]$ 
  - + Obs: For boolean classifiers, no need for  $\sigma$
- Regression:  $\sigma(\mathbf{x}) \coloneqq [|\rho(\mathbf{x}) \rho(\mathbf{v})| \le \delta]$ , where  $\delta$  is user-specified
- Bottom line:

Reason about symbolic explainability by abstracting away type of ML model

• Instance  $(\mathbf{v}, q)$ , i.e.  $c = \tau(\mathbf{v})$ 

- Instance  $(\mathbf{v}, q)$ , i.e.  $c = \tau(\mathbf{v})$
- Abductive explanation (AXp, PI-explanation):

[SCD18, INM19a]

- Subset-minimal set of features  $\mathcal{X} \subseteq \mathcal{F}$  sufficient for ensuring prediction

$$\forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \in \mathcal{X}} (x_j = v_j) \rightarrow (\sigma(\mathbf{x}))$$

- Instance  $(\mathbf{v}, q)$ , i.e.  $c = \tau(\mathbf{v})$
- Abductive explanation (AXp, PI-explanation):

[SCD18, INM19a]

- Subset-minimal set of features  $\mathcal{X} \subseteq \mathcal{F}$  sufficient for ensuring prediction

$$\mathsf{WAXp}(\mathcal{X}) \quad \coloneqq \quad \forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \in \mathcal{X}} (x_j = v_j) \to (\sigma(\mathbf{x}))$$

• Defining AXp (from weak AXps, WAXps):

 $\mathsf{AXp}(\mathcal{X}) \coloneqq \mathsf{WAXp}(\mathcal{X}) \land \forall (\mathcal{X}' \subsetneq \mathcal{X}). \neg \mathsf{WAXp}(\mathcal{X}')$ 

- Instance  $(\mathbf{v}, q)$ , i.e.  $c = \tau(\mathbf{v})$
- Abductive explanation (AXp, PI-explanation):

[SCD18, INM19a]

- Subset-minimal set of features  $\mathcal{X} \subseteq \mathcal{F}$  sufficient for ensuring prediction

$$\mathsf{WAXp}(\mathcal{X}) := \forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \in \mathcal{X}} (X_j = V_j) \to (\sigma(\mathbf{x}))$$

• Defining AXp (from weak AXps, WAXps):

 $\mathsf{AXp}(\mathcal{X}) \coloneqq \mathsf{WAXp}(\mathcal{X}) \land \forall (\mathcal{X}' \subsetneq \mathcal{X}). \neg \mathsf{WAXp}(\mathcal{X}')$ 

• But, WAXp is monotone; hence,

 $\mathsf{AXp}(\mathcal{X}) \coloneqq \mathsf{WAXp}(\mathcal{X}) \land \forall (t \in \mathcal{X}). \neg \mathsf{WAXp}(\mathcal{X} \setminus \{t\})$ 

- Instance  $(\mathbf{v}, q)$ , i.e.  $c = \tau(\mathbf{v})$
- Abductive explanation (AXp, PI-explanation):

[SCD18, INM19a]

- Subset-minimal set of features  $\mathcal{X} \subseteq \mathcal{F}$  sufficient for ensuring prediction

$$\mathsf{WAXp}(\mathcal{X}) := \forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \in \mathcal{X}} (x_j = v_j) \to (\sigma(\mathbf{x}))$$

• Defining AXp (from weak AXps, WAXps):

 $\mathsf{AXp}(\mathcal{X}) \coloneqq \mathsf{WAXp}(\mathcal{X}) \land \forall (\mathcal{X}' \subsetneq \mathcal{X}). \neg \mathsf{WAXp}(\mathcal{X}')$ 

• But, WAXp is monotone; hence,

 $\mathsf{AXp}(\mathcal{X}) \coloneqq \mathsf{WAXp}(\mathcal{X}) \land \forall (t \in \mathcal{X}). \neg \mathsf{WAXp}(\mathcal{X} \setminus \{t\})$ 

- Finding one AXp (example algorithm; many more exist):
  - Let  $\mathcal{X} = \mathcal{F}$ , i.e. fix all features
  - Invariant:  $WAXp(\mathcal{X})$  must hold. Why?
  - Analyze features in any order, one feature *i* at a time
    - If WAXp( $\mathcal{X} \setminus \{i\}$ ) holds, then remove *i* from  $\mathcal{X}$ , i.e. *i* becomes free

[MM20]

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

• Classifier:

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

• Point  $\mathbf{v} = (0, 0, 0, 1)$  with prediction  $\kappa(\mathbf{v}) = 1$ . AXp?

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- Point  $\mathbf{v} = (0, 0, 0, 1)$  with prediction  $\kappa(\mathbf{v}) = 1$ . AXp?
- · Define  $\mathcal{X} = \{1,2,3,4\} = \mathcal{F}$

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- Point  $\mathbf{v} = (0, 0, 0, 1)$  with prediction  $\kappa(\mathbf{v}) = 1$ . AXp?
- · Define  $\mathcal{X} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e.  $\forall (\mathbf{x} \in \{0,1\}^4) . \neg X_2 \land \neg X_3 \land X_4 \rightarrow \kappa(X_1, X_2, X_3, X_4)$ ?

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- Point  $\mathbf{v} = (0, 0, 0, 1)$  with prediction  $\kappa(\mathbf{v}) = 1$ . AXp?
- Define  $\mathcal{X} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e.  $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_2 \land \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$ ? Yes

• Classifier:

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- Point  $\mathbf{v} = (0, 0, 0, 1)$  with prediction  $\kappa(\mathbf{v}) = 1$ . AXp?
- · Define  $\mathcal{X} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e.  $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_2 \land \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$ ? Yes
- Can feature 2 be removed, i.e.  $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$ ?

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- Point  $\mathbf{v} = (0, 0, 0, 1)$  with prediction  $\kappa(\mathbf{v}) = 1$ . AXp?
- Define  $\mathcal{X} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e.  $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_2 \land \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$ ? Yes
- Can feature 2 be removed, i.e.  $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$ ? Yes

Recap weak AXp: 
$$\forall (\mathbf{x} \in \mathbb{F})$$
.  $\bigwedge_{j \in \mathcal{X}} (x_j = v_j) \rightarrow (\sigma(\mathbf{x}))$ 

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- Point  $\mathbf{v} = (0, 0, 0, 1)$  with prediction  $\kappa(\mathbf{v}) = 1$ . AXp?
- Define  $\mathcal{X} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e.  $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_2 \land \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$ ? Yes
- Can feature 2 be removed, i.e.  $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$ ? Yes
- Can feature 3 be removed, i.e.  $\forall (\mathbf{x} \in \{0, 1\}^4) . x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$ ?

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- Point  $\mathbf{v} = (0, 0, 0, 1)$  with prediction  $\kappa(\mathbf{v}) = 1$ . AXp?
- Define  $\mathcal{X} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e.  $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_2 \land \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$ ? Yes
- Can feature 2 be removed, i.e.  $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$ ? Yes
- Can feature 3 be removed, i.e.  $\forall (\mathbf{x} \in \{0,1\}^4) . x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$ ? Yes

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- Point  $\mathbf{v} = (0, 0, 0, 1)$  with prediction  $\kappa(\mathbf{v}) = 1$ . AXp?
- Define  $\mathcal{X} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e.  $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_2 \land \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$ ? Yes
- Can feature 2 be removed, i.e.  $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$ ? Yes
- Can feature 3 be removed, i.e.  $\forall (\mathbf{x} \in \{0,1\}^4) . x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$ ? **Yes**
- Can feature 4 be removed, i.e.  $\forall (\mathbf{x} \in \{0,1\}^4) . \top \rightarrow \kappa(x_1, x_2, x_3, x_4)$ ?

Recap weak AXp: 
$$\forall (\mathbf{x} \in \mathbb{F})$$
.  $\bigwedge_{j \in \mathcal{X}} (X_j = v_j) \rightarrow (\sigma(\mathbf{x}))$ 

• Classifier:

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- Point  $\mathbf{v} = (0, 0, 0, 1)$  with prediction  $\kappa(\mathbf{v}) = 1$ . AXp?
- · Define  $\mathcal{X} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e.  $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_2 \land \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$ ? Yes
- Can feature 2 be removed, i.e.  $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$ ? Yes
- Can feature 3 be removed, i.e.  $\forall (\mathbf{x} \in \{0,1\}^4) . x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$ ? Yes
- Can feature 4 be removed, i.e.  $\forall (\mathbf{x} \in \{0,1\}^4) . \top \rightarrow \kappa(x_1, x_2, x_3, x_4)$ ? No

• Classifier:

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- Point  $\mathbf{v} = (0, 0, 0, 1)$  with prediction  $\kappa(\mathbf{v}) = 1$ . AXp?
- · Define  $\mathcal{X} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e.  $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_2 \land \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$ ? Yes
- Can feature 2 be removed, i.e.  $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$ ? Yes
- Can feature 3 be removed, i.e.  $\forall (\mathbf{x} \in \{0,1\}^4) . x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$ ? Yes
- Can feature 4 be removed, i.e.  $\forall (\mathbf{x} \in \{0,1\}^4) . \top \rightarrow \kappa(x_1, x_2, x_3, x_4)$ ? No
- AXp  $\mathcal{X} = \{4\}$

• Classifier:

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- Point  $\mathbf{v} = (0, 0, 0, 1)$  with prediction  $\kappa(\mathbf{v}) = 1$ . AXp?
- · Define  $\mathcal{X} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e.  $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_2 \land \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$ ? Yes
- Can feature 2 be removed, i.e.  $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$ ? Yes
- Can feature 3 be removed, i.e.  $\forall (\mathbf{x} \in \{0,1\}^4) . x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$ ? Yes
- Can feature 4 be removed, i.e.  $\forall (\mathbf{x} \in \{0,1\}^4) . \top \rightarrow \kappa(x_1, x_2, x_3, x_4)$ ? No
- AXp  $\mathcal{X} = \{4\}$
- In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners
• Classifier:

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- Point  $\mathbf{v} = (0, 0, 0, 1)$  with prediction  $\kappa(\mathbf{v}) = 1$ . AXp?
- Define  $\mathcal{X} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e.  $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_2 \land \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$ ? Yes
- Can feature 2 be removed, i.e.  $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$ ? Yes
- Can feature 3 be removed, i.e.  $\forall (\mathbf{x} \in \{0,1\}^4) . x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$ ? Yes
- Can feature 4 be removed, i.e.  $\forall (\mathbf{x} \in \{0,1\}^4) . \top \rightarrow \kappa(x_1, x_2, x_3, x_4)$ ? No
- AXp  $\mathcal{X} = \{4\}$
- In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners
  - Obs: for some classes of classifiers, poly-time algorithms exist

Recap weak AXp:  $\forall (\mathbf{x} \in \mathbb{F})$ .  $\bigwedge_{j \in \mathcal{X}} (x_j = v_j) \rightarrow (\sigma(\mathbf{x}))$ 

• Notation  $\mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}$ :

$$[\mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}] \equiv \bigwedge_{i \in \mathcal{S}} (X_i = V_i)$$

• Notation  $\mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}$ :

$$[\mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}] \equiv \bigwedge_{i \in \mathcal{S}} (X_i = V_i)$$

• Definition of  $\Upsilon(\mathcal{S})$ :

$$\Upsilon(\mathcal{S}) \quad \coloneqq \quad \{ \mathbf{x} \in \mathbb{F} \, | \, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}} \}$$

• Notation  $\mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}$ :

$$[\mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}] \equiv \bigwedge_{i \in \mathcal{S}} (X_i = V_i)$$

• Definition of  $\Upsilon(\mathcal{S})$ :

$$\Upsilon(\mathcal{S}) \quad \coloneqq \quad \{ \mathbf{x} \in \mathbb{F} \, | \, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}} \}$$

• Expected value, non-real-valued features:

$$\mathbf{E}[\tau(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}] \quad \coloneqq \quad \frac{1}{|\Upsilon(\mathcal{S}; \mathbf{v})|} \sum_{\mathbf{x} \in \Upsilon(\mathcal{S}; \mathbf{v})} \tau(\mathbf{x})$$

• Notation  $\mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}$ :

$$[\mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}] \equiv \bigwedge_{i \in \mathcal{S}} (X_i = V_i)$$

• Definition of  $\Upsilon(S)$ :

$$\Upsilon(\mathcal{S}) \quad \coloneqq \quad \{\mathbf{x} \in \mathbb{F} \mid \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}\}$$

• Expected value, non-real-valued features:

$$\mathbf{E}[\tau(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}] \quad \coloneqq \quad 1/|\Upsilon(\mathcal{S}; \mathbf{v})| \sum_{\mathbf{x} \in \Upsilon(\mathcal{S}; \mathbf{v})} \tau(\mathbf{x})$$

• Expected value, real-valued features:

$$\mathbf{E}[\tau(\mathbf{x}) \mid \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}] \quad \coloneqq \quad \frac{1}{|\Upsilon(\mathcal{S}; \mathbf{v})|} \int_{\Upsilon(\mathcal{S}; \mathbf{v})} \tau(\mathbf{x}) d\mathbf{x}$$

[WMHK21, IHI+22, ABOS22, IHI+23]

 $\mathsf{WAXp}(\mathcal{S}) \quad := \quad \mathsf{Pr}(\sigma(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}) = 1$ 

[WMHK21, IHI+22, ABOS22, IHI+23]

 $\mathsf{WAXp}(\mathcal{S}) := \mathsf{Pr}(\sigma(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}) = 1$ 

• Using expected values:

 $\mathsf{WAXp}(\mathcal{S}) := \mathbf{E}[\sigma(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}] = 1$ 

[WMHK21, IHI+22, ABOS22, IHI+23]

 $\mathsf{WAXp}(\mathcal{S}) := \mathsf{Pr}(\sigma(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}) = 1$ 

Using expected values:

 $\mathsf{WAXp}(\mathcal{S}) := \mathbf{E}[\sigma(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}] = 1$ 

- Definition of AXp remains unchanged
  - This is true when comparing against 1

• Instance  $(\mathbf{v}, c)$ , i.e.  $c = \kappa(\mathbf{v})$ 

- Instance  $(\mathbf{v}, c)$ , i.e.  $c = \kappa(\mathbf{v})$
- Contrastive explanation (CXp):

[Mil19, INAM20]

- Subset-minimal set of features  $\mathcal{Y} \subseteq \mathcal{F}$  sufficient for changing prediction

$$\exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \notin \mathcal{Y}} (X_j = V_j) \land (\neg \sigma(\mathbf{x}))$$

- Instance  $(\mathbf{v}, c)$ , i.e.  $c = \kappa(\mathbf{v})$
- Contrastive explanation (CXp):

[Mil19, INAM20]

- Subset-minimal set of features  $\mathcal{Y} \subseteq \mathcal{F}$  sufficient for changing prediction

$$\mathsf{WCXp}(\mathcal{Y}) := \exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \notin \mathcal{Y}} (X_j = V_j) \land (\neg \sigma(\mathbf{x}))$$

• Defining CXp:

 $\mathsf{CXp}(\mathcal{Y}) \coloneqq \mathsf{WCXp}(\mathcal{Y}) \land \forall (\mathcal{Y}' \subsetneq \mathcal{Y}). \neg \mathsf{WCXp}(\mathcal{Y}')$ 

- Instance  $(\mathbf{v}, c)$ , i.e.  $c = \kappa(\mathbf{v})$
- Contrastive explanation (CXp):

[Mil19, INAM20]

- Subset-minimal set of features  $\mathcal{Y} \subseteq \mathcal{F}$  sufficient for changing prediction

$$\mathsf{NCXp}(\mathcal{Y}) \quad \coloneqq \quad \exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \notin \mathcal{Y}} (\mathsf{x}_j = \mathsf{v}_j) \land (\neg \sigma(\mathbf{x}))$$

• Defining CXp:

$$\mathsf{CXp}(\mathcal{Y}) \coloneqq \mathsf{WCXp}(\mathcal{Y}) \land \forall (\mathcal{Y}' \subsetneq \mathcal{Y}). \neg \mathsf{WCXp}(\mathcal{Y}')$$

• But, WCXp is also monotone; hence,

 $\mathsf{CXp}(\mathcal{Y}) \coloneqq \mathsf{WCXp}(\mathcal{Y}) \land \forall (t \in \mathcal{Y}). \neg \mathsf{WCXp}(\mathcal{Y} \setminus \{t\})$ 

- Instance  $(\mathbf{v}, c)$ , i.e.  $c = \kappa(\mathbf{v})$
- Contrastive explanation (CXp):

[Mil19, INAM20]

- Subset-minimal set of features  $\mathcal{Y} \subseteq \mathcal{F}$  sufficient for changing prediction

$$\mathsf{NCXp}(\mathcal{Y}) \quad \coloneqq \quad \exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \land (\neg \sigma(\mathbf{x}))$$

• Defining CXp:

 $\mathsf{CXp}(\mathcal{Y}) \coloneqq \mathsf{WCXp}(\mathcal{Y}) \land \forall (\mathcal{Y}' \subsetneq \mathcal{Y}). \neg \mathsf{WCXp}(\mathcal{Y}')$ 

• But, WCXp is also monotone; hence,

 $\mathsf{CXp}(\mathcal{Y}) \coloneqq \mathsf{WCXp}(\mathcal{Y}) \land \forall (t \in \mathcal{Y}). \neg \mathsf{WCXp}(\mathcal{Y} \setminus \{t\})$ 

- Finding one CXp:
  - · Let  $\mathcal{Y} = \mathcal{F}$ , i.e. free all features
  - Invariant:  $WCXp(\mathcal{Y})$  must hold. Why?
  - Analyze features in any order, one feature *i* at a time
    - If  $WCXp(\mathcal{Y} \setminus \{i\})$  holds, then remove *i* from  $\mathcal{Y}$ , i.e. *i* is becomes fixed

[MM20]

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- Point  $\mathbf{v} = (0, 0, 0, 1)$  with prediction  $\kappa(\mathbf{v}) = 1$
- · Define  $\mathcal{Y} = \{1,2,3,4\} = \mathcal{F}$

• Classifier:

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- + Point  $\mathbf{v}=(0,0,0,1)$  with prediction  $\kappa(\mathbf{v})=1$
- Define  $\mathcal{Y} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e.  $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg \kappa(x_1, x_2, x_3, x_4)$ ?

Recap weak CXp:  $\exists (\mathbf{x} \in \mathbb{F}) . \bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \land (\neg \sigma(\mathbf{x}))$ 

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- + Point  $\mathbf{v}=(0,0,0,1)$  with prediction  $\kappa(\mathbf{v})=1$
- Define  $\mathcal{Y} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e.  $\exists (\mathbf{x} \in \{0, 1\}^4) . \neg x_1 \land \neg \kappa(x_1, x_2, x_3, x_4)$ ? Yes

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- + Point  $\mathbf{v}=(0,0,0,1)$  with prediction  $\kappa(\mathbf{v})=1$
- Define  $\mathcal{Y} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e.  $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg \kappa(x_1, x_2, x_3, x_4)$ ? Yes
- Can feature 2 be removed, i.e.  $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg x_2 \land \neg \kappa(x_1, x_2, x_3, x_4)$ ?

Recap weak CXp: 
$$\exists (\mathbf{x} \in \mathbb{F}) . \bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \land (\neg \sigma(\mathbf{x}))$$

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- + Point  $\mathbf{v}=(0,0,0,1)$  with prediction  $\kappa(\mathbf{v})=1$
- Define  $\mathcal{Y} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e.  $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg \kappa(x_1, x_2, x_3, x_4)$ ? Yes
- Can feature 2 be removed, i.e.  $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg x_2 \land \neg \kappa(x_1, x_2, x_3, x_4)$ ? Yes

Recap weak CXp: 
$$\exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \land (\neg \sigma(\mathbf{x}))$$

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- + Point  $\mathbf{v} = (0,0,0,1)$  with prediction  $\kappa(\mathbf{v}) = 1$
- Define  $\mathcal{Y} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e.  $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg \kappa(x_1, x_2, x_3, x_4)$ ? Yes
- Can feature 2 be removed, i.e.  $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg x_2 \land \neg \kappa(x_1, x_2, x_3, x_4)$ ? Yes
- Can feature 3 be removed, i.e.  $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg x_2 \land \neg x_3 \land \neg \kappa(x_1,x_2,x_3,x_4)$ ?

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- + Point  $\mathbf{v} = (0,0,0,1)$  with prediction  $\kappa(\mathbf{v}) = 1$
- Define  $\mathcal{Y} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e.  $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg \kappa(x_1, x_2, x_3, x_4)$ ? Yes
- Can feature 2 be removed, i.e.  $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg x_2 \land \neg \kappa(x_1, x_2, x_3, x_4)$ ? Yes
- Can feature 3 be removed, i.e.  $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg x_2 \land \neg x_3 \land \neg \kappa(x_1,x_2,x_3,x_4)$ ? Yes

• Classifier:

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- + Point  $\mathbf{v} = (0,0,0,1)$  with prediction  $\kappa(\mathbf{v}) = 1$
- Define  $\mathcal{Y} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e.  $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg \kappa(x_1, x_2, x_3, x_4)$ ? Yes
- Can feature 2 be removed, i.e.  $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg x_2 \land \neg \kappa(x_1, x_2, x_3, x_4)$ ? Yes
- Can feature 3 be removed, i.e.  $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg x_2 \land \neg x_3 \land \neg \kappa(x_1,x_2,x_3,x_4)$ ? Yes
- Can feature 4 be removed, i.e.  $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg x_2 \land \neg x_3 \land x_4 \land \neg \kappa(x_1, x_2, x_3, x_4)$ ?

Recap weak CXp:  $\exists (\mathbf{x} \in \mathbb{F}) . \bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \land (\neg \sigma(\mathbf{x}))$ 

• Classifier:

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- + Point  $\mathbf{v} = (0,0,0,1)$  with prediction  $\kappa(\mathbf{v}) = 1$
- Define  $\mathcal{Y} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e.  $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg \kappa(x_1, x_2, x_3, x_4)$ ? Yes
- Can feature 2 be removed, i.e.  $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg x_2 \land \neg \kappa(x_1, x_2, x_3, x_4)$ ? Yes
- Can feature 3 be removed, i.e.  $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg x_2 \land \neg x_3 \land \neg \kappa(x_1,x_2,x_3,x_4)$ ? Yes
- Can feature 4 be removed, i.e.  $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg x_2 \land \neg x_3 \land x_4 \land \neg \kappa(x_1, x_2, x_3, x_4)$ ? No

Recap weak CXp:  $\exists (\mathbf{x} \in \mathbb{F}) . \bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \land (\neg \sigma(\mathbf{x}))$ 

• Classifier:

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- + Point  $\mathbf{v} = (0,0,0,1)$  with prediction  $\kappa(\mathbf{v}) = 1$
- Define  $\mathcal{Y} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e.  $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg \kappa(x_1, x_2, x_3, x_4)$ ? Yes
- Can feature 2 be removed, i.e.  $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg x_2 \land \neg \kappa(x_1, x_2, x_3, x_4)$ ? Yes
- Can feature 3 be removed, i.e.  $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg x_2 \land \neg x_3 \land \neg \kappa(x_1,x_2,x_3,x_4)$ ? Yes
- Can feature 4 be removed, i.e.  $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg x_2 \land \neg x_3 \land x_4 \land \neg \kappa(x_1, x_2, x_3, x_4)$ ? No
- CXp  $\mathcal{Y} = \{4\}$
- Obs: AXp is MHS of CXp and vice-versa...

Recap weak CXp:  $\exists (\mathbf{x} \in \mathbb{F})$ .  $\bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \land (\neg \sigma(\mathbf{x}))$ 

 $\mathsf{WCXp}(\mathcal{S}) := \mathsf{Pr}(\sigma(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}) < 1$ 

 $\mathsf{WCXp}(\mathcal{S}) := \mathsf{Pr}(\sigma(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}) < 1$ 

• Using expected values:

 $\mathsf{WCXp}(\mathcal{S}) := \mathbf{E}[\sigma(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}] < 1$ 

 $\mathsf{WCXp}(\mathcal{S}) := \mathsf{Pr}(\sigma(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}) < 1$ 

• Using expected values:

 $\mathsf{WCXp}(\mathcal{S}) := \mathbf{E}[\sigma(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}] < 1$ 

• Definition of CXp remains unchanged

- $\cdot\,$  AXps and CXps are defined locally (because of  $\mathbf{v})$  but hold globally
  - Localized explanations
  - Can be viewed as attempt at formalizing local explanations
- One can define explanations without picking a given point in feature space
  - Let  $q \in \mathbb{T}$ , and refefine the similarity predicate:
    - Classification:  $\sigma(\mathbf{x}) = [\kappa(\mathbf{x}) = q]$
    - Regression:  $\sigma(\mathbf{x}) = [|\kappa(\mathbf{x}) q| \leq \delta]$ ,  $\delta$  is user-specified
  - Let  $\mathbb{L} = \{ (x_i = v_i) \mid i \in \mathcal{F} \land v_i \in \mathbb{V} \}$
  - $\cdot \,$  Let  $\mathcal{S} \subsetneq \mathbb{L}$  be a subset of literals that does not repeat features, i.e.  $\mathcal{S}$  is not inconsistent
  - $\cdot$  Then,  ${\cal S}$  is a global AXp if,

$$\forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{(x_i = v_i) \in \mathcal{S}} (x_i = v_i) \to (\sigma(\mathbf{x}))$$

• Counterexamples are minimal hitting sets of global AXps and vice-versa

[RSG16, LL17, RSG18]

[INM19b]

Definitions of Explanations

**Duality Properties** 

Computational Problems

[INAM20, Mar22]

[INAM20, Mar22]

#### · Claim:

[INAM20, Mar22]

#### • Claim:

 $\mathcal{S} \subseteq \mathcal{F}$  is an AXp iff it is a minimal hitting set (MHS) of the set of CXps

#### · Claim:

#### [INAM20, Mar22]

#### • Claim:

 $\mathcal{S} \subseteq \mathcal{F}$  is an AXp iff it is a minimal hitting set (MHS) of the set of CXps

#### · Claim:

 $\mathcal{S} \subseteq \mathcal{F}$  is a CXp iff it is a minimal hitting set (MHS) of the set of AXps

• An example,  $(\mathbf{v}, c) = ((0, 0, 1, 0, 1), 1)$ :



#### [INAM20, Mar22]

#### • Claim:

 $\mathcal{S} \subseteq \mathcal{F}$  is an AXp iff it is a minimal hitting set (MHS) of the set of CXps

#### · Claim:

 $\mathcal{S} \subseteq \mathcal{F}$  is a CXp iff it is a minimal hitting set (MHS) of the set of AXps

• An example,  $(\mathbf{v}, c) = ((0, 0, 1, 0, 1), 1)$ :

• AXps:



#### [INAM20, Mar22]

#### • Claim:

 $\mathcal{S} \subseteq \mathcal{F}$  is an AXp iff it is a minimal hitting set (MHS) of the set of CXps

#### · Claim:

- An example,  $(\mathbf{v}, c) = ((0, 0, 1, 0, 1), 1)$ :
  - AXps:  $\{\{3,5\}\}$



#### [INAM20, Mar22]

#### • Claim:

 $\mathcal{S} \subseteq \mathcal{F}$  is an AXp iff it is a minimal hitting set (MHS) of the set of CXps

#### · Claim:

- An example,  $(\mathbf{v}, c) = ((0, 0, 1, 0, 1), 1)$ :
  - AXps: {{3,5}}
  - CXps:



#### [INAM20, Mar22]

#### • Claim:

 $\mathcal{S} \subseteq \mathcal{F}$  is an AXp iff it is a minimal hitting set (MHS) of the set of CXps

#### · Claim:

- An example,  $(\mathbf{v}, c) = ((0, 0, 1, 0, 1), 1)$ :
  - AXps: {{3,5}}
  - CXps: {{3}, {5}}


### Duality in explainability - basic results

#### [INAM20, Mar22]

#### • Claim:

 $\mathcal{S} \subseteq \mathcal{F}$  is an AXp iff it is a minimal hitting set (MHS) of the set of CXps

#### · Claim:

 $\mathcal{S} \subseteq \mathcal{F}$  is a CXp iff it is a minimal hitting set (MHS) of the set of AXps

- An example,  $(\mathbf{v}, c) = ((0, 0, 1, 0, 1), 1)$ :
  - AXps: {{3,5}}
  - CXps: {{3}, {5}}
  - Each AXp is an MHS of the set of CXps
  - Each CXp is an MHS of the set of AXps



### Duality in explainability - basic results

#### [INAM20, Mar22]

#### • Claim:

 $\mathcal{S} \subseteq \mathcal{F}$  is an AXp iff it is a minimal hitting set (MHS) of the set of CXps

#### · Claim:

 $\mathcal{S} \subseteq \mathcal{F}$  is a CXp iff it is a minimal hitting set (MHS) of the set of AXps

- An example,  $(\mathbf{v}, c) = ((0, 0, 1, 0, 1), 1)$ :
  - AXps: {{3,5}}
  - CXps: {{3}, {5}}
  - Each AXp is an MHS of the set of CXps
  - Each CXp is an MHS of the set of AXps
  - BTW,
    - +  $\{2,5\}$  is not a CXp
    - +  $\{1,2,3,4,5\}$  ,  $\{1,2,3,5\}$  and  $\{1,3,5\}$  are not AXps



### Duality in explainability - basic results

#### [INAM20, Mar22]

#### • Claim:

 $\mathcal{S} \subseteq \mathcal{F}$  is an AXp iff it is a minimal hitting set (MHS) of the set of CXps

#### · Claim:

 $\mathcal{S} \subseteq \mathcal{F}$  is a CXp iff it is a minimal hitting set (MHS) of the set of AXps

- An example,  $(\mathbf{v}, c) = ((0, 0, 1, 0, 1), 1)$ :
  - AXps: {{3,5}}
  - CXps: {{3}, {5}}
  - Each AXp is an MHS of the set of CXps
  - Each CXp is an MHS of the set of AXps
  - BTW,
    - +  $\{2,5\}$  is not a CXp
    - +  $\{1,2,3,4,5\}$  ,  $\{1,2,3,5\}$  and  $\{1,3,5\}$  are not AXps
    - · Why?



Definitions of Explanations

**Duality Properties** 

Computational Problems

### Computational problems in (formal) explainability

Compute one abductive/contrastive explanation

- Compute one abductive/contrastive explanation
- Enumerate all abductive/contrastive explanations

- Compute one abductive/contrastive explanation
- Enumerate all abductive/contrastive explanations
- · Decide whether feature included in all abductive/contrastive explanations

- Compute one abductive/contrastive explanation
- Enumerate all abductive/contrastive explanations
- · Decide whether feature included in all abductive/contrastive explanations
- · Decide whether feature included in some abductive/contrastive explanation

 $\cdot$  Encode classifier into suitable logic representation  $\mathcal T$  & pick suitable reasoner

- $\cdot$  Encode classifier into suitable logic representation  $\mathcal T$  & pick suitable reasoner
- For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds

- $\cdot$  Encode classifier into suitable logic representation  $\mathcal T$  & pick suitable reasoner
- For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds
- For CXp: start from S = F and drop (i.e. fix) features from S while WCXp condition holds

- $\cdot$  Encode classifier into suitable logic representation  $\mathcal T$  & pick suitable reasoner
- For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds
- For CXp: start from S = F and drop (i.e. fix) features from S while WCXp condition holds

• Monotone predicates for WAXp & WCXp:

 $\mathbb{P}_{\exp}(\mathcal{S}) \triangleq \neg \operatorname{\mathsf{CO}}\left(\left[\left(\bigwedge_{i \in \mathcal{S}} (\mathsf{X}_i = \mathsf{V}_i)\right) \land (\neg \sigma(\mathbf{x})\right)\right]\right) \qquad \mathbb{P}_{\exp}(\mathcal{S}) \triangleq \operatorname{\mathsf{CO}}\left(\left[\left(\bigwedge_{i \in \mathcal{F} \backslash \mathcal{S}} (\mathsf{X}_i = \mathsf{V}_i)\right) \land (\neg \sigma(\mathbf{x}))\right]\right)$ 

- $\cdot$  Encode classifier into suitable logic representation  ${\cal T}$  & pick suitable reasoner
- For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds
- For CXp: start from S = F and drop (i.e. fix) features from S while WCXp condition holds

Monotone predicates for WAXp & WCXp:

 $\mathbb{P}_{\exp}(\mathcal{S}) \triangleq \neg \operatorname{\mathsf{CO}}\left(\left[\left(\bigwedge_{i \in \mathcal{S}} (x_i = v_i)\right) \land (\neg \sigma(\mathbf{x}))\right]\right) \qquad \mathbb{P}_{\exp}(\mathcal{S}) \triangleq \operatorname{\mathsf{CO}}\left(\left[\left(\bigwedge_{i \in \mathcal{F} \setminus \mathcal{S}} (x_i = v_i)\right) \land (\neg \sigma(\mathbf{x}))\right]\right)$ 

Input: Predicate  $\mathbb{P}$ , parameterized by  $\mathcal{T}$ ,  $\mathcal{M}$ Output: One XP  $\mathcal{S}$ 

- 1: procedure  $oneXP(\mathbb{P})$
- 2:  $\mathcal{S} \leftarrow \mathcal{F}$
- 3: for  $i \in \mathcal{F}$  do
- 4: if  $\mathbb{P}(S \setminus \{i\})$  then
- 5:  $\mathcal{S} \leftarrow \mathcal{S} \setminus \{i\}$
- 6: return S

 $\succ \text{Initialization: } \mathbb{P}(\mathcal{S}) \text{ holds}$  $\succ \text{Loop invariant: } \mathbb{P}(\mathcal{S}) \text{ holds}$ 

 $\succ \mathsf{Update} \ \mathcal{S} \text{ only if } \mathbb{P}(\mathcal{S} \setminus \{i\}) \text{ holds}$  $\succ \mathsf{Returned set} \ \mathcal{S}: \mathbb{P}(\mathcal{S}) \text{ holds}$ 

- $\cdot$  Encode classifier into suitable logic representation  ${\cal T}$  & pick suitable reasoner
- For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds
- For CXp: start from S = F and drop (i.e. fix) features from S while WCXp condition holds

Monotone predicates for WAXp & WCXp:

 $\mathbb{P}_{\exp}(\mathcal{S}) \triangleq \neg \operatorname{\mathsf{CO}}\left(\left[\left(\bigwedge_{i \in \mathcal{S}} (x_i = v_i)\right) \land (\neg \sigma(\mathbf{x}))\right]\right) \qquad \mathbb{P}_{\exp}(\mathcal{S}) \triangleq \operatorname{\mathsf{CO}}\left(\left[\left(\bigwedge_{i \in \mathcal{F} \setminus \mathcal{S}} (x_i = v_i)\right) \land (\neg \sigma(\mathbf{x}))\right]\right)$ 

Input: Predicate  $\mathbb{P}$ , parameterized by  $\mathcal{T}$ ,  $\mathcal{M}$ Output: One XP  $\mathcal{S}$ 

- 1: procedure  $oneXP(\mathbb{P})$
- 2:  $\mathcal{S} \leftarrow \mathcal{F}$
- 3: for  $i \in \mathcal{F}$  do
- 4: if  $\mathbb{P}(S \setminus \{i\})$  then
- 5:  $\mathcal{S} \leftarrow \mathcal{S} \setminus \{i\}$
- 6: return S

Exploiting MSMP, i.e. basic algorithm used for different problems.  $\succ \text{Initialization: } \mathbb{P}(\mathcal{S}) \text{ holds}$  $\succ \text{Loop invariant: } \mathbb{P}(\mathcal{S}) \text{ holds}$ 

 $\succ \text{ Update } S \text{ only if } \mathbb{P}(S \setminus \{i\}) \text{ holds}$  $\succ \text{ Returned set } S: \mathbb{P}(S) \text{ holds}$ 

# Detour: More Connections with Automated Reasoning

- A conjunction of literals  $\pi$  (which will be viewed as a set of literals where convenient) is a prime implicant of some function  $\varphi$  if,
  - 1.  $\pi \models \varphi$
  - 2. For any  $\pi' \subsetneq \pi$ ,  $\pi' \not\models \varphi$

#### Prime implicants & implicates

- A conjunction of literals  $\pi$  (which will be viewed as a set of literals where convenient) is a prime implicant of some function  $\varphi$  if,
  - 1.  $\pi \models \varphi$
  - 2. For any  $\pi' \subsetneq \pi$ ,  $\pi' \nvDash \varphi$
  - Example:
    - $\cdot \ \mathbb{F} = \{0,1\}^3$
    - $\cdot \varphi(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) = \mathbf{x}_1 \wedge \mathbf{x}_2 \vee \mathbf{x}_1 \wedge \mathbf{x}_3$
    - Clearly,  $x_1 \land x_2 \models \varphi$
    - Also,  $x_1 \not\models \varphi$  and  $x_2 \not\models \varphi$

- A conjunction of literals  $\pi$  (which will be viewed as a set of literals where convenient) is a prime implicant of some function  $\varphi$  if,
  - 1.  $\pi \models \varphi$
  - 2. For any  $\pi' \subsetneq \pi$ ,  $\pi' \not\models \varphi$
  - Example:
    - $\cdot \ \mathbb{F} = \{0,1\}^3$
    - $\cdot \varphi(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) = \mathbf{x}_1 \wedge \mathbf{x}_2 \vee \mathbf{x}_1 \wedge \mathbf{x}_3$
    - Clearly,  $x_1 \wedge x_2 \models \varphi$
    - · Also,  $x_1 \not\models \varphi$  and  $x_2 \not\models \varphi$
- A disjunction of literals  $\eta$  (also viewed as a set of literals where convenient) is a prime implicate of some function  $\varphi$  if
  - 1.  $\varphi \models \eta$
  - 2. For any  $\eta' \subsetneq \eta$ ,  $\varphi \not\models \eta'$

#### Reasoning about inconsistency

- $\cdot$  Formula  $\mathcal{T} = \mathcal{B} \cup \mathcal{S}$ , with
  - B: background knowledge (base), i.e. hard constraints
  - $\cdot$  *S*: additional (inconsistent) knowledge, i.e. soft constraints
  - · And,  $\mathcal{T} \vDash \bot$
  - E.g.  $\mathcal{B} = \{(x_1 \lor x_2), (x_1 \lor \neg x_3)\}, \mathcal{S} = \{(\neg x_1), (\neg x_2), (x_3)\}$

- + Formula  $\mathcal{T} = \mathcal{B} \cup \mathcal{S}$ , with
  - $\cdot$  *B*: background knowledge (base), i.e. hard constraints
  - $\cdot$  *S*: additional (inconsistent) knowledge, i.e. soft constraints
  - · And,  $\mathcal{T} \vDash \bot$
  - E.g.  $\mathcal{B} = \{(x_1 \lor x_2), (x_1 \lor \neg x_3)\}, \mathcal{S} = \{(\neg x_1), (\neg x_2), (x_3)\}$
- Minimal unsatisfiable subset (MUS):
  - $\cdot \;$  Subset-minimal set  $\mathcal{U} \subseteq \mathcal{S}$  , s.t.  $\mathcal{B} \cup \mathcal{U} \vDash \bot$
  - E.g.  $\mathcal{U} = \{(\neg x_1), (\neg x_2)\}$

- + Formula  $\mathcal{T} = \mathcal{B} \cup \mathcal{S}$ , with
  - B: background knowledge (base), i.e. hard constraints
  - $\cdot$  *S*: additional (inconsistent) knowledge, i.e. soft constraints
  - · And,  $\mathcal{T} \vDash \bot$
  - E.g.  $\mathcal{B} = \{(x_1 \lor x_2), (x_1 \lor \neg x_3)\}, \mathcal{S} = \{(\neg x_1), (\neg x_2), (x_3)\}$
- Minimal unsatisfiable subset (MUS):
  - $\cdot \;$  Subset-minimal set  $\mathcal{U} \subseteq \mathcal{S}$  , s.t.  $\mathcal{B} \cup \mathcal{U} \models \bot$
  - E.g.  $U = \{(\neg x_1), (\neg x_2)\}$
- Minimal correction subset (MCS):
  - $\cdot \ \, \text{Subset-minimal set} \ \, \mathcal{C} \subseteq \mathcal{S} \text{, s.t.} \ \, \mathcal{B} \cup (\mathcal{S} \backslash \mathcal{C}) \not \models \bot$
  - E.g.  $C = \{(\neg x_1)\}$

- $\cdot$  Formula  $\mathcal{T} = \mathcal{B} \cup \mathcal{S}$ , with
  - B: background knowledge (base), i.e. hard constraints
  - $\cdot$  *S*: additional (inconsistent) knowledge, i.e. soft constraints
  - · And,  $\mathcal{T} \vDash \bot$
  - E.g.  $\mathcal{B} = \{(x_1 \lor x_2), (x_1 \lor \neg x_3)\}, \mathcal{S} = \{(\neg x_1), (\neg x_2), (x_3)\}$
- Minimal unsatisfiable subset (MUS):
  - $\cdot \;$  Subset-minimal set  $\mathcal{U} \subseteq \mathcal{S}$  , s.t.  $\mathcal{B} \cup \mathcal{U} \models \bot$
  - E.g.  $\mathcal{U} = \{(\neg x_1), (\neg x_2)\}$
- Minimal correction subset (MCS):
  - $\cdot \ \, \text{Subset-minimal set} \ \, \mathcal{C} \subseteq \mathcal{S} \text{, s.t.} \ \, \mathcal{B} \cup (\mathcal{S} \backslash \mathcal{C}) \not \models \bot$
  - E.g.  $\mathcal{C} = \{(\neg x_1)\}$
- Duality:
  - MUSes are minimal-hitting sets (MHSes) of the MCSes, and vice-versa

[Rei87]

- + Formula  $\mathcal{T} = \mathcal{B} \cup \mathcal{S}$ , with
  - $\cdot$  *B*: background knowledge (base), i.e. hard constraints
  - $\cdot$  *S*: additional (inconsistent) knowledge, i.e. soft constraints
  - · And,  $\mathcal{T} \vDash \bot$
  - E.g.  $\mathcal{B} = \{(x_1 \lor x_2), (x_1 \lor \neg x_3)\}, \mathcal{S} = \{(\neg x_1), (\neg x_2), (x_3)\}$
- Minimal unsatisfiable subset (MUS):
  - $\cdot \;$  Subset-minimal set  $\mathcal{U} \subseteq \mathcal{S}$  , s.t.  $\mathcal{B} \cup \mathcal{U} \vDash \bot$
  - E.g.  $\mathcal{U} = \{(\neg x_1), (\neg x_2)\}$
- Minimal correction subset (MCS):
  - $\cdot \ \, \text{Subset-minimal set} \ \, \mathcal{C} \subseteq \mathcal{S} \text{, s.t.} \ \, \mathcal{B} \cup (\mathcal{S} \backslash \mathcal{C}) \not \models \bot$
  - E.g.  $\mathcal{C} = \{(\neg x_1)\}$
- Duality:
  - $\cdot\,$  MUSes are minimal-hitting sets (MHSes) of the MCSes, and vice-versa

[Rei87]

- Variants:
  - Smallest(-cost) MCS, i.e. complement of maximum(-cost) satisfiability (MaxSAT)
  - Smallest(-cost) MUS

• Recap:

$$\begin{aligned} \mathsf{WAXp}(\mathcal{X}) &:= & \forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \in \mathcal{X}} (x_j = v_j) \to (\sigma(\mathbf{x})) \\ \mathsf{WCXp}(\mathcal{Y}) &:= & \exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \land (\neg \sigma(\mathbf{x})) \end{aligned}$$

• Recap:

$$\begin{aligned} \mathsf{WAXp}(\mathcal{X}) &:= & \forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \in \mathcal{X}} (x_j = v_j) \to (\sigma(\mathbf{x})) \\ \mathsf{WCXp}(\mathcal{Y}) &:= & \exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \land (\neg \sigma(\mathbf{x})) \end{aligned}$$

- Let,
  - Hard constraints, B:

$$\mathcal{B} := \wedge_{i \in \mathcal{F}} (S_i \to (X_i = V_i)) \land \mathsf{Encode}_{\mathcal{T}}(\neg \sigma(\mathbf{x}))$$

• Recap:

$$\begin{aligned} \mathsf{WAXp}(\mathcal{X}) &:= & \forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \in \mathcal{X}} (x_j = v_j) \to (\sigma(\mathbf{x})) \\ \mathsf{WCXp}(\mathcal{Y}) &:= & \exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \land (\neg \sigma(\mathbf{x})) \end{aligned}$$

#### • Let,

 $\cdot$  Hard constraints,  $\mathcal{B}$ :

$$\mathcal{B} := \wedge_{i \in \mathcal{F}} (s_i \to (x_i = v_i)) \land \mathsf{Encode}_{\mathcal{T}}(\neg \sigma(\mathbf{x}))$$

• Soft constraints:  $S = \{s_i \mid i \in F\}$ 

• Recap:

$$\begin{aligned} \mathsf{WAXp}(\mathcal{X}) &:= & \forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \in \mathcal{X}} (x_j = v_j) \to (\sigma(\mathbf{x})) \\ \mathsf{WCXp}(\mathcal{Y}) &:= & \exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \land (\neg \sigma(\mathbf{x})) \end{aligned}$$

• Let,

• Hard constraints, B:

$$\mathcal{B} := \wedge_{i \in \mathcal{F}} \left( \mathsf{S}_i \rightarrow (\mathsf{X}_i = \mathsf{V}_i) \right) \wedge \mathsf{Encode}_{\mathcal{T}}(\neg \sigma(\mathbf{x}))$$

- Soft constraints:  $S = \{s_i \mid i \in F\}$
- + Claim: Each MUS of  $(\mathcal{B}, \mathcal{S})$  is an AXp & each MCS of  $(\mathcal{B}, \mathcal{S})$  is a CXp

• Recap:

$$\begin{aligned} \mathsf{WAXp}(\mathcal{X}) &:= & \forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \in \mathcal{X}} (x_j = v_j) \to (\sigma(\mathbf{x})) \\ \mathsf{WCXp}(\mathcal{Y}) &:= & \exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \land (\neg \sigma(\mathbf{x})) \end{aligned}$$

- Let,
  - Hard constraints, B:

$$\mathcal{B} := \wedge_{i \in \mathcal{F}} \left( \mathsf{S}_i \rightarrow (\mathsf{X}_i = \mathsf{V}_i) \right) \wedge \mathsf{Encode}_{\mathcal{T}}(\neg \sigma(\mathbf{x}))$$

- Soft constraints:  $S = \{s_i \mid i \in F\}$
- + Claim: Each MUS of  $(\mathcal{B}, \mathcal{S})$  is an AXp & each MCS of  $(\mathcal{B}, \mathcal{S})$  is a CXp
  - Can use MUS/MCS algorithms for AXps/CXps

# Unit #03

# Tractability in Symbolic XAI

#### Explanations for Decision Trees

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Sets

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

**Review examples** 

[IIM20]





- Run PI-explanation algorithm based on NP-oracles
  - Worst-case exponential time



- Run PI-explanation algorithm based on NP-oracles
  - Worst-case exponential time
- For prediction 1, it suffices to ensure all paths with prediction 0 remain inconsistent

#### DT explanations in polynomial time



- Run PI-explanation algorithm based on NP-oracles
  - Worst-case exponential time
- For prediction 1, it suffices to ensure all paths with prediction 0 remain inconsistent
  - I.e. find a subset-minimal hitting set of all 0 paths; these are the features to keep
    - E.g. BR and TR suffice for prediction
  - Well-known to be solvable in polynomial time

#### Explanations for Decision Trees

#### XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Sets

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

Review examples

• Finding one AXp in polynomial-time – covered
- Finding one AXp in polynomial-time covered
- Finding one CXp in polynomial-time

- Finding one AXp in polynomial-time covered
- Finding one CXp in polynomial-time
- Finding all CXps in polynomial-time

- Finding one AXp in polynomial-time covered
- Finding one CXp in polynomial-time
- Finding all CXps in polynomial-time; hence, finding one CXp also in polynomial-time

- Finding one AXp in polynomial-time covered
- Finding one CXp in polynomial-time
- Finding all CXps in polynomial-time; hence, finding one CXp also in polynomial-time
- Practically efficient enumeration of AXps later

• Basic algorithm:

$$\cdot \ \mathcal{L} = \varnothing$$



- Basic algorithm:
  - $\cdot \ \mathcal{L} = \varnothing$
  - For each leaf node not predicting *q*:



- Basic algorithm:
  - $\cdot \ \mathcal{L} = \varnothing$
  - For each leaf node not predicting *q*:
    - +  ${\mathcal I}:$  features with literals inconsistent with v



- Basic algorithm:
  - $\cdot \ \mathcal{L} = \varnothing$
  - For each leaf node not predicting *q*:
    - +  ${\cal I}:$  features with literals inconsistent with v
    - + Add  ${\mathcal I}$  to  ${\mathcal L}$



- Basic algorithm:
  - $\cdot \ \mathcal{L} = \varnothing$
  - For each leaf node not predicting *q*:
    - +  ${\cal I}:$  features with literals inconsistent with v
    - $\cdot \;\; \mathsf{Add} \; \mathcal{I} \; \mathsf{to} \; \mathcal{L}$
  - $\cdot\,$  Remove from  ${\cal L}$  non-minimal sets



- Basic algorithm:
  - $\cdot \ \mathcal{L} = \varnothing$
  - For each leaf node not predicting q:
    - +  ${\cal I}:$  features with literals inconsistent with v
    - $\cdot \;\; \mathsf{Add} \; \mathcal{I} \; \mathsf{to} \; \mathcal{L}$
  - $\cdot\,$  Remove from  ${\cal L}$  non-minimal sets
  - $\cdot \, \, \mathcal{L}$  contains all the CXps of the DT



- Basic algorithm:
  - $\cdot \ \mathcal{L} = \varnothing$
  - For each leaf node not predicting q:
    - +  ${\cal I}:$  features with literals inconsistent with v
    - + Add  ${\mathcal I}$  to  ${\mathcal L}$
  - $\cdot\,$  Remove from  ${\cal L}$  non-minimal sets
  - +  ${\mathcal L}$  contains all the CXps of the DT
- Example: instance is ((1, 1, 1, 1), 1)



- Basic algorithm:
  - $\cdot \ \mathcal{L} = \varnothing$
  - For each leaf node not predicting *q*:
    - +  ${\cal I}:$  features with literals inconsistent with v
    - + Add  ${\mathcal I}$  to  ${\mathcal L}$
  - $\cdot\,$  Remove from  ${\cal L}$  non-minimal sets
  - +  ${\mathcal L}$  contains all the CXps of the DT
- Example: instance is ((1, 1, 1, 1), 1)
  - $\cdot \mbox{ Add } \{1,2\} \mbox{ to } \mathcal{L}$



- Basic algorithm:
  - $\cdot \ \mathcal{L} = \varnothing$
  - For each leaf node not predicting *q*:
    - +  ${\mathcal I}:$  features with literals inconsistent with v
    - + Add  ${\mathcal I}$  to  ${\mathcal L}$
  - $\cdot\,$  Remove from  ${\cal L}$  non-minimal sets
  - +  ${\mathcal L}$  contains all the CXps of the DT
- Example: instance is ((1, 1, 1, 1), 1)
  - $\cdot \mbox{ Add } \{1,2\} \mbox{ to } \mathcal{L}$
  - + Add  $\{1,3\}$  to  ${\cal L}$



- Basic algorithm:
  - $\cdot \ \mathcal{L} = \varnothing$
  - For each leaf node not predicting *q*:
    - +  ${\cal I}:$  features with literals inconsistent with v
    - + Add  ${\mathcal I}$  to  ${\mathcal L}$
  - $\cdot\,$  Remove from  ${\cal L}$  non-minimal sets
  - +  ${\mathcal L}$  contains all the CXps of the DT
- Example: instance is ((1, 1, 1, 1), 1)
  - $\cdot \mbox{ Add } \{1,2\} \mbox{ to } \mathcal{L}$
  - + Add  $\{1,3\}$  to  $\mathcal L$
  - + Add  $\{1,4\}$  to  ${\cal L}$



- Basic algorithm:
  - $\cdot \ \mathcal{L} = \varnothing$
  - For each leaf node not predicting *q*:
    - +  ${\cal I}:$  features with literals inconsistent with v
    - + Add  ${\mathcal I}$  to  ${\mathcal L}$
  - $\cdot\,$  Remove from  ${\cal L}$  non-minimal sets
  - +  ${\mathcal L}$  contains all the CXps of the DT
- Example: instance is ((1, 1, 1, 1), 1)
  - $\cdot \mbox{ Add } \{1,2\} \mbox{ to } \mathcal{L}$
  - + Add  $\{1,3\}$  to  ${\cal L}$
  - + Add  $\{1,4\}$  to  ${\cal L}$
  - $\cdot \,$  Add {3} to  ${\cal L}$



- Basic algorithm:
  - $\cdot \ \mathcal{L} = \varnothing$
  - For each leaf node not predicting *q*:
    - +  ${\cal I}:$  features with literals inconsistent with v
    - + Add  ${\mathcal I}$  to  ${\mathcal L}$
  - $\cdot\,$  Remove from  ${\cal L}$  non-minimal sets
  - +  ${\mathcal L}$  contains all the CXps of the DT
- Example: instance is ((1, 1, 1, 1), 1)
  - $\cdot \mbox{ Add } \{1,2\} \mbox{ to } \mathcal{L}$
  - + Add  $\{1,3\}$  to  ${\cal L}$
  - + Add  $\{1,4\}$  to  ${\cal L}$
  - $\cdot \,$  Add {3} to  ${\cal L}$
  - $\cdot \, \, \operatorname{\mathsf{Add}} \, \{4\} \ \operatorname{\mathsf{to}} \, \mathcal{L}$



- Basic algorithm:
  - $\cdot \ \mathcal{L} = \varnothing$
  - For each leaf node not predicting *q*:
    - +  ${\cal I}:$  features with literals inconsistent with v
    - + Add  ${\mathcal I}$  to  ${\mathcal L}$
  - $\cdot\,$  Remove from  ${\cal L}$  non-minimal sets
  - +  ${\mathcal L}$  contains all the CXps of the DT
- Example: instance is ((1, 1, 1, 1), 1)
  - $\cdot \mbox{ Add } \{1,2\} \mbox{ to } \mathcal{L}$
  - + Add  $\{1,3\}$  to  ${\cal L}$
  - + Add  $\{1,4\}$  to  $\mathcal L$
  - $\cdot \,$  Add {3} to  ${\cal L}$
  - $\cdot$  Add  $\{4\}$  to  $\mathcal L$
  - Remove from  $\mathcal{L}\!\!:\{1,3\}$  and  $\{1,4\}$



- Basic algorithm:
  - $\cdot \ \mathcal{L} = \varnothing$
  - For each leaf node not predicting *q*:
    - +  ${\cal I}:$  features with literals inconsistent with v
    - $\cdot \;\; \mathsf{Add} \; \mathcal{I} \; \mathsf{to} \; \mathcal{L}$
  - $\cdot\,$  Remove from  ${\cal L}$  non-minimal sets
  - +  ${\mathcal L}$  contains all the CXps of the DT
- Example: instance is ((1, 1, 1, 1), 1)
  - + Add  $\{1,2\}$  to  ${\cal L}$
  - + Add  $\{1,3\}$  to  ${\cal L}$
  - + Add  $\{1,4\}$  to  $\mathcal L$
  - $\cdot$  Add {3} to  $\mathcal L$
  - $\cdot$  Add  $\{4\}$  to  $\mathcal L$
  - + Remove from  $\mathcal{L}\!\!:\{1,3\}$  and  $\{1,4\}$
  - CXps:  $\{\{1,2\},\{3\},\{4\}\}$



- Basic algorithm:
  - $\cdot \ \mathcal{L} = \varnothing$
  - For each leaf node not predicting *q*:
    - +  ${\cal I}:$  features with literals inconsistent with v
    - + Add  ${\mathcal I}$  to  ${\mathcal L}$
  - $\cdot\,$  Remove from  ${\cal L}$  non-minimal sets
  - +  ${\mathcal L}$  contains all the CXps of the DT
- Example: instance is ((1, 1, 1, 1), 1)
  - $\cdot \mbox{ Add } \{1,2\} \mbox{ to } \mathcal{L}$
  - + Add  $\{1,3\}$  to  ${\cal L}$
  - + Add  $\{1,4\}$  to  $\mathcal L$
  - $\cdot$  Add {3} to  $\mathcal L$
  - $\cdot$  Add  $\{4\}$  to  $\mathcal L$
  - + Remove from  $\mathcal{L}\!\!:\{1,3\}$  and  $\{1,4\}$
  - CXps:  $\{\{1,2\},\{3\},\{4\}\}$
  - + AXps: {{1,3,4}, {2,3,4}}, by computing all MHSes



#### **Explanations for Decision Trees**

#### XAI Queries for DTs

#### Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Sets

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

Review examples



Case of optimal decision tree (DT)

[HRS19]

• Explanation for (0, 0, 1, 0, 1), with prediction 1?



- Case of optimal decision tree (DT)
- Explanation for (0, 0, 1, 0, 1), with prediction 1?
  - Clearly, IF  $\neg x_1 \land \neg x_2 \land x_3 \land \neg x_4 \land x_5$  THEN  $\kappa(\mathbf{x}) = 1$



• Case of **optimal** decision tree (DT)

- [HRS19]
- Explanation for (0, 0, 1, 0, 1), with prediction 1?
  - + Clearly, IF  $\neg x_1 \land \neg x_2 \land x_3 \land \neg x_4 \land x_5$  THEN  $\kappa(\mathbf{x}) = 1$
  - But,  $x_1$ ,  $x_2$ ,  $x_4$  are irrelevant for the prediction:

| X <sub>3</sub> | $X_5$ | $X_1$ | $X_2$ | $X_4$ | $\kappa(\mathbf{x})$ |
|----------------|-------|-------|-------|-------|----------------------|
| 1              | 1     | 0     | 0     | 0     | 1                    |
| 1              | 1     | 0     | 0     | 1     | 1                    |
| 1              | 1     | 0     | 1     | 0     | 1                    |
| 1              | 1     | 0     | 1     | 1     | 1                    |
| 1              | 1     | 1     | 0     | 0     | 1                    |
| 1              | 1     | 1     | 0     | 1     | 1                    |
| 1              | 1     | 1     | 1     | 0     | 1                    |
| 1              | 1     | 1     | 1     | 1     | 1                    |



• Case of **optimal** decision tree (DT)

- [HRS19]
- Explanation for (0, 0, 1, 0, 1), with prediction 1?
  - + Clearly, IF  $\neg x_1 \land \neg x_2 \land x_3 \land \neg x_4 \land x_5$  THEN  $\kappa(\mathbf{x}) = 1$
  - But,  $x_1$ ,  $x_2$ ,  $x_4$  are irrelevant for the prediction:

| X <sub>3</sub> | $X_5$ | $X_1$ | $X_2$ | $X_4$ | $\kappa(\mathbf{x})$ |
|----------------|-------|-------|-------|-------|----------------------|
| 1              | 1     | 0     | 0     | 0     | 1                    |
| 1              | 1     | 0     | 0     | 1     | 1                    |
| 1              | 1     | 0     | 1     | 0     | 1                    |
| 1              | 1     | 0     | 1     | 1     | 1                    |
| 1              | 1     | 1     | 0     | 0     | 1                    |
| 1              | 1     | 1     | 0     | 1     | 1                    |
| 1              | 1     | 1     | 1     | 0     | 1                    |
| 1              | 1     | 1     | 1     | 1     | 1                    |

... one AXp is  $\{3, 5\}$ Compare with  $\{1, 2, 3, 4, 5\}$ ...



© J. Marques-Silva



Path with 19 internal nodes. By manual inspection, at least 10 literals are redundant! (And at least 9 features dropped) • J. Marques-Silva



Path with 19 internal nodes. By manual inspection, at least 10 literals are redundant! (And at least 9 features dropped) • J. Marques-Silva

And the cognitive limits of human decision makers are well-known [Mil56]



By manual inspection, at least 10 literals are redundant! (And at least 9 features dropped) © J. Margues-Silva

And the cognitive limits of human decision makers are well-known [Mil56]

• Classifier, with  $x_1, \ldots, x_m \in \{0, 1\}$ :

$$\kappa(x_1, x_2, \dots, x_{m-1}, x_m) = \bigvee_{i=1}^m x_i$$

• Classifier, with  $x_1, \ldots, x_m \in \{0, 1\}$ :

$$\kappa(x_1, x_2, \ldots, x_{m-1}, x_m) = \bigvee_{i=1}^m x_i$$

• Build DT, by picking variables in order  $\langle i_1, i_2, \dots, i_m \rangle$ , permutation of  $\langle 1, 2, \dots, m \rangle$ :



• Classifier, with  $x_1, \ldots, x_m \in \{0, 1\}$ :

$$\kappa(x_1, x_2, \ldots, x_{m-1}, x_m) = \bigvee_{i=1}^m x_i$$

• Build DT, by picking variables in order  $\langle i_1, i_2, \dots, i_m \rangle$ , permutation of  $\langle 1, 2, \dots, m \rangle$ :



• Point:  $(x_{i_1}, x_{i_2}, \dots, x_{i_{m-1}}, x_{i_m}) = (0, 0, \dots, 0, 1)$ , and prediction 1

• Classifier, with  $x_1, \ldots, x_m \in \{0, 1\}$ :

$$\kappa(x_1, x_2, \ldots, x_{m-1}, x_m) = \bigvee_{i=1}^m x_i$$

• Build DT, by picking variables in order  $\langle i_1, i_2, \dots, i_m \rangle$ , permutation of  $\langle 1, 2, \dots, m \rangle$ :



- Point:  $(x_{i_1}, x_{i_2}, \dots, x_{i_{m-1}}, x_{i_m}) = (0, 0, \dots, 0, 1)$ , and prediction 1
- Explanation using path in DT:  $\{i_1, i_2, \ldots, i_m\}$ , i.e.

 $(x_{i_1}=0) \land (x_{i_2}=0) \land \ldots \land (x_{i_{m-1}}=0) \land (x_{i_m}=1) \rightarrow \kappa(x_1,\ldots,x_m)$ 

• Classifier, with  $x_1, \ldots, x_m \in \{0, 1\}$ :

$$\kappa(x_1, x_2, \ldots, x_{m-1}, x_m) = \bigvee_{i=1}^m x_i$$

• Build DT, by picking variables in order  $\langle i_1, i_2, \dots, i_m \rangle$ , permutation of  $\langle 1, 2, \dots, m \rangle$ :



- Point:  $(x_{i_1}, x_{i_2}, \dots, x_{i_{m-1}}, x_{i_m}) = (0, 0, \dots, 0, 1)$ , and prediction 1
- Explanation using path in DT:  $\{i_1, i_2, \ldots, i_m\}$ , i.e.

 $(\mathbf{X}_{i_1} = 0) \land (\mathbf{X}_{i_2} = 0) \land \ldots \land (\mathbf{X}_{i_{m-1}} = 0) \land (\mathbf{X}_{i_m} = 1) \rightarrow \kappa(\mathbf{X}_1, \ldots, \mathbf{X}_m)$ 

• But  $\{i_m\}$  suffices for prediction, i.e.  $\forall (\mathbf{x} \in \{0,1\}^m).(\mathbf{x}_{i_m}) \rightarrow \kappa(\mathbf{x})$ 

• Classifier, with  $x_1, \ldots, x_m \in \{0, 1\}$ :

$$\kappa(x_1, x_2, \ldots, x_{m-1}, x_m) = \bigvee_{i=1}^m x_i$$

• Build DT, by picking variables in order  $\langle i_1, i_2, \dots, i_m \rangle$ , permutation of  $\langle 1, 2, \dots, m \rangle$ :



- Point:  $(x_{i_1}, x_{i_2}, \dots, x_{i_{m-1}}, x_{i_m}) = (0, 0, \dots, 0, 1)$ , and prediction 1
- Explanation using path in DT:  $\{i_1, i_2, \ldots, i_m\}$ , i.e.

 $(\mathbf{X}_{i_1} = 0) \land (\mathbf{X}_{i_2} = 0) \land \ldots \land (\mathbf{X}_{i_{m-1}} = 0) \land (\mathbf{X}_{i_m} = 1) \rightarrow \kappa(\mathbf{X}_1, \ldots, \mathbf{X}_m)$ 

- But  $\{i_m\}$  suffices for prediction, i.e.  $\forall (\mathbf{x} \in \{0, 1\}^m) . (X_{i_m}) \rightarrow \kappa(\mathbf{x})$
- AXp's can be arbitrarily smaller than paths in (optimal) DTs!

[IIM20, IIM22]

## Explanation redundancy in DTs is ubiquitous – published DT examples

| DT Ref                           | D | #N | #P | % <b>R</b> | %C | %m | %M | %avg |
|----------------------------------|---|----|----|------------|----|----|----|------|
| [Alp14, Ch. 09, Fig. 9.1]        | 2 | 5  | 3  | 33         | 25 | 50 | 50 | 50   |
| [Alp16, Ch. 03, Fig. 3.2]        | 2 | 5  | 3  | 33         | 25 | 50 | 50 | 50   |
| [Bra20, Ch. 01, Fig. 1.3]        | 4 | 9  | 5  | 60         | 25 | 25 | 50 | 36   |
| [BA97, Figure 1]                 | 3 | 12 | 7  | 14         | 8  | 33 | 33 | 33   |
| [BBHK10, Ch. 08, Fig. 8.2]       | 3 | 7  | 4  | 25         | 12 | 50 | 50 | 50   |
| [BFOS84, Ch. 01, Fig. 1.1]       | 3 | 7  | 4  | 50         | 25 | 33 | 33 | 33   |
| [DL01, Ch. 01, Fig. 1.2a]        | 2 | 5  | 3  | 33         | 25 | 33 | 33 | 33   |
| [DL01, Ch. 01, Fig. 1.2b]        | 2 | 5  | 3  | 33         | 25 | 33 | 33 | 33   |
| [KMND20, Ch. 04, Fig. 4.14]      | 3 | 7  | 4  | 25         | 12 | 50 | 50 | 50   |
| [KMND20, Sec. 4.7, Ex. 4]        | 2 | 5  | 3  | 33         | 25 | 50 | 50 | 50   |
| [Qui93, Ch. 01, Fig. 1.3]        | 3 | 12 | 7  | 28         | 17 | 33 | 50 | 41   |
| [RM08, Ch. 01, Fig. 1.5]         | 3 | 9  | 5  | 20         | 12 | 33 | 33 | 33   |
| [RM08, Ch. 01, Fig. 1.4]         | 3 | 7  | 4  | 50         | 25 | 33 | 33 | 33   |
| [WFHP17, Ch. 01, Fig. 1.2]       | 3 | 7  | 4  | 25         | 12 | 50 | 50 | 50   |
| [VLE <sup>+</sup> 16, Figure 4]  | 6 | 39 | 20 | 65         | 63 | 20 | 40 | 33   |
| [Fla12, Ch. 02, Fig. 2.1(right)] | 2 | 5  | 3  | 33         | 25 | 50 | 50 | 50   |
| [Kot13, Figure 1]                | 3 | 10 | 6  | 33         | 11 | 33 | 33 | 33   |
| [Mor82, Figure 1]                | 3 | 9  | 5  | 80         | 75 | 33 | 50 | 41   |
| [PM17, Ch. 07, Fig. 7.4]         | 3 | 7  | 4  | 50         | 25 | 33 | 33 | 33   |
| [RN10, Ch. 18, Fig. 18.6]        | 4 | 12 | 8  | 25         | 6  | 25 | 33 | 29   |
| [SB14, Ch. 18, Page 212]         | 2 | 5  | 3  | 33         | 25 | 50 | 50 | 50   |
| [Zho12, Ch. 01, Fig. 1.3]        | 2 | 5  | 3  | 33         | 25 | 33 | 33 | 33   |
| [BHO09, Figure 1b]               | 4 | 13 | 7  | 71         | 50 | 33 | 50 | 36   |
| [Zho21, Ch. 04, Fig. 4.3]        | 4 | 14 | 9  | 11         | 2  | 25 | 25 | 25   |

#### Many DTs have paths that are not minimal XPs – Russell&Norvig's book



• Explanation for (P, H, T, W) = (Full, Yes, Thai, No)?

[RN10]
#### Many DTs have paths that are not minimal XPs – Zhou's book



[Zho12

• Explanation for (x, y) = (1.25, -1.13)?

Obs: True explanations can be computed for categorical, integer or real-valued features !

### Many DTs have paths that are not minimal XPs – Alpaydin's book

 $x_1 > w_{10}?$  y  $x_2 > w_{20}?$ N Y O

• Explanation for  $(x_1, x_2) = (\alpha, \beta)$ , with  $\alpha > w_{10}$  and  $\beta \leq w_{20}$ ?

Obs: True explanations can be computed for categorical, integer or real-valued features !

© J. Marques-Silva

### Many DTs have paths that are not minimal XPs – S.-S.&B.-D.'s book



[SB14

• Explanation for (color, softness) = (Pale Grade, Other)?

### Many DTs have paths that are not minimal XPs - Poole&Mackworth's book



- Explanation for (L, T, A) = (Short, Follow-Up, Unknown)?
- Explanation for (L, T, A) = (Short, Follow-Up, Known)?

[PM17]

### Explanation redundancy in DTs is ubiquitous – DTs from datasets

| Dataset        | (#F  | (#F    | (#F | #S) |     |    |    |    | - D | AI |      |    |      |      |      |            |    | ITI |    |     |  |  |
|----------------|------|--------|-----|-----|-----|----|----|----|-----|----|------|----|------|------|------|------------|----|-----|----|-----|--|--|
|                | (    |        | D   | #N  | %A  | #P | %R | %C | %m  | %M | %avg | D  | #N   | %A   | #P   | % <b>R</b> | %C | %m  | %M | %av |  |  |
| adult          | (12  | 6061)  | 6   | 83  | 78  | 42 | 33 | 25 | 20  | 40 | 25   | 17 | 509  | 73   | 255  | 75         | 91 | 10  | 66 | 22  |  |  |
| anneal         | ( 38 | 886)   | 6   | 29  | 99  | 15 | 26 | 16 | 16  | 33 | 21   | 9  | 31   | 100  | 16   | 25         | 4  | 12  | 20 | 16  |  |  |
| backache       | ( 32 | 180)   | 4   | 17  | 72  | 9  | 33 | 39 | 25  | 33 | 30   | 3  | 9    | 91   | 5    | 80         | 87 | 50  | 66 | 54  |  |  |
| bank           | (19  | 36293) | 6   | 113 | 88  | 57 | 5  | 12 | 16  | 20 | 18   | 19 | 1467 | 86   | 734  | 69         | 64 | 7   | 63 | 27  |  |  |
| biodegradation | (41  | 1052)  | 5   | 19  | 65  | 10 | 30 | 1  | 25  | 50 | 33   | 8  | 71   | 76   | 36   | 50         | 8  | 14  | 40 | 21  |  |  |
| cancer         | ( 9  | 449)   | 6   | 37  | 87  | 19 | 36 | 9  | 20  | 25 | 21   | 5  | 21   | 84   | 11   | 54         | 10 | 25  | 50 | 37  |  |  |
| car            | ( 6  | 1728)  | 6   | 43  | 96  | 22 | 86 | 89 | 20  | 80 | 45   | 11 | 57   | 98   | 29   | 65         | 41 | 16  | 50 | 30  |  |  |
| colic          | (22  | 357)   | 6   | 55  | 81  | 28 | 46 | 6  | 16  | 33 | 20   | 4  | 17   | 80   | 9    | 33         | 27 | 25  | 25 | 25  |  |  |
| compas         | (11  | 1155)  | 6   | 77  | 34  | 39 | 17 | 8  | 16  | 20 | 17   | 15 | 183  | 37   | 92   | 66         | 43 | 12  | 60 | 27  |  |  |
| contraceptive  | ( 9  | 1425)  | 6   | 99  | 49  | 50 | 8  | 2  | 20  | 60 | 37   | 17 | 385  | 48   | 193  | 27         | 32 | 12  | 66 | 21  |  |  |
| dermatology    | ( 34 | 366)   | 6   | 33  | 90  | 17 | 23 | 3  | 16  | 33 | 21   | 7  | 17   | 95   | 9    | 22         | 0  | 14  | 20 | 17  |  |  |
| divorce        | (54  | 150)   | 5   | 15  | 90  | 8  | 50 | 19 | 20  | 33 | 24   | 2  | 5    | 96   | 3    | 33         | 16 | 50  | 50 | 50  |  |  |
| german         | (21  | 1000)  | 6   | 25  | 61  | 13 | 38 | 10 | 20  | 40 | 29   | 10 | 99   | 72   | 50   | 46         | 13 | 12  | 40 | 22  |  |  |
| heart-c        | (13  | 302)   | 6   | 43  | 65  | 22 | 36 | 18 | 20  | 33 | 22   | 4  | 15   | 75   | 8    | 87         | 81 | 25  | 50 | 34  |  |  |
| heart-h        | (13  | 293)   | 6   | 37  | 59  | 19 | 31 | 4  | 20  | 40 | 24   | 8  | 25   | 77   | 13   | 61         | 60 | 20  | 50 | 32  |  |  |
| kr-vs-kp       | ( 36 | 3196)  | 6   | 49  | 96  | 25 | 80 | 75 | 16  | 60 | 33   | 13 | 67   | - 99 | 34   | 79         | 43 | 7   | 70 | 35  |  |  |
| lending        | ( 9  | 5082)  | 6   | 45  | 73  | 23 | 73 | 80 | 16  | 50 | 25   | 14 | 507  | 65   | 254  | 69         | 80 | 12  | 75 | 25  |  |  |
| letter         | (16  | 18668) | 6   | 127 | 58  | 64 | 1  | 0  | 20  | 20 | 20   | 46 | 4857 | 68   | 2429 | 6          | 7  | 6   | 25 | 9   |  |  |
| lymphography   | (18  | 148)   | 6   | 61  | 76  | 31 | 35 | 25 | 16  | 33 | 21   | 6  | 21   | 86   | 11   | 9          | 0  | 16  | 16 | 16  |  |  |
| mortality      | (118 | 13442) | 6   | 111 | 74  | 56 | 8  | 14 | 16  | 20 | 17   | 26 | 865  | 76   | 433  | 61         | 61 | 7   | 54 | 19  |  |  |
| mushroom       | (22  | 8124)  | 6   | 39  | 100 | 20 | 80 | 44 | 16  | 33 | 24   | 5  | 23   | 100  | 12   | 50         | 31 | 20  | 40 | 25  |  |  |
| pendigits      | (16  | 10992) | 6   | 121 | 88  | 61 | 0  | 0  | -   | -  | -    | 38 | 937  | 85   | 469  | 25         | 86 | 6   | 25 | 11  |  |  |
| promoters      | ( 58 | 106)   | 1   | 3   | 90  | 2  | 0  | 0  | -   | -  | -    | 3  | 9    | 81   | 5    | 20         | 14 | 33  | 33 | 33  |  |  |
| recidivism     | (15  | 3998)  | 6   | 105 | 61  | 53 | 28 | 22 | 16  | 33 | 18   | 15 | 611  | 51   | 306  | 53         | 38 | 9   | 44 | 16  |  |  |
| seismic_bumps  | (18  | 2578)  | 6   | 37  | 89  | 19 | 42 | 19 | 20  | 33 | 24   | 8  | 39   | 93   | 20   | 60         | 79 | 20  | 60 | 42  |  |  |
| shuttle        | ( 9  | 58000) | 6   | 63  | 99  | 32 | 28 | 7  | 20  | 33 | 23   | 23 | 159  | - 99 | 80   | 33         | 9  | 14  | 50 | 30  |  |  |
| soybean        | ( 35 | 623)   | 6   | 63  | 88  | 32 | 9  | 5  | 25  | 25 | 25   | 16 | 71   | 89   | 36   | 22         | 1  | 9   | 12 | 10  |  |  |
| spambase       | ( 57 | 4210)  | 6   | 63  | 75  | 32 | 37 | 12 | 16  | 33 | 19   | 15 | 143  | 91   | 72   | 76         | 98 | 7   | 58 | 25  |  |  |
| spect          | ( 22 | 228)   | 6   | 45  | 82  | 23 | 60 | 51 | 20  | 50 | 35   | 6  | 15   | 86   | 8    | 87         | 98 | 50  | 83 | 65  |  |  |
| splice         | ( 2  | 3178)  | 3   | 7   | 50  | 4  | 0  | 0  | -   | -  | _    | 88 | 177  | 55   | 89   | 0          | 0  | _   | -  | _   |  |  |

### Are interpretable models really interpretable? - DLs

| $R_1$ :     | IF      | $(X_1 \wedge X_3)$          | THEN | $\kappa(\mathbf{x}) = 1$ |
|-------------|---------|-----------------------------|------|--------------------------|
| $R_2$ :     | ELSE IF | $(X_2 \land X_4 \land X_6)$ | THEN | $\kappa(\mathbf{x}) = 0$ |
| $R_3$ :     | ELSE IF | $(\neg x_1 \land x_3)$      | THEN | $\kappa(\mathbf{x}) = 1$ |
| $R_4$ :     | ELSE IF | $(X_4 \wedge X_6)$          | THEN | $\kappa(\mathbf{x}) = 0$ |
| $R_5$ :     | ELSE IF | $(\neg x_1 \land \neg x_3)$ | THEN | $\kappa(\mathbf{x}) = 1$ |
| $R_6$ :     | ELSE IF | $(x_6)$                     | THEN | $\kappa(\mathbf{x}) = 0$ |
| $R_{DEF}$ : | ELSE    |                             |      | $\kappa(\mathbf{x}) = 1$ |

• Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule R<sub>2</sub> fires

### Are interpretable models really interpretable? - DLs

| $R_1$ :     | IF      | $(X_1 \wedge X_3)$          | THEN | $\kappa(\mathbf{x}) = 1$ |
|-------------|---------|-----------------------------|------|--------------------------|
| $R_2$ :     | ELSE IF | $(X_2 \land X_4 \land X_6)$ | THEN | $\kappa(\mathbf{x}) = 0$ |
| $R_3$ :     | ELSE IF | $(\neg x_1 \land x_3)$      | THEN | $\kappa(\mathbf{x}) = 1$ |
| $R_4$ :     | ELSE IF | $(X_4 \wedge X_6)$          | THEN | $\kappa(\mathbf{x}) = 0$ |
| $R_5$ :     | ELSE IF | $(\neg x_1 \land \neg x_3)$ | THEN | $\kappa(\mathbf{x}) = 1$ |
| $R_6$ :     | ELSE IF | $(x_6)$                     | THEN | $\kappa(\mathbf{x}) = 0$ |
| $R_{DEF}$ : | ELSE    |                             |      | $\kappa(\mathbf{x}) = 1$ |

- Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule  $R_2$  fires
- What is the abductive explanation?

### Are interpretable models really interpretable? - DLs

| $R_1$ :     | IF      | $(X_1 \wedge X_3)$          | THEN | $\kappa(\mathbf{x}) = 1$ |
|-------------|---------|-----------------------------|------|--------------------------|
| $R_2$ :     | ELSE IF | $(X_2 \land X_4 \land X_6)$ | THEN | $\kappa(\mathbf{x}) = 0$ |
| $R_3$ :     | ELSE IF | $(\neg x_1 \land x_3)$      | THEN | $\kappa(\mathbf{x}) = 1$ |
| $R_4$ :     | ELSE IF | $(X_4 \wedge X_6)$          | THEN | $\kappa(\mathbf{x}) = 0$ |
| $R_5$ :     | ELSE IF | $(\neg x_1 \land \neg x_3)$ | THEN | $\kappa(\mathbf{x}) = 1$ |
| $R_6$ :     | ELSE IF | $(x_6)$                     | THEN | $\kappa(\mathbf{x}) = 0$ |
| $R_{DEF}$ : | ELSE    |                             |      | $\kappa(\mathbf{x}) = 1$ |

- Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule  $R_2$  fires
- What is the abductive explanation?
- Recall: one AXp is  $\{3, 4, 6\}$

| $R_1$ :            | IF      | $(X_1 \wedge X_3)$          | THEN | $\kappa(\mathbf{x}) = 1$ |
|--------------------|---------|-----------------------------|------|--------------------------|
| $R_2$ :            | ELSE IF | $(X_2 \land X_4 \land X_6)$ | THEN | $\kappa(\mathbf{x}) = 0$ |
| $R_3$ :            | ELSE IF | $(\neg x_1 \land x_3)$      | THEN | $\kappa(\mathbf{x}) = 1$ |
| $R_4$ :            | ELSE IF | $(X_4 \wedge X_6)$          | THEN | $\kappa(\mathbf{x}) = 0$ |
| $R_5$ :            | ELSE IF | $(\neg x_1 \land \neg x_3)$ | THEN | $\kappa(\mathbf{x}) = 1$ |
| R <sub>6</sub> :   | ELSE IF | $(x_6)$                     | THEN | $\kappa(\mathbf{x}) = 0$ |
| R <sub>DEF</sub> : | ELSE    |                             |      | $\kappa(\mathbf{x}) = 1$ |

- Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule R<sub>2</sub> fires
- What is the abductive explanation?
- Recall: one AXp is  $\{3, 4, 6\}$ 
  - · Why?
    - $\cdot\,$  We need 3 (or 1) so that R1 cannot fire
    - $\cdot\,$  With 3, we do not need 2, since with 4 and 6 fixed, then  $R_4$  is guaranteed to fire
  - Some questions:
    - Would average human decision maker be able to understand the AXp?
    - Would he/she be able to compute one AXp, by manual inspection?

| $R_1$ :            | IF      | $(X_1 \wedge X_3)$          | THEN | $\kappa(\mathbf{x}) = 1$ |
|--------------------|---------|-----------------------------|------|--------------------------|
| $R_2$ :            | ELSE IF | $(X_2 \land X_4 \land X_6)$ | THEN | $\kappa(\mathbf{x}) = 0$ |
| $R_3$ :            | ELSE IF | $(\neg x_1 \land x_3)$      | THEN | $\kappa(\mathbf{x}) = 1$ |
| $R_4$ :            | ELSE IF | $(X_4 \wedge X_6)$          | THEN | $\kappa(\mathbf{x}) = 0$ |
| $R_5$ :            | ELSE IF | $(\neg x_1 \land \neg x_3)$ | THEN | $\kappa(\mathbf{x}) = 1$ |
| R <sub>6</sub> :   | ELSE IF | $(x_6)$                     | THEN | $\kappa(\mathbf{x}) = 0$ |
| R <sub>DEF</sub> : | ELSE    |                             |      | $\kappa(\mathbf{x}) = 1$ |

- Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule  $R_2$  fires
- What is the abductive explanation?
- Recall: one AXp is  $\{3, 4, 6\}$ 
  - Why?
    - $\cdot\,$  We need 3 (or 1) so that R1 cannot fire
    - $\cdot\,$  With 3, we do not need 2, since with 4 and 6 fixed, then  $R_4$  is guaranteed to fire
  - Some questions:
    - Would average human decision maker be able to understand the AXp?
    - Would he/she be able to compute one AXp, by manual inspection? (BTW, we have proved that computing one AXp for DLs is computationally hard...)

[IM21, MSI23]

[MSI23]



DTs learned with Interpretable AI, max depth 6

DLs learned with CN2

32 / 47

**Explanations for Decision Trees** 

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Sets

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

**Review examples** 

[HM23]

- Decision sets raise a number of issues:
  - Overlap: Two rules with different predictions can fire on the same input
  - Incomplete coverage: For some inputs, no rule may fire
    - $\cdot\,$  A default rule defeats the purpose of unordered rules

- Decision sets raise a number of issues:
  - Overlap: Two rules with different predictions can fire on the same input
  - Incomplete coverage: For some inputs, no rule may fire
    - $\cdot\,$  A default rule defeats the purpose of unordered rules
  - A DS without overlap and complete coverage computes a classification function

- Decision sets raise a number of issues:
  - Overlap: Two rules with different predictions can fire on the same input
  - Incomplete coverage: For some inputs, no rule may fire
    - $\cdot\,$  A default rule defeats the purpose of unordered rules
  - $\cdot$  A DS without overlap and complete coverage computes a classification function
- And explaining DSs is computationally hard...

- Decision sets raise a number of issues:
  - Overlap: Two rules with different predictions can fire on the same input
  - Incomplete coverage: For some inputs, no rule may fire
    - $\cdot\,$  A default rule defeats the purpose of unordered rules
  - $\cdot$  A DS without overlap and complete coverage computes a classification function
- And explaining DSs is computationally hard...

 $\cdot\,$  One can extract explained DSs from DTs  $\,$ 

- Decision sets raise a number of issues:
  - Overlap: Two rules with different predictions can fire on the same input
  - Incomplete coverage: For some inputs, no rule may fire
    - $\cdot\,$  A default rule defeats the purpose of unordered rules
  - A DS without overlap and complete coverage computes a classification function
- And explaining DSs is computationally hard...

- One can extract explained DSs from DTs
  - Extract one AXp (viewed as a logic rule) from each path in DT
  - Resulting rules are non-overlapping, and cover feature space

## Example



### Example



 $R_{01}$ : IF [P] THEN  $\kappa(\cdot) = \mathbf{Y}$  $R_{02}$ : IF  $[\overline{A} \land \overline{P}]$ THEN  $\kappa(\cdot) = \mathbf{N}$  $\mathsf{R}_{03}$ : IF  $[\overline{P} \land \overline{N} \land V \land Z = 1]$  THEN  $\kappa(\cdot) = \mathbf{N}$  $R_{04}$ : IF  $[\overline{P} \land \overline{N} \land V \land Z = 2 \land S \land \overline{G}]$  THEN  $\kappa(\cdot) = \mathbf{N}$  $\mathsf{R}_{05}$ : IF  $[\mathsf{A} \land \mathsf{Z} = 2 \land \mathsf{S} \land \mathsf{G}]$  THEN  $\kappa(\cdot) = \mathbf{Y}$  $R_{06}$ : IF  $[\overline{P} \land \overline{N} \land V \land Z = 2 \land \overline{S} \land H]$  THEN  $\kappa(\cdot) = \mathbf{N}$  $\mathsf{R}_{07}$ : IF  $[\mathsf{A} \land \mathsf{Z} = 2 \land \overline{\mathsf{S}} \land \overline{\mathsf{H}} \land \mathsf{C}]$  THEN  $\kappa(\cdot) = \mathbf{Y}$  $R_{08}$ : IF  $[A \land Z = 2 \land \overline{H} \land G]$  THEN  $\kappa(\cdot) = \mathbf{Y}$  $\mathsf{R}_{09}$ : IF  $[\overline{P} \land \overline{N} \land V \land Z = 2 \land \overline{C} \land \overline{G}]$  THEN  $\kappa(\cdot) = \mathbf{N}$  $R_{10}$ : IF  $[A \land Z = 0]$  THEN  $\kappa(\cdot) = \mathbf{Y}$  $R_{11}$ : IF  $[A \land \overline{V}]$  THEN  $\kappa(\cdot) = \mathbf{Y}$  $R_{12}$ : IF  $[A \land N]$  THEN  $\kappa(\cdot) = \mathbf{Y}$ 

34 / 47

**Explanations for Decision Trees** 

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Sets

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

**Review examples** 

- Concept of explanation graph (XpG)
- Explanations of decision trees reducible to XpG's
- Explanations of decision graphs reducible to XpG's
- Explanations of OBDDs reducible to XpG's
- Explanations of OMDDs reducible to XpG's
- Explanations (AXp's and CXp's) of XpG's computed in polynomial time

### Example of XpG – DTs





### Example of XpG – OMDDs

• OMBBD; point: (0, 1, 2); prediction R:



· XpG:



• Algorithm (with no inconsistent paths):

 $\mathcal{S} \leftarrow \mathcal{F}$ For each feature *i* in  $\mathcal{F}$ 



• Algorithm (with no inconsistent paths):

 $S \leftarrow F$ For each feature *i* in FDrop feature *i* from *S*, i.e. *i* is free



• Algorithm (with no inconsistent paths):

 $S \leftarrow \mathcal{F}$ For each feature *i* in  $\mathcal{F}$ Drop feature *i* from *S*, i.e. *i* is free If path to some **0** not blocked by 0-valued literals, then

Add feature i back to  ${\cal S}$ 



• Algorithm (with no inconsistent paths):

 $S \leftarrow F$ For each feature *i* in FDrop feature *i* from S, i.e. *i* is free If path to some **0** not blocked by 0-valued literals, then Add feature *i* back to S

 $\mathsf{Return}\ \mathcal{S}$ 



• Algorithm (with no inconsistent paths):

 $S \leftarrow F$ For each feature *i* in FDrop feature *i* from S, i.e. *i* is free If path to some **0** not blocked by 0-valued literals, then

Add feature i back to  ${\cal S}$ 

 $\mathsf{Return}\ \mathcal{S}$ 

• Example:

 $\cdot \ S = \{1, 2, 3\}$ 



• Algorithm (with no inconsistent paths):

 $\mathcal{S} \leftarrow \mathcal{F}$ 

For each feature i in  $\mathcal{F}$ Drop feature i from  $\mathcal{S}$ , i.e. i is free If path to some **0** not blocked by 0-valued literals, then

Add feature i back to  ${\cal S}$ 

 $\mathsf{Return}\ \mathcal{S}$ 

- Example:
  - $S = \{1, 2, 3\}$
  - Feature 1 cannot be dropped, e.g.

 $\mathsf{S}_3 \mathop{\rightarrow} \mathsf{S}_2 \mathop{\rightarrow} \mathsf{S}_1 \mathop{\rightarrow} 0$ 



• Algorithm (with no inconsistent paths):

 $\mathcal{S} \leftarrow \mathcal{F}$ 

For each feature i in  $\mathcal{F}$ Drop feature i from  $\mathcal{S}$ , i.e. i is free If path to some **0** not blocked by 0-valued literals, then

Add feature i back to  ${\cal S}$ 

 $\operatorname{Return} \mathcal{S}$ 

- Example:
  - $\cdot \ S = \{1, 2, 3\}$
  - Feature 1 cannot be dropped, e.g.  $s_3 \rightarrow s_2 \rightarrow s_1 \rightarrow 0$
  - + Both features 2 and 3 dropped from  ${\cal S}$

· XpG:



• Algorithm (with no inconsistent paths):

 $\mathcal{S} \leftarrow \mathcal{F}$ 

For each feature i in  $\mathcal{F}$ Drop feature i from  $\mathcal{S}$ , i.e. i is free If path to some **0** not blocked by 0-valued literals, then

Add feature i back to  ${\cal S}$ 

Return  ${\cal S}$ 

- Example:
  - $S = \{1, 2, 3\}$
  - Feature 1 cannot be dropped, e.g.
    - $S_3 \rightarrow S_2 \rightarrow S_1 \rightarrow 0$
  - + Both features 2 and 3 dropped from  ${\cal S}$
  - Return  $\mathcal{S} = \{1\}$

· XpG:



**Explanations for Decision Trees** 

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Sets

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

Review examples

[MGC+21]

| Variable                     | Me         | aning      | Range                      |
|------------------------------|------------|------------|----------------------------|
| $\kappa(\cdot) \triangleq M$ | Stude      | nt grade   | $\in \{A, B, C, D, E, F\}$ |
| S                            | Fina       | l score    | $\in \{0, \dots, 10\}$     |
| Feat. id                     | Feat. var. | Feat. name | Domain                     |
| 1                            | Q          | Quiz       | $\{0, \dots, 10\}$         |
| 2                            | Х          | Exam       | $\{0, \dots, 10\}$         |
| 3                            | Н          | Homework   | $\{0,\ldots,10\}$          |
| 4                            | R          | Project    | $\{0,\ldots,10\}$          |

 $M = \mathsf{ITE}(\mathsf{S} \ge 9, \mathsf{A}, \mathsf{ITE}(\mathsf{S} \ge 7, \mathsf{B}, \mathsf{ITE}(\mathsf{S} \ge 5, \mathsf{C}, \mathsf{ITE}(\mathsf{S} \ge 4, \mathsf{D}, \mathsf{ite}(\mathsf{S} \ge 2, \mathsf{E}, \mathsf{F})))))$ 

$$S = \max\left[0.3 \times Q + 0.6 \times X + 0.1 \times H, R\right]$$

Also,  $F \leq E \leq D \leq C \leq B \leq A$ 

And, 
$$\kappa(\mathbf{x_1}) \leqslant \kappa(\mathbf{x_2})$$
 if  $\mathbf{x_1} \leqslant \mathbf{x_2}$ 

## Explaining monotonic classifiers

- Instance  $(\mathbf{v}, c)$
- Domain for  $i \in \mathcal{F}$ :  $\lambda(i) \leq x_i \leq \mu(i)$
- · Idea: refine lower and upper bounds on the prediction
  - +  $\mathbf{v}_{\text{L}}$  and  $\mathbf{v}_{\text{U}}$
- Utilities:
  - FixAttr(*i*):

$$\begin{aligned} \mathbf{v}_{L} \leftarrow (V_{L_{1}}, \dots, V_{i}, \dots, V_{L_{N}}) \\ \mathbf{v}_{U} \leftarrow (V_{U_{1}}, \dots, V_{i}, \dots, V_{U_{N}}) \\ (\mathcal{A}, \mathcal{B}) \leftarrow (\mathcal{A} \backslash \{i\}, \mathcal{B} \cup \{i\}) \\ \text{return} (\mathbf{v}_{L}, \mathbf{v}_{U}, \mathcal{A}, \mathcal{B}) \end{aligned}$$

• FreeAttr(*i*):

$$\begin{split} \mathbf{v}_{L} \leftarrow (v_{L_{1}}, \dots, \lambda(i), \dots, v_{L_{N}}) \\ \mathbf{v}_{U} \leftarrow (v_{U_{1}}, \dots, \mu(i), \dots, v_{U_{N}}) \\ (\mathcal{A}, \mathcal{B}) \leftarrow (\mathcal{A} \backslash \{i\}, \mathcal{B} \cup \{i\}) \\ \text{return } (\mathbf{v}_{L}, \mathbf{v}_{U}, \mathcal{A}, \mathcal{B}) \end{split}$$

1:  $\mathbf{v}_{L} \leftarrow (V_{1}, \dots, V_{N})$ 2:  $\mathbf{v}_{U} \leftarrow (V_{1}, \dots, V_{N})$ 3:  $(\mathcal{C}, \mathcal{D}, \mathcal{P}) \leftarrow (\mathcal{F}, \emptyset, \emptyset)$ 4: for all  $i \in S$  do 5:  $(\mathbf{v}_{L}, \mathbf{v}_{U}, \mathcal{C}, \mathcal{D}) \leftarrow \text{FreeAttr}(i, \mathbf{v}, \mathbf{v}_{L}, \mathbf{v}_{U}, \mathcal{C}, \mathcal{D})$ 6: for all  $i \in \mathcal{F} \setminus S$  do 7:  $(\mathbf{v}_{L}, \mathbf{v}_{U}, \mathcal{C}, \mathcal{D}) \leftarrow \text{FreeAttr}(i, \mathbf{v}, \mathbf{v}_{L}, \mathbf{v}_{U}, \mathcal{C}, \mathcal{D})$ 8: if  $\kappa(\mathbf{v}_{L}) \neq \kappa(\mathbf{v}_{U})$  then 9:  $(\mathbf{v}_{L}, \mathbf{v}_{U}, \mathcal{D}, \mathcal{P}) \leftarrow \text{FixAttr}(i, \mathbf{v}, \mathbf{v}_{L}, \mathbf{v}_{U}, \mathcal{D}, \mathcal{P})$ 10: return  $\mathcal{P}$ 

 $\succ$  Ensures:  $\kappa(\mathbf{v}_L) = \kappa(\mathbf{v}_U)$  $\succ S$ : Some possible seed

▷ Require:  $\kappa(\mathbf{v}_{L}) = \kappa(\mathbf{v}_{U})$ , given S▷ Loop inv.:  $\kappa(\mathbf{v}_{L}) = \kappa(\mathbf{v}_{U})$ 

⊳ If invariant broken, fix it

+ Obs:  $\mathcal{S} = \varnothing$  for computing a single AXp/CXp

### Computing one AXp - example

- $\lambda(i) = 0$  and  $\mu(i) = 10$
- +  $\mathbf{v}=(10,10,5,0)$  , with  $\kappa(\mathbf{v})=\mathbf{A}$
- **Q**: find one AXp (CXp is similar)

| Foat  | Feat. Initial values |                     | Change           | ed values           | Predi                    | ctions                   | Dec.         | Resulti          | ng values           |
|-------|----------------------|---------------------|------------------|---------------------|--------------------------|--------------------------|--------------|------------------|---------------------|
| Teat. | $\mathbf{v}_{L}$     | $\mathbf{v}_{\cup}$ | $\mathbf{v}_{L}$ | $\mathbf{v}_{\cup}$ | $\kappa(\mathbf{v}_{L})$ | $\kappa(\mathbf{v}_{U})$ | Dec.         | $\mathbf{v}_{L}$ | $\mathbf{v}_{\cup}$ |
| 1     | (10,10,5,0)          | (10, 10, 5, 0)      | (0,10,5,0)       | (10, 10, 5, 0)      | С                        | А                        | $\checkmark$ | (10, 10, 5, 0)   | (10, 10, 5, 0)      |
| 2     | (10,10,5,0)          | (10, 10, 5, 0)      | (10,0,5,0)       | (10, 10, 5, 0)      | Е                        | А                        | $\checkmark$ | (10,10,5,0)      | (10, 10, 5, 0)      |
| 3     | (10,10,5,0)          | (10, 10, 5, 0)      | (10,10,0,0)      | (10, 10, 10, 0)     | А                        | А                        | ×            | (10,10,0,0)      | (10,10,10,0)        |
| 4     | (10,10,0,0)          | (10, 10, 10, 0)     | (10,10,0,0)      | (10, 10, 10, 10)    | А                        | А                        | ×            | (10,10,0,0)      | (10,10,10,10)       |
**Explanations for Decision Trees** 

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Sets

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

Review examples

# Recap computation of (W)AXps/(W)CXps

$$WAXp(\mathcal{X}) := \forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \in \mathcal{X}} (x_j = v_j) \to (\sigma(\mathbf{x}))$$
$$WCXp(\mathcal{Y}) := \exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \land (\neg \sigma(\mathbf{x}))$$

## Recap computation of (W)AXps/(W)CXps

$$WAXp(\mathcal{X}) := \forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \in \mathcal{X}} (x_j = v_j) \to (\sigma(\mathbf{x}))$$
$$WCXp(\mathcal{Y}) := \exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \land (\neg \sigma(\mathbf{x}))$$

```
Input: Predicate \mathbb{P}, parameterized by \mathcal{T}, \mathcal{M}
Output: One XP \mathcal{S}
```

- 1: procedure oneXP(ℙ)
- 2:  $\mathcal{S} \leftarrow \mathcal{F}$
- 3: for  $i \in \mathcal{F}$  do
- 4: if  $\mathbb{P}(S \setminus \{i\})$  then
- 5:  $\mathcal{S} \leftarrow \mathcal{S} \setminus \{i\}$
- 6: return S

ightarrow Initialization:  $\mathbb{P}(\mathcal{S})$  holds ightarrow Loop invariant:  $\mathbb{P}(\mathcal{S})$  holds

 $\succ \text{ Update } S \text{ only if } \mathbb{P}(S \setminus \{i\}) \text{ holds}$  $\succ \text{ Returned set } S: \mathbb{P}(S) \text{ holds}$ 



• Instance:  $(\mathbf{v}, c) = ((1, 2, 1, 2), \mathbf{Y})$ 



• Finding on AXp:



- Finding on AXp:
  - 1st path inconsistent:  $H_1 = \{3\}$



- Finding on AXp:
  - 1st path inconsistent:  $H_1 = \{3\}$
  - 2nd path inconsistent:  $H_2 = \{2\}$



- Finding on AXp:
  - 1st path inconsistent:  $H_1 = \{3\}$
  - 2nd path inconsistent:  $H_2 = \{2\}$
  - 3rd path inconsistent:  $H_3 = \{1\}$



- Finding on AXp:
  - 1st path inconsistent:  $H_1 = \{3\}$
  - 2nd path inconsistent:  $H_2 = \{2\}$
  - 3rd path inconsistent:  $H_3 = \{1\}$
  - 4th path inconsistent:  $H_4 = \{1\}$



- Finding on AXp:
  - 1st path inconsistent:  $H_1 = \{3\}$
  - 2nd path inconsistent:  $H_2 = \{2\}$
  - 3rd path inconsistent:  $H_3 = \{1\}$
  - 4th path inconsistent:  $H_4 = \{1\}$
- AXp is MHS of  $H_j$  sets:  $\{1, 2, 3\}$



• Instance:  $(\mathbf{v}, c) = ((1, 2, 1, 2), \mathbf{Y})$ 



• Finding CXps:



- Finding CXps:
  - 1st path:  $I_1 = \{3\}$



- Finding CXps:
  - 1st path:  $I_1 = \{3\}$
  - 2nd path:  $I_2 = \{2\}$



- Finding CXps:
  - 1st path:  $I_1 = \{3\}$
  - 2nd path:  $I_2 = \{2\}$
  - 3rd path:  $I_3 = \{1\}$



- Finding CXps:
  - 1st path:  $I_1 = \{3\}$
  - 2nd path:  $I_2 = \{2\}$
  - 3rd path:  $I_3 = \{1\}$
  - 4th path:  $I_4 = \{1\}$



- Finding CXps:
  - 1st path:  $I_1 = \{3\}$
  - 2nd path:  $I_2 = \{2\}$
  - 3rd path:  $I_3 = \{1\}$
  - 4th path:  $I_4 = \{1\}$
  - $\mathcal{L} = \{\{1\}, \{2\}, \{3\}\} = \mathbb{C}$



- Finding CXps:
  - 1st path:  $I_1 = \{3\}$
  - 2nd path:  $I_2 = \{2\}$
  - 3rd path:  $I_3 = \{1\}$
  - 4th path:  $I_4 = \{1\}$
  - ·  $\mathcal{L} = \{\{1\}, \{2\}, \{3\}\} = \mathbb{C}$
- Finding AXps:
   (i.e. all MHSes of sets in C



- Finding CXps:
  - 1st path:  $I_1 = \{3\}$
  - 2nd path:  $I_2 = \{2\}$
  - 3rd path:  $I_3 = \{1\}$
  - 4th path:  $I_4 = \{1\}$
  - ·  $\mathcal{L} = \{\{1\}, \{2\}, \{3\}\} = \mathbb{C}$
- Finding AXps: (i.e. all MHSes of sets in  $\mathbb{C}$ •  $\mathbb{A} = \{\{1, 2, 3\}\}$

| $R_1$ :            | IF      | $(X_1 \wedge X_3)$          | THEN | $\kappa(\mathbf{x}) = 0$ |
|--------------------|---------|-----------------------------|------|--------------------------|
| $R_2$ :            | ELSE IF | $(X_1 \wedge X_5)$          | THEN | $\kappa(\mathbf{x}) = 0$ |
| $R_3$ :            | ELSE IF | $(X_2 \wedge X_4)$          | THEN | $\kappa(\mathbf{x}) = 1$ |
| $R_4$ :            | ELSE IF | $(X_1 \wedge X_7)$          | THEN | $\kappa(\mathbf{x}) = 0$ |
| $R_5$ :            | ELSE IF | $(\neg X_4 \land X_6)$      | THEN | $\kappa(\mathbf{x}) = 1$ |
| $R_6$ :            | ELSE IF | $(\neg X_4 \land \neg X_6)$ | THEN | $\kappa(\mathbf{x}) = 1$ |
| $R_7$ :            | ELSE IF | $(\neg x_2 \land x_6)$      | THEN | $\kappa(\mathbf{x}) = 1$ |
| R <sub>DEF</sub> : | ELSE    |                             |      | $\kappa(\mathbf{x}) = 0$ |

• DL:

| $R_1$ :            | IF      | $(X_1 \wedge X_3)$          | THEN | $\kappa(\mathbf{x}) = 0$ |
|--------------------|---------|-----------------------------|------|--------------------------|
| $R_2$ :            | ELSE IF | $(X_1 \wedge X_5)$          | THEN | $\kappa(\mathbf{x}) = 0$ |
| $R_3$ :            | ELSE IF | $(X_2 \wedge X_4)$          | THEN | $\kappa(\mathbf{x}) = 1$ |
| $R_4$ :            | ELSE IF | $(X_1 \wedge X_7)$          | THEN | $\kappa(\mathbf{x}) = 0$ |
| $R_5$ :            | ELSE IF | $(\neg X_4 \land X_6)$      | THEN | $\kappa(\mathbf{x}) = 1$ |
| $R_6$ :            | ELSE IF | $(\neg X_4 \land \neg X_6)$ | THEN | $\kappa(\mathbf{x}) = 1$ |
| R <sub>7</sub> :   | ELSE IF | $(\neg X_2 \land X_6)$      | THEN | $\kappa(\mathbf{x}) = 1$ |
| R <sub>DEF</sub> : | ELSE    |                             |      | $\kappa(\mathbf{x}) = 0$ |

• Instance:  $\mathbf{v} = (0, 1, 0, 1, 0, 1, 0)$ 

 $\cdot\,$  The prediction is 1, due to  $R_3$ 

| $R_1$ :          | IF      | $(X_1 \wedge X_3)$          | THEN | $\kappa(\mathbf{x}) = 0$ |
|------------------|---------|-----------------------------|------|--------------------------|
| $R_2$ :          | ELSE IF | $(X_1 \wedge X_5)$          | THEN | $\kappa(\mathbf{x}) = 0$ |
| $R_3$ :          | ELSE IF | $(X_2 \wedge X_4)$          | THEN | $\kappa(\mathbf{x}) = 1$ |
| $R_4$ :          | ELSE IF | $(X_1 \wedge X_7)$          | THEN | $\kappa(\mathbf{x}) = 0$ |
| $R_5$ :          | ELSE IF | $(\neg X_4 \land X_6)$      | THEN | $\kappa(\mathbf{x}) = 1$ |
| $R_6$ :          | ELSE IF | $(\neg X_4 \land \neg X_6)$ | THEN | $\kappa(\mathbf{x}) = 1$ |
| R <sub>7</sub> : | ELSE IF | $(\neg x_2 \land x_6)$      | THEN | $\kappa(\mathbf{x}) = 1$ |
| $R_{DEF}$ :      | ELSE    |                             |      | $\kappa(\mathbf{x}) = 0$ |

- Instance:  $\mathbf{v} = (0, 1, 0, 1, 0, 1, 0)$ 
  - $\cdot\,$  The prediction is 1, due to  ${\sf R}_3$
- AXp:

| $R_1$ :          | IF      | $(X_1 \wedge X_3)$          | THEN | $\kappa(\mathbf{x}) = 0$ |
|------------------|---------|-----------------------------|------|--------------------------|
| $R_2$ :          | ELSE IF | $(X_1 \wedge X_5)$          | THEN | $\kappa(\mathbf{x}) = 0$ |
| $R_3$ :          | ELSE IF | $(X_2 \wedge X_4)$          | THEN | $\kappa(\mathbf{x}) = 1$ |
| $R_4$ :          | ELSE IF | $(X_1 \wedge X_7)$          | THEN | $\kappa(\mathbf{x}) = 0$ |
| $R_5$ :          | ELSE IF | $(\neg X_4 \land X_6)$      | THEN | $\kappa(\mathbf{x}) = 1$ |
| $R_6$ :          | ELSE IF | $(\neg X_4 \land \neg X_6)$ | THEN | $\kappa(\mathbf{x}) = 1$ |
| R <sub>7</sub> : | ELSE IF | $(\neg x_2 \land x_6)$      | THEN | $\kappa(\mathbf{x}) = 1$ |
| $R_{DEF}$ :      | ELSE    |                             |      | $\kappa(\mathbf{x}) = 0$ |

- Instance:  $\mathbf{v} = (0, 1, 0, 1, 0, 1, 0)$ 
  - $\cdot\,$  The prediction is 1, due to  ${\sf R}_3$
- AXp: {1,2}

| $R_1$ :            | IF      | $(X_1 \wedge X_3)$          | THEN | $\kappa(\mathbf{x}) = 0$ |
|--------------------|---------|-----------------------------|------|--------------------------|
| $R_2$ :            | ELSE IF | $(X_1 \wedge X_5)$          | THEN | $\kappa(\mathbf{x}) = 0$ |
| $R_3$ :            | ELSE IF | $(X_2 \wedge X_4)$          | THEN | $\kappa(\mathbf{x}) = 1$ |
| $R_4$ :            | ELSE IF | $(X_1 \wedge X_7)$          | THEN | $\kappa(\mathbf{x}) = 0$ |
| $R_5$ :            | ELSE IF | $(\neg X_4 \land X_6)$      | THEN | $\kappa(\mathbf{x}) = 1$ |
| $R_6$ :            | ELSE IF | $(\neg X_4 \land \neg X_6)$ | THEN | $\kappa(\mathbf{x}) = 1$ |
| R <sub>7</sub> :   | ELSE IF | $(\neg x_2 \land x_6)$      | THEN | $\kappa(\mathbf{x}) = 1$ |
| R <sub>DEF</sub> : | ELSE    |                             |      | $\kappa(\mathbf{x}) = 0$ |

- Instance:  $\mathbf{v} = (0, 1, 0, 1, 0, 1, 0)$ 
  - $\cdot\,$  The prediction is 1, due to  ${\sf R}_3$
- AXp: {1,2}
- $\cdot\,$  Quiz: write down the constraints and confirm AXp with SAT solver

# Questions?



## References i

- [ABOS22] Marcelo Arenas, Pablo Barceló, Miguel A. Romero Orth, and Bernardo Subercaseaux. On computing probabilistic explanations for decision trees. In NeurIPS, 2022.
- [Alp14] Ethem Alpaydin. Introduction to machine learning. MIT press, 2014.
- [Alp16] Ethem Alpaydin. Machine Learning: The New AI. MIT Press, 2016.
- [BA97] Leonard A Breslow and David W Aha Simplifying decision trees: A survey. Knowledge Eng. Review, 12(1):1–40, 1997.
- [BBHK10] Michael R. Berthold, Christian Borgelt, Frank Höppner, and Frank Klawonn. Guide to Intelligent Data Analysis - How to Intelligently Make Sense of Real Data, volume 42 of Texts in Computer Science.

Springer, 2010.

## References ii

| [BFOS84] | Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone.<br><i>Classification and Regression Trees.</i><br>Wadsworth, 1984.                                     |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [BHO09]  | Christian Bessiere, Emmanuel Hebrard, and Barry O'Sullivan.<br>Minimising decision tree size as combinatorial optimisation.<br>In <i>CP</i> , pages 173–187, 2009. |
| [Bra20]  | Max Bramer.<br><i>Principles of Data Mining, 4th Edition.</i><br>Undergraduate Topics in Computer Science. Springer, 2020.                                         |
| [DL01]   | Sašo Džeroski and Nada Lavrač, editors.<br><i>Relational data mining.</i><br>Springer, 2001.                                                                       |
| [EG95]   | Thomas Eiter and Georg Gottlob.<br>Identifying the minimal transversals of a hypergraph and related problems.<br>SIAM J. Comput., 24(6):1278–1304, 1995.           |
| [Fla12]  | Peter A. Flach.<br>Machine Learning - The Art and Science of Algorithms that Make Sense of Data.                                                                   |

Cambridge University Press, 2012.

## References iii

[GZM20] Mohammad M. Ghiasi, Sohrab Zendehboudi, and Ali Asghar Mohsenipour. Decision tree-based diagnosis of coronary artery disease: CART model. Comput. Methods Programs Biomed., 192:105400, 2020.

[HIIM21] Xuanxiang Huang, Yacine Izza, Alexey Ignatiev, and Joao Marques-Silva. On efficiently explaining graph-based classifiers. In KR, November 2021. Preprint available from https://arxiv.org/abs/2106.01350.

- [HM23] Xuanxiang Huang and João Marques-Silva. From decision trees to explained decision sets. In ECAI, pages 1100–1108, 2023.
- [HRS19] Xiyang Hu, Cynthia Rudin, and Margo Seltzer. Optimal sparse decision trees. In NeurIPS, pages 7265–7273, 2019.
- [IHI+22] Yacine Izza, Xuanxiang Huang, Alexey Ignatiev, Nina Narodytska, Martin C. Cooper, and João Marques-Silva.
   On computing probabilistic abductive explanations.
   CoRR, abs/2212.05990, 2022.

## References iv

[IHI<sup>+</sup>23] Yacine Izza, Xuanxiang Huang, Alexey Ignatiev, Nina Narodytska, Martin C. Cooper, and João Marques-Silva. On computing probabilistic abductive explanations.

Int. J. Approx. Reason., 159:108939, 2023.

- [IIM20] Yacine Izza, Alexey Ignatiev, and Joao Marques-Silva. On explaining decision trees. CoRR, abs/2010.11034, 2020.
- [IIM22] Yacine Izza, Alexey Ignatiev, and João Marques-Silva. On tackling explanation redundancy in decision trees. J. Artif. Intell. Res., 75:261–321, 2022.
- [IM21] Alexey Ignatiev and Joao Marques-Silva.
   SAT-based rigorous explanations for decision lists. In SAT, pages 251–269, July 2021.
- [INAM20] Alexey Ignatiev, Nina Narodytska, Nicholas Asher, and João Marques-Silva. From contrastive to abductive explanations and back again. In AlxIA, pages 335–355, 2020.
- [INM19a] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva. Abduction-based explanations for machine learning models. In AAAI, pages 1511–1519, 2019.

## References v

- [INM19b] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva. On relating explanations and adversarial examples. In NeurIPS, pages 15857–15867, 2019.
- [KMND20] John D Kelleher, Brian Mac Namee, and Aoife D'arcy. Fundamentals of machine learning for predictive data analytics: algorithms, worked examples, and case studies.

MIT Press, 2020.

- [Kot13] Sotiris B. Kotsiantis. Decision trees: a recent overview. Artif. Intell. Rev., 39(4):261–283, 2013.
- [LL17] Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In NIPS, pages 4765–4774, 2017.
- [Mar22] João Marques-Silva.
   Logic-based explainability in machine learning.
   In Reasoning Web, pages 24–104, 2022.

## References vi

- [Mar24] Joao Marques-Silva. Logic-based explainability: Past, present & future. CoRR, abs/2406.11873, 2024.
- [MGC+21] Joao Marques-Silva, Thomas Gerspacher, Martinc C. Cooper, Alexey Ignatiev, and Nina Narodytska. Explanations for monotonic classifiers.

In *ICML*, pages 7469–7479, July 2021.

 [Mil56] George A Miller.
 The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological review, 63(2):81–97, 1956.

[Mil19] Tim Miller. Explanation in artificial intelligence: Insights from the social sciences. Artif. Intell., 267:1–38, 2019.

- [MM20] João Marques-Silva and Carlos Mencía. Reasoning about inconsistent formulas. In IJCAI, pages 4899–4906, 2020.
- [Mor82] Bernard M. E. Moret. Decision trees and diagrams. ACM Comput. Surv., 14(4):593–623, 1982.

## References vii

- [MSI23] Joao Marques-Silva and Alexey Ignatiev. No silver bullet: interpretable ml models must be explained. Frontiers in Artificial Intelligence, 6, 2023.
- [PM17] David Poole and Alan K. Mackworth. Artificial Intelligence - Foundations of Computational Agents. CUP, 2017.
- [Qui93] J Ross Quinlan. **C4.5: programs for machine learning.** Morgan-Kaufmann, 1993.
- [Rei87] Raymond Reiter. A theory of diagnosis from first principles. Artif. Intell., 32(1):57–95, 1987.
- [RM08] Lior Rokach and Oded Z Maimon. Data mining with decision trees: theory and applications. World scientific, 2008.
- [RN10] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Approach. Pearson Education, 2010.

## References viii

- [RSG16] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should I trust you?": Explaining the predictions of any classifier. In KDD, pages 1135–1144, 2016.
- [RSG18] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-precision model-agnostic explanations. In AAAI, pages 1527–1535. AAAI Press, 2018.
- [SB14] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning - From Theory to Algorithms. Cambridge University Press, 2014.
- [SCD18] Andy Shih, Arthur Choi, and Adnan Darwiche. A symbolic approach to explaining bayesian network classifiers. In IJCAI, pages 5103–5111, 2018.
- [VLE+16] Gilmer Valdes, José Marcio Luna, Eric Eaton, Charles B Simone, Lyle H Ungar, and Timothy D Solberg. MediBoost: a patient stratification tool for interpretable decision making in the era of precision medicine.

Scientific reports, 6(1):1–8, 2016.

## References ix

[WFHP17] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. Data Mining. Morgan Kaufmann, 2017.

[WMHK21] Stephan Wäldchen, Jan MacDonald, Sascha Hauch, and Gitta Kutyniok. The computational complexity of understanding binary classifier decisions. J. Artif. Intell. Res., 70:351–387, 2021.

[Zho12] Zhi-Hua Zhou. Ensemble methods: foundations and algorithms. CRC press, 2012.

[Zho21] Zhi-Hua Zhou. Machine Learning. Springer, 2021.