
© J. Marques-Silva

LOGIC-BASED EXPLAINABLE ARTIFICIAL INTELLIGENCE

Joao Marques-Silva

ICREA, Univ. Lleida, Catalunya, Spain

ESSAI, Athens, Greece, July 2024

Lecture 02

© J. Marques-Silva 2 / 47

Recapitulate first lecture

• ML models: classification & regression

• Glimpse of heuristic XAI

• Answers to Why? questions as logic rules

• Logic-based reasoning of ML models

• Apparent difficulties with explaining interpretable models

© J. Marques-Silva 3 / 47

Recapitulate first lecture

• ML models: classification & regression

• Glimpse of heuristic XAI

• Answers to Why? questions as logic rules

• Logic-based reasoning of ML models

• Apparent difficulties with explaining interpretable models

© J. Marques-Silva 3 / 47

Recapitulate first lecture

• ML models: classification & regression

• Glimpse of heuristic XAI

• Answers to Why? questions as logic rules

• Logic-based reasoning of ML models

• Apparent difficulties with explaining interpretable models

© J. Marques-Silva 3 / 47

Recapitulate first lecture

• ML models: classification & regression

• Glimpse of heuristic XAI

• Answers to Why? questions as logic rules

• Logic-based reasoning of ML models

• Apparent difficulties with explaining interpretable models

© J. Marques-Silva 3 / 47

Recapitulate first lecture

• ML models: classification & regression

• Glimpse of heuristic XAI

• Answers to Why? questions as logic rules

• Logic-based reasoning of ML models

• Apparent difficulties with explaining interpretable models

© J. Marques-Silva 3 / 47

Plan for this course

• Lecture 01 – units:
• #01: Foundations

• Lecture 02 – units:
• #02: Principles of symbolic XAI – feature selection
• #03: Tractability in symbolic XAI (& myth of interpretability)

• Lecture 03 – units:
• #04: Intractability in symbolic XAI (& myth of model-agnostic XAI)
• #05: Explainability queries

• Lecture 04 – units:
• #06: Advanced topics

• Lecture 05 – units:
• #07: Principles of symbolic XAI – feature attribution (& myth of Shapley values in XAI)
• #08: Conclusions & research directions

© J. Marques-Silva 4 / 47

Unit #02

Principles of Symbolic XAI – Feature Selection

What is an explanation?

• Notation:
Original DT [PM17]

Length

Skips Thread

Reads Author

Skips Reads

Long Short

New Follow-up

Unknown Known

Rewritten DT

x1

0 x2

1 x3

0 1

1 0

1 0

0 1

Mapping

x1 = 1 iff Length = Long
x2 = 1 iff Thread = New
x3 = 1 iff Author = Known
κ(¨) = 1 iff κ1(¨ ¨ ¨) = Reads
κ(¨) = 0 iff κ1(¨ ¨ ¨) = Skips

• What is an explanation?

• Answer to question “Why (the prediction)?” is a rule: IF <COND> THEN κ(x) = c

• Explanation: set of literals (or just features) in <COND>; irreducibility matters !

• E.g.: explanation for v = (␣x1,␣x2, x3)?

• It is the case that, IF ␣x1 ^␣x2 ^ x3 THEN κ(x) = 1

• One possible explanation is t␣x1,␣x2, x3u or simply t1, 2, 3u

© J. Marques-Silva 5 / 47

What is an explanation?

• Notation:
Original DT [PM17]

Length

Skips Thread

Reads Author

Skips Reads

Long Short

New Follow-up

Unknown Known

Rewritten DT

x1

0 x2

1 x3

0 1

1 0

1 0

0 1

Mapping

x1 = 1 iff Length = Long
x2 = 1 iff Thread = New
x3 = 1 iff Author = Known
κ(¨) = 1 iff κ1(¨ ¨ ¨) = Reads
κ(¨) = 0 iff κ1(¨ ¨ ¨) = Skips

• What is an explanation?
• Answer to question “Why (the prediction)?” is a rule: IF <COND> THEN κ(x) = c

• Explanation: set of literals (or just features) in <COND>; irreducibility matters !

• E.g.: explanation for v = (␣x1,␣x2, x3)?

• It is the case that, IF ␣x1 ^␣x2 ^ x3 THEN κ(x) = 1

• One possible explanation is t␣x1,␣x2, x3u or simply t1, 2, 3u

© J. Marques-Silva 5 / 47

What is an explanation?

• Notation:
Original DT [PM17]

Length

Skips Thread

Reads Author

Skips Reads

Long Short

New Follow-up

Unknown Known

Rewritten DT

x1

0 x2

1 x3

0 1

1 0

1 0

0 1

Mapping

x1 = 1 iff Length = Long
x2 = 1 iff Thread = New
x3 = 1 iff Author = Known
κ(¨) = 1 iff κ1(¨ ¨ ¨) = Reads
κ(¨) = 0 iff κ1(¨ ¨ ¨) = Skips

• What is an explanation?
• Answer to question “Why (the prediction)?” is a rule: IF <COND> THEN κ(x) = c

• Explanation: set of literals (or just features) in <COND>; irreducibility matters !

• E.g.: explanation for v = (␣x1,␣x2, x3)?

• It is the case that, IF ␣x1 ^␣x2 ^ x3 THEN κ(x) = 1

• One possible explanation is t␣x1,␣x2, x3u or simply t1, 2, 3u

© J. Marques-Silva 5 / 47

What is an explanation?

• Notation:
Original DT [PM17]

Length

Skips Thread

Reads Author

Skips Reads

Long Short

New Follow-up

Unknown Known

Rewritten DT

x1

0 x2

1 x3

0 1

1 0

1 0

0 1

Mapping

x1 = 1 iff Length = Long
x2 = 1 iff Thread = New
x3 = 1 iff Author = Known
κ(¨) = 1 iff κ1(¨ ¨ ¨) = Reads
κ(¨) = 0 iff κ1(¨ ¨ ¨) = Skips

• What is an explanation?
• Answer to question “Why (the prediction)?” is a rule: IF <COND> THEN κ(x) = c

• Explanation: set of literals (or just features) in <COND>; irreducibility matters !

• E.g.: explanation for v = (␣x1,␣x2, x3)?

• It is the case that, IF ␣x1 ^␣x2 ^ x3 THEN κ(x) = 1

• One possible explanation is t␣x1,␣x2, x3u or simply t1, 2, 3u

© J. Marques-Silva 5 / 47

What is an explanation?

• Notation:
Original DT [PM17]

Length

Skips Thread

Reads Author

Skips Reads

Long Short

New Follow-up

Unknown Known

Rewritten DT

x1

0 x2

1 x3

0 1

1 0

1 0

0 1

Mapping

x1 = 1 iff Length = Long
x2 = 1 iff Thread = New
x3 = 1 iff Author = Known
κ(¨) = 1 iff κ1(¨ ¨ ¨) = Reads
κ(¨) = 0 iff κ1(¨ ¨ ¨) = Skips

• What is an explanation?
• Answer to question “Why (the prediction)?” is a rule: IF <COND> THEN κ(x) = c

• Explanation: set of literals (or just features) in <COND>; irreducibility matters !

• E.g.: explanation for v = (␣x1,␣x2, x3)?
• It is the case that, IF ␣x1 ^␣x2 ^ x3 THEN κ(x) = 1

• One possible explanation is t␣x1,␣x2, x3u or simply t1, 2, 3u

© J. Marques-Silva 5 / 47

What is an explanation?

• Notation:
Original DT [PM17]

Length

Skips Thread

Reads Author

Skips Reads

Long Short

New Follow-up

Unknown Known

Rewritten DT

x1

0 x2

1 x3

0 1

1 0

1 0

0 1

Mapping

x1 = 1 iff Length = Long
x2 = 1 iff Thread = New
x3 = 1 iff Author = Known
κ(¨) = 1 iff κ1(¨ ¨ ¨) = Reads
κ(¨) = 0 iff κ1(¨ ¨ ¨) = Skips

• What is an explanation?
• Answer to question “Why (the prediction)?” is a rule: IF <COND> THEN κ(x) = c

• Explanation: set of literals (or just features) in <COND>; irreducibility matters !

• E.g.: explanation for v = (␣x1,␣x2, x3)?
• It is the case that, IF ␣x1 ^␣x2 ^ x3 THEN κ(x) = 1

• One possible explanation is t␣x1,␣x2, x3u or simply t1, 2, 3u
© J. Marques-Silva 5 / 47

The similarity predicate

[Mar24]

• Recall ML models for classification & regression:
• Classification: MC = (F ,F,K, κ)

• Regression: MR = (F ,F,V, ρ)

• General: M = (F ,F,T, τ)

• Similarity predicate: σ : F Ñ tJ,Ku

• Classification: σ(x) := [κ(x) = κ(v)]
• Obs: For boolean classifiers, no need for σ

• Regression: σ(x) := [|ρ(x)´ ρ(v)| ď δ] , where δ is user-specified

• Bottom line:
Reason about symbolic explainability by abstracting away type of ML model

© J. Marques-Silva 6 / 47

The similarity predicate

[Mar24]

• Recall ML models for classification & regression:
• Classification: MC = (F ,F,K, κ)

• Regression: MR = (F ,F,V, ρ)

• General: M = (F ,F,T, τ)

• Similarity predicate: σ : F Ñ tJ,Ku

• Classification: σ(x) := [κ(x) = κ(v)]
• Obs: For boolean classifiers, no need for σ

• Regression: σ(x) := [|ρ(x)´ ρ(v)| ď δ] , where δ is user-specified

• Bottom line:
Reason about symbolic explainability by abstracting away type of ML model

© J. Marques-Silva 6 / 47

The similarity predicate

[Mar24]

• Recall ML models for classification & regression:
• Classification: MC = (F ,F,K, κ)

• Regression: MR = (F ,F,V, ρ)

• General: M = (F ,F,T, τ)

• Similarity predicate: σ : F Ñ tJ,Ku

• Classification: σ(x) := [κ(x) = κ(v)]
• Obs: For boolean classifiers, no need for σ

• Regression: σ(x) := [|ρ(x)´ ρ(v)| ď δ] , where δ is user-specified

• Bottom line:
Reason about symbolic explainability by abstracting away type of ML model

© J. Marques-Silva 6 / 47

Abductive explanations – answering Why? questions

• Instance (v,q), i.e. c = τ(v)

• Abductive explanation (AXp, PI-explanation): [SCD18, INM19a]

• Subset-minimal set of features X Ď F sufficient for ensuring prediction

WAXp(X) :=

@(x P F).
ľ

jPX
(xj = vj)Ñ(σ(x))

• Defining AXp (from weak AXps, WAXps):

• But, WAXp is monotone; hence,

• Finding one AXp (example algorithm; many more exist): [MM20]

• Let X = F , i.e. fix all features
• Invariant: WAXp(X) must hold. Why?
• Analyze features in any order, one feature i at a time

• If WAXp(X ztiu) holds, then remove i from X , i.e. i becomes free

© J. Marques-Silva 7 / 47

Abductive explanations – answering Why? questions

• Instance (v,q), i.e. c = τ(v)
• Abductive explanation (AXp, PI-explanation): [SCD18, INM19a]

• Subset-minimal set of features X Ď F sufficient for ensuring prediction

WAXp(X) :=

@(x P F).
ľ

jPX
(xj = vj)Ñ(σ(x))

• Defining AXp (from weak AXps, WAXps):

• But, WAXp is monotone; hence,

• Finding one AXp (example algorithm; many more exist): [MM20]

• Let X = F , i.e. fix all features
• Invariant: WAXp(X) must hold. Why?
• Analyze features in any order, one feature i at a time

• If WAXp(X ztiu) holds, then remove i from X , i.e. i becomes free

© J. Marques-Silva 7 / 47

Abductive explanations – answering Why? questions

• Instance (v,q), i.e. c = τ(v)
• Abductive explanation (AXp, PI-explanation): [SCD18, INM19a]

• Subset-minimal set of features X Ď F sufficient for ensuring prediction

WAXp(X) := @(x P F).
ľ

jPX
(xj = vj)Ñ(σ(x))

• Defining AXp (from weak AXps, WAXps):

AXp(X) := WAXp(X)^ @(X 1 Ĺ X).␣WAXp(X 1)

• But, WAXp is monotone; hence,

• Finding one AXp (example algorithm; many more exist): [MM20]

• Let X = F , i.e. fix all features
• Invariant: WAXp(X) must hold. Why?
• Analyze features in any order, one feature i at a time

• If WAXp(X ztiu) holds, then remove i from X , i.e. i becomes free

© J. Marques-Silva 7 / 47

Abductive explanations – answering Why? questions

• Instance (v,q), i.e. c = τ(v)
• Abductive explanation (AXp, PI-explanation): [SCD18, INM19a]

• Subset-minimal set of features X Ď F sufficient for ensuring prediction

WAXp(X) := @(x P F).
ľ

jPX
(xj = vj)Ñ(σ(x))

• Defining AXp (from weak AXps, WAXps):

AXp(X) := WAXp(X)^ @(X 1 Ĺ X).␣WAXp(X 1)

• But, WAXp is monotone; hence,

AXp(X) := WAXp(X)^ @(t P X).␣WAXp(X zttu)

• Finding one AXp (example algorithm; many more exist): [MM20]

• Let X = F , i.e. fix all features
• Invariant: WAXp(X) must hold. Why?
• Analyze features in any order, one feature i at a time

• If WAXp(X ztiu) holds, then remove i from X , i.e. i becomes free

© J. Marques-Silva 7 / 47

Abductive explanations – answering Why? questions

• Instance (v,q), i.e. c = τ(v)
• Abductive explanation (AXp, PI-explanation): [SCD18, INM19a]

• Subset-minimal set of features X Ď F sufficient for ensuring prediction

WAXp(X) := @(x P F).
ľ

jPX
(xj = vj)Ñ(σ(x))

• Defining AXp (from weak AXps, WAXps):

AXp(X) := WAXp(X)^ @(X 1 Ĺ X).␣WAXp(X 1)

• But, WAXp is monotone; hence,

AXp(X) := WAXp(X)^ @(t P X).␣WAXp(X zttu)

• Finding one AXp (example algorithm; many more exist): [MM20]

• Let X = F , i.e. fix all features
• Invariant: WAXp(X) must hold. Why?
• Analyze features in any order, one feature i at a time

• If WAXp(X ztiu) holds, then remove i from X , i.e. i becomes free
© J. Marques-Silva 7 / 47

A simple example – AXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1. AXp?
• Define X = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. @(x P t0, 1u4).␣x2 ^␣x3 ^ x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 2 be removed, i.e. @(x P t0, 1u4).␣x3 ^ x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 3 be removed, i.e. @(x P t0, 1u4).x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 4 be removed, i.e. @(x P t0, 1u4).JÑκ(x1, x2, x3, x4)?

No

• AXp X = t4u

• In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners

• Obs: for some classes of classifiers, poly-time algorithms exist

© J. Marques-Silva 8 / 47

A simple example – AXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1. AXp?

• Define X = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. @(x P t0, 1u4).␣x2 ^␣x3 ^ x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 2 be removed, i.e. @(x P t0, 1u4).␣x3 ^ x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 3 be removed, i.e. @(x P t0, 1u4).x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 4 be removed, i.e. @(x P t0, 1u4).JÑκ(x1, x2, x3, x4)?

No

• AXp X = t4u

• In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners

• Obs: for some classes of classifiers, poly-time algorithms exist

© J. Marques-Silva 8 / 47

A simple example – AXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1. AXp?
• Define X = t1, 2, 3, 4u = F

• Can feature 1 be removed, i.e. @(x P t0, 1u4).␣x2 ^␣x3 ^ x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 2 be removed, i.e. @(x P t0, 1u4).␣x3 ^ x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 3 be removed, i.e. @(x P t0, 1u4).x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 4 be removed, i.e. @(x P t0, 1u4).JÑκ(x1, x2, x3, x4)?

No

• AXp X = t4u

• In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners

• Obs: for some classes of classifiers, poly-time algorithms exist

© J. Marques-Silva 8 / 47

A simple example – AXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1. AXp?
• Define X = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. @(x P t0, 1u4).␣x2 ^␣x3 ^ x4Ñκ(x1, x2, x3, x4)?

Yes
• Can feature 2 be removed, i.e. @(x P t0, 1u4).␣x3 ^ x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 3 be removed, i.e. @(x P t0, 1u4).x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 4 be removed, i.e. @(x P t0, 1u4).JÑκ(x1, x2, x3, x4)?

No

• AXp X = t4u

• In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners

• Obs: for some classes of classifiers, poly-time algorithms exist

Recap weak AXp: @(x P F).
Ź

jPX (xj = vj)Ñ(σ(x))

© J. Marques-Silva 8 / 47

A simple example – AXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1. AXp?
• Define X = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. @(x P t0, 1u4).␣x2 ^␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes

• Can feature 2 be removed, i.e. @(x P t0, 1u4).␣x3 ^ x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 3 be removed, i.e. @(x P t0, 1u4).x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 4 be removed, i.e. @(x P t0, 1u4).JÑκ(x1, x2, x3, x4)?

No

• AXp X = t4u

• In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners

• Obs: for some classes of classifiers, poly-time algorithms exist

Recap weak AXp: @(x P F).
Ź

jPX (xj = vj)Ñ(σ(x))

© J. Marques-Silva 8 / 47

A simple example – AXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1. AXp?
• Define X = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. @(x P t0, 1u4).␣x2 ^␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 2 be removed, i.e. @(x P t0, 1u4).␣x3 ^ x4Ñκ(x1, x2, x3, x4)?

Yes
• Can feature 3 be removed, i.e. @(x P t0, 1u4).x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 4 be removed, i.e. @(x P t0, 1u4).JÑκ(x1, x2, x3, x4)?

No

• AXp X = t4u

• In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners

• Obs: for some classes of classifiers, poly-time algorithms exist

Recap weak AXp: @(x P F).
Ź

jPX (xj = vj)Ñ(σ(x))

© J. Marques-Silva 8 / 47

A simple example – AXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1. AXp?
• Define X = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. @(x P t0, 1u4).␣x2 ^␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 2 be removed, i.e. @(x P t0, 1u4).␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes

• Can feature 3 be removed, i.e. @(x P t0, 1u4).x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 4 be removed, i.e. @(x P t0, 1u4).JÑκ(x1, x2, x3, x4)?

No

• AXp X = t4u

• In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners

• Obs: for some classes of classifiers, poly-time algorithms exist

Recap weak AXp: @(x P F).
Ź

jPX (xj = vj)Ñ(σ(x))

© J. Marques-Silva 8 / 47

A simple example – AXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1. AXp?
• Define X = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. @(x P t0, 1u4).␣x2 ^␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 2 be removed, i.e. @(x P t0, 1u4).␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 3 be removed, i.e. @(x P t0, 1u4).x4Ñκ(x1, x2, x3, x4)?

Yes
• Can feature 4 be removed, i.e. @(x P t0, 1u4).JÑκ(x1, x2, x3, x4)?

No

• AXp X = t4u

• In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners

• Obs: for some classes of classifiers, poly-time algorithms exist

Recap weak AXp: @(x P F).
Ź

jPX (xj = vj)Ñ(σ(x))

© J. Marques-Silva 8 / 47

A simple example – AXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1. AXp?
• Define X = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. @(x P t0, 1u4).␣x2 ^␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 2 be removed, i.e. @(x P t0, 1u4).␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 3 be removed, i.e. @(x P t0, 1u4).x4Ñκ(x1, x2, x3, x4)? Yes

• Can feature 4 be removed, i.e. @(x P t0, 1u4).JÑκ(x1, x2, x3, x4)?

No

• AXp X = t4u

• In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners

• Obs: for some classes of classifiers, poly-time algorithms exist

Recap weak AXp: @(x P F).
Ź

jPX (xj = vj)Ñ(σ(x))

© J. Marques-Silva 8 / 47

A simple example – AXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1. AXp?
• Define X = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. @(x P t0, 1u4).␣x2 ^␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 2 be removed, i.e. @(x P t0, 1u4).␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 3 be removed, i.e. @(x P t0, 1u4).x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 4 be removed, i.e. @(x P t0, 1u4).JÑκ(x1, x2, x3, x4)?

No
• AXp X = t4u

• In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners

• Obs: for some classes of classifiers, poly-time algorithms exist

Recap weak AXp: @(x P F).
Ź

jPX (xj = vj)Ñ(σ(x))

© J. Marques-Silva 8 / 47

A simple example – AXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1. AXp?
• Define X = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. @(x P t0, 1u4).␣x2 ^␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 2 be removed, i.e. @(x P t0, 1u4).␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 3 be removed, i.e. @(x P t0, 1u4).x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 4 be removed, i.e. @(x P t0, 1u4).JÑκ(x1, x2, x3, x4)? No

• AXp X = t4u

• In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners

• Obs: for some classes of classifiers, poly-time algorithms exist

Recap weak AXp: @(x P F).
Ź

jPX (xj = vj)Ñ(σ(x))

© J. Marques-Silva 8 / 47

A simple example – AXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1. AXp?
• Define X = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. @(x P t0, 1u4).␣x2 ^␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 2 be removed, i.e. @(x P t0, 1u4).␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 3 be removed, i.e. @(x P t0, 1u4).x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 4 be removed, i.e. @(x P t0, 1u4).JÑκ(x1, x2, x3, x4)? No
• AXp X = t4u

• In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners

• Obs: for some classes of classifiers, poly-time algorithms exist

Recap weak AXp: @(x P F).
Ź

jPX (xj = vj)Ñ(σ(x))

© J. Marques-Silva 8 / 47

A simple example – AXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1. AXp?
• Define X = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. @(x P t0, 1u4).␣x2 ^␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 2 be removed, i.e. @(x P t0, 1u4).␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 3 be removed, i.e. @(x P t0, 1u4).x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 4 be removed, i.e. @(x P t0, 1u4).JÑκ(x1, x2, x3, x4)? No
• AXp X = t4u

• In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners

• Obs: for some classes of classifiers, poly-time algorithms exist

Recap weak AXp: @(x P F).
Ź

jPX (xj = vj)Ñ(σ(x))

© J. Marques-Silva 8 / 47

A simple example – AXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1. AXp?
• Define X = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. @(x P t0, 1u4).␣x2 ^␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 2 be removed, i.e. @(x P t0, 1u4).␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 3 be removed, i.e. @(x P t0, 1u4).x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 4 be removed, i.e. @(x P t0, 1u4).JÑκ(x1, x2, x3, x4)? No
• AXp X = t4u

• In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners
• Obs: for some classes of classifiers, poly-time algorithms exist

Recap weak AXp: @(x P F).
Ź

jPX (xj = vj)Ñ(σ(x))

© J. Marques-Silva 8 / 47

More notation

• Notation xS = vS :
[xS = vS] ”

ľ

iPS
(xi = vi)

• Definition of Υ(S):
Υ(S) := tx P F | xS = vSu

• Expected value, non-real-valued features:

E[τ(x) | xS = vS] := 1/|Υ(S; v)|

ÿ

xPΥ(S;v)
τ(x)

• Expected value, real-valued features:

E[τ(x) | xS = vS] := 1/|Υ(S; v)|

ż

Υ(S;v)
τ(x)dx

© J. Marques-Silva 9 / 47

More notation

• Notation xS = vS :
[xS = vS] ”

ľ

iPS
(xi = vi)

• Definition of Υ(S):
Υ(S) := tx P F | xS = vSu

• Expected value, non-real-valued features:

E[τ(x) | xS = vS] := 1/|Υ(S; v)|

ÿ

xPΥ(S;v)
τ(x)

• Expected value, real-valued features:

E[τ(x) | xS = vS] := 1/|Υ(S; v)|

ż

Υ(S;v)
τ(x)dx

© J. Marques-Silva 9 / 47

More notation

• Notation xS = vS :
[xS = vS] ”

ľ

iPS
(xi = vi)

• Definition of Υ(S):
Υ(S) := tx P F | xS = vSu

• Expected value, non-real-valued features:

E[τ(x) | xS = vS] := 1/|Υ(S; v)|

ÿ

xPΥ(S;v)
τ(x)

• Expected value, real-valued features:

E[τ(x) | xS = vS] := 1/|Υ(S; v)|

ż

Υ(S;v)
τ(x)dx

© J. Marques-Silva 9 / 47

More notation

• Notation xS = vS :
[xS = vS] ”

ľ

iPS
(xi = vi)

• Definition of Υ(S):
Υ(S) := tx P F | xS = vSu

• Expected value, non-real-valued features:

E[τ(x) | xS = vS] := 1/|Υ(S; v)|

ÿ

xPΥ(S;v)
τ(x)

• Expected value, real-valued features:

E[τ(x) | xS = vS] := 1/|Υ(S; v)|

ż

Υ(S;v)
τ(x)dx

© J. Marques-Silva 9 / 47

Other definitions of WAXps/AXps

• Using probabilities, non-real-valued features: [WMHK21, IHI+22, ABOS22, IHI+23]

WAXp(S) := Pr(σ(x) | xS = vS) = 1

• Using expected values:

WAXp(S) := E[σ(x) | xS = vS] = 1

• Definition of AXp remains unchanged
• This is true when comparing against 1

© J. Marques-Silva 10 / 47

Other definitions of WAXps/AXps

• Using probabilities, non-real-valued features: [WMHK21, IHI+22, ABOS22, IHI+23]

WAXp(S) := Pr(σ(x) | xS = vS) = 1

• Using expected values:

WAXp(S) := E[σ(x) | xS = vS] = 1

• Definition of AXp remains unchanged
• This is true when comparing against 1

© J. Marques-Silva 10 / 47

Other definitions of WAXps/AXps

• Using probabilities, non-real-valued features: [WMHK21, IHI+22, ABOS22, IHI+23]

WAXp(S) := Pr(σ(x) | xS = vS) = 1

• Using expected values:

WAXp(S) := E[σ(x) | xS = vS] = 1

• Definition of AXp remains unchanged
• This is true when comparing against 1

© J. Marques-Silva 10 / 47

Constrastive explanations – answering Why not? questions

• Instance (v, c), i.e. c = κ(v)

• Contrastive explanation (CXp): [Mil19, INAM20]

• Subset-minimal set of features Y Ď F sufficient for changing prediction

WCXp(Y) :=

D(x P F).
ľ

jRY
(xj = vj)^ (␣σ(x))

• Defining CXp:

• But, WCXp is also monotone; hence,

• Finding one CXp: [MM20]

• Let Y = F , i.e. free all features
• Invariant: WCXp(Y) must hold. Why?
• Analyze features in any order, one feature i at a time

• If WCXp(Yztiu) holds, then remove i from Y , i.e. i is becomes fixed

© J. Marques-Silva 11 / 47

Constrastive explanations – answering Why not? questions

• Instance (v, c), i.e. c = κ(v)
• Contrastive explanation (CXp): [Mil19, INAM20]

• Subset-minimal set of features Y Ď F sufficient for changing prediction

WCXp(Y) :=

D(x P F).
ľ

jRY
(xj = vj)^ (␣σ(x))

• Defining CXp:

• But, WCXp is also monotone; hence,

• Finding one CXp: [MM20]

• Let Y = F , i.e. free all features
• Invariant: WCXp(Y) must hold. Why?
• Analyze features in any order, one feature i at a time

• If WCXp(Yztiu) holds, then remove i from Y , i.e. i is becomes fixed

© J. Marques-Silva 11 / 47

Constrastive explanations – answering Why not? questions

• Instance (v, c), i.e. c = κ(v)
• Contrastive explanation (CXp): [Mil19, INAM20]

• Subset-minimal set of features Y Ď F sufficient for changing prediction

WCXp(Y) := D(x P F).
ľ

jRY
(xj = vj)^ (␣σ(x))

• Defining CXp:

CXp(Y) := WCXp(Y)^ @(Y 1 Ĺ Y).␣WCXp(Y 1)

• But, WCXp is also monotone; hence,

• Finding one CXp: [MM20]

• Let Y = F , i.e. free all features
• Invariant: WCXp(Y) must hold. Why?
• Analyze features in any order, one feature i at a time

• If WCXp(Yztiu) holds, then remove i from Y , i.e. i is becomes fixed

© J. Marques-Silva 11 / 47

Constrastive explanations – answering Why not? questions

• Instance (v, c), i.e. c = κ(v)
• Contrastive explanation (CXp): [Mil19, INAM20]

• Subset-minimal set of features Y Ď F sufficient for changing prediction

WCXp(Y) := D(x P F).
ľ

jRY
(xj = vj)^ (␣σ(x))

• Defining CXp:

CXp(Y) := WCXp(Y)^ @(Y 1 Ĺ Y).␣WCXp(Y 1)

• But, WCXp is also monotone; hence,

CXp(Y) := WCXp(Y)^ @(t P Y).␣WCXp(Yzttu)

• Finding one CXp: [MM20]

• Let Y = F , i.e. free all features
• Invariant: WCXp(Y) must hold. Why?
• Analyze features in any order, one feature i at a time

• If WCXp(Yztiu) holds, then remove i from Y , i.e. i is becomes fixed

© J. Marques-Silva 11 / 47

Constrastive explanations – answering Why not? questions

• Instance (v, c), i.e. c = κ(v)
• Contrastive explanation (CXp): [Mil19, INAM20]

• Subset-minimal set of features Y Ď F sufficient for changing prediction

WCXp(Y) := D(x P F).
ľ

jRY
(xj = vj)^ (␣σ(x))

• Defining CXp:

CXp(Y) := WCXp(Y)^ @(Y 1 Ĺ Y).␣WCXp(Y 1)

• But, WCXp is also monotone; hence,

CXp(Y) := WCXp(Y)^ @(t P Y).␣WCXp(Yzttu)

• Finding one CXp: [MM20]

• Let Y = F , i.e. free all features
• Invariant: WCXp(Y) must hold. Why?
• Analyze features in any order, one feature i at a time

• If WCXp(Yztiu) holds, then remove i from Y , i.e. i is becomes fixed
© J. Marques-Silva 11 / 47

A simple example – CXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1

• Define Y = t1, 2, 3, 4u = F

• Can feature 1 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣κ(x1, x2, x3, x4)?

Yes

• Can feature 2 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣κ(x1, x2, x3, x4)?

Yes

• Can feature 3 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^␣κ(x1, x2, x3, x4)?

Yes

• Can feature 4 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^ x4 ^␣κ(x1, x2, x3, x4)?

No

• CXp Y = t4u

• Obs: AXp is MHS of CXp and vice-versa...

© J. Marques-Silva 12 / 47

A simple example – CXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1

• Define Y = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣κ(x1, x2, x3, x4)?

Yes
• Can feature 2 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣κ(x1, x2, x3, x4)?

Yes

• Can feature 3 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^␣κ(x1, x2, x3, x4)?

Yes

• Can feature 4 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^ x4 ^␣κ(x1, x2, x3, x4)?

No

• CXp Y = t4u

• Obs: AXp is MHS of CXp and vice-versa...

Recap weak CXp: D(x P F).
Ź

jRY (xj = vj)^ (␣σ(x))

© J. Marques-Silva 12 / 47

A simple example – CXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1

• Define Y = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣κ(x1, x2, x3, x4)? Yes

• Can feature 2 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣κ(x1, x2, x3, x4)?

Yes

• Can feature 3 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^␣κ(x1, x2, x3, x4)?

Yes

• Can feature 4 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^ x4 ^␣κ(x1, x2, x3, x4)?

No

• CXp Y = t4u

• Obs: AXp is MHS of CXp and vice-versa...

Recap weak CXp: D(x P F).
Ź

jRY (xj = vj)^ (␣σ(x))

© J. Marques-Silva 12 / 47

A simple example – CXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1

• Define Y = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣κ(x1, x2, x3, x4)? Yes
• Can feature 2 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣κ(x1, x2, x3, x4)?

Yes
• Can feature 3 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^␣κ(x1, x2, x3, x4)?

Yes

• Can feature 4 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^ x4 ^␣κ(x1, x2, x3, x4)?

No

• CXp Y = t4u

• Obs: AXp is MHS of CXp and vice-versa...

Recap weak CXp: D(x P F).
Ź

jRY (xj = vj)^ (␣σ(x))

© J. Marques-Silva 12 / 47

A simple example – CXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1

• Define Y = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣κ(x1, x2, x3, x4)? Yes
• Can feature 2 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣κ(x1, x2, x3, x4)? Yes

• Can feature 3 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^␣κ(x1, x2, x3, x4)?

Yes

• Can feature 4 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^ x4 ^␣κ(x1, x2, x3, x4)?

No

• CXp Y = t4u

• Obs: AXp is MHS of CXp and vice-versa...

Recap weak CXp: D(x P F).
Ź

jRY (xj = vj)^ (␣σ(x))

© J. Marques-Silva 12 / 47

A simple example – CXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1

• Define Y = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣κ(x1, x2, x3, x4)? Yes
• Can feature 2 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣κ(x1, x2, x3, x4)? Yes
• Can feature 3 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^␣κ(x1, x2, x3, x4)?

Yes
• Can feature 4 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^ x4 ^␣κ(x1, x2, x3, x4)?

No

• CXp Y = t4u

• Obs: AXp is MHS of CXp and vice-versa...

Recap weak CXp: D(x P F).
Ź

jRY (xj = vj)^ (␣σ(x))

© J. Marques-Silva 12 / 47

A simple example – CXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1

• Define Y = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣κ(x1, x2, x3, x4)? Yes
• Can feature 2 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣κ(x1, x2, x3, x4)? Yes
• Can feature 3 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^␣κ(x1, x2, x3, x4)? Yes

• Can feature 4 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^ x4 ^␣κ(x1, x2, x3, x4)?

No

• CXp Y = t4u

• Obs: AXp is MHS of CXp and vice-versa...

Recap weak CXp: D(x P F).
Ź

jRY (xj = vj)^ (␣σ(x))

© J. Marques-Silva 12 / 47

A simple example – CXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1

• Define Y = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣κ(x1, x2, x3, x4)? Yes
• Can feature 2 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣κ(x1, x2, x3, x4)? Yes
• Can feature 3 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^␣κ(x1, x2, x3, x4)? Yes
• Can feature 4 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^ x4 ^␣κ(x1, x2, x3, x4)?

No
• CXp Y = t4u

• Obs: AXp is MHS of CXp and vice-versa...

Recap weak CXp: D(x P F).
Ź

jRY (xj = vj)^ (␣σ(x))

© J. Marques-Silva 12 / 47

A simple example – CXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1

• Define Y = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣κ(x1, x2, x3, x4)? Yes
• Can feature 2 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣κ(x1, x2, x3, x4)? Yes
• Can feature 3 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^␣κ(x1, x2, x3, x4)? Yes
• Can feature 4 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^ x4 ^␣κ(x1, x2, x3, x4)? No

• CXp Y = t4u

• Obs: AXp is MHS of CXp and vice-versa...

Recap weak CXp: D(x P F).
Ź

jRY (xj = vj)^ (␣σ(x))

© J. Marques-Silva 12 / 47

A simple example – CXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1

• Define Y = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣κ(x1, x2, x3, x4)? Yes
• Can feature 2 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣κ(x1, x2, x3, x4)? Yes
• Can feature 3 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^␣κ(x1, x2, x3, x4)? Yes
• Can feature 4 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^ x4 ^␣κ(x1, x2, x3, x4)? No
• CXp Y = t4u

• Obs: AXp is MHS of CXp and vice-versa...

Recap weak CXp: D(x P F).
Ź

jRY (xj = vj)^ (␣σ(x))

© J. Marques-Silva 12 / 47

Other definitions of WCXps/CXps

• Using probabilities, non-real-valued features:

WCXp(S) := Pr(σ(x) | xS = vS) ă 1

• Using expected values:

WCXp(S) := E[σ(x) | xS = vS] ă 1

• Definition of CXp remains unchanged

© J. Marques-Silva 13 / 47

Other definitions of WCXps/CXps

• Using probabilities, non-real-valued features:

WCXp(S) := Pr(σ(x) | xS = vS) ă 1

• Using expected values:

WCXp(S) := E[σ(x) | xS = vS] ă 1

• Definition of CXp remains unchanged

© J. Marques-Silva 13 / 47

Other definitions of WCXps/CXps

• Using probabilities, non-real-valued features:

WCXp(S) := Pr(σ(x) | xS = vS) ă 1

• Using expected values:

WCXp(S) := E[σ(x) | xS = vS] ă 1

• Definition of CXp remains unchanged

© J. Marques-Silva 13 / 47

Detour: global explanations

[INM19b]

• AXps and CXps are defined locally (because of v) but hold globally
• Localized explanations
• Can be viewed as attempt at formalizing local explanations [RSG16, LL17, RSG18]

• One can define explanations without picking a given point in feature space
• Let q P T, and refefine the similarity predicate:

• Classification: σ(x) = [κ(x) = q]
• Regression: σ(x) = [|κ(x)´ q| ď δ], δ is user-specified

• Let L = t(xi = vi) | i P F ^ vi P Vu

• Let S Ĺ L be a subset of literals that does not repeat features, i.e. S is not inconsistent
• Then, S is a global AXp if,

@(x P F).
ľ

(xi=vi)PS
(xi = vi)Ñ(σ(x))

• Counterexamples are minimal hitting sets of global AXps and vice-versa [INM19b]

© J. Marques-Silva 14 / 47

Outline – Unit #02

Definitions of Explanations

Duality Properties

Computational Problems

Duality in explainability – basic results

[INAM20, Mar22]

• Claim:
S Ď F is an AXp iff it is a minimal hitting set
(MHS) of the set of CXps

• Claim:
S Ď F is a CXp iff it is a minimal hitting set (MHS)
of the set of AXps

• An example, (v, c) = ((0, 0, 1, 0, 1), 1):

• AXps:
• CXps:
• Each AXp is an MHS of the set of CXps
• Each CXp is an MHS of the set of AXps
• BTW,

• t2, 5u is not a CXp
• t1, 2, 3, 4, 5u, t1, 2, 3, 5u and t1, 3, 5u are not AXps

• Why?

© J. Marques-Silva 15 / 47

Duality in explainability – basic results

[INAM20, Mar22]

• Claim:
S Ď F is an AXp iff it is a minimal hitting set
(MHS) of the set of CXps

• Claim:
S Ď F is a CXp iff it is a minimal hitting set (MHS)
of the set of AXps

• An example, (v, c) = ((0, 0, 1, 0, 1), 1):

• AXps:
• CXps:
• Each AXp is an MHS of the set of CXps
• Each CXp is an MHS of the set of AXps
• BTW,

• t2, 5u is not a CXp
• t1, 2, 3, 4, 5u, t1, 2, 3, 5u and t1, 3, 5u are not AXps

• Why?

© J. Marques-Silva 15 / 47

Duality in explainability – basic results

[INAM20, Mar22]

• Claim:
S Ď F is an AXp iff it is a minimal hitting set
(MHS) of the set of CXps

• Claim:
S Ď F is a CXp iff it is a minimal hitting set (MHS)
of the set of AXps

• An example, (v, c) = ((0, 0, 1, 0, 1), 1):

• AXps:
• CXps:
• Each AXp is an MHS of the set of CXps
• Each CXp is an MHS of the set of AXps
• BTW,

• t2, 5u is not a CXp
• t1, 2, 3, 4, 5u, t1, 2, 3, 5u and t1, 3, 5u are not AXps

• Why?

© J. Marques-Silva 15 / 47

Duality in explainability – basic results

[INAM20, Mar22]

• Claim:
S Ď F is an AXp iff it is a minimal hitting set
(MHS) of the set of CXps

• Claim:
S Ď F is a CXp iff it is a minimal hitting set (MHS)
of the set of AXps

• An example, (v, c) = ((0, 0, 1, 0, 1), 1):

• AXps:
• CXps:
• Each AXp is an MHS of the set of CXps
• Each CXp is an MHS of the set of AXps
• BTW,

• t2, 5u is not a CXp
• t1, 2, 3, 4, 5u, t1, 2, 3, 5u and t1, 3, 5u are not AXps

• Why?

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 15 / 47

Duality in explainability – basic results

[INAM20, Mar22]

• Claim:
S Ď F is an AXp iff it is a minimal hitting set
(MHS) of the set of CXps

• Claim:
S Ď F is a CXp iff it is a minimal hitting set (MHS)
of the set of AXps

• An example, (v, c) = ((0, 0, 1, 0, 1), 1):
• AXps:

• CXps:
• Each AXp is an MHS of the set of CXps
• Each CXp is an MHS of the set of AXps
• BTW,

• t2, 5u is not a CXp
• t1, 2, 3, 4, 5u, t1, 2, 3, 5u and t1, 3, 5u are not AXps

• Why?

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 15 / 47

Duality in explainability – basic results

[INAM20, Mar22]

• Claim:
S Ď F is an AXp iff it is a minimal hitting set
(MHS) of the set of CXps

• Claim:
S Ď F is a CXp iff it is a minimal hitting set (MHS)
of the set of AXps

• An example, (v, c) = ((0, 0, 1, 0, 1), 1):
• AXps: tt3, 5uu

• CXps:
• Each AXp is an MHS of the set of CXps
• Each CXp is an MHS of the set of AXps
• BTW,

• t2, 5u is not a CXp
• t1, 2, 3, 4, 5u, t1, 2, 3, 5u and t1, 3, 5u are not AXps

• Why?

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 15 / 47

Duality in explainability – basic results

[INAM20, Mar22]

• Claim:
S Ď F is an AXp iff it is a minimal hitting set
(MHS) of the set of CXps

• Claim:
S Ď F is a CXp iff it is a minimal hitting set (MHS)
of the set of AXps

• An example, (v, c) = ((0, 0, 1, 0, 1), 1):
• AXps: tt3, 5uu
• CXps:

• Each AXp is an MHS of the set of CXps
• Each CXp is an MHS of the set of AXps
• BTW,

• t2, 5u is not a CXp
• t1, 2, 3, 4, 5u, t1, 2, 3, 5u and t1, 3, 5u are not AXps

• Why?

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 15 / 47

Duality in explainability – basic results

[INAM20, Mar22]

• Claim:
S Ď F is an AXp iff it is a minimal hitting set
(MHS) of the set of CXps

• Claim:
S Ď F is a CXp iff it is a minimal hitting set (MHS)
of the set of AXps

• An example, (v, c) = ((0, 0, 1, 0, 1), 1):
• AXps: tt3, 5uu
• CXps: tt3u, t5uu

• Each AXp is an MHS of the set of CXps
• Each CXp is an MHS of the set of AXps
• BTW,

• t2, 5u is not a CXp
• t1, 2, 3, 4, 5u, t1, 2, 3, 5u and t1, 3, 5u are not AXps

• Why?

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 15 / 47

Duality in explainability – basic results

[INAM20, Mar22]

• Claim:
S Ď F is an AXp iff it is a minimal hitting set
(MHS) of the set of CXps

• Claim:
S Ď F is a CXp iff it is a minimal hitting set (MHS)
of the set of AXps

• An example, (v, c) = ((0, 0, 1, 0, 1), 1):
• AXps: tt3, 5uu
• CXps: tt3u, t5uu
• Each AXp is an MHS of the set of CXps
• Each CXp is an MHS of the set of AXps

• BTW,
• t2, 5u is not a CXp
• t1, 2, 3, 4, 5u, t1, 2, 3, 5u and t1, 3, 5u are not AXps

• Why?

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 15 / 47

Duality in explainability – basic results

[INAM20, Mar22]

• Claim:
S Ď F is an AXp iff it is a minimal hitting set
(MHS) of the set of CXps

• Claim:
S Ď F is a CXp iff it is a minimal hitting set (MHS)
of the set of AXps

• An example, (v, c) = ((0, 0, 1, 0, 1), 1):
• AXps: tt3, 5uu
• CXps: tt3u, t5uu
• Each AXp is an MHS of the set of CXps
• Each CXp is an MHS of the set of AXps
• BTW,

• t2, 5u is not a CXp
• t1, 2, 3, 4, 5u, t1, 2, 3, 5u and t1, 3, 5u are not AXps

• Why?

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 15 / 47

Duality in explainability – basic results

[INAM20, Mar22]

• Claim:
S Ď F is an AXp iff it is a minimal hitting set
(MHS) of the set of CXps

• Claim:
S Ď F is a CXp iff it is a minimal hitting set (MHS)
of the set of AXps

• An example, (v, c) = ((0, 0, 1, 0, 1), 1):
• AXps: tt3, 5uu
• CXps: tt3u, t5uu
• Each AXp is an MHS of the set of CXps
• Each CXp is an MHS of the set of AXps
• BTW,

• t2, 5u is not a CXp
• t1, 2, 3, 4, 5u, t1, 2, 3, 5u and t1, 3, 5u are not AXps
• Why?

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 15 / 47

Outline – Unit #02

Definitions of Explanations

Duality Properties

Computational Problems

Computational problems in (formal) explainability

• Compute one abductive/contrastive explanation

• Enumerate all abductive/contrastive explanations

• Decide whether feature included in all abductive/contrastive explanations

• Decide whether feature included in some abductive/contrastive explanation

© J. Marques-Silva 16 / 47

Computational problems in (formal) explainability

• Compute one abductive/contrastive explanation

• Enumerate all abductive/contrastive explanations

• Decide whether feature included in all abductive/contrastive explanations

• Decide whether feature included in some abductive/contrastive explanation

© J. Marques-Silva 16 / 47

Computational problems in (formal) explainability

• Compute one abductive/contrastive explanation

• Enumerate all abductive/contrastive explanations

• Decide whether feature included in all abductive/contrastive explanations

• Decide whether feature included in some abductive/contrastive explanation

© J. Marques-Silva 16 / 47

Computational problems in (formal) explainability

• Compute one abductive/contrastive explanation

• Enumerate all abductive/contrastive explanations

• Decide whether feature included in all abductive/contrastive explanations

• Decide whether feature included in some abductive/contrastive explanation

© J. Marques-Silva 16 / 47

Computing one AXp/CXp

• Encode classifier into suitable logic representation T & pick suitable reasoner

• For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds
• For CXp: start from S = F and drop (i.e. fix) features from S while WCXp condition holds
• Monotone predicates for WAXp & WCXp:

Paxp(S) fi ␣CO (J(ŹiPS(xi = vi))^ (␣σ(x))K) Pcxp(S) fi CO
(r(

Ź

iPFzS(xi = vi)
)
^ (␣σ(x))

z)

Input: Predicate P, parameterized by T ,M
Output: One XP S

1: procedure oneXP(P)
2: S Ð F Ź Initialization: P(S) holds
3: for i P F do Ź Loop invariant: P(S) holds
4: if P(Sztiu) then
5: S Ð Sztiu Ź Update S only if P(Sztiu) holds
6: return S Ź Returned set S : P(S) holds

© J. Marques-Silva 17 / 47

Computing one AXp/CXp

• Encode classifier into suitable logic representation T & pick suitable reasoner
• For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds

• For CXp: start from S = F and drop (i.e. fix) features from S while WCXp condition holds
• Monotone predicates for WAXp & WCXp:

Paxp(S) fi ␣CO (J(ŹiPS(xi = vi))^ (␣σ(x))K) Pcxp(S) fi CO
(r(

Ź

iPFzS(xi = vi)
)
^ (␣σ(x))

z)

Input: Predicate P, parameterized by T ,M
Output: One XP S

1: procedure oneXP(P)
2: S Ð F Ź Initialization: P(S) holds
3: for i P F do Ź Loop invariant: P(S) holds
4: if P(Sztiu) then
5: S Ð Sztiu Ź Update S only if P(Sztiu) holds
6: return S Ź Returned set S : P(S) holds

© J. Marques-Silva 17 / 47

Computing one AXp/CXp

• Encode classifier into suitable logic representation T & pick suitable reasoner
• For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds
• For CXp: start from S = F and drop (i.e. fix) features from S while WCXp condition holds

• Monotone predicates for WAXp & WCXp:

Paxp(S) fi ␣CO (J(ŹiPS(xi = vi))^ (␣σ(x))K) Pcxp(S) fi CO
(r(

Ź

iPFzS(xi = vi)
)
^ (␣σ(x))

z)

Input: Predicate P, parameterized by T ,M
Output: One XP S

1: procedure oneXP(P)
2: S Ð F Ź Initialization: P(S) holds
3: for i P F do Ź Loop invariant: P(S) holds
4: if P(Sztiu) then
5: S Ð Sztiu Ź Update S only if P(Sztiu) holds
6: return S Ź Returned set S : P(S) holds

© J. Marques-Silva 17 / 47

Computing one AXp/CXp

• Encode classifier into suitable logic representation T & pick suitable reasoner
• For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds
• For CXp: start from S = F and drop (i.e. fix) features from S while WCXp condition holds
• Monotone predicates for WAXp & WCXp:

Paxp(S) fi ␣CO (J(ŹiPS(xi = vi))^ (␣σ(x))K) Pcxp(S) fi CO
(r(

Ź

iPFzS(xi = vi)
)
^ (␣σ(x))

z)

Input: Predicate P, parameterized by T ,M
Output: One XP S

1: procedure oneXP(P)
2: S Ð F Ź Initialization: P(S) holds
3: for i P F do Ź Loop invariant: P(S) holds
4: if P(Sztiu) then
5: S Ð Sztiu Ź Update S only if P(Sztiu) holds
6: return S Ź Returned set S : P(S) holds

© J. Marques-Silva 17 / 47

Computing one AXp/CXp

• Encode classifier into suitable logic representation T & pick suitable reasoner
• For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds
• For CXp: start from S = F and drop (i.e. fix) features from S while WCXp condition holds
• Monotone predicates for WAXp & WCXp:

Paxp(S) fi ␣CO (J(ŹiPS(xi = vi))^ (␣σ(x))K) Pcxp(S) fi CO
(r(

Ź

iPFzS(xi = vi)
)
^ (␣σ(x))

z)

Input: Predicate P, parameterized by T ,M
Output: One XP S

1: procedure oneXP(P)
2: S Ð F Ź Initialization: P(S) holds
3: for i P F do Ź Loop invariant: P(S) holds
4: if P(Sztiu) then
5: S Ð Sztiu Ź Update S only if P(Sztiu) holds
6: return S Ź Returned set S : P(S) holds

© J. Marques-Silva 17 / 47

Computing one AXp/CXp

• Encode classifier into suitable logic representation T & pick suitable reasoner
• For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds
• For CXp: start from S = F and drop (i.e. fix) features from S while WCXp condition holds
• Monotone predicates for WAXp & WCXp:

Paxp(S) fi ␣CO (J(ŹiPS(xi = vi))^ (␣σ(x))K) Pcxp(S) fi CO
(r(

Ź

iPFzS(xi = vi)
)
^ (␣σ(x))

z)

Input: Predicate P, parameterized by T ,M
Output: One XP S

1: procedure oneXP(P)
2: S Ð F Ź Initialization: P(S) holds
3: for i P F do Ź Loop invariant: P(S) holds
4: if P(Sztiu) then
5: S Ð Sztiu Ź Update S only if P(Sztiu) holds
6: return S Ź Returned set S : P(S) holds

Exploiting MSMP, i.e.
basic algorithm used
for different problems.

© J. Marques-Silva 17 / 47

Detour: More Connections with Automated Reasoning

© J. Marques-Silva 18 / 47

Prime implicants & implicates

• A conjunction of literals π (which will be viewed as a set of literals where convenient) is a
prime implicant of some function φ if,
1. π(φ

2. For any π1 Ĺ π, π1* φ

• Example:
• F = t0, 1u3

• φ(x1, x2, x3) = x1 ^ x2 _ x1 ^ x3
• Clearly, x1 ^ x2(φ

• Also, x1* φ and x2* φ

• A disjunction of literals η (also viewed as a set of literals where convenient) is a prime
implicate of some function φ if
1. φ(η

2. For any η1 Ĺ η, φ* η1

© J. Marques-Silva 19 / 47

Prime implicants & implicates

• A conjunction of literals π (which will be viewed as a set of literals where convenient) is a
prime implicant of some function φ if,
1. π(φ

2. For any π1 Ĺ π, π1* φ

• Example:
• F = t0, 1u3

• φ(x1, x2, x3) = x1 ^ x2 _ x1 ^ x3
• Clearly, x1 ^ x2(φ

• Also, x1* φ and x2* φ

• A disjunction of literals η (also viewed as a set of literals where convenient) is a prime
implicate of some function φ if
1. φ(η

2. For any η1 Ĺ η, φ* η1

© J. Marques-Silva 19 / 47

Prime implicants & implicates

• A conjunction of literals π (which will be viewed as a set of literals where convenient) is a
prime implicant of some function φ if,
1. π(φ

2. For any π1 Ĺ π, π1* φ

• Example:
• F = t0, 1u3

• φ(x1, x2, x3) = x1 ^ x2 _ x1 ^ x3
• Clearly, x1 ^ x2(φ

• Also, x1* φ and x2* φ

• A disjunction of literals η (also viewed as a set of literals where convenient) is a prime
implicate of some function φ if
1. φ(η

2. For any η1 Ĺ η, φ* η1

© J. Marques-Silva 19 / 47

Reasoning about inconsistency [MM20]

• Formula T = B Y S , with
• B: background knowledge (base), i.e. hard constraints
• S : additional (inconsistent) knowledge, i.e. soft constraints
• And, T (K
• E.g. B = t(x1 _ x2), (x1 _␣x3)u, S = t(␣x1), (␣x2), (x3)u

• Minimal unsatisfiable subset (MUS):
• Subset-minimal set U Ď S , s.t. B Y U (K
• E.g. U = t(␣x1), (␣x2)u

• Minimal correction subset (MCS):
• Subset-minimal set C Ď S , s.t. B Y (SzC)* K
• E.g. C = t(␣x1)u

• Duality:
• MUSes are minimal-hitting sets (MHSes) of the MCSes, and vice-versa [Rei87]

• Variants:
• Smallest(-cost) MCS, i.e. complement of maximum(-cost) satisfiability (MaxSAT)
• Smallest(-cost) MUS

© J. Marques-Silva 20 / 47

Reasoning about inconsistency [MM20]

• Formula T = B Y S , with
• B: background knowledge (base), i.e. hard constraints
• S : additional (inconsistent) knowledge, i.e. soft constraints
• And, T (K
• E.g. B = t(x1 _ x2), (x1 _␣x3)u, S = t(␣x1), (␣x2), (x3)u

• Minimal unsatisfiable subset (MUS):
• Subset-minimal set U Ď S , s.t. B Y U (K
• E.g. U = t(␣x1), (␣x2)u

• Minimal correction subset (MCS):
• Subset-minimal set C Ď S , s.t. B Y (SzC)* K
• E.g. C = t(␣x1)u

• Duality:
• MUSes are minimal-hitting sets (MHSes) of the MCSes, and vice-versa [Rei87]

• Variants:
• Smallest(-cost) MCS, i.e. complement of maximum(-cost) satisfiability (MaxSAT)
• Smallest(-cost) MUS

© J. Marques-Silva 20 / 47

Reasoning about inconsistency [MM20]

• Formula T = B Y S , with
• B: background knowledge (base), i.e. hard constraints
• S : additional (inconsistent) knowledge, i.e. soft constraints
• And, T (K
• E.g. B = t(x1 _ x2), (x1 _␣x3)u, S = t(␣x1), (␣x2), (x3)u

• Minimal unsatisfiable subset (MUS):
• Subset-minimal set U Ď S , s.t. B Y U (K
• E.g. U = t(␣x1), (␣x2)u

• Minimal correction subset (MCS):
• Subset-minimal set C Ď S , s.t. B Y (SzC)* K
• E.g. C = t(␣x1)u

• Duality:
• MUSes are minimal-hitting sets (MHSes) of the MCSes, and vice-versa [Rei87]

• Variants:
• Smallest(-cost) MCS, i.e. complement of maximum(-cost) satisfiability (MaxSAT)
• Smallest(-cost) MUS

© J. Marques-Silva 20 / 47

Reasoning about inconsistency [MM20]

• Formula T = B Y S , with
• B: background knowledge (base), i.e. hard constraints
• S : additional (inconsistent) knowledge, i.e. soft constraints
• And, T (K
• E.g. B = t(x1 _ x2), (x1 _␣x3)u, S = t(␣x1), (␣x2), (x3)u

• Minimal unsatisfiable subset (MUS):
• Subset-minimal set U Ď S , s.t. B Y U (K
• E.g. U = t(␣x1), (␣x2)u

• Minimal correction subset (MCS):
• Subset-minimal set C Ď S , s.t. B Y (SzC)* K
• E.g. C = t(␣x1)u

• Duality:
• MUSes are minimal-hitting sets (MHSes) of the MCSes, and vice-versa [Rei87]

• Variants:
• Smallest(-cost) MCS, i.e. complement of maximum(-cost) satisfiability (MaxSAT)
• Smallest(-cost) MUS

© J. Marques-Silva 20 / 47

Reasoning about inconsistency [MM20]

• Formula T = B Y S , with
• B: background knowledge (base), i.e. hard constraints
• S : additional (inconsistent) knowledge, i.e. soft constraints
• And, T (K
• E.g. B = t(x1 _ x2), (x1 _␣x3)u, S = t(␣x1), (␣x2), (x3)u

• Minimal unsatisfiable subset (MUS):
• Subset-minimal set U Ď S , s.t. B Y U (K
• E.g. U = t(␣x1), (␣x2)u

• Minimal correction subset (MCS):
• Subset-minimal set C Ď S , s.t. B Y (SzC)* K
• E.g. C = t(␣x1)u

• Duality:
• MUSes are minimal-hitting sets (MHSes) of the MCSes, and vice-versa [Rei87]

• Variants:
• Smallest(-cost) MCS, i.e. complement of maximum(-cost) satisfiability (MaxSAT)
• Smallest(-cost) MUS

© J. Marques-Silva 20 / 47

Computing AXps (resp. CXps) as MUSes (resp. MCSes)

• Recap:

WAXp(X) := @(x P F).
ľ

jPX
(xj = vj)Ñ(σ(x))

WCXp(Y) := D(x P F).
ľ

jRY
(xj = vj)^ (␣σ(x))

• Let,

• Hard constraints, B:
B := ^iPF (siÑ(xi = vi))^ EncodeT (␣σ(x))

• Soft constraints: S = tsi | i P Fu

• Claim: Each MUS of (B,S) is an AXp & each MCS of (B,S) is a CXp

• Can use MUS/MCS algorithms for AXps/CXps

© J. Marques-Silva 21 / 47

Computing AXps (resp. CXps) as MUSes (resp. MCSes)

• Recap:

WAXp(X) := @(x P F).
ľ

jPX
(xj = vj)Ñ(σ(x))

WCXp(Y) := D(x P F).
ľ

jRY
(xj = vj)^ (␣σ(x))

• Let,
• Hard constraints, B:

B := ^iPF (siÑ(xi = vi))^ EncodeT (␣σ(x))

• Soft constraints: S = tsi | i P Fu

• Claim: Each MUS of (B,S) is an AXp & each MCS of (B,S) is a CXp

• Can use MUS/MCS algorithms for AXps/CXps

© J. Marques-Silva 21 / 47

Computing AXps (resp. CXps) as MUSes (resp. MCSes)

• Recap:

WAXp(X) := @(x P F).
ľ

jPX
(xj = vj)Ñ(σ(x))

WCXp(Y) := D(x P F).
ľ

jRY
(xj = vj)^ (␣σ(x))

• Let,
• Hard constraints, B:

B := ^iPF (siÑ(xi = vi))^ EncodeT (␣σ(x))

• Soft constraints: S = tsi | i P Fu

• Claim: Each MUS of (B,S) is an AXp & each MCS of (B,S) is a CXp

• Can use MUS/MCS algorithms for AXps/CXps

© J. Marques-Silva 21 / 47

Computing AXps (resp. CXps) as MUSes (resp. MCSes)

• Recap:

WAXp(X) := @(x P F).
ľ

jPX
(xj = vj)Ñ(σ(x))

WCXp(Y) := D(x P F).
ľ

jRY
(xj = vj)^ (␣σ(x))

• Let,
• Hard constraints, B:

B := ^iPF (siÑ(xi = vi))^ EncodeT (␣σ(x))

• Soft constraints: S = tsi | i P Fu

• Claim: Each MUS of (B,S) is an AXp & each MCS of (B,S) is a CXp

• Can use MUS/MCS algorithms for AXps/CXps

© J. Marques-Silva 21 / 47

Computing AXps (resp. CXps) as MUSes (resp. MCSes)

• Recap:

WAXp(X) := @(x P F).
ľ

jPX
(xj = vj)Ñ(σ(x))

WCXp(Y) := D(x P F).
ľ

jRY
(xj = vj)^ (␣σ(x))

• Let,
• Hard constraints, B:

B := ^iPF (siÑ(xi = vi))^ EncodeT (␣σ(x))

• Soft constraints: S = tsi | i P Fu

• Claim: Each MUS of (B,S) is an AXp & each MCS of (B,S) is a CXp
• Can use MUS/MCS algorithms for AXps/CXps

© J. Marques-Silva 21 / 47

Unit #03

Tractability in Symbolic XAI

Outline – Unit #03

Explanations for Decision Trees

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Sets

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

Review examples

DT explanations

[IIM20]

middle-middle=x

top-left=x

bottom-right=x

0 bottom-left=x

top-right=x

0 1

1

bottom-left=x

top-right=x

0 1

1

1

0 1

• Run PI-explanation algorithm based on
NP-oracles

• Worst-case exponential time
• For prediction 1, it suffices to ensure all
paths with prediction 0 remain
inconsistent

• I.e. find a subset-minimal hitting set of
all 0 paths; these are the features to
keep

• E.g. BR and TR suffice for prediction

• Well-known to be solvable in
polynomial time [EG95]

© J. Marques-Silva 22 / 47

DT explanations

[IIM20]

middle-middle=x

top-left=x

bottom-right=x

0 bottom-left=x

top-right=x

0 1

1

bottom-left=x

top-right=x

0 1

1

1

0 1
• Run PI-explanation algorithm based on
NP-oracles

• Worst-case exponential time

• For prediction 1, it suffices to ensure all
paths with prediction 0 remain
inconsistent

• I.e. find a subset-minimal hitting set of
all 0 paths; these are the features to
keep

• E.g. BR and TR suffice for prediction

• Well-known to be solvable in
polynomial time [EG95]

© J. Marques-Silva 22 / 47

DT explanations

[IIM20]

middle-middle=x

top-left=x

bottom-right=x

0 bottom-left=x

top-right=x

0 1

1

bottom-left=x

top-right=x

0 1

1

1

0 1
• Run PI-explanation algorithm based on
NP-oracles

• Worst-case exponential time
• For prediction 1, it suffices to ensure all
paths with prediction 0 remain
inconsistent

• I.e. find a subset-minimal hitting set of
all 0 paths; these are the features to
keep

• E.g. BR and TR suffice for prediction

• Well-known to be solvable in
polynomial time [EG95]

© J. Marques-Silva 22 / 47

DT explanations in polynomial time

[IIM20]

middle-middle=x

top-left=x

bottom-right=x

0 bottom-left=x

top-right=x

0 1

1

bottom-left=x

top-right=x

0 1

1

1

0 1
• Run PI-explanation algorithm based on
NP-oracles

• Worst-case exponential time
• For prediction 1, it suffices to ensure all
paths with prediction 0 remain
inconsistent

• I.e. find a subset-minimal hitting set of
all 0 paths; these are the features to
keep

• E.g. BR and TR suffice for prediction

• Well-known to be solvable in
polynomial time [EG95]

© J. Marques-Silva 22 / 47

Outline – Unit #03

Explanations for Decision Trees

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Sets

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

Review examples

Answering queries in DTs

• Finding one AXp in polynomial-time – covered

• Finding one CXp in polynomial-time

• Finding all CXps in polynomial-time

• Practically efficient enumeration of AXps – later

© J. Marques-Silva 23 / 47

Answering queries in DTs

• Finding one AXp in polynomial-time – covered

• Finding one CXp in polynomial-time

• Finding all CXps in polynomial-time

• Practically efficient enumeration of AXps – later

© J. Marques-Silva 23 / 47

Answering queries in DTs

• Finding one AXp in polynomial-time – covered

• Finding one CXp in polynomial-time

• Finding all CXps in polynomial-time

• Practically efficient enumeration of AXps – later

© J. Marques-Silva 23 / 47

Answering queries in DTs

• Finding one AXp in polynomial-time – covered

• Finding one CXp in polynomial-time

• Finding all CXps in polynomial-time; hence, finding one CXp also in polynomial-time

• Practically efficient enumeration of AXps – later

© J. Marques-Silva 23 / 47

Answering queries in DTs

• Finding one AXp in polynomial-time – covered

• Finding one CXp in polynomial-time

• Finding all CXps in polynomial-time; hence, finding one CXp also in polynomial-time

• Practically efficient enumeration of AXps – later

© J. Marques-Silva 23 / 47

Finding all CXps in polynomial-time

• Basic algorithm:
• L =H

• For each leaf node not predicting q:

• I : features with literals inconsistent with v
• Add I to L

• Remove from L non-minimal sets
• L contains all the CXps of the DT

• Example: instance is ((1, 1, 1, 1), 1)

• Add t1, 2u to L
• Add t1, 3u to L
• Add t1, 4u to L
• Add t3u to L
• Add t4u to L
• Remove from L: t1, 3u and t1, 4u
• CXps: tt1, 2u, t3u, t4uu
• AXps: tt1, 3, 4u, t2, 3, 4uu, by computing all MHSes

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 24 / 47

Finding all CXps in polynomial-time

• Basic algorithm:
• L =H
• For each leaf node not predicting q:

• I : features with literals inconsistent with v
• Add I to L

• Remove from L non-minimal sets
• L contains all the CXps of the DT

• Example: instance is ((1, 1, 1, 1), 1)

• Add t1, 2u to L
• Add t1, 3u to L
• Add t1, 4u to L
• Add t3u to L
• Add t4u to L
• Remove from L: t1, 3u and t1, 4u
• CXps: tt1, 2u, t3u, t4uu
• AXps: tt1, 3, 4u, t2, 3, 4uu, by computing all MHSes

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 24 / 47

Finding all CXps in polynomial-time

• Basic algorithm:
• L =H
• For each leaf node not predicting q:

• I : features with literals inconsistent with v

• Add I to L

• Remove from L non-minimal sets
• L contains all the CXps of the DT

• Example: instance is ((1, 1, 1, 1), 1)

• Add t1, 2u to L
• Add t1, 3u to L
• Add t1, 4u to L
• Add t3u to L
• Add t4u to L
• Remove from L: t1, 3u and t1, 4u
• CXps: tt1, 2u, t3u, t4uu
• AXps: tt1, 3, 4u, t2, 3, 4uu, by computing all MHSes

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 24 / 47

Finding all CXps in polynomial-time

• Basic algorithm:
• L =H
• For each leaf node not predicting q:

• I : features with literals inconsistent with v
• Add I to L

• Remove from L non-minimal sets
• L contains all the CXps of the DT

• Example: instance is ((1, 1, 1, 1), 1)

• Add t1, 2u to L
• Add t1, 3u to L
• Add t1, 4u to L
• Add t3u to L
• Add t4u to L
• Remove from L: t1, 3u and t1, 4u
• CXps: tt1, 2u, t3u, t4uu
• AXps: tt1, 3, 4u, t2, 3, 4uu, by computing all MHSes

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 24 / 47

Finding all CXps in polynomial-time

• Basic algorithm:
• L =H
• For each leaf node not predicting q:

• I : features with literals inconsistent with v
• Add I to L

• Remove from L non-minimal sets

• L contains all the CXps of the DT
• Example: instance is ((1, 1, 1, 1), 1)

• Add t1, 2u to L
• Add t1, 3u to L
• Add t1, 4u to L
• Add t3u to L
• Add t4u to L
• Remove from L: t1, 3u and t1, 4u
• CXps: tt1, 2u, t3u, t4uu
• AXps: tt1, 3, 4u, t2, 3, 4uu, by computing all MHSes

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 24 / 47

Finding all CXps in polynomial-time

• Basic algorithm:
• L =H
• For each leaf node not predicting q:

• I : features with literals inconsistent with v
• Add I to L

• Remove from L non-minimal sets
• L contains all the CXps of the DT

• Example: instance is ((1, 1, 1, 1), 1)

• Add t1, 2u to L
• Add t1, 3u to L
• Add t1, 4u to L
• Add t3u to L
• Add t4u to L
• Remove from L: t1, 3u and t1, 4u
• CXps: tt1, 2u, t3u, t4uu
• AXps: tt1, 3, 4u, t2, 3, 4uu, by computing all MHSes

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 24 / 47

Finding all CXps in polynomial-time

• Basic algorithm:
• L =H
• For each leaf node not predicting q:

• I : features with literals inconsistent with v
• Add I to L

• Remove from L non-minimal sets
• L contains all the CXps of the DT

• Example: instance is ((1, 1, 1, 1), 1)

• Add t1, 2u to L
• Add t1, 3u to L
• Add t1, 4u to L
• Add t3u to L
• Add t4u to L
• Remove from L: t1, 3u and t1, 4u
• CXps: tt1, 2u, t3u, t4uu
• AXps: tt1, 3, 4u, t2, 3, 4uu, by computing all MHSes

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 24 / 47

Finding all CXps in polynomial-time

• Basic algorithm:
• L =H
• For each leaf node not predicting q:

• I : features with literals inconsistent with v
• Add I to L

• Remove from L non-minimal sets
• L contains all the CXps of the DT

• Example: instance is ((1, 1, 1, 1), 1)
• Add t1, 2u to L

• Add t1, 3u to L
• Add t1, 4u to L
• Add t3u to L
• Add t4u to L
• Remove from L: t1, 3u and t1, 4u
• CXps: tt1, 2u, t3u, t4uu
• AXps: tt1, 3, 4u, t2, 3, 4uu, by computing all MHSes

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 24 / 47

Finding all CXps in polynomial-time

• Basic algorithm:
• L =H
• For each leaf node not predicting q:

• I : features with literals inconsistent with v
• Add I to L

• Remove from L non-minimal sets
• L contains all the CXps of the DT

• Example: instance is ((1, 1, 1, 1), 1)
• Add t1, 2u to L
• Add t1, 3u to L

• Add t1, 4u to L
• Add t3u to L
• Add t4u to L
• Remove from L: t1, 3u and t1, 4u
• CXps: tt1, 2u, t3u, t4uu
• AXps: tt1, 3, 4u, t2, 3, 4uu, by computing all MHSes

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 24 / 47

Finding all CXps in polynomial-time

• Basic algorithm:
• L =H
• For each leaf node not predicting q:

• I : features with literals inconsistent with v
• Add I to L

• Remove from L non-minimal sets
• L contains all the CXps of the DT

• Example: instance is ((1, 1, 1, 1), 1)
• Add t1, 2u to L
• Add t1, 3u to L
• Add t1, 4u to L

• Add t3u to L
• Add t4u to L
• Remove from L: t1, 3u and t1, 4u
• CXps: tt1, 2u, t3u, t4uu
• AXps: tt1, 3, 4u, t2, 3, 4uu, by computing all MHSes

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 24 / 47

Finding all CXps in polynomial-time

• Basic algorithm:
• L =H
• For each leaf node not predicting q:

• I : features with literals inconsistent with v
• Add I to L

• Remove from L non-minimal sets
• L contains all the CXps of the DT

• Example: instance is ((1, 1, 1, 1), 1)
• Add t1, 2u to L
• Add t1, 3u to L
• Add t1, 4u to L
• Add t3u to L

• Add t4u to L
• Remove from L: t1, 3u and t1, 4u
• CXps: tt1, 2u, t3u, t4uu
• AXps: tt1, 3, 4u, t2, 3, 4uu, by computing all MHSes

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 24 / 47

Finding all CXps in polynomial-time

• Basic algorithm:
• L =H
• For each leaf node not predicting q:

• I : features with literals inconsistent with v
• Add I to L

• Remove from L non-minimal sets
• L contains all the CXps of the DT

• Example: instance is ((1, 1, 1, 1), 1)
• Add t1, 2u to L
• Add t1, 3u to L
• Add t1, 4u to L
• Add t3u to L
• Add t4u to L

• Remove from L: t1, 3u and t1, 4u
• CXps: tt1, 2u, t3u, t4uu
• AXps: tt1, 3, 4u, t2, 3, 4uu, by computing all MHSes

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 24 / 47

Finding all CXps in polynomial-time

• Basic algorithm:
• L =H
• For each leaf node not predicting q:

• I : features with literals inconsistent with v
• Add I to L

• Remove from L non-minimal sets
• L contains all the CXps of the DT

• Example: instance is ((1, 1, 1, 1), 1)
• Add t1, 2u to L
• Add t1, 3u to L
• Add t1, 4u to L
• Add t3u to L
• Add t4u to L
• Remove from L: t1, 3u and t1, 4u

• CXps: tt1, 2u, t3u, t4uu
• AXps: tt1, 3, 4u, t2, 3, 4uu, by computing all MHSes

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 24 / 47

Finding all CXps in polynomial-time

• Basic algorithm:
• L =H
• For each leaf node not predicting q:

• I : features with literals inconsistent with v
• Add I to L

• Remove from L non-minimal sets
• L contains all the CXps of the DT

• Example: instance is ((1, 1, 1, 1), 1)
• Add t1, 2u to L
• Add t1, 3u to L
• Add t1, 4u to L
• Add t3u to L
• Add t4u to L
• Remove from L: t1, 3u and t1, 4u
• CXps: tt1, 2u, t3u, t4uu

• AXps: tt1, 3, 4u, t2, 3, 4uu, by computing all MHSes

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 24 / 47

Finding all CXps in polynomial-time

• Basic algorithm:
• L =H
• For each leaf node not predicting q:

• I : features with literals inconsistent with v
• Add I to L

• Remove from L non-minimal sets
• L contains all the CXps of the DT

• Example: instance is ((1, 1, 1, 1), 1)
• Add t1, 2u to L
• Add t1, 3u to L
• Add t1, 4u to L
• Add t3u to L
• Add t4u to L
• Remove from L: t1, 3u and t1, 4u
• CXps: tt1, 2u, t3u, t4uu
• AXps: tt1, 3, 4u, t2, 3, 4uu, by computing all MHSes

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 24 / 47

Outline – Unit #03

Explanations for Decision Trees

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Sets

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

Review examples

Are interpretable models really interpretable? – DTs

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

• Case of optimal decision tree (DT) [HRS19]

• Explanation for (0, 0, 1, 0, 1), with prediction 1?

• Clearly, IF ␣x1 ^␣x2 ^ x3 ^␣x4 ^ x5 THEN κ(x) = 1

• But, x1, x2, x4 are irrelevant for the prediction:
x3 x5 x1 x2 x4 κ(x)

1 1 0 0 0 1
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1

6 one AXp is t3, 5u
Compare with t1, 2, 3, 4, 5u...

© J. Marques-Silva 25 / 47

Are interpretable models really interpretable? – DTs

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

• Case of optimal decision tree (DT) [HRS19]

• Explanation for (0, 0, 1, 0, 1), with prediction 1?
• Clearly, IF ␣x1 ^␣x2 ^ x3 ^␣x4 ^ x5 THEN κ(x) = 1

• But, x1, x2, x4 are irrelevant for the prediction:
x3 x5 x1 x2 x4 κ(x)

1 1 0 0 0 1
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1

6 one AXp is t3, 5u
Compare with t1, 2, 3, 4, 5u...

© J. Marques-Silva 25 / 47

Are interpretable models really interpretable? – DTs

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

• Case of optimal decision tree (DT) [HRS19]

• Explanation for (0, 0, 1, 0, 1), with prediction 1?
• Clearly, IF ␣x1 ^␣x2 ^ x3 ^␣x4 ^ x5 THEN κ(x) = 1

• But, x1, x2, x4 are irrelevant for the prediction:
x3 x5 x1 x2 x4 κ(x)

1 1 0 0 0 1
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1

6 one AXp is t3, 5u
Compare with t1, 2, 3, 4, 5u...

© J. Marques-Silva 25 / 47

Are interpretable models really interpretable? – DTs

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

• Case of optimal decision tree (DT) [HRS19]

• Explanation for (0, 0, 1, 0, 1), with prediction 1?
• Clearly, IF ␣x1 ^␣x2 ^ x3 ^␣x4 ^ x5 THEN κ(x) = 1

• But, x1, x2, x4 are irrelevant for the prediction:
x3 x5 x1 x2 x4 κ(x)

1 1 0 0 0 1
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1

6 one AXp is t3, 5u
Compare with t1, 2, 3, 4, 5u...

© J. Marques-Silva 25 / 47

Are interpretable models really interpretable? – large DTs

[GZM20]

Path with 19 internal nodes.
By manual inspection, at least
10 literals are redundant!
(And at least 9 features dropped)

And the cognitive limits of human
decision makers are well-known [Mil56]

Redundancy can be arbitrary large
on path length [IIM20, HIIM21, IIM22]

© J. Marques-Silva 26 / 47

Are interpretable models really interpretable? – large DTs

[GZM20]

Path with 19 internal nodes.
By manual inspection, at least
10 literals are redundant!
(And at least 9 features dropped)

And the cognitive limits of human
decision makers are well-known [Mil56]

Redundancy can be arbitrary large
on path length [IIM20, HIIM21, IIM22]

© J. Marques-Silva 26 / 47

Are interpretable models really interpretable? – large DTs

[GZM20]

Path with 19 internal nodes.
By manual inspection, at least
10 literals are redundant!
(And at least 9 features dropped)

And the cognitive limits of human
decision makers are well-known [Mil56]

Redundancy can be arbitrary large
on path length [IIM20, HIIM21, IIM22]

© J. Marques-Silva 26 / 47

Are interpretable models really interpretable? – large DTs

[GZM20]

Path with 19 internal nodes.
By manual inspection, at least
10 literals are redundant!
(And at least 9 features dropped)

And the cognitive limits of human
decision makers are well-known [Mil56]

Redundancy can be arbitrary large
on path length [IIM20, HIIM21, IIM22]

© J. Marques-Silva 26 / 47

Are interpretable models really interpretable? – arbitrary redundancy [IIM20, HIIM21, IIM22]

• Classifier, with x1, . . . , xm P t0, 1u:
κ(x1, x2, . . . , xm´1, xm) =

łm

i=1
xi

• Build DT, by picking variables in order xi1, i2, . . . , imy, permutation of x1, 2, . . . ,my:

xi1

1

xi2

1

xim´1

1

xim

0

1

P t1u P t1u P t1u P t0u

P t0u P t0u P t0u P t1u

• Point: (xi1 , xi2 , . . . , xim´1
, xim) = (0, 0, . . . , 0, 1), and prediction 1

• Explanation using path in DT: ti1, i2, . . . , imu, i.e.
(xi1 = 0)^ (xi2 = 0)^ . . .^ (xim´1

= 0)^ (xim = 1)Ñκ(x1, . . . , xm)

• But timu suffices for prediction, i.e. @(x P t0, 1um).(xim)Ñκ(x)

• AXp’s can be arbitrarily smaller than paths in (optimal) DTs! [IIM20, IIM22]

© J. Marques-Silva 27 / 47

Are interpretable models really interpretable? – arbitrary redundancy [IIM20, HIIM21, IIM22]

• Classifier, with x1, . . . , xm P t0, 1u:
κ(x1, x2, . . . , xm´1, xm) =

łm

i=1
xi

• Build DT, by picking variables in order xi1, i2, . . . , imy, permutation of x1, 2, . . . ,my:

xi1

1

xi2

1

xim´1

1

xim

0

1

P t1u P t1u P t1u P t0u

P t0u P t0u P t0u P t1u

• Point: (xi1 , xi2 , . . . , xim´1
, xim) = (0, 0, . . . , 0, 1), and prediction 1

• Explanation using path in DT: ti1, i2, . . . , imu, i.e.
(xi1 = 0)^ (xi2 = 0)^ . . .^ (xim´1

= 0)^ (xim = 1)Ñκ(x1, . . . , xm)

• But timu suffices for prediction, i.e. @(x P t0, 1um).(xim)Ñκ(x)

• AXp’s can be arbitrarily smaller than paths in (optimal) DTs! [IIM20, IIM22]

© J. Marques-Silva 27 / 47

Are interpretable models really interpretable? – arbitrary redundancy [IIM20, HIIM21, IIM22]

• Classifier, with x1, . . . , xm P t0, 1u:
κ(x1, x2, . . . , xm´1, xm) =

łm

i=1
xi

• Build DT, by picking variables in order xi1, i2, . . . , imy, permutation of x1, 2, . . . ,my:

xi1

1

xi2

1

xim´1

1

xim

0

1

P t1u P t1u P t1u P t0u

P t0u P t0u P t0u P t1u

• Point: (xi1 , xi2 , . . . , xim´1
, xim) = (0, 0, . . . , 0, 1), and prediction 1

• Explanation using path in DT: ti1, i2, . . . , imu, i.e.
(xi1 = 0)^ (xi2 = 0)^ . . .^ (xim´1

= 0)^ (xim = 1)Ñκ(x1, . . . , xm)

• But timu suffices for prediction, i.e. @(x P t0, 1um).(xim)Ñκ(x)

• AXp’s can be arbitrarily smaller than paths in (optimal) DTs! [IIM20, IIM22]

© J. Marques-Silva 27 / 47

Are interpretable models really interpretable? – arbitrary redundancy [IIM20, HIIM21, IIM22]

• Classifier, with x1, . . . , xm P t0, 1u:
κ(x1, x2, . . . , xm´1, xm) =

łm

i=1
xi

• Build DT, by picking variables in order xi1, i2, . . . , imy, permutation of x1, 2, . . . ,my:

xi1

1

xi2

1

xim´1

1

xim

0

1

P t1u P t1u P t1u P t0u

P t0u P t0u P t0u P t1u

• Point: (xi1 , xi2 , . . . , xim´1
, xim) = (0, 0, . . . , 0, 1), and prediction 1

• Explanation using path in DT: ti1, i2, . . . , imu, i.e.
(xi1 = 0)^ (xi2 = 0)^ . . .^ (xim´1

= 0)^ (xim = 1)Ñκ(x1, . . . , xm)

• But timu suffices for prediction, i.e. @(x P t0, 1um).(xim)Ñκ(x)

• AXp’s can be arbitrarily smaller than paths in (optimal) DTs! [IIM20, IIM22]

© J. Marques-Silva 27 / 47

Are interpretable models really interpretable? – arbitrary redundancy [IIM20, HIIM21, IIM22]

• Classifier, with x1, . . . , xm P t0, 1u:
κ(x1, x2, . . . , xm´1, xm) =

łm

i=1
xi

• Build DT, by picking variables in order xi1, i2, . . . , imy, permutation of x1, 2, . . . ,my:

xi1

1

xi2

1

xim´1

1

xim

0

1

P t1u P t1u P t1u P t0u

P t0u P t0u P t0u P t1u

• Point: (xi1 , xi2 , . . . , xim´1
, xim) = (0, 0, . . . , 0, 1), and prediction 1

• Explanation using path in DT: ti1, i2, . . . , imu, i.e.
(xi1 = 0)^ (xi2 = 0)^ . . .^ (xim´1

= 0)^ (xim = 1)Ñκ(x1, . . . , xm)

• But timu suffices for prediction, i.e. @(x P t0, 1um).(xim)Ñκ(x)

• AXp’s can be arbitrarily smaller than paths in (optimal) DTs! [IIM20, IIM22]

© J. Marques-Silva 27 / 47

Are interpretable models really interpretable? – arbitrary redundancy [IIM20, HIIM21, IIM22]

• Classifier, with x1, . . . , xm P t0, 1u:
κ(x1, x2, . . . , xm´1, xm) =

łm

i=1
xi

• Build DT, by picking variables in order xi1, i2, . . . , imy, permutation of x1, 2, . . . ,my:

xi1

1

xi2

1

xim´1

1

xim

0

1

P t1u P t1u P t1u P t0u

P t0u P t0u P t0u P t1u

• Point: (xi1 , xi2 , . . . , xim´1
, xim) = (0, 0, . . . , 0, 1), and prediction 1

• Explanation using path in DT: ti1, i2, . . . , imu, i.e.
(xi1 = 0)^ (xi2 = 0)^ . . .^ (xim´1

= 0)^ (xim = 1)Ñκ(x1, . . . , xm)

• But timu suffices for prediction, i.e. @(x P t0, 1um).(xim)Ñκ(x)

• AXp’s can be arbitrarily smaller than paths in (optimal) DTs! [IIM20, IIM22]

© J. Marques-Silva 27 / 47

Explanation redundancy in DTs is ubiquitous – published DT examples [IIM22]

DT Ref D #N #P %R %C %m %M %avg
[Alp14, Ch. 09, Fig. 9.1] 2 5 3 33 25 50 50 50

[Alp16, Ch. 03, Fig. 3.2] 2 5 3 33 25 50 50 50

[Bra20, Ch. 01, Fig. 1.3] 4 9 5 60 25 25 50 36

[BA97, Figure 1] 3 12 7 14 8 33 33 33

[BBHK10, Ch. 08, Fig. 8.2] 3 7 4 25 12 50 50 50

[BFOS84, Ch. 01, Fig. 1.1] 3 7 4 50 25 33 33 33

[DL01, Ch. 01, Fig. 1.2a] 2 5 3 33 25 33 33 33

[DL01, Ch. 01, Fig. 1.2b] 2 5 3 33 25 33 33 33

[KMND20, Ch. 04, Fig. 4.14] 3 7 4 25 12 50 50 50

[KMND20, Sec. 4.7, Ex. 4] 2 5 3 33 25 50 50 50

[Qui93, Ch. 01, Fig. 1.3] 3 12 7 28 17 33 50 41

[RM08, Ch. 01, Fig. 1.5] 3 9 5 20 12 33 33 33

[RM08, Ch. 01, Fig. 1.4] 3 7 4 50 25 33 33 33

[WFHP17, Ch. 01, Fig. 1.2] 3 7 4 25 12 50 50 50

[VLE+16, Figure 4] 6 39 20 65 63 20 40 33

[Fla12, Ch. 02, Fig. 2.1(right)] 2 5 3 33 25 50 50 50

[Kot13, Figure 1] 3 10 6 33 11 33 33 33

[Mor82, Figure 1] 3 9 5 80 75 33 50 41

[PM17, Ch. 07, Fig. 7.4] 3 7 4 50 25 33 33 33

[RN10, Ch. 18, Fig. 18.6] 4 12 8 25 6 25 33 29

[SB14, Ch. 18, Page 212] 2 5 3 33 25 50 50 50

[Zho12, Ch. 01, Fig. 1.3] 2 5 3 33 25 33 33 33

[BHO09, Figure 1b] 4 13 7 71 50 33 50 36

[Zho21, Ch. 04, Fig. 4.3] 4 14 9 11 2 25 25 25

© J. Marques-Silva 28 / 47

Many DTs have paths that are not minimal XPs – Russell&Norvig’s book

[RN10]

Patrons

No Hungry

No Type

Yes No Fri/Sat

No Yes

Yes

Yes

None Full

No Yes

French

Italian

Thai

No Yes

Burger

Some

• Explanation for (P,H, T,W) = (Full, Yes, Thai,No)?

© J. Marques-Silva 29 / 47

Many DTs have paths that are not minimal XPs – Zhou’s book

[Zho12]is y ą 0.73?

cross is x ą 0.64?

cross circle

Y N

Y N

• Explanation for (x, y) = (1.25,´1.13)?

Obs: True explanations can be computed for categorical, integer or real-valued features !

© J. Marques-Silva 29 / 47

Many DTs have paths that are not minimal XPs – Alpaydin’s book

[Alp14]x1 ą w10?

x2 ą w20?

l l

l

Y

N Y

N

• Explanation for (x1, x2) = (α, β), with α ą w10 and β ď w20?

Obs: True explanations can be computed for categorical, integer or real-valued features !

© J. Marques-Silva 29 / 47

Many DTs have paths that are not minimal XPs – S.-S.&B.-D.’s book

[SB14]

Color

Not Tasty Softness

Not Tasty Tasty

Other Pale Grade

Other Gives2Pressume

• Explanation for (color, softness) = (Pale Grade,Other)?

© J. Marques-Silva 29 / 47

Many DTs have paths that are not minimal XPs – Poole&Mackworth’s book

[PM17]

Length

Skips Thread

Reads Author

Skips Reads

Long Short

New Follow-up

Unknown Known

• Explanation for (L, T,A) = (Short, Follow-Up,Unknown)?
• Explanation for (L, T,A) = (Short, Follow-Up, Known)?

© J. Marques-Silva 29 / 47

Explanation redundancy in DTs is ubiquitous – DTs from datasets [IIM20, HIIM21, IIM22]

Dataset (#F #S) IAI ITI

D #N %A #P %R %C %m %M %avg D #N %A #P %R %C %m %M %avg
adult (12 6061) 6 83 78 42 33 25 20 40 25 17 509 73 255 75 91 10 66 22

anneal (38 886) 6 29 99 15 26 16 16 33 21 9 31 100 16 25 4 12 20 16

backache (32 180) 4 17 72 9 33 39 25 33 30 3 9 91 5 80 87 50 66 54

bank (19 36293) 6 113 88 57 5 12 16 20 18 19 1467 86 734 69 64 7 63 27

biodegradation (41 1052) 5 19 65 10 30 1 25 50 33 8 71 76 36 50 8 14 40 21

cancer (9 449) 6 37 87 19 36 9 20 25 21 5 21 84 11 54 10 25 50 37

car (6 1728) 6 43 96 22 86 89 20 80 45 11 57 98 29 65 41 16 50 30

colic (22 357) 6 55 81 28 46 6 16 33 20 4 17 80 9 33 27 25 25 25

compas (11 1155) 6 77 34 39 17 8 16 20 17 15 183 37 92 66 43 12 60 27

contraceptive (9 1425) 6 99 49 50 8 2 20 60 37 17 385 48 193 27 32 12 66 21

dermatology (34 366) 6 33 90 17 23 3 16 33 21 7 17 95 9 22 0 14 20 17

divorce (54 150) 5 15 90 8 50 19 20 33 24 2 5 96 3 33 16 50 50 50

german (21 1000) 6 25 61 13 38 10 20 40 29 10 99 72 50 46 13 12 40 22

heart-c (13 302) 6 43 65 22 36 18 20 33 22 4 15 75 8 87 81 25 50 34

heart-h (13 293) 6 37 59 19 31 4 20 40 24 8 25 77 13 61 60 20 50 32

kr-vs-kp (36 3196) 6 49 96 25 80 75 16 60 33 13 67 99 34 79 43 7 70 35

lending (9 5082) 6 45 73 23 73 80 16 50 25 14 507 65 254 69 80 12 75 25

letter (16 18668) 6 127 58 64 1 0 20 20 20 46 4857 68 2429 6 7 6 25 9

lymphography (18 148) 6 61 76 31 35 25 16 33 21 6 21 86 11 9 0 16 16 16

mortality (118 13442) 6 111 74 56 8 14 16 20 17 26 865 76 433 61 61 7 54 19

mushroom (22 8124) 6 39 100 20 80 44 16 33 24 5 23 100 12 50 31 20 40 25

pendigits (16 10992) 6 121 88 61 0 0 — — — 38 937 85 469 25 86 6 25 11

promoters (58 106) 1 3 90 2 0 0 — — — 3 9 81 5 20 14 33 33 33

recidivism (15 3998) 6 105 61 53 28 22 16 33 18 15 611 51 306 53 38 9 44 16

seismic_bumps (18 2578) 6 37 89 19 42 19 20 33 24 8 39 93 20 60 79 20 60 42

shuttle (9 58000) 6 63 99 32 28 7 20 33 23 23 159 99 80 33 9 14 50 30

soybean (35 623) 6 63 88 32 9 5 25 25 25 16 71 89 36 22 1 9 12 10

spambase (57 4210) 6 63 75 32 37 12 16 33 19 15 143 91 72 76 98 7 58 25

spect (22 228) 6 45 82 23 60 51 20 50 35 6 15 86 8 87 98 50 83 65

splice (2 3178) 3 7 50 4 0 0 — — — 88 177 55 89 0 0 — — —
© J. Marques-Silva 30 / 47

Are interpretable models really interpretable? – DLs [MSI23]

R1 : IF (x1 ^ x3) THEN κ(x) = 1

R2 : ELSE IF (x2 ^ x4 ^ x6) THEN κ(x) = 0

R3 : ELSE IF (␣x1 ^ x3) THEN κ(x) = 1

R4 : ELSE IF (x4 ^ x6) THEN κ(x) = 0

R5 : ELSE IF (␣x1 ^␣x3) THEN κ(x) = 1

R6 : ELSE IF (x6) THEN κ(x) = 0

RDEF : ELSE κ(x) = 1

• Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule R2 fires

• What is the abductive explanation?
• Recall: one AXp is t3, 4, 6u

• • We need 3 (or 1) so that R1 cannot fire
• With 3, we do not need 2, since with 4 and 6 fixed, then R4 is guaranteed to fire

• Some questions:

• Would average human decision maker be able to understand the AXp?
• Would he/she be able to compute one AXp, by manual inspection?
(BTW, we have proved that computing one AXp for DLs is computationally hard...) [IM21, MSI23]

© J. Marques-Silva 31 / 47

Are interpretable models really interpretable? – DLs [MSI23]

R1 : IF (x1 ^ x3) THEN κ(x) = 1

R2 : ELSE IF (x2 ^ x4 ^ x6) THEN κ(x) = 0

R3 : ELSE IF (␣x1 ^ x3) THEN κ(x) = 1

R4 : ELSE IF (x4 ^ x6) THEN κ(x) = 0

R5 : ELSE IF (␣x1 ^␣x3) THEN κ(x) = 1

R6 : ELSE IF (x6) THEN κ(x) = 0

RDEF : ELSE κ(x) = 1

• Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule R2 fires
• What is the abductive explanation?

• Recall: one AXp is t3, 4, 6u

• • We need 3 (or 1) so that R1 cannot fire
• With 3, we do not need 2, since with 4 and 6 fixed, then R4 is guaranteed to fire

• Some questions:

• Would average human decision maker be able to understand the AXp?
• Would he/she be able to compute one AXp, by manual inspection?
(BTW, we have proved that computing one AXp for DLs is computationally hard...) [IM21, MSI23]

© J. Marques-Silva 31 / 47

Are interpretable models really interpretable? – DLs [MSI23]

R1 : IF (x1 ^ x3) THEN κ(x) = 1

R2 : ELSE IF (x2 ^ x4 ^ x6) THEN κ(x) = 0

R3 : ELSE IF (␣x1 ^ x3) THEN κ(x) = 1

R4 : ELSE IF (x4 ^ x6) THEN κ(x) = 0

R5 : ELSE IF (␣x1 ^␣x3) THEN κ(x) = 1

R6 : ELSE IF (x6) THEN κ(x) = 0

RDEF : ELSE κ(x) = 1

• Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule R2 fires
• What is the abductive explanation?
• Recall: one AXp is t3, 4, 6u

• • We need 3 (or 1) so that R1 cannot fire
• With 3, we do not need 2, since with 4 and 6 fixed, then R4 is guaranteed to fire

• Some questions:

• Would average human decision maker be able to understand the AXp?
• Would he/she be able to compute one AXp, by manual inspection?
(BTW, we have proved that computing one AXp for DLs is computationally hard...) [IM21, MSI23]

© J. Marques-Silva 31 / 47

Are interpretable models really interpretable? – DLs [MSI23]

R1 : IF (x1 ^ x3) THEN κ(x) = 1

R2 : ELSE IF (x2 ^ x4 ^ x6) THEN κ(x) = 0

R3 : ELSE IF (␣x1 ^ x3) THEN κ(x) = 1

R4 : ELSE IF (x4 ^ x6) THEN κ(x) = 0

R5 : ELSE IF (␣x1 ^␣x3) THEN κ(x) = 1

R6 : ELSE IF (x6) THEN κ(x) = 0

RDEF : ELSE κ(x) = 1

• Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule R2 fires
• What is the abductive explanation?
• Recall: one AXp is t3, 4, 6u

• Why?
• We need 3 (or 1) so that R1 cannot fire
• With 3, we do not need 2, since with 4 and 6 fixed, then R4 is guaranteed to fire

• Some questions:
• Would average human decision maker be able to understand the AXp?
• Would he/she be able to compute one AXp, by manual inspection?

(BTW, we have proved that computing one AXp for DLs is computationally hard...) [IM21, MSI23]

© J. Marques-Silva 31 / 47

Are interpretable models really interpretable? – DLs [MSI23]

R1 : IF (x1 ^ x3) THEN κ(x) = 1

R2 : ELSE IF (x2 ^ x4 ^ x6) THEN κ(x) = 0

R3 : ELSE IF (␣x1 ^ x3) THEN κ(x) = 1

R4 : ELSE IF (x4 ^ x6) THEN κ(x) = 0

R5 : ELSE IF (␣x1 ^␣x3) THEN κ(x) = 1

R6 : ELSE IF (x6) THEN κ(x) = 0

RDEF : ELSE κ(x) = 1

• Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule R2 fires
• What is the abductive explanation?
• Recall: one AXp is t3, 4, 6u

• Why?
• We need 3 (or 1) so that R1 cannot fire
• With 3, we do not need 2, since with 4 and 6 fixed, then R4 is guaranteed to fire

• Some questions:
• Would average human decision maker be able to understand the AXp?
• Would he/she be able to compute one AXp, by manual inspection?
(BTW, we have proved that computing one AXp for DLs is computationally hard...) [IM21, MSI23]

© J. Marques-Silva 31 / 47

Are interpretable models really interpretable? – DTs/DLs in practice [MSI23]

0 20 40 60 80
Datasets

0

20

40

60

80

100

Pe
rce

nta
ge

 of
 R

ed
un

da
nt

Li
ter

als
 (%

)

Minimum Redundancy
Average Redundancy
Maximum Redundancy

DTs learned with Interpretable AI, max depth 6

0 50 100 150 200 250 300 350
Datasets

0

20

40

60

80

100

Pe
rce

nta
ge

 of
 R

ed
un

da
nt

Li
ter

als
 (%

)

Minimum Redundancy
Average Redundancy
Maximum Redundancy

DLs learned with CN2
© J. Marques-Silva 32 / 47

Outline – Unit #03

Explanations for Decision Trees

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Sets

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

Review examples

From DTs to explained DSs

[HM23]

• Decision sets raise a number of issues:
• Overlap: Two rules with different predictions can fire on the same input
• Incomplete coverage: For some inputs, no rule may fire

• A default rule defeats the purpose of unordered rules

• A DS without overlap and complete coverage computes a classification function

• And explaining DSs is computationally hard...

• One can extract explained DSs from DTs

• Extract one AXp (viewed as a logic rule) from each path in DT
• Resulting rules are non-overlapping, and cover feature space

© J. Marques-Silva 33 / 47

From DTs to explained DSs

[HM23]

• Decision sets raise a number of issues:
• Overlap: Two rules with different predictions can fire on the same input
• Incomplete coverage: For some inputs, no rule may fire

• A default rule defeats the purpose of unordered rules

• A DS without overlap and complete coverage computes a classification function

• And explaining DSs is computationally hard...

• One can extract explained DSs from DTs

• Extract one AXp (viewed as a logic rule) from each path in DT
• Resulting rules are non-overlapping, and cover feature space

© J. Marques-Silva 33 / 47

From DTs to explained DSs

[HM23]

• Decision sets raise a number of issues:
• Overlap: Two rules with different predictions can fire on the same input
• Incomplete coverage: For some inputs, no rule may fire

• A default rule defeats the purpose of unordered rules

• A DS without overlap and complete coverage computes a classification function

• And explaining DSs is computationally hard...

• One can extract explained DSs from DTs

• Extract one AXp (viewed as a logic rule) from each path in DT
• Resulting rules are non-overlapping, and cover feature space

© J. Marques-Silva 33 / 47

From DTs to explained DSs

[HM23]

• Decision sets raise a number of issues:
• Overlap: Two rules with different predictions can fire on the same input
• Incomplete coverage: For some inputs, no rule may fire

• A default rule defeats the purpose of unordered rules

• A DS without overlap and complete coverage computes a classification function

• And explaining DSs is computationally hard...

• One can extract explained DSs from DTs

• Extract one AXp (viewed as a logic rule) from each path in DT
• Resulting rules are non-overlapping, and cover feature space

© J. Marques-Silva 33 / 47

From DTs to explained DSs

[HM23]

• Decision sets raise a number of issues:
• Overlap: Two rules with different predictions can fire on the same input
• Incomplete coverage: For some inputs, no rule may fire

• A default rule defeats the purpose of unordered rules

• A DS without overlap and complete coverage computes a classification function

• And explaining DSs is computationally hard...

• One can extract explained DSs from DTs
• Extract one AXp (viewed as a logic rule) from each path in DT
• Resulting rules are non-overlapping, and cover feature space

© J. Marques-Silva 33 / 47

Example

A

P

Y N

P

N

V

Z

N S

G

N Y

H

N C

Y G

Y N

Y

Y

Y

Y

=0

=1 =0

=1

=0

=0

=1

=1
=2

=1

=0 =1

=0

=1 =0

=1 =0

=1 =0

=0

=0

=1

=1

1

2

4 5

3

6

8

10

12 13

15

17 18

16

19 20

21 22

23 24

14

11

9

7

© J. Marques-Silva 34 / 47

Example

A

P

Y N

P

N

V

Z

N S

G

N Y

H

N C

Y G

Y N

Y

Y

Y

Y

=0

=1 =0

=1

=0

=0

=1

=1
=2

=1

=0 =1

=0

=1 =0

=1 =0

=1 =0

=0

=0

=1

=1

1

2

4 5

3

6

8

10

12 13

15

17 18

16

19 20

21 22

23 24

14

11

9

7

R01: IF [P] THEN κ(¨) = Y
R02: IF [A^ P]THEN κ(¨) = N
R03: IF [P^ N^ V^ Z = 1] THEN κ(¨) = N
R04: IF [P^ N^ V^ Z = 2^ S^ G] THEN κ(¨) = N
R05: IF [A^ Z = 2^ S^ G] THEN κ(¨) = Y
R06: IF [P^ N^ V^ Z = 2^ S^ H] THEN κ(¨) = N
R07: IF [A^ Z = 2^ S^ H^ C] THEN κ(¨) = Y
R08: IF [A^ Z = 2^ H^ G] THEN κ(¨) = Y
R09: IF [P^ N^ V^ Z = 2^ C^ G] THEN κ(¨) = N
R10: IF [A^ Z = 0] THEN κ(¨) = Y
R11: IF [A^ V] THEN κ(¨) = Y
R12: IF [A^ N] THEN κ(¨) = Y

© J. Marques-Silva 34 / 47

Outline – Unit #03

Explanations for Decision Trees

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Sets

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

Review examples

Explanation graphs – overview of results

[HIIM21]

• Concept of explanation graph (XpG)

• Explanations of decision trees reducible to XpG’s

• Explanations of decision graphs reducible to XpG’s

• Explanations of OBDDs reducible to XpG’s

• Explanations of OMDDs reducible to XpG’s

• Explanations (AXp’s and CXp’s) of XpG’s computed in polynomial time

© J. Marques-Silva 35 / 47

Example of XpG – DTs

• DT; point: (O, L, Y,P); prediction T:
x3

x1

T x2

x1

L N

N

x4

L x1

T x2

T L

P tNu

P tOu P tW, Tu

P tHu

P tTu P tWu

P tL,Mu

P tYu

P tEu P tP, Fu

P tW,Ou P tTu

P tHu P tL,Mu

1

2

4
5

8

12 13

9

3

6
7

10
11

14 15

• XpG:
s3

s1

1 s2

s1

0 0

0

s4

0 s1

1 s2

1 0

0

1 0

0

0 0

1

1

0 1

1 0

0 1

1

2

4
5

8

12 13

9

3

6
7

10
11

14 15

© J. Marques-Silva 36 / 47

Example of XpG – OMDDs

• OMBBD; point: (0, 1, 2); prediction R:

x3

x2 x2

x1 x1

GR B

1

2 3

4 5

6 7 8

1 2
0

0 1 0 1

0 1 0 1

• XpG:

s3

s2 s2

s1 s1

01 0

1

2 3

4 5

6 7 8

0 1
0

0 1 0 1

1 0 1 0

© J. Marques-Silva 37 / 47

Finding one AXp for XpGs – polynomial time

• Algorithm (with no inconsistent paths):
S Ð F
For each feature i in F

Drop feature i from S , i.e. i is free
If path to some 0 not blocked by
0-valued literals, then

Add feature i back to S

Return S

• Example:

• S = t1, 2, 3u

• Feature 1 cannot be dropped, e.g.
s3Ñ s2Ñ s1Ñ 0

• Both features 2 and 3 dropped from S
• Return S = t1u

• XpG:

s3

s2 s2

s1 s1

01 0

1

2 3

4 5

6 7 8

0 1
0

0 1 0 1

1 0 1 0

© J. Marques-Silva 38 / 47

Finding one AXp for XpGs – polynomial time

• Algorithm (with no inconsistent paths):
S Ð F
For each feature i in F
Drop feature i from S , i.e. i is free

If path to some 0 not blocked by
0-valued literals, then

Add feature i back to S

Return S

• Example:

• S = t1, 2, 3u

• Feature 1 cannot be dropped, e.g.
s3Ñ s2Ñ s1Ñ 0

• Both features 2 and 3 dropped from S
• Return S = t1u

• XpG:

s3

s2 s2

s1 s1

01 0

1

2 3

4 5

6 7 8

0 1
0

0 1 0 1

1 0 1 0

© J. Marques-Silva 38 / 47

Finding one AXp for XpGs – polynomial time

• Algorithm (with no inconsistent paths):
S Ð F
For each feature i in F
Drop feature i from S , i.e. i is free
If path to some 0 not blocked by
0-valued literals, then

Add feature i back to S

Return S

• Example:

• S = t1, 2, 3u

• Feature 1 cannot be dropped, e.g.
s3Ñ s2Ñ s1Ñ 0

• Both features 2 and 3 dropped from S
• Return S = t1u

• XpG:

s3

s2 s2

s1 s1

01 0

1

2 3

4 5

6 7 8

0 1
0

0 1 0 1

1 0 1 0

© J. Marques-Silva 38 / 47

Finding one AXp for XpGs – polynomial time

• Algorithm (with no inconsistent paths):
S Ð F
For each feature i in F
Drop feature i from S , i.e. i is free
If path to some 0 not blocked by
0-valued literals, then

Add feature i back to S

Return S

• Example:

• S = t1, 2, 3u

• Feature 1 cannot be dropped, e.g.
s3Ñ s2Ñ s1Ñ 0

• Both features 2 and 3 dropped from S
• Return S = t1u

• XpG:

s3

s2 s2

s1 s1

01 0

1

2 3

4 5

6 7 8

0 1
0

0 1 0 1

1 0 1 0

© J. Marques-Silva 38 / 47

Finding one AXp for XpGs – polynomial time

• Algorithm (with no inconsistent paths):
S Ð F
For each feature i in F
Drop feature i from S , i.e. i is free
If path to some 0 not blocked by
0-valued literals, then

Add feature i back to S

Return S

• Example:
• S = t1, 2, 3u

• Feature 1 cannot be dropped, e.g.
s3Ñ s2Ñ s1Ñ 0

• Both features 2 and 3 dropped from S
• Return S = t1u

• XpG:

s3

s2 s2

s1 s1

01 0

1

2 3

4 5

6 7 8

0 1
0

0 1 0 1

1 0 1 0

© J. Marques-Silva 38 / 47

Finding one AXp for XpGs – polynomial time

• Algorithm (with no inconsistent paths):
S Ð F
For each feature i in F
Drop feature i from S , i.e. i is free
If path to some 0 not blocked by
0-valued literals, then

Add feature i back to S

Return S

• Example:
• S = t1, 2, 3u

• Feature 1 cannot be dropped, e.g.
s3Ñ s2Ñ s1Ñ 0

• Both features 2 and 3 dropped from S
• Return S = t1u

• XpG:

s3

s2 s2

s1 s1

01 0

1

2 3

4 5

6 7 8

0 1
0

0 1 0 1

1 0 1 0

© J. Marques-Silva 38 / 47

Finding one AXp for XpGs – polynomial time

• Algorithm (with no inconsistent paths):
S Ð F
For each feature i in F
Drop feature i from S , i.e. i is free
If path to some 0 not blocked by
0-valued literals, then

Add feature i back to S

Return S

• Example:
• S = t1, 2, 3u

• Feature 1 cannot be dropped, e.g.
s3Ñ s2Ñ s1Ñ 0

• Both features 2 and 3 dropped from S

• Return S = t1u

• XpG:

s3

s2 s2

s1 s1

01 0

1

2 3

4 5

6 7 8

0 1
0

0 1 0 1

1 0 1 0

© J. Marques-Silva 38 / 47

Finding one AXp for XpGs – polynomial time

• Algorithm (with no inconsistent paths):
S Ð F
For each feature i in F
Drop feature i from S , i.e. i is free
If path to some 0 not blocked by
0-valued literals, then

Add feature i back to S

Return S

• Example:
• S = t1, 2, 3u

• Feature 1 cannot be dropped, e.g.
s3Ñ s2Ñ s1Ñ 0

• Both features 2 and 3 dropped from S
• Return S = t1u

• XpG:

s3

s2 s2

s1 s1

01 0

1

2 3

4 5

6 7 8

0 1
0

0 1 0 1

1 0 1 0

© J. Marques-Silva 38 / 47

Outline – Unit #03

Explanations for Decision Trees

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Sets

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

Review examples

Example monotonic classifier – (v, c) = ((10, 10, 5, 0),A)

[MGC+21]

Variable Meaning Range

κ(¨) fi M Student grade P tA,B, C,D, E, Fu

S Final score P t0, . . . , 10u

Feat. id Feat. var. Feat. name Domain

1 Q Quiz t0, . . . , 10u

2 X Exam t0, . . . , 10u

3 H Homework t0, . . . , 10u

4 R Project t0, . . . , 10u

M = ITE(S ě 9,A, ITE(S ě 7,B, ITE(S ě 5, C, ITE(S ě 4,D, ite(S ě 2, E, F)))))
S = max [0.3ˆ Q+ 0.6ˆ X+ 0.1ˆ H,R]
Also, F ď E ď D ď C ď B ď A
And, κ(x1) ď κ(x2) if x1 ď x2

© J. Marques-Silva 39 / 47

Explaining monotonic classifiers

• Instance (v, c)
• Domain for i P F : λ(i) ď xi ď µ(i)
• Idea: refine lower and upper bounds on the prediction

• vL and vU
• Utilities:

• FixAttr(i):
vL Ð (vL1 , . . . , vi, . . . , vLN)
vU Ð (vU1 , . . . , vi, . . . , vUN)
(A,B)Ð (Aztiu,B Y tiu)
return (vL, vU,A,B)

• FreeAttr(i):
vL Ð (vL1 , . . . , λ(i), . . . , vLN)
vU Ð (vU1 , . . . , µ(i), . . . , vUN)
(A,B)Ð (Aztiu,B Y tiu)
return (vL, vU,A,B)

© J. Marques-Silva 40 / 47

Computing one AXp

1: vL Ð (v1, . . . , vN)
2: vU Ð (v1, . . . , vN) Ź Ensures: κ(vL) = κ(vU)
3: (C,D,P)Ð (F ,H,H) Ź S : Some possible seed
4: for all i P S do
5: (vL, vU, C,D)Ð FreeAttr(i, v, vL, vU, C,D) Ź Require: κ(vL) = κ(vU), given S
6: for all i P FzS do Ź Loop inv.: κ(vL) = κ(vU)
7: (vL, vU, C,D)Ð FreeAttr(i, v, vL, vU, C,D)

8: if κ(vL) ­= κ(vU) then Ź If invariant broken, fix it
9: (vL, vU,D,P)Ð FixAttr(i, v, vL, vU,D,P)

10: return P

• Obs: S =H for computing a single AXp/CXp

© J. Marques-Silva 41 / 47

Computing one AXp – example

• λ(i) = 0 and µ(i) = 10

• v = (10, 10, 5, 0), with κ(v) = A
• Q: find one AXp (CXp is similar)

Feat. Initial values Changed values Predictions Dec. Resulting values
vL vU vL vU κ(vL) κ(vU) vL vU

1 (10,10,5,0) (10,10,5,0) (0,10,5,0) (10,10,5,0) C A ! (10,10,5,0) (10,10,5,0)

2 (10,10,5,0) (10,10,5,0) (10,0,5,0) (10,10,5,0) E A ! (10,10,5,0) (10,10,5,0)

3 (10,10,5,0) (10,10,5,0) (10,10,0,0) (10,10,10,0) A A % (10,10,0,0) (10,10,10,0)

4 (10,10,0,0) (10,10,10,0) (10,10,0,0) (10,10,10,10) A A % (10,10,0,0) (10,10,10,10)

© J. Marques-Silva 42 / 47

Outline – Unit #03

Explanations for Decision Trees

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Sets

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

Review examples

Recap computation of (W)AXps/(W)CXps

WAXp(X) := @(x P F).
ľ

jPX
(xj = vj)Ñ(σ(x))

WCXp(Y) := D(x P F).
ľ

jRY
(xj = vj)^ (␣σ(x))

Input: Predicate P, parameterized by T ,M
Output: One XP S

1: procedure oneXP(P)
2: S Ð F Ź Initialization: P(S) holds
3: for i P F do Ź Loop invariant: P(S) holds
4: if P(Sztiu) then
5: S Ð Sztiu Ź Update S only if P(Sztiu) holds
6: return S Ź Returned set S : P(S) holds

© J. Marques-Silva 43 / 47

Recap computation of (W)AXps/(W)CXps

WAXp(X) := @(x P F).
ľ

jPX
(xj = vj)Ñ(σ(x))

WCXp(Y) := D(x P F).
ľ

jRY
(xj = vj)^ (␣σ(x))

Input: Predicate P, parameterized by T ,M
Output: One XP S

1: procedure oneXP(P)
2: S Ð F Ź Initialization: P(S) holds
3: for i P F do Ź Loop invariant: P(S) holds
4: if P(Sztiu) then
5: S Ð Sztiu Ź Update S only if P(Sztiu) holds
6: return S Ź Returned set S : P(S) holds

© J. Marques-Silva 43 / 47

Review exercise – one AXp for example DT

• Instance: (v, c) = ((1, 2, 1, 2), Y)

x1

x2

Y x4

Y x3

Y N

N

x3

N Y

N

P t1u

P t1u
P t2u

P t1, 3u P t2u

P t1u P t2u

P t3u

P t2u

P t1u P t2u

P t3u1

2

5
6

10
11

12 13

7

3

8 9

4

• Finding on AXp:

• 1st path inconsistent: H1 = t3u

• 2nd path inconsistent: H2 = t2u

• 3rd path inconsistent: H3 = t1u

• 4th path inconsistent: H4 = t1u

• AXp is MHS of Hj sets: t1, 2, 3u

© J. Marques-Silva 44 / 47

Review exercise – one AXp for example DT

• Instance: (v, c) = ((1, 2, 1, 2), Y)

x1

x2

Y x4

Y x3

Y N

N

x3

N Y

N

P t1u

P t1u
P t2u

P t1, 3u P t2u

P t1u P t2u

P t3u

P t2u

P t1u P t2u

P t3u1

2

5
6

10
11

12 13

7

3

8 9

4

• Finding on AXp:

• 1st path inconsistent: H1 = t3u

• 2nd path inconsistent: H2 = t2u

• 3rd path inconsistent: H3 = t1u

• 4th path inconsistent: H4 = t1u

• AXp is MHS of Hj sets: t1, 2, 3u

© J. Marques-Silva 44 / 47

Review exercise – one AXp for example DT

• Instance: (v, c) = ((1, 2, 1, 2), Y)

x1

x2

Y x4

Y x3

Y N

N

x3

N Y

N

P t1u

P t1u
P t2u

P t1, 3u P t2u

P t1u P t2u

P t3u

P t2u

P t1u P t2u

P t3u1

2

5
6

10
11

12 13

7

3

8 9

4

• Finding on AXp:
• 1st path inconsistent: H1 = t3u

• 2nd path inconsistent: H2 = t2u

• 3rd path inconsistent: H3 = t1u

• 4th path inconsistent: H4 = t1u

• AXp is MHS of Hj sets: t1, 2, 3u

© J. Marques-Silva 44 / 47

Review exercise – one AXp for example DT

• Instance: (v, c) = ((1, 2, 1, 2), Y)

x1

x2

Y x4

Y x3

Y N

N

x3

N Y

N

P t1u

P t1u
P t2u

P t1, 3u P t2u

P t1u P t2u

P t3u

P t2u

P t1u P t2u

P t3u1

2

5
6

10
11

12 13

7

3

8 9

4

• Finding on AXp:
• 1st path inconsistent: H1 = t3u

• 2nd path inconsistent: H2 = t2u

• 3rd path inconsistent: H3 = t1u

• 4th path inconsistent: H4 = t1u

• AXp is MHS of Hj sets: t1, 2, 3u

© J. Marques-Silva 44 / 47

Review exercise – one AXp for example DT

• Instance: (v, c) = ((1, 2, 1, 2), Y)

x1

x2

Y x4

Y x3

Y N

N

x3

N Y

N

P t1u

P t1u
P t2u

P t1, 3u P t2u

P t1u P t2u

P t3u

P t2u

P t1u P t2u

P t3u1

2

5
6

10
11

12 13

7

3

8 9

4

• Finding on AXp:
• 1st path inconsistent: H1 = t3u

• 2nd path inconsistent: H2 = t2u

• 3rd path inconsistent: H3 = t1u

• 4th path inconsistent: H4 = t1u

• AXp is MHS of Hj sets: t1, 2, 3u

© J. Marques-Silva 44 / 47

Review exercise – one AXp for example DT

• Instance: (v, c) = ((1, 2, 1, 2), Y)

x1

x2

Y x4

Y x3

Y N

N

x3

N Y

N

P t1u

P t1u
P t2u

P t1, 3u P t2u

P t1u P t2u

P t3u

P t2u

P t1u P t2u

P t3u1

2

5
6

10
11

12 13

7

3

8 9

4

• Finding on AXp:
• 1st path inconsistent: H1 = t3u

• 2nd path inconsistent: H2 = t2u

• 3rd path inconsistent: H3 = t1u

• 4th path inconsistent: H4 = t1u

• AXp is MHS of Hj sets: t1, 2, 3u

© J. Marques-Silva 44 / 47

Review exercise – one AXp for example DT

• Instance: (v, c) = ((1, 2, 1, 2), Y)

x1

x2

Y x4

Y x3

Y N

N

x3

N Y

N

P t1u

P t1u
P t2u

P t1, 3u P t2u

P t1u P t2u

P t3u

P t2u

P t1u P t2u

P t3u1

2

5
6

10
11

12 13

7

3

8 9

4

• Finding on AXp:
• 1st path inconsistent: H1 = t3u

• 2nd path inconsistent: H2 = t2u

• 3rd path inconsistent: H3 = t1u

• 4th path inconsistent: H4 = t1u

• AXp is MHS of Hj sets: t1, 2, 3u

© J. Marques-Silva 44 / 47

Review exercise – all CXps & AXps for example DT

• Instance: (v, c) = ((1, 2, 1, 2), Y)

x1

x2

Y x4

Y x3

Y N

N

x3

N Y

N

P t1u

P t1u
P t2u

P t1, 3u P t2u

P t1u P t2u

P t3u

P t2u

P t1u P t2u

P t3u1

2

5
6

10
11

12 13

7

3

8 9

4

• Finding CXps:

• 1st path: I1 = t3u

• 2nd path: I2 = t2u

• 3rd path: I3 = t1u

• 4th path: I4 = t1u

• L = tt1u, t2u, t3uu = C

• Finding AXps:
(i.e. all MHSes of sets in C

• A = tt1, 2, 3uu

© J. Marques-Silva 45 / 47

Review exercise – all CXps & AXps for example DT

• Instance: (v, c) = ((1, 2, 1, 2), Y)

x1

x2

Y x4

Y x3

Y N

N

x3

N Y

N

P t1u

P t1u
P t2u

P t1, 3u P t2u

P t1u P t2u

P t3u

P t2u

P t1u P t2u

P t3u1

2

5
6

10
11

12 13

7

3

8 9

4

• Finding CXps:

• 1st path: I1 = t3u

• 2nd path: I2 = t2u

• 3rd path: I3 = t1u

• 4th path: I4 = t1u

• L = tt1u, t2u, t3uu = C

• Finding AXps:
(i.e. all MHSes of sets in C

• A = tt1, 2, 3uu

© J. Marques-Silva 45 / 47

Review exercise – all CXps & AXps for example DT

• Instance: (v, c) = ((1, 2, 1, 2), Y)

x1

x2

Y x4

Y x3

Y N

N

x3

N Y

N

P t1u

P t1u
P t2u

P t1, 3u P t2u

P t1u P t2u

P t3u

P t2u

P t1u P t2u

P t3u1

2

5
6

10
11

12 13

7

3

8 9

4

• Finding CXps:
• 1st path: I1 = t3u

• 2nd path: I2 = t2u

• 3rd path: I3 = t1u

• 4th path: I4 = t1u

• L = tt1u, t2u, t3uu = C

• Finding AXps:
(i.e. all MHSes of sets in C

• A = tt1, 2, 3uu

© J. Marques-Silva 45 / 47

Review exercise – all CXps & AXps for example DT

• Instance: (v, c) = ((1, 2, 1, 2), Y)

x1

x2

Y x4

Y x3

Y N

N

x3

N Y

N

P t1u

P t1u
P t2u

P t1, 3u P t2u

P t1u P t2u

P t3u

P t2u

P t1u P t2u

P t3u1

2

5
6

10
11

12 13

7

3

8 9

4

• Finding CXps:
• 1st path: I1 = t3u

• 2nd path: I2 = t2u

• 3rd path: I3 = t1u

• 4th path: I4 = t1u

• L = tt1u, t2u, t3uu = C

• Finding AXps:
(i.e. all MHSes of sets in C

• A = tt1, 2, 3uu

© J. Marques-Silva 45 / 47

Review exercise – all CXps & AXps for example DT

• Instance: (v, c) = ((1, 2, 1, 2), Y)

x1

x2

Y x4

Y x3

Y N

N

x3

N Y

N

P t1u

P t1u
P t2u

P t1, 3u P t2u

P t1u P t2u

P t3u

P t2u

P t1u P t2u

P t3u1

2

5
6

10
11

12 13

7

3

8 9

4

• Finding CXps:
• 1st path: I1 = t3u

• 2nd path: I2 = t2u

• 3rd path: I3 = t1u

• 4th path: I4 = t1u

• L = tt1u, t2u, t3uu = C

• Finding AXps:
(i.e. all MHSes of sets in C

• A = tt1, 2, 3uu

© J. Marques-Silva 45 / 47

Review exercise – all CXps & AXps for example DT

• Instance: (v, c) = ((1, 2, 1, 2), Y)

x1

x2

Y x4

Y x3

Y N

N

x3

N Y

N

P t1u

P t1u
P t2u

P t1, 3u P t2u

P t1u P t2u

P t3u

P t2u

P t1u P t2u

P t3u1

2

5
6

10
11

12 13

7

3

8 9

4

• Finding CXps:
• 1st path: I1 = t3u

• 2nd path: I2 = t2u

• 3rd path: I3 = t1u

• 4th path: I4 = t1u

• L = tt1u, t2u, t3uu = C

• Finding AXps:
(i.e. all MHSes of sets in C

• A = tt1, 2, 3uu

© J. Marques-Silva 45 / 47

Review exercise – all CXps & AXps for example DT

• Instance: (v, c) = ((1, 2, 1, 2), Y)

x1

x2

Y x4

Y x3

Y N

N

x3

N Y

N

P t1u

P t1u
P t2u

P t1, 3u P t2u

P t1u P t2u

P t3u

P t2u

P t1u P t2u

P t3u1

2

5
6

10
11

12 13

7

3

8 9

4

• Finding CXps:
• 1st path: I1 = t3u

• 2nd path: I2 = t2u

• 3rd path: I3 = t1u

• 4th path: I4 = t1u

• L = tt1u, t2u, t3uu = C

• Finding AXps:
(i.e. all MHSes of sets in C

• A = tt1, 2, 3uu

© J. Marques-Silva 45 / 47

Review exercise – all CXps & AXps for example DT

• Instance: (v, c) = ((1, 2, 1, 2), Y)

x1

x2

Y x4

Y x3

Y N

N

x3

N Y

N

P t1u

P t1u
P t2u

P t1, 3u P t2u

P t1u P t2u

P t3u

P t2u

P t1u P t2u

P t3u1

2

5
6

10
11

12 13

7

3

8 9

4

• Finding CXps:
• 1st path: I1 = t3u

• 2nd path: I2 = t2u

• 3rd path: I3 = t1u

• 4th path: I4 = t1u

• L = tt1u, t2u, t3uu = C

• Finding AXps:
(i.e. all MHSes of sets in C

• A = tt1, 2, 3uu

© J. Marques-Silva 45 / 47

Review exercise – all CXps & AXps for example DT

• Instance: (v, c) = ((1, 2, 1, 2), Y)

x1

x2

Y x4

Y x3

Y N

N

x3

N Y

N

P t1u

P t1u
P t2u

P t1, 3u P t2u

P t1u P t2u

P t3u

P t2u

P t1u P t2u

P t3u1

2

5
6

10
11

12 13

7

3

8 9

4

• Finding CXps:
• 1st path: I1 = t3u

• 2nd path: I2 = t2u

• 3rd path: I3 = t1u

• 4th path: I4 = t1u

• L = tt1u, t2u, t3uu = C

• Finding AXps:
(i.e. all MHSes of sets in C

• A = tt1, 2, 3uu

© J. Marques-Silva 45 / 47

Another review exercise – one AXp for example DL

• DL:
R1 : IF (x1 ^ x3) THEN κ(x) = 0

R2 : ELSE IF (x1 ^ x5) THEN κ(x) = 0

R3 : ELSE IF (x2 ^ x4) THEN κ(x) = 1

R4 : ELSE IF (x1 ^ x7) THEN κ(x) = 0

R5 : ELSE IF (␣x4 ^ x6) THEN κ(x) = 1

R6 : ELSE IF (␣x4 ^␣x6) THEN κ(x) = 1

R7 : ELSE IF (␣x2 ^ x6) THEN κ(x) = 1

RDEF : ELSE κ(x) = 0

• Instance: v = (0, 1, 0, 1, 0, 1, 0)

• The prediction is 1, due to R3

• AXp:

• Quiz: write down the constraints and confirm AXp with SAT solver

© J. Marques-Silva 46 / 47

Another review exercise – one AXp for example DL

• DL:
R1 : IF (x1 ^ x3) THEN κ(x) = 0

R2 : ELSE IF (x1 ^ x5) THEN κ(x) = 0

R3 : ELSE IF (x2 ^ x4) THEN κ(x) = 1

R4 : ELSE IF (x1 ^ x7) THEN κ(x) = 0

R5 : ELSE IF (␣x4 ^ x6) THEN κ(x) = 1

R6 : ELSE IF (␣x4 ^␣x6) THEN κ(x) = 1

R7 : ELSE IF (␣x2 ^ x6) THEN κ(x) = 1

RDEF : ELSE κ(x) = 0

• Instance: v = (0, 1, 0, 1, 0, 1, 0)

• The prediction is 1, due to R3

• AXp:

• Quiz: write down the constraints and confirm AXp with SAT solver

© J. Marques-Silva 46 / 47

Another review exercise – one AXp for example DL

• DL:
R1 : IF (x1 ^ x3) THEN κ(x) = 0

R2 : ELSE IF (x1 ^ x5) THEN κ(x) = 0

R3 : ELSE IF (x2 ^ x4) THEN κ(x) = 1

R4 : ELSE IF (x1 ^ x7) THEN κ(x) = 0

R5 : ELSE IF (␣x4 ^ x6) THEN κ(x) = 1

R6 : ELSE IF (␣x4 ^␣x6) THEN κ(x) = 1

R7 : ELSE IF (␣x2 ^ x6) THEN κ(x) = 1

RDEF : ELSE κ(x) = 0

• Instance: v = (0, 1, 0, 1, 0, 1, 0)

• The prediction is 1, due to R3

• AXp:

• Quiz: write down the constraints and confirm AXp with SAT solver

© J. Marques-Silva 46 / 47

Another review exercise – one AXp for example DL

• DL:
R1 : IF (x1 ^ x3) THEN κ(x) = 0

R2 : ELSE IF (x1 ^ x5) THEN κ(x) = 0

R3 : ELSE IF (x2 ^ x4) THEN κ(x) = 1

R4 : ELSE IF (x1 ^ x7) THEN κ(x) = 0

R5 : ELSE IF (␣x4 ^ x6) THEN κ(x) = 1

R6 : ELSE IF (␣x4 ^␣x6) THEN κ(x) = 1

R7 : ELSE IF (␣x2 ^ x6) THEN κ(x) = 1

RDEF : ELSE κ(x) = 0

• Instance: v = (0, 1, 0, 1, 0, 1, 0)

• The prediction is 1, due to R3

• AXp: t1, 2u

• Quiz: write down the constraints and confirm AXp with SAT solver

© J. Marques-Silva 46 / 47

Another review exercise – one AXp for example DL

• DL:
R1 : IF (x1 ^ x3) THEN κ(x) = 0

R2 : ELSE IF (x1 ^ x5) THEN κ(x) = 0

R3 : ELSE IF (x2 ^ x4) THEN κ(x) = 1

R4 : ELSE IF (x1 ^ x7) THEN κ(x) = 0

R5 : ELSE IF (␣x4 ^ x6) THEN κ(x) = 1

R6 : ELSE IF (␣x4 ^␣x6) THEN κ(x) = 1

R7 : ELSE IF (␣x2 ^ x6) THEN κ(x) = 1

RDEF : ELSE κ(x) = 0

• Instance: v = (0, 1, 0, 1, 0, 1, 0)

• The prediction is 1, due to R3

• AXp: t1, 2u

• Quiz: write down the constraints and confirm AXp with SAT solver

© J. Marques-Silva 46 / 47

Questions?

© J. Marques-Silva 47 / 47

© J. Marques-Silva 48 / 47

References i

[ABOS22] Marcelo Arenas, Pablo Barceló, Miguel A. Romero Orth, and Bernardo Subercaseaux.
On computing probabilistic explanations for decision trees.
In NeurIPS, 2022.

[Alp14] Ethem Alpaydin.
Introduction to machine learning.
MIT press, 2014.

[Alp16] Ethem Alpaydin.
Machine Learning: The New AI.
MIT Press, 2016.

[BA97] Leonard A. Breslow and David W. Aha.
Simplifying decision trees: A survey.
Knowledge Eng. Review, 12(1):1–40, 1997.

[BBHK10] Michael R. Berthold, Christian Borgelt, Frank Höppner, and Frank Klawonn.
Guide to Intelligent Data Analysis - How to Intelligently Make Sense of Real Data, volume 42 of Texts in
Computer Science.
Springer, 2010.

© J. Marques-Silva 49 / 47

References ii

[BFOS84] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone.
Classification and Regression Trees.
Wadsworth, 1984.

[BHO09] Christian Bessiere, Emmanuel Hebrard, and Barry O’Sullivan.
Minimising decision tree size as combinatorial optimisation.
In CP, pages 173–187, 2009.

[Bra20] Max Bramer.
Principles of Data Mining, 4th Edition.
Undergraduate Topics in Computer Science. Springer, 2020.

[DL01] Sašo Džeroski and Nada Lavrač, editors.
Relational data mining.
Springer, 2001.

[EG95] Thomas Eiter and Georg Gottlob.
Identifying the minimal transversals of a hypergraph and related problems.
SIAM J. Comput., 24(6):1278–1304, 1995.

[Fla12] Peter A. Flach.
Machine Learning - The Art and Science of Algorithms that Make Sense of Data.
Cambridge University Press, 2012.

© J. Marques-Silva 50 / 47

References iii

[GZM20] Mohammad M. Ghiasi, Sohrab Zendehboudi, and Ali Asghar Mohsenipour.
Decision tree-based diagnosis of coronary artery disease: CART model.
Comput. Methods Programs Biomed., 192:105400, 2020.

[HIIM21] Xuanxiang Huang, Yacine Izza, Alexey Ignatiev, and Joao Marques-Silva.
On efficiently explaining graph-based classifiers.
In KR, November 2021.
Preprint available from https://arxiv.org/abs/2106.01350.

[HM23] Xuanxiang Huang and João Marques-Silva.
From decision trees to explained decision sets.
In ECAI, pages 1100–1108, 2023.

[HRS19] Xiyang Hu, Cynthia Rudin, and Margo Seltzer.
Optimal sparse decision trees.
In NeurIPS, pages 7265–7273, 2019.

[IHI+22] Yacine Izza, Xuanxiang Huang, Alexey Ignatiev, Nina Narodytska, Martin C. Cooper, and João Marques-Silva.
On computing probabilistic abductive explanations.
CoRR, abs/2212.05990, 2022.

© J. Marques-Silva 51 / 47

https://arxiv.org/abs/2106.01350

References iv

[IHI+23] Yacine Izza, Xuanxiang Huang, Alexey Ignatiev, Nina Narodytska, Martin C. Cooper, and João Marques-Silva.
On computing probabilistic abductive explanations.
Int. J. Approx. Reason., 159:108939, 2023.

[IIM20] Yacine Izza, Alexey Ignatiev, and Joao Marques-Silva.
On explaining decision trees.
CoRR, abs/2010.11034, 2020.

[IIM22] Yacine Izza, Alexey Ignatiev, and João Marques-Silva.
On tackling explanation redundancy in decision trees.
J. Artif. Intell. Res., 75:261–321, 2022.

[IM21] Alexey Ignatiev and Joao Marques-Silva.
SAT-based rigorous explanations for decision lists.
In SAT, pages 251–269, July 2021.

[INAM20] Alexey Ignatiev, Nina Narodytska, Nicholas Asher, and João Marques-Silva.
From contrastive to abductive explanations and back again.
In AIxIA, pages 335–355, 2020.

[INM19a] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva.
Abduction-based explanations for machine learning models.
In AAAI, pages 1511–1519, 2019.

© J. Marques-Silva 52 / 47

References v

[INM19b] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva.
On relating explanations and adversarial examples.
In NeurIPS, pages 15857–15867, 2019.

[KMND20] John D Kelleher, Brian Mac Namee, and Aoife D’arcy.
Fundamentals of machine learning for predictive data analytics: algorithms, worked examples, and case
studies.
MIT Press, 2020.

[Kot13] Sotiris B. Kotsiantis.
Decision trees: a recent overview.
Artif. Intell. Rev., 39(4):261–283, 2013.

[LL17] Scott M. Lundberg and Su-In Lee.
A unified approach to interpreting model predictions.
In NIPS, pages 4765–4774, 2017.

[Mar22] João Marques-Silva.
Logic-based explainability in machine learning.
In Reasoning Web, pages 24–104, 2022.

© J. Marques-Silva 53 / 47

References vi

[Mar24] Joao Marques-Silva.
Logic-based explainability: Past, present & future.
CoRR, abs/2406.11873, 2024.

[MGC+21] Joao Marques-Silva, Thomas Gerspacher, Martinc C. Cooper, Alexey Ignatiev, and Nina Narodytska.
Explanations for monotonic classifiers.
In ICML, pages 7469–7479, July 2021.

[Mil56] George A Miller.
The magical number seven, plus or minus two: Some limits on our capacity for processing information.
Psychological review, 63(2):81–97, 1956.

[Mil19] Tim Miller.
Explanation in artificial intelligence: Insights from the social sciences.
Artif. Intell., 267:1–38, 2019.

[MM20] João Marques-Silva and Carlos Mencía.
Reasoning about inconsistent formulas.
In IJCAI, pages 4899–4906, 2020.

[Mor82] Bernard M. E. Moret.
Decision trees and diagrams.
ACM Comput. Surv., 14(4):593–623, 1982.

© J. Marques-Silva 54 / 47

References vii

[MSI23] Joao Marques-Silva and Alexey Ignatiev.
No silver bullet: interpretable ml models must be explained.
Frontiers in Artificial Intelligence, 6, 2023.

[PM17] David Poole and Alan K. Mackworth.
Artificial Intelligence - Foundations of Computational Agents.
CUP, 2017.

[Qui93] J Ross Quinlan.
C4.5: programs for machine learning.
Morgan-Kaufmann, 1993.

[Rei87] Raymond Reiter.
A theory of diagnosis from first principles.
Artif. Intell., 32(1):57–95, 1987.

[RM08] Lior Rokach and Oded Z Maimon.
Data mining with decision trees: theory and applications.
World scientific, 2008.

[RN10] Stuart J. Russell and Peter Norvig.
Artificial Intelligence - A Modern Approach.
Pearson Education, 2010.

© J. Marques-Silva 55 / 47

References viii

[RSG16] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin.
”why should I trust you?”: Explaining the predictions of any classifier.
In KDD, pages 1135–1144, 2016.

[RSG18] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin.
Anchors: High-precision model-agnostic explanations.
In AAAI, pages 1527–1535. AAAI Press, 2018.

[SB14] Shai Shalev-Shwartz and Shai Ben-David.
Understanding Machine Learning - From Theory to Algorithms.
Cambridge University Press, 2014.

[SCD18] Andy Shih, Arthur Choi, and Adnan Darwiche.
A symbolic approach to explaining bayesian network classifiers.
In IJCAI, pages 5103–5111, 2018.

[VLE+16] Gilmer Valdes, José Marcio Luna, Eric Eaton, Charles B Simone, Lyle H Ungar, and Timothy D Solberg.
MediBoost: a patient stratification tool for interpretable decision making in the era of precision
medicine.
Scientific reports, 6(1):1–8, 2016.

© J. Marques-Silva 56 / 47

References ix

[WFHP17] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal.
Data Mining.
Morgan Kaufmann, 2017.

[WMHK21] Stephan Wäldchen, Jan MacDonald, Sascha Hauch, and Gitta Kutyniok.
The computational complexity of understanding binary classifier decisions.
J. Artif. Intell. Res., 70:351–387, 2021.

[Zho12] Zhi-Hua Zhou.
Ensemble methods: foundations and algorithms.
CRC press, 2012.

[Zho21] Zhi-Hua Zhou.
Machine Learning.
Springer, 2021.

© J. Marques-Silva 57 / 47

	Principles of Symbolic XAI – Feature Selection
	Definitions of Explanations
	Duality Properties
	Computational Problems

	Tractability in Symbolic XAI
	Explanations for Decision Trees
	XAI Queries for DTs
	Myth #01: Intrinsic Interpretability
	Detour: From Decision Trees to Explained Decision Sets
	Explanations for Decision Graphs
	Explanations for Monotonic Classifiers
	Review examples

