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My team’s recent & not so recent work...

© J. Marques-Silva

SAT Solving
(Clause learning,
UIPs, ...)

Quantification & CEGAR
(QBF, QMaxSAT, etc.)

Function Synthesis
(Min DNF cover, ...)

Inconsistency
(MUS, MCS, etc.)

Certification of
Reasoners

Model Checking,
Synthesizing Invariants,
ATPG, Reconfiguration

Optimization
(MaxSAT, MinSAT,
PBO, WBO, etc.)

Propositional Encodings,
Backbones, Autarkies,
Minimal models, etc.

Enumeration
(MUSes, MCSes, etc.)

Proof Systems
(DRMaxSAT, etc.)

Primes, Abduction,
DLs, etc.




New area of research, since circa 2018...
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Enhancing ML by
exploiting AR & FM !

Proof Systems
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Can we trust ML models?

- Accuracy in training/test data

- Complex ML models are brittle

- Extensive work on finding adversarial examples
- Extensive work on learning robust ML models

- More recently, complex ML models hallucinate

One must be able to validate operation of ML model, with rigor
- Explanations; robustness; verification
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ML models are brittle — adversarial examples

Goodfellow et al., ICLR'15
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ML models are brittle — adversarial examples

+.007 x

Goodfellow et al., ICLR'15

Eykholt et al’18 Aung et al’17
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ML models are brittle — adversarial examples

Eykholt et al’18 Aung et al’17
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Adversarial examples can be very problematic

Original image Adversarial noise Adversarial example

Dermatoscopic image of a benign Perturbation computed Combined image of nevus and
melanocytic nevus, along with the by a common adversarial attack perturbation and the
diagnostic probability computed attack technique. diagnostic probabilities from
by a deep neural network. the same deep neural network.

[ | Benign | Benign
| Malignant I | Malignant

Model confidence

Model confidence
Finlayson et al, Nature 2019
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eXplainable Al (XAl)

Al System

—————————,

- Complex ML models are opaque
- Goal of XAl: to help humans understand ML models

- Many questions to address:
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- Complex ML models are opaque
- Goal of XAl: to help humans understand ML models

- Many questions to address:
- Properties of explanations

- How to be human understandable?

- How to answer Why? questions? l.e. Why the prediction?

- How to answer Why Not? questions? I.e. Why not some other prediction?
- Which guarantees of rigor?
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- Complex ML models are opaque
- Goal of XAl: to help humans understand ML models

- Many questions to address:

- Properties of explanations
- How to be human understandable?
- How to answer Why? questions? l.e. Why the prediction?
- How to answer Why Not? questions? I.e. Why not some other prediction?
- Which guarantees of rigor?

- Other queries: enumeration, membership, preferences, etc.

- Links with robustness, fairness, model learning
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nce of XAl

REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL
of 27 April 2016

on the protection of natural persons with regard to the processing of personal data and on the free
movement of such data, and repealing Directive 95/46[EC (General Data Protection Regulation)

(Text with EEA relevance)

- : I . - Proposal for a
European Union regulations on algorithmic decision-making
and a “right to explanation” REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL
Bryce Goodman,'* Seth Flaxman,” LAYING DOWN HARMONISED RULES ON ARTIFICIAL INTELLIGENCE
(ARTIFICIAL INTELLIGENCE ACT) AND AMENDING CERTAIN UNION
LEGISLATIVE ACTS

B We summarize the potential impact
that the European Union’s new General - mgm _m =
pat poection resuiaiion it e - | EXplainable Artificial Intelligence (XAI)
the routine use of machine-learning
algorithms. Slated to take effect as law
across the European Union in 2018, it|

will place restrictions on automated
individual decision making (that is,
algorithms that make decisions based
on user-level predictors) that “signifi-

cantly affect” users. When put_into EXP[MNAE[EAHTIHE\AL INTElll[iENEE
practice, the law may also effectively cre-

ate a right to explanation, whereby a T T T T
5 FV17

user can ask for an explanation of an Fris  Fvis  Fv20  Frat

algorithmic decision that significantly

> Reports and studies >

affects them. We argue that while this David Gunning

law may pose large challenges for indus-

try, it highlights opportunities for com- DARPA/ 120

puter scientists to take the lead in Program Update November 2017

designing algorithms and evaluation
frameworks that avoid discrimination
and enable explanation.

Ethics guidelines for trustworthy Al

2
a
3
g
a

© J. Marques-Silva 8/ 45



Importance of XAl

S
REGULATION (EU) 201447~ ot de \oyed A‘éﬁy tobust"THE COUNCIL

u {
1 10 . ove
on the n Otde On\ m r s 1O ma\(? d on the fr
I ust no op way 1i j-ta and on the free
mover \y €& m . Hle lﬂte\ lg tion Regulation)

a
ness; ut at . intelgl at makes

n
jr reasom A ; s
European Union regulation the‘( Ye, 1 he\p ) Ot 'Ona\ d(\{t O TFroposl
and a “righ b“\w \Nl\ to d'lstxlb\ltl of goa\s EAN PARLIAMENT AND OF THE COUNCIL|
e .

" . . U ns
oo istalk€S U oresentatol T (i alsO KA R N o
W We summarize the potential impact § ncomp\ete Xnte\\\g‘b‘ 5 M '\“cteas‘

SLATIVE ACTS
that the European Union’s new General

. m
Data Protection Regulation will have on nd {eatu(e \b humans human A“ (XAI)

the routine use of machine-learning

algorithms. Slated to take effect as law 1\ € con tve : :
Igorithms. Slated to take effect as I faclhtat o co“abota - oibility will

across the European Union in 2018, it| e
will place restrictions on automated . o COK[l \ = .
individual decision making (that is, lng\y thetmore’ A‘_ F‘na y
algorithms that make decisions based S. F Y

on user-level predictors) that “signifi- tea X

cantly affect” users. When put into

practice, the law may also effectively cre- he\p

ingle Market > Reports and studies >

Ethics guidelines for trustworthy Al

il ean
ate a right to explanation, whereby a @ eg UYOP . 14
user can ask for an explanation of an thefe ar . \ i the E 101 \\abﬂ‘ty
algorithmic decision that significantly & A ! nc aS S\%
affects them. We argue that while this %1\)\6 ! . \
law may pose large challenges for indus- A OW\ Weld & Bansal
try, it highlights opportunities for com- d a %
puter scientists to take the lead in A‘ e"\'s- —puale November 2017
designing algorithms and evaluation Whe\’\
frameworks that avoid discrimination >
and enable explanation. Dm PA

© J. Marques-Silva 8/ 45



XAl & EU guidelines (Al HLEG)

© J. Marques-Silva

Search

European Commission > Strategy > Digital Single Market > Reports and studies >

Digital Single Market

REPORT / STUDY | 8 April 2019

Ethics guidelines for trustworthy Al

Following the publication of the draft ethics guidelines in
December 2018 to which more than 500 comments were
received, the independent expert group presents today their

ethics guidelines for trustworthy artificial intelligence.

About Artificial
intelligence

| Blog posts

| News
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XAl & the principle of explicability

European Commission > Strategy > Digital Single Market > Reports 204

Digital Single Market

a¥
\e
ontest con ™ s urat About Artificial
<inp 2\ 3 cation W intelligence
reaui’® et O e 4’ :\t'\s o™ onts were
traf‘z‘; \ 0 Saf a‘o“_t,,. group presents today their | Blog posts
‘\;\;x‘r\e co“seq .1 trustworthy artificial intelligence. | N
ews

& thousands of recent papers!
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XAl for high-risk & safety-critical applications

High-risk (EU regulations):
- Law enforcement
- Management and operation of critical infrastructure
- Biometric identification and categorization of people

[EU21b, EU21a]

UNACCEPTABLE RISK

‘HIGH RISK

LIMITED RISK

MINIMAL RISK

RISK'IN Al SYSTEMS
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XAl for high-risk & safety-critical applications

High-risk (EU regulations):
- Law enforcement
- Management and operation of critical infrastructure
- Biometric identification and categorization of people

[EU21b, EU21a]

UNACCEPTABLE RISK

‘HIGH RISK

- And safety-critical: LIMITED RISK

- Self-driving cars
- Autonomous vehicles
- Autonomous aereal devices HELLETIE

MINIMAL RISK
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XAl for high-risk & safety-critical applications

High-risk (EU regulations):
- Law enforcement
- Management and operation of critical infrastructure
- Biometric identification and categorization of people

[EU21b, EU21a]

UNACCEPTABLE RISK

‘HIGH RISK

- And safety-critical:
- Self-driving cars
- Autonomous vehicles
- Autonomous aereal devices RISKIN Al SYSTEMS

Eﬁﬁ%ﬂlﬁm machine intell igence

Stop explaining black box machine learning
models for high stakes decisions and use
interpretable models instead

Cynthia Rudin®

LIMITED RISK

MINIMAL RISK

May 2019
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XAl for high-risk & safety-critical applications

High-risk (EU regulations):
- Law enforcement
- Management and operation of critical infrastructure

[EU21b, EU21a]

UNACCEPTABLE RISK

- Biometric identification and categorization of people

‘HIGH RISK

- And safety-critical:
- Self-driving cars
- Autonomous vehicles
- Autonomous aereal devices RISKIN Al SYSTEMS

LIMITED RISK

MINIMAL RISK

Correctness of explanations is paramount! [N machine intelligence

- To build trust

- To help debug Al systems Stop explaining black box machine learning
- To prevent (catastrophic) accidents models for high stakes decisions and use
interpretable models instead

Cynthia Rudin®

© ). Marques-Silva

May 2019
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XAl for high-risk & safety-critical applications

High-risk (EU regulations): (uz1h, EU21a
- Law enforcement
- Management and operation of critical infrastructure
- Biometric identification and categorization of people

UNACCEPTABLE RISK

- And safety-critical: LIMITED RISK

- Self-driving cars
- Autonomous vehicles
- Autonomous aereal devices

MINIMAL RISK

RISK'IN Al SYSTEMS

Correctness of explanations is paramount! Main motivation

- To build trust for our work!
- To help debug Al systems (since 2019)
- To prevent (catastrophic) accidents

© ). Marques-Silva

‘HIGH RISK

10/ 45



Can we trust (non-symbolic) XAI? - some questions

- Many proposed solutions for XAl

- Most, and the better-known, are heuristic
- l.e. no guarantees of rigor

- Many proposed uses of XAl
- Regular complaints about issues with existing (heuristic) methods of XAl
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Can we trust (non-symbolic) XAI? - some questions

- Many proposed solutions for XAl

- Most, and the better-known, are heuristic
- l.e. no guarantees of rigor

- Many proposed uses of XAl
- Regular complaints about issues with existing (heuristic) methods of XAl

-+ Q: Can heuristic XAl be trusted in high-risk and/or safety-critical domains?

- Q: Can we validate results of heuristic XAlI?
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What have we been up to? 1. Created the field of symbolic (formal) XAl - |

- Rigorous, logic-based, definitions of explanations

- Relationship with abduction - abductive explanations (AXps)
- Contrastive explanations (CXps) [Mil19]

- Duality between AXps & CXps

- AXps are MHSes of CXps and vice-versa

© J. Marques-Silva 12/ 45
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- Contrastive explanations (CXps) [Mil19]

- Duality between AXps & CXps

- AXps are MHSes of CXps and vice-versa
- Tractability results

- Devised efficient poly-time algorithms
- Intractability results

- Devised efficient methods
- Links with automated reasoners

- Wealth of computational problems related with AXps/CXps
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What have we been up to? 1. Created the field of symbolic (formal) XAl - |

- Rigorous, logic-based, definitions of explanations

- Relationship with abduction - abductive explanations (AXps)

Computing one XP

- Contrastive explanations (CXps) [Mil19]
- Duality between AXps & CXps E

- AXps are MHSes of CXps and vice-versa E% = ()
- Tractability results é@‘ - = 5

- Devised efficient poly-time algorithms é -------------------------------------------------------------------------
- Intractability results %

- Devised efficient methods § E:)

- Links with automated reasoners *
- Wealth of computational problems related with AXps/CXps

Effective Ineffective

Practical scalability (effectiveness)
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What have we been up to? 1. Created the field of symbolic (formal) XAl - Il

Mar24]

Efficient solutions Input distrib. New topics
XP definitions Tractability Queries Prob. XPs
2019 2020 2021 2022 2023
i RFs, DLs, BTs, etc.
e O Ll Inp. constr.

DTs, NBCs, etc. DTs, NBCs, etc.

Member, Enum., etc. Distil,, etc.
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What have we been up to? 2. Uncovered key myths of non-symbolic XAl - |

[RSG16, LL17, RSG18, Rud19]
LIME “Why Should | Trust You?” SHAP
Explaining the Predictions of Any Classifier A Unified Approach to Interpreting Model
X Predictions X
Marco Tulio Ribeiro Sameer Singh Carlos Guestrin
University of Washington University of Washington University of Washington X
Seattle, WA 98105, USA Seattle, WA 98105, USA Seattle, WA 98105, USA ScottM.Lundberg = Su-In Les )
marcotcr@cs uw.edu sameer@cs uw.edu gueslrin@cs uw.edu Paul G. Allen School of Computer Science Paul G. Allen School of Computer Science
e T T University of Washington Department of Genome Sciences
Seattle, WA 98105 University of Washington
hature lundi@cs , washington, ed Seattle, WA 98105
PERSPECT'VE IIﬁ:;.t‘hiﬂL’ iﬂl(.‘“ig,L’[lCL‘ maifen nahingren ady uulnlea:cn.vauhingtan adu

Stop explaining black box machine IearningX Anchors: High-Precision Model-Agnostic Explanations X

models for high stakes decisions and use Anchor
H H M. Tulio Ribei S Si Carlos Guestri
interpretable models instead Cnventy of Withingon  Univeriyof Califorg. Inine Universiy of Washingion

- . 0 marcotcr@cs.washington.edu sameer@uci.edu guestrin@cs. washington.edu
Cynthia Rudin Intrinsic Interpretability
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What have we been up to? 2. Uncovered key myths of non-symbolic XAl - II

[MSH24, HMS24, HM23]

research and advances

L)

Ghock for
pdates

DO0I:10.1145/3635301 kEy .ins.ights
When the decisions of ML models impact B Shapley values find extensive uses in
people, one should expect explanations to offer expl';in’i'ng machine learning models
the strongest guarantees of rigor. However, the and serve to assign importance to the
most popular XAl approaches offer none. features of the model.

BY JOAO MARQUES-SILVA AND XUANXIANG HUANG ® Shapley values for explainability also
find ever-increasing uses in high-risk

and safety-critical domains, for example,

- = medical diagnosis.
x a I na I I B This article proves that the existing
definition of Shapley values for
explainability can produce misleading

|$ NOt = Game o maton Tegardng 16O uman

decision makers in error.

66 COMMUNICATIONS OF THE ACM | JULY 2024 | VOL.67 | NO.7
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Plan for this course

-+ Lecture 01 - units:
- #01: Foundations

- Lecture 02 - units:

- #02: Principles of symbolic XAl - feature selection
- #03: Tractability in symbolic XAl (& myth of interpretability)

- Lecture 03 — units:

- #04: Intractability in symbolic XAl (& myth of model-agnostic XAl)
- #05: Explainability queries

- Lecture 04 - units:
- #06: Advanced topics

-+ Lecture 05 - units:

- #07: Principles of symbolic XAl - feature attribution (& myth of Shapley values in XAl)
- #08: Conclusions & research directions

© J. Marques-Silva 16 / 45



Unit #01

Foundations



Classification problems

- Set of features F = {1,2,...,m}, each feature i taking values from domain D;
- Features can be categorical, discrete or real-valued

- Feature space: F = II7", D;

- Set of classes K = {cy,...,Ck}

© J. Marques-Silva 17 | 45
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Classification problems

- Set of features F = {1,2,...,m}, each feature i taking values from domain D;
- Features can be categorical, discrete or real-valued

- Feature space: F = II7", D;

- Set of classes K = {cy,...,Ck}

- ML model M¢ computes a (non-constant) classification function x : F — K
- Mcisatuple (F,F,K, k)

Instance (v, c) for point v = (vy,...,Vy) € [, with prediction ¢ = k(v), ce K
- Goal: to compute explanations for (v, c)
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Regression problems

- For regression problems:

- Codomain: V
- Regression function: p: F — V (non-constant)
- ML model: Mg isatuple (F,F,V,p)
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Regression problems

- For regression problems:

- Codomain: V
- Regression function: p: F — V (non-constant)
- ML model: Mg isatuple (F,F,V,p)

- General ML model:

- T: range of possible predictions
- Non-constant function 7 : F — T
- ML model: M is atuple (F,F,T,7)
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Regression pro

- For regression problems:

- Codomain: V
- Regression function: p: F — V (non-constant)
- ML model: Mg isatuple (F,F,V,p)

- General ML model:

- T: range of possible predictions
- Non-constant function 7 : F — T
- ML model: M is atuple (F,F,T,7)

- Instance: (v,q),qeT
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Example ML models - classification - decision trees (DTs)

€ {26..MxA}
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Example ML models - classification - decision trees (DTs)

€ {26..MxA}

- Literals in DTs can use = or e
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Example ML models - regression - regression trees (RTs)

- Literals in RTs can use = or e
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Example ML models - classification - rules

- Ordered rules - decision lists (DLs):

IF X1 A Xg  THEN predictY
ELSEIF —xy v x3 THEN predict N
ELSE THEN predictY

.F:{l,2q3}D1:D2:Dg:{0,1},K:{Y,N}

© J. Marques-Silva 21/ 45



Example ML models - classification - rules

- Ordered rules - decision lists (DLs):

IF X1 A Xg  THEN predictY
ELSEIF —xy v x3 THEN predict N
ELSE THEN predictY

.F:{l,2q3}D1:D2:Dg:{0,1},K:{Y,N}

- Unordered rules - decision sets (DSs):

IF X1 +x2 >0 THEN predict
IF X3 +X2 <0 THEN predict &
F:{l,Q};DlzpzzR;’C:{,E‘}

- Issues of DSs: overlap; incomplete coverage

© J. Marques-Silva 21/ 45



Example ML models - classification - random forests (RFs)

e {0}

e {0,1} ‘ € {2} e {0}

5 6

- For each input, each DT picks a class

- Result uses majority or weighted voting of the DTs

© J. Marques-Silva 22/ 45



Example ML models - classification — neural networks (NNs)

-0.5
( } +]
Inputs +] r = Z/h:o wix; Y1 = max(rg,0)

Y1 = max(X; + X2 — 0.5,0)
01 = |TE(y1 > 0, 10)
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Outline - Unit #01

Basics of (non-symbolic) XAl



Basics of (non-symbolic) XAl - more detail later

- Feature attribution:
- LIME RSG16]
- SHAP 7]
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Basics of (non-symbolic) XAl - more detail later

- Feature attribution: assign relative importance to features
- LIME RSG16]
- SHAP 7]

- Feature selection: select set of features
- Anchors [RsG18]

- Hybrid approaches:
- Saliency maps ———

- Intrinsic interpretability: [Mol20, Rud1
- DTs, DLs, ...
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Basics of (non-symbolic) XAl - more detail later

- Feature attribution: assign relative importance to features
- LIME RSG16]
- SHAP 7]

- Feature selection: select set of features
- Anchors [RsG18]

- Hybrid approaches:
- Saliency maps ———

- Intrinsic interpretability: the (interpretable) model is the explanation [Mol20, Rud1
- DTs, DLs, ...

© J. Marques-Silva 24 | 45



Some examples

- Anchors: RsG1]
IF Country = United-States AND Capital Loss = Low
AND Race = White AND Relationship = Husband
AND Married AND 28 < Age < 37
AND Sex = Male AND High School grad
AND Occupation = Blue-Collar
THEN PREDICT Salary > $50K
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Some examples

- Anchors:
IF Country = United-States AND Capital Loss = Low
AND Race = White AND Relationship = Husband
AND Married AND 28 < Age < 37
AND Sex = Male AND High School grad
AND Occupation = Blue-Collar
THEN PREDICT Salary > $50K

- SHAP: [LL17, LECT20]
Mortality model

Global feature importance Local explanation summary High
Age
Sex (F/M)
Systolic blood presssure
White blood cells
BMI
Sedimentation rate
Blood albumin
Alkaline phosphatase
Total cholesterol
Physical activity
Haematocrit

onjeA ainjeay

Uric acid

Red blood cells
Albumin present in urine
Blood protein

[rlfITfTTY‘:I

o

[ 02 04 06 08 1.0 -20 -15 -1.0 -05 0.5 1.0
Mean(|SHAP value|) SHAP value (impact on model output)
(log(relative risk of mortality))
© J. Marques-Silva 25/ 45
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Outline - Unit #01

Motivation for Explanations



What explanations do we seek? l.e. how to answer Why? questions?

- How to answer a Why? question? l.e. “ Why (the prediction)? ”

© J. Marques-Silva 26/ 45



What explanations do we seek? l.e. how to answer Why? questions?

- How to answer a Why? question? l.e. “ Why (the prediction)? ”
- Our answer to a Why? question is a rule:

IF <COND> THEN k(x)=c

© J. Marques-Silva 26/ 45



What explanations do we seek? l.e. how to answer Why? questions?

- How to answer a Why? question? l.e. “ Why (the prediction)? ”
- Our answer to a Why? question is a rule:

IF <COND> THEN k(x)=c

Explanation: set of (or just ) in <COND>; irreducibility matters!
- <COND> is for the prediction

© J. Marques-Silva

26 | 45



What explanations do we seek? l.e. how to answer Why? questions?

- How to answer a Why? question? l.e. “ Why (the prediction)? ”
- Our answer to a Why? question is a rule:

IF <COND> THEN k(x)=c

Explanation: set of (or just ) in <COND>; irreducibility matters!
- <COND> is for the prediction

- Obs: rules are used in tools like Anchors
- An anchor is a “high-precision rule”

© J. Marques-Silva

26 | 45



What explanations do we seek? l.e. how to answer Why? questions?

- How to answer a Why? question? l.e. “ Why (the prediction)? ”
- Our answer to a Why? question is a rule:

IF <COND> THEN k(x)=c
Explanation: set of (or just ) in <COND>; irreducibility matters!
- <COND> is for the prediction

- Obs: rules are used in tools like Anchors
- An anchor is a “high-precision rule”

- We seek a rigorous definition of rules for answering Why? questions such that,
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- Our answer to a Why? question is a rule:

IF <COND> THEN k(x)=c
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What explanations do we seek? l.e. how to answer Why? questions?

- How to answer a Why? question? l.e. “ Why (the prediction)? ”
- Our answer to a Why? question is a rule:

IF <COND> THEN k(x)=c

Explanation: set of literals (or just features) in <COND>; irreducibility matters!
- <COND> is sufficient for the prediction

- Obs: rules are used in tools like Anchors
- An anchor is a “high-precision rule”

- We seek a rigorous definition of rules for answering Why? questions such that,

- <COND> is sufficient for the prediction
- <COND> is irreducible

- We also seek the algorithms for the rigorous computation of such rules

© J. Marques-Silva
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A decision list example

IF —X1 A Xg THEN predictY
ELSE IF —x; A Xx3 THEN predictY
ELSEIF x4 AXs THEN predict N
ELSE THEN predictyY
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A decision list example

IF —X1 A Xg THEN predictY
ELSE IF —x; A Xx3 THEN predictY
ELSEIF x4 AXs THEN predict N
ELSE THEN predictyY

- Explanation for why x(1,1,1,1,1) = N?
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A decision list example

IF —X1 A Xg THEN predictY
ELSE IF —x; A Xx3 THEN predictY
ELSEIF x4 AXs THEN predict N
ELSE THEN predictyY

- Explanation for why x(1,1,1,1,1) = N?
- Given x = (X1, X2, X3, X4, X5),
IF(x1 =1) A (Xa=1) A (xs = 1) THEN x(x) = N
- le. {x1 =1,x4 = 1,x5 = 1} suffice for DL to predict N
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A decision list example

IF —X1 A Xg THEN predictY
ELSE IF —x; A Xx3 THEN predictY
ELSEIF x4 AXs THEN predict N
ELSE THEN predictyY

- Explanation for why x(1,1,1,1,1) = N?
- Givenx = (X1,X27X37X47X5)1
IF(x1 =1) A (Xa=1) A (xs = 1) THEN x(x) = N
- le. {x1 =1,x4 = 1,x5 = 1} suffice for DL to predict N
- Explanation for why (1,0,0,0,0) = Y?
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A decision list example

IF —X1 A Xg THEN predictY
ELSE IF —x; A Xx3 THEN predictY
ELSEIF x4 AXs THEN predict N
ELSE THEN predictyY

- Explanation for why x(1,1,1,1,1) = N?
- Given x = (X1, X2, X3, X4, X5),
IF(x1 =1) A (Xa=1) A (xs = 1) THEN x(x) = N
- le. {x1 =1,x4 = 1,x5 = 1} suffice for DL to predict N
- Explanation for why «(1,0,0,0,0) = Y?
- Given x = (X1, X2, X3, X4, X5),
IF (x4 = 0) THEN k(x) = Y
- le. {xa = 0} suffices for DL to predict Y
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A decision list example

IF —X1 A Xg THEN predictY
ELSE IF —x; A Xx3 THEN predictY
ELSEIF x4 AXs THEN predict N
ELSE THEN predictyY

- Explanation for why x(1,1,1,1,1) = N?
- Given x = (X1, X2, X3, X4, X5),
IF(x1 =1) A (Xa=1) A (xs = 1) THEN x(x) = N
- le. {x1 =1,x4 = 1,x5 = 1} suffice for DL to predict N
- Explanation for why «(1,0,0,0,0) = Y?
- Given x = (X1, X2, X3, X4, X5),
IF (x4 = 0) THEN k(x) = Y
- le. {xa = 0} suffices for DL to predict Y
- Given x = (X1, X2, X3, X4, X5),
IF (X5 = 0) THEN k(x) = Y
- le. {xs = 0} also suffices for DL to predict Y

© J. Marques-Silva 27 | 45
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A decision tree example

>
i
>
M)
=
9
>
s

Na¥

- Explanation for why x(0,0,0,0) = 1?
- Given x = (X1, X2, X3, X4),
IF (x1 = 0) A (X2 = 0) THEN k(x) =1
- le. {x1 = 0,x2 = 0} suffice for DT to
predict 1

PP PP R,PE R P,PP,P 0000000 O
FRP PP O0OO0O0O0ORRLRRLREOOOO
PP O0OO0OFRRPOOR P OOR KL OO
FPOPRrOFROROFROROROR O
oooooooor—\n—xpor—\n—\pr—\’i\
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- Explanation for why x(0,0,0,0) = 1?
- Given x = (X1, X2, X3, X4),
IF (x1 = 0) A (X2 = 0) THEN k(x) =1
- le. {x1 = 0,x2 = 0} suffice for DT to
predict 1

- Explanation for why x(1,1,1,1) = 0?

PR PP PP PP, O0OO0O0O0O0O0OO
PP PP OO0CO0OORRRLRERLOOOO
PP OORRPOORRPROOR KL OO
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A decision tree example

X1 X2 X3 X4 K(X)

0000 1

- Explanation for why (0, 0,0,0) = 1? oL

, 0010 1

- Given x = (X1, X2, X3, X4), 00 11 1

IF (x1 = 0) A (X2 = 0) THEN x(x) =1 0100 0

- le. {x; = 0,x2 = 0} suffice for DT to 0101 1

. 0110 1

predict 1 DA

1000 0

- Explanation for why x(1,1,1,1) = 0? Lo e a o

. 1010 0

- Given x = (X1, X2, X3, X4), 1011 0

0 IF (x1 = 1) THEN k(x) = 0 1100 0
- le. {x; = 1} suffices for DT to predict 0 11010
: 1110 0
1111 0
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0001 NYN
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- Explanation for why (1,0,0, 1)
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A random forest example (iws21)
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- Explanation for why «(1,0,0,1) = N?
- Given x = (X1, X2,X3,X4), IF (X2 = 0) THEN x(x) = N
- le. {xo = 0} suffices for DT to predict N

FRP PR, R R PP, O0OO0O0O0O0OCOO
PP PP O0OO0O0OO0OR,RRLRRPL,REL,OOOO

NP P O0OOR R OO, R OOR KL OO

FOPRPOROROROROROR O

<< <=<zZZZZ2Z2Z2Z2Z2Z2z2=22Z=

zZz<zZzzZzzZz<zZzzZzzZz<zZzzZzz2<2

<< <<=<=<ZZZZ2Z2<=<zZ2ZzZ2Z2Z|5
< <<=<zZZZZZ2Z2<ZZ2Z2==
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A random forest example (iws21)
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- Explanation for why «(1,0,0,1) = N?
- Given x = (X1, X2,X3,X4), IF (X2 = 0) THEN x(x) = N
- le. {xo = 0} suffices for DT to predict N

- Explanation for why x(1,1,1,1) = Y?

PR R PP PP PR,OO0OO0O0OOOO
PP PP O0OO0OO0OORRPRRE,ELOOOO
PP OORRPOORRPRPROOR R, OO
PORrRrOROROROROROLR O
< < <K <K<KZ2Z2Z2222Z2222222:=2
ZZ2<Z2Z2Z2<Z2Z2Z2<Z2Z22<22
< < <K<K <K<K <KZ2Z2Z22<<Z2Z2222|:
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A [Ims21]

X1 Xog Xz Xq4 Ty To T3 h(X)
000 O0NNN N
000 1NYN N
001 0NNN N
001 1NNN N
01 00NNY N
010 1NYY Y
. 01 10NNN N
- Explanation for why «(1,0,0,1) = N? 01 11NNN N
- Given x = (X1,X2,X3,X4), IF (x2 = 0) THEN s(x) = N 1000NNN N
- le. {xo = 0} suffices for DT to predict N oo LN Y NN
4 101 0NNY N
- Explanation for why x(1,1,1,1) = Y? 101 1 NNY N
. Gi — _ _ _ 1100YNY Y
Given x = (X1,X2,X3,X4), IF (X1 = 1) A (X2 =1) THEN s(x) =Y L1 01 yv vy v
- le. {x1 =1,x2 = 1} suffice for DT to predict Y 1110YNY Y
111 1YNY Y
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A [Ims21]

X1 Xo X3 X4 T, To T3 h(X)

0000NNN N

000 1NYN N

001 0NNN N

001 1 NNN N

01 00NNY N

01 01NYY Y

. 01 10NNN N

- Explanation for why «(1,0,0,1) = N? 011 1NNN N
- Given x = (X1,X2,X3,X4), IF (X2 = 0) THEN x(x) = N 1000NNN N

- le. {xo = 0} suffices for DT to predict N oo LN Y NN

4 101 0NNY N

- Explanation for why x(1,1,1,1) = Y? 101 1 NNY N
. Gi — _ _ _ 1100 Y NY Y
Given x = (X1,X2,X3,X4), IF (X1 = 1) A (X2 =1) THEN s(x) =Y L1011 Y vy v

- le. {x1 =1,x2 = 1} suffice for DT to predict Y 1110YNY VY

- Explanation for why x(0,1,1,1) = N? 11 11YNYY
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A [Ims21]

X1 Xo X3 X4 T, To T3 h(X)

0000NNN N

000 1NYN N

001 0NNN N

001 1 NNN N

01 00NNY N

01 01NYY Y

. 01 10NNN N

- Explanation for why «(1,0,0,1) = N? 01 11NNN N
- Given x = (X1,X2,X3,X4), IF (X2 = 0) THEN x(x) = N 1000NNN N

- le. {xo = 0} suffices for DT to predict N oo LN Y NN

4 101 0NNY N

- Explanation for why x(1,1,1,1) = Y? 101 1 NNY N
. Gi — _ _ _ 1100 Y NY Y
Given x = (X1,X2,X3,X4), IF (X1 = 1) A (X2 =1) THEN s(x) =Y L1011 Y vy v

- le. {x1 =1,x2 = 1} suffice for DT to predict Y 1110YNY VY

- Explanation for why x(0,1,1,1) = N? 11 11YNYY

- Given x = (X1, X2,X3,X4), IF (X1 =0) A (X2 =1) A (X3 = 1) THEN s(x) = N
- le. {x1 =0,x2 = 1,x3 = 1} suffices for DT to predict N
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A neural network example

-0.5 sum ReLU X1 Xe N KX
» n Vi 0 0 -05 0 0
0 1 05 05 1
1 0 05 05 1
|npUtS +] rh = Z/.n:(] wiX; Y1 = max(rh ()) 1 1 1.5 15 1

V1= IIlElX(X] + X2 — 05. 0)
01 = ITE(yl > 0, 10)
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A neural network example

-0.5 sum ReLU X1 Xe N KX
» n Vi 0 0 -05 0 0
0 1 05 05 1
1 0 05 05 1
|npUtS +] rh = Z/.n:(] wiX; Y1 = max(rh ()) 1 1 15 15 1

V1= IIlElX(X] + X2 — 05. 0)
01 = ITE(yl > 0, 10)

- Explanation for why x(1,1) =17

© J. Marques-Silva 30 / 45



A neural network example

-0.5 sum ReLU X1 Xe N KX
» n Vi 0 0 -05 0 0
0 1 05 05 1
1 0 05 05 1
|npUtS +] rh = Z/.n:(] wiX; Y1 = max(rh ()) 1 1 15 15 1

V1= IIlElX(X] + X2 — 05. 0)
01 = ITE(yl > 0, 10)

- Explanation for why x(1,1) =17
- Given x = (X1,X2), IF (x1 = 1) THEN s(x) =1
- le. {x1 = 1} suffices for NN to predict 1
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A neural network example

-0.5 sum ReLU X1 Xe N KX
» n Vi 0 0 -05 0 0
0 1 05 05 1
1 0 05 05 1
|npUtS +] rh = Z/.n:(] wiX; Y1 = max(rh ()) 1 1 15 15 1

V1= IIlElX(X] + X2 — 05, 0)
01 = ITE(yl > 0, 10)

- Explanation for why x(1,1) =17
- Given x = (X1,X2), IF (x1 = 1) THEN s(x) =1
- le. {x1 = 1} suffices for NN to predict 1
- Given x = (X1,X2), IF (x2 = 1) THEN x(x) =1
- le. {xo2 = 1} suffices for NN to predict Y
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An arbitrary classifier
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- Classification function:

KZ(Xl , X2, X3, X4) = X1 ATX2 VXL AX2 AXgV X1 AX2 A TX3V X9 AX3AXy
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PP OORRPROORRLROORBRL O O]
P ORPORORORLROROROR O
P OPRPRORPROOODOORRRERERERLERR

© J. Marques-Silva 31/ 45
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- Classification function:
KZ(Xl,XQ,Xg,X4) = X1 ATX2 VXL AX2 AXgV X1 AX2 A TX3V X9 AX3AXy

- Instance: ((0,0,0,0),1)
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An arbitrary classifier
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- Classification function:

KZ(Xl,XQ,Xg,X4) = X1 ATX2 VXL AX2 AXgV X1 AX2 A TX3V X9 AX3AXy
- Instance: ((0,0,0,0),1)
- Given x = (Xq,X2,X3,X4),

IF (x1 =0) A (x3 =0) THEN x(x) =1
- le. {x; = 0,x3 = 0} suffices for DT to predict 1

PR R R PR PR, PP, O0OO0O0O0OOOO
PP PP O0OO0O0O0ORRPRREELOOOO
PP OORRPROOREFROORBR O O |
P ORPORORORLROROROR O
P OPRPRORPROOODOORRRERERERRR
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Outline - Unit #01

Brief Glimpse of Logic



Standard tools of the trade

- SAT: decision problem for propositional logic

- Formulas most often represented in CNF
- There are optimization variants: MaxSAT, PBO, MinSAT, etc.
- There are quantified variants: QBF, QMaxSAT, etc.

- SMT: decision problem for (decidable) fragments of first-order logic (FOL)

- There are optimization variants: MaxSMT, etc.
- There are quantified variants

- MILP: decision/optimization problems defined on conjunctions of linear inequalities over
integer & real-valued variables

- CP: constraint programming
- There are optimization/quantified variants
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Standard tools of the trade

Basic knowledge on
SAT & SMT assumed.
See links below.

- SAT: decision problem for propositional logic
- Formulas most often represented in CNF
- There are optimization variants: MaxSAT, PBO, MinSAT, etc.
- There are quantified variants: QBF, QMaxSAT, etc.

- SMT: decision problem for (decidable) fragments of first-order logic (FOL)

- There are optimization variants: MaxSMT, etc.
- There are quantified variants

- MILP: decision/optimization problems defined on conjunctions of linear inequalities over
integer & real-valued variables

- CP: constraint programming
- There are optimization/quantified variants

- Background on SAT/SMT: 09
- https://alexeyignatiev.github.io/ssa-school-2019/
- https://alexeyignatiev.github.io/ijcailotut/
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SAT/SMT/MILP/CP solvers used as oracles - more detail later

- Deciding satisfiability, entailment
- Computing prime implicants/implicates

- Computing MUSes, MCSes
- Algorithms: Deletion, QuickXplain, Progression, Dichotomic, etc. MM20

- Enumeration of MUSes, MCSes
- Algorithms: Marco, Camus, etc. [LS08, LPMM16

- Solving MaxSAT, MaxSMT
- Algorithms: Core-guided, Minimum hitting sets, branch&bound, etc. MHLF 13

- Solving quantification problems, e.g. QBF
- Algorithms: Abstraction refinement JKMCT6]
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Basic definitions in propositional logic

- Atoms ({X, x1, ...}) & literals (x1, —x1)

- Well-formed formulas using —, A,v, ...

- Clause: disjunction of literals

- Term: conjunction of literals

- Conjunctive normal form (CNF): conjunction of clauses
- Disjunctive normal form (DNF): disjunction of terms

- Simple to generalize to more expressive domains
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Basic definitions in propositional logic

- Atoms ({X, x1, ...}) & literals (x1, —x1)

- Well-formed formulas using —, A,v, ...

- Clause: disjunction of literals

- Term: conjunction of literals

- Conjunctive normal form (CNF): conjunction of clauses
- Disjunctive normal form (DNF): disjunction of terms

- Simple to generalize to more expressive domains

- CO(w(x)) decides whether +(x) is satisfiable (i.e. whether it is consistent), using an oracle
for SAT/SMT/MILP/CP/etc.
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Entailment

- Let v represent some formula, defined on feature space [, and representing a function
p:F—{0,1}
- Let 7 represent some other formula, also defined on [, and with 7 : F — {0, 1}
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Entailment

- Let v represent some formula, defined on feature space [, and representing a function
p:F—{0,1}
- Let 7 represent some other formula, also defined on [, and with 7 : F — {0, 1}
- We say that 7 entails ¢, written as 7= ¢, if:

V(x e F).[r(x) > p(x)]
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Entailment

- Let v represent some formula, defined on feature space [, and representing a function
p:F—{0,1}
- Let 7 represent some other formula, also defined on [, and with 7 : F — {0, 1}
- We say that 7 entails ¢, written as 7 o, if:
V(x € F).[r(x) » p(x)]

We say that 7(x) is sufficient for ¢(x)
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Entailment

- Let v represent some formula, defined on feature space [, and representing a function
p:F—{0,1}
- Let 7 represent some other formula, also defined on [, and with 7 : F — {0, 1}
- We say that 7 entails ¢, written as 7= ¢, if:

V(x e F).[r(x) > p(x)]
We say that 7(x) is sufficient for ¢(x)

- To decide entailment:
- TE @ if 7(x) A —p(x) is not consistent, i.e. CO(7(x) A —¢(x)) does not hold
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Entailment

- Let v represent some formula, defined on feature space [, and representing a function
p:F—{0,1}
- Let 7 represent some other formula, also defined on [, and with 7 : F — {0, 1}
- We say that 7 entails ¢, written as 7= ¢, if:

V(x e F).[r(x) > p(x)]
We say that 7(x) is sufficient for ¢(x)

- To decide entailment:
- TE @ if 7(x) A —p(x) is not consistent, i.e. CO(7(x) A —¢(x)) does not hold

- An example:
- F={0,1}?
. QD(X1,X2) = X1 V X2
- Clearly, x1 = p and —x2 = ¢
- Also, CO(x1 A (—X1 A X2)) does not
hold
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Entailment

- Let v represent some formula, defined on feature space [, and representing a function
p:F—{0,1}
- Let 7 represent some other formula, also defined on [, and with 7 : F — {0, 1}
- We say that 7 entails ¢, written as 7= ¢, if:

V(x e F).[r(x) > p(x)]
We say that 7(x) is sufficient for ¢(x)

- To decide entailment:
- TE @ if 7(x) A —p(x) is not consistent, i.e. CO(7(x) A —¢(x)) does not hold

- An example: - Another example:
- F={0,1}? - F={0,1}?
. QD(X1,X2):X1V—'X2 . gO(Xl,XQ,X3):X1 A X2 V X1 A X3
- Clearly, x1 = p and —x2 = ¢ - Clearly, x1 A Xa = @pand x1 A Xsk= @
- Also, CO(x1 A (—X1 A X2)) does not - Also, CO(x1 A X2 A ((—X1 v =X2) A (—X1 v —X3)))

hold does not hold
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Entailment & explanations - how do we construct explanations?

- Classification function: X Xa X5 X wix)
0000 1

K,(Xl,Xg,Xg,X4) = X1 AT X VXL AX2 AXgV X1 AXo ATX3V T Xo AX3AXy 8 8 2 é 1
0011 1

- Instance: ((0,1,0,0),1) e —
0101 1

0110 0

0111 0

1000 0

1001 0

1010 0

101 1 1

1100 0

1101 1

1110 0

1111 1
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Entailment & explanations - how do we construct explanations?

X1 X2 X3 X4

Na¥

- Classification function:
H‘,(Xl , X2, X3, X4) = X1 AT X VXL AX2 AXgV X1 AXo ATX3V T Xo AX3AXy

- Instance: ((0,1,0,0),1)

Localized explanation: any irreducible conjunction of
literals, consistent with v, and that entails the prediction

PR PR PR PP PR,RO0OO0O0O0O0O0OO
PP PP O0OO0OO0ORRPRRE,ELOOOO
PP OORRPOORRPFROORBREL OO
P ORPORORORLROROROR O
=
ROROROOODOORREREERRR|[Y
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Entailment & explanations - how do we construct explanations?

- Classification function: X X2 X X Klx)
0000 1

K,(Xl,Xg,Xg,X4):ﬁXl/\"Xg\/Xl/\XQ/\X4VﬁX1/\Xg/\ﬁXgV“XQ/\Xg/\X;l 8 8 2 é 1
0011 1

- Instance: ((0,1,0,0),1) e —
0101 1

. . . . . . 0110 0
Localized explanation: any irreducible conjunction of 0111 o0
literals, consistent with v, and that entails the prediction 1000 O©
- Given x = (X1, X2, X3, X4), 1 8 (1) (1) g
|F(X1:0)/\(X;;ZO)THENH(X):1 10 1 1 1
1100 0

1101 1

1110 0

1111 1
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Entailment & explanations - how do we construct explanations?

. . o X1 X9 X3 X <
- Classification function: L X2 X % K(x)
0000 1

#(X1, X2, X3,X4) = —X 0001 1
1,X2,X3,X4) = 7 X1 AT X2 VXL AX2AXgV —X1 AXg ATX3V X9 AX3AXg 10 1§ ©

. 0011 1

Instance: ((0,1,0,0),1) 9400 q
0101 1

. . . . . . 0110 0
Localized explanation: any irreducible conjunction of 0111 o0
literals, consistent with v, and that entails the prediction 1000 O©
; _ 1001 0
Given x = (X1, X2, X3, X4), L 61 0 ©
|F(X1:0)/\(X;;ZO)THENH(X):1 10 1 1 1
1100 0

Global explanation: any irreducible conjunction of literals, 1 1 2 é ;
that is consistent, and that entails the prediction 1111 1
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Entailment & explanations - how do we construct explanations?

. . o X1 X9 X3 X <
- Classification function: L X2 X X K(x)
0000 1

#(X1, X2, X3,X4) = —X 00 0 1 1
1,X2,X3,X4) = 7 X1 AT X2 VXL AX2AXgV —X1 AXg ATX3V X9 AX3AXg 10 5§ o

. 0011 1

Instance: ((0,1,0,0),1) TR R
0101 1

. . . . . . 0110 0
Localized explanation: any irreducible conjunction of 0111 o0
literals, consistent with v, and that entails the prediction 1000 O©
; _ 1001 0
Given x = (X1, X2, X3, X4), L 61 0 ©
|F(X1:0)/\(X;;ZO)THENH(X):1 10 1 1 1
1100 0

Global explanation: any irreducible conjunction of literals, 1 1 2 é ;
that is consistent, and that entails the prediction 1111 1

-+ Given x = (X1, X2,X3,X4),
IF (x1 =0) A (x2 =0) THEN k(x) =1
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Outline - Unit #01

Reasoning About ML Models



Decision sets with boolean features

- Example ML model:

Features: Xi,X2,X3,xs € {0,1} (boolean)

Rules:
IF X1 A —X2 A X3 THEN predict
IF X1 A —X3 AXq THEN predict &
IF X3 A X4 THEN predict &
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Decision sets with boolean features

- Example ML model:

Features: Xi,X2,X3,xs € {0,1} (boolean)

Rules:
IF X1 A —=X2 A X3 THEN predict

IF X1 A —X3 AXq THEN predict &
IF X3 A X4 THEN predict &

- Q: Can the model predict both @ and B for some instance, i.e. is there overlap?
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Decision sets with boolean features

- Example ML model:

Features: Xi,X2,X3,xs € {0,1} (boolean)

Rules:
IF X1 A —X2 A X3 THEN predict
IF X1 A —X3 AXq THEN predict &
IF X3 A X4 THEN predict &

- Q: Can the model predict both @ and B for some instance, i.e. is there overlap?
- Yes, certainly:  pick (x1,x2,X3,Xx4) = (1,0,1,1)

© J. Marques-Silva 37/ 45



Decision sets with boolean features

- Example ML model:

Features: Xi,X2,X3,xs € {0,1} (boolean)

Rules:
IF X1 A —X2 A X3 THEN predict
IF X1 A —X3 AXq THEN predict &
IF X3 A X4 THEN predict &

- Q: Can the model predict both @ and B for some instance, i.e. is there overlap?
- Yes, certainly:  pick (x1,x2,X3,Xx4) = (1,0,1,1)
- Aformalization:
Yp1 < (X1 A X2 A Xg) A
Vo1 < (X1 A —X3 A Xa) A
Yoz < (Xa AXa) A (Vp < Yp1) A
Wn < Y1 v Yn2)) A (Vo) A (Vn)

... and solve with SAT solver (after clausification) [Tse68, PGS6]
Or use PySAT M

.". There exists a model iff there exists a point in feature space yielding both predictions
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Decision sets with ordinal features

- Example ML model:
Features: xi,x2 € {0,1,2} (integer)

Rules:
IF 2x1 +x2 >0 THEN predict B

IF 2x; —x2 <0 THEN predict &
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Decision sets with ordinal features

- Example ML model:
Features: xi,x2 € {0,1,2} (integer)

Rules:
IF 2x1 +x2 >0 THEN predict B

IF 2x; —x2 <0 THEN predict &

- Q: Can the model predict both @ and B for some instance, i.e. is there overlap?
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Decision sets with ordinal features

- Example ML model:
Features: xi,x2 € {0,1,2} (integer)

Rules:
IF 2x1 +x2 >0 THEN predict B

IF 2x; —x2 <0 THEN predict &

- Q: Can the model predict both @ and B for some instance, i.e. is there overlap?
- Yes, of course:  pickx; =0andxe =1
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Decision sets with ordinal features

- Example ML model:
Features: xi,x2 € {0,1,2} (integer)

Rules:
IF 2x1 +x2 >0 THEN predict B

IF 2x; —x2 <0 THEN predict &

- Q: Can the model predict both @ and B for some instance, i.e. is there overlap?

- Yes, of course:  pickx; =0andxe =1
- Aformalization:

Yp < (2X1 +X2>0) A Yp o (21 —x2<0) A (Vo) A (Vn)

.. and solve with SMT solver (many alternatives)

.. There exists a model iff there exists a point in feature space yielding both predictions

© J. Marques-Silva 38 /45



Neural networks

Input Hidden Output
layer layer layer

Input #1 —
Input #2 —
INnput #3 —

Input #4 —

- Each layer (except first) viewed as a block, and

- Compute x’ given input x, weights matrix A, and bias vector b
- Compute output y given x” and activation function
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Neural networks

Input Hidden Output
layer layer layer
Input #1 — —
Input #2 — \
.4>.H Output
Input #3 — /
Input #4 — i

e

- Each layer (except first) viewed as a block, and

- Compute x’ given input x, weights matrix A, and bias vector b
- Compute output y given x” and activation function

- Each unit uses a RelU activation function INH10]
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Encoding NNs using MILP

Computation for a NN ReLU block, in two steps:

¥ =A-x+b

y = max(x’, 0)

© J. Marques-Silva 40 [ 45



Encoding NNs using MILP

Computation for a NN ReLU block, in two steps:

¥ =A-x+b

y = max(x’, 0)

Encoding each block:

n

I e =
j=1

zZi=1-y; <0
zZi=0—-5<0

yi=0,s; >0,z €{0,1}

Simpler encodings exist, but not as effective
40 [ 45
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Encoding NNs using MILP

Computation for a NN ReLU block, in two steps:

Modeling ML models
with logic is not only
possible but also simple !

¥ =A-x+b

y = max(x’, 0)

FJ18]

Encoding each block:

n

I e =
j=1

zZi=1-y; <0
zZi=0—-5<0

Yi 20,5, >0,z €{0,1}

Simpler encodings exist, but not as effective
40 [ 45
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Example - encoding a simple NN in MILP

-0.5 Sum RelLU X1 Xo r Y1 | O1

° p N Vi 0 0|-05]01]0

1 0 05 |05 1

0O 105|051

Inputs +] r=X"owx Y1 =max(ry,0) 1 1115 [15] 1

y1 = max(X; + X2 — 0.5,0)
01 = |TE(yl >0, 1())

MILP encoding: Instance: (x,c¢) = ((1,0),1) Checking: x = (0,0)

X1 +x2—05=y; —5s1 1+0-05=05-0 04+0—-05=0-0.5
z71=1->y1 <0 1v05<0 0v0<o0

zZ1=0—>51<0 0v0<0 1v05<0

01 =(y1 >0) 1=(0.5>0) 0=(0>0)

X1,X2,21,01 € {0,1} X1 =1,X2=0,z1 = 0,01 = 1 X1 =0,x2=0,21 =1,0; =0
y1,51 =20 y1 =0.5,51=0 y1 =0,51 =0.5
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Outline - Unit #01

Understanding Intrinsic Interpretability



What is intrinsic interpretability?

- Goal is to deploy /ﬂtel’pretab[e ML models [Rud19, Mol20, Rect 22, Rud22
- E.g. Decision trees, decision lists, decision sets, etc.

- The explanation is the model itself, because it is interpretable
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What is intrinsic interpretability?

- Goal is to deploy /ﬂtel’pretab[e ML models [Rud19, Mol20, Rect 22, Rud22
- E.g. Decision trees, decision lists, decision sets, etc.

- The explanation is the model itself, because it is interpretable

- But: definition of interpretability is rather subjective... (Lipis]
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What is intrinsic interpretability?

- Goal is to deploy /ﬂtel’pretab[e ML models [Rud19, Mol20, Rect 22, Rud22
- E.g. Decision trees, decision lists, decision sets, etc.

- The explanation is the model itself, because it is interpretable

- But: definition of interpretability is rather subjective... (Lipis]
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What is intrinsic interpretability?

- Goal is to deploy /ﬂtel’pretab[e ML models [Rud19, Mol20, Rect 22, Rud22
- E.g. Decision trees, decision lists, decision sets, etc.

- The explanation is the model itself, because it is interpretable

- But: definition of interpretability is rather subjective... (Lipis]
MQDX - What is an explanation for ((0,0,1),1)?
/
[o]
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What is intrinsic interpretability?

- Goal is to deploy /ﬂtel’pretab[e ML models [Rud19, Mol20, Rect 22, Rud22
- E.g. Decision trees, decision lists, decision sets, etc.

- The explanation is the model itself, because it is interpretable

- But: definition of interpretability is rather subjective... (Lip8)
W/QDX - What is an explanation for ((0,0,1),1)?
@“ - Clearly, IF =x3 A —=X2 A X3 THEN k(x) =1
/ 0 1
of
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What is intrinsic interpretability?

- Goal is to deploy /ﬂtel’pretab[e ML models [Rud19, Mol20, Rect 22, Rud22
- E.g. Decision trees, decision lists, decision sets, etc.

- The explanation is the model itself, because it is interpretable

- But: definition of interpretability is rather subjective... (Lipis]
MQDX - What is an explanation for ((0,0,1),1)?
@*’ - Clearly, IF =x; A —Xa A X3 THEN k(x) = 1
10 -+ {=x1, —X2,Xx3} or {1,2,3} is an explanation
o

© J, Marques-Silva 42 | 45



What is intrinsic interpretability?

- Goal is to deploy /ﬂtel’pretab[e ML models [Rud19, Mol20, Rect 22, Rud22
- E.g. Decision trees, decision lists, decision sets, etc.

- The explanation is the model itself, because it is interpretable

- But: definition of interpretability is rather subjective... (Lipis]
MQDX - What is an explanation for ((0,0,1),1)?
@*’ - Clearly, IF =x; A —Xa A X3 THEN k(x) = 1
10 - {=x1, =X2,X3} or {1,2,3} is an explanation  Really?
o
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What is intrinsic interpretability?

- Goal is to deploy /ﬂtel’pretab[e ML models [Rud19, Mol20, Rect 22, Rud22
- E.g. Decision trees, decision lists, decision sets, etc.

- The explanation is the model itself, because it is interpretable

- But: definition of interpretability is rather subjective... (Lip8)
MQDX - What is an explanation for ((0,0,1),1)?
@*’ - Clearly, IF =x; A —Xa A X3 THEN k(x) = 1
17 -+ {—x1, =X2,Xx3} or {1,2,3} is a weak explanation!
- Itis the case that: IF —x; A x3 THEN x(x) =1
057N .. {1,3} is also sufficient for the prediction!
[of
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What is intrinsic interpretability?

- Goal is to deploy /ﬂtel’pretab[e ML models [Rud19, Mol20, Rect 22, Rud22
- E.g. Decision trees, decision lists, decision sets, etc.

- The explanation is the model itself, because it is interpretable

- But: definition of interpretability is rather subjective... (Lipis]

MQDX - What is an explanation for ((0,0,1),1)?
@*’ - Clearly, IF =x; A —Xa A X3 THEN k(x) = 1
10 -+ {—x1, =X2,Xx3} or {1,2,3} is a weak explanation!
- Itis the case that: IF —x; A x3 THEN x(x) =1
% N .. {1,3} is also sufficient for the prediction!
@ - {1,3} is easier to grasp; also, it is irreducible
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Are interpretable models really interpretable? - DTs

- Case of optimal decision tree (DT) HRs19]
- Explanation for (0,0, 1,0, 1), with prediction 1?

© ). Marques-Silva 43 [ 45



Are interpretable models really interpretable? - DTs

- Case of optimal decision tree (DT) HRs19]
- Explanation for (0,0, 1,0, 1), with prediction 1?
- Clearly, IF =x1 A =X2 A X3 A —Xa A X5 THEN k(x) =1
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Are interpretable models really interpretable? - DTs

- Case of optimal decision tree (DT) HRs19]
- Explanation for (0,0, 1,0, 1), with prediction 1?
- Clearly, IF —=x1 A =X2 A X3 A —Xa A X5 THEN k(x) =1
- But, x1, X2, X4 are irrelevant for the prediction:
X3 X5 X1 X2 Xa H(X)

1000

PR R R R R R
N Y
[ e = e
m R, O ORr KL O
O R OFr O R
e  E G
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Are interpretable models really interpretable? - DTs

© J. Marques-Silva

- Case of optimal decision tree (DT) HRs19]
- Explanation for (0,0, 1,0, 1), with prediction 1?
- Clearly, IF —=x1 A =X2 A X3 A —Xa A X5 THEN k(x) =1
- But, X1, X2, X4 are irrelevant for the prediction:
X3 X5 X1 X2 Xa H(X)

1000

PR R R R R R
N Y
[ e = e
m R, O ORr KL O
O R OFr O R
e  E G

- fixing {3, 5} suffices for the prediction
Compare with {1, 2, 3,4, 5}...

43 [ 45



Are interpretable models really interpretable? - DLs (512

Ry : IF (X1 A X3) THEN  k(x)=1
Ro : ELSEIF (X2 A Xa A Xg) THEN k(x)=0
R3 : ELSE IF (—‘Xl A X;;) THEN ,‘i(x) =1
Ry : ELSE IF (Xa A X6) THEN  k(x) =0
Rs : ELSEIF  (—=Xx1 A —x3) THEN k(x)=1
Re : ELSE IF (X6) THEN  k(x) =0
Rper : ELSE Kk(x) =1

- Instance: ((0,1,0,1,0,1),0), i.e. rule Ry fires
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Are interpretable models really interpretable? - DLs (512

Ry : IF (X1 A X3) THEN  k(x)=1
Ro : ELSEIF (X2 A Xa A Xg) THEN k(x)=0
R3 : ELSE IF (—‘Xl A X;;) THEN ,‘i(x) =1
Ry : ELSE IF (Xa A X6) THEN  k(x) =0
Rs : ELSEIF  (—=Xx1 A —x3) THEN k(x)=1
Re : ELSE IF (X6) THEN  k(x) =0
Rper : ELSE Kk(x) =1

- Instance: ((0,1,0,1,0,1),0), i.e. rule Ry fires

- What is an explanation for the prediction?
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Are interpretable models really interpretable? - DLs (512

Ry : IF (X1 A X3) THEN  k(x)=1
Ro : ELSEIF (X2 A Xa A Xg) THEN k(x)=0
R3 : ELSE IF (—‘Xl A X;;) THEN ,‘i(x) =1
Ry : ELSE IF (Xa A X6) THEN  k(x) =0
Rs : ELSEIF  (—=Xx1 A —x3) THEN k(x)=1
Re : ELSE IF (X6) THEN  k(x) =0
Rper : ELSE Kk(x) =1

- Instance: ((0,1,0,1,0,1),0), i.e. rule Ry fires
- What is an explanation for the prediction?
- Fixing {3,4,6} suffices for the prediction
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Are interpretable models really interpretable? - DLs (512

Ry : IF (X1 A X3) THEN  k(x)=1
Ro : ELSEIF (X2 A Xa A Xg) THEN k(x)=0
R3 : ELSE IF (—‘Xl A X;;) THEN ,‘i(x) =1
Ry : ELSE IF (Xa A X6) THEN  k(x) =0
Rs : ELSEIF  (—=Xx1 A —x3) THEN k(x)=1
Re : ELSE IF (X6) THEN  k(x) =0
Rper : ELSE Kk(x) =1

- Instance: ((0,1,0,1,0,1),0), i.e. rule Ry fires
- What is an explanation for the prediction?

- Fixing {3,4,6} suffices for the prediction
- Why?
- We need 3 (or 1) so that Ry cannot fire
- With 3, we do not need 2, since with 4 and 6 fixed, then R4 is guaranteed to fire
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Are interpretable models really interpretable? - DLs (512

Ry : IF (X1 A X3) THEN  k(x)=1
Ro : ELSEIF (X2 A Xa A Xg) THEN k(x)=0
R3 : ELSE IF (—‘Xl A X;;) THEN ,‘i(x) =1
Ry : ELSE IF (Xa A X6) THEN  k(x) =0
Rs : ELSEIF  (—=Xx1 A —x3) THEN k(x)=1
Re : ELSE IF (X6) THEN  k(x) =0
Rper : ELSE Kk(x) =1

- Instance: ((0,1,0,1,0,1),0), i.e. rule Ry fires
- What is an explanation for the prediction?
- Fixing {3,4,6} suffices for the prediction

- Why?

- We need 3 (or 1) so that Ry cannot fire
- With 3, we do not need 2, since with 4 and 6 fixed, then Ry is guaranteed to fire

- Some questions:
- Would average human decision maker be able to understand the irreducible set {3, 4, 6}7?
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Are interpretable models really interpretable? - DLs (512

Ry : IF (X1 A X3) THEN  k(x)=1
Ro : ELSEIF (X2 A Xa A Xg) THEN k(x)=0
R3 : ELSE IF (—‘Xl A X;;) THEN ,‘i(x) =1
Ry : ELSE IF (Xa A X6) THEN  k(x) =0
Rs : ELSEIF  (—=Xx1 A —x3) THEN k(x)=1
Re : ELSE IF (X6) THEN  k(x) =0
Rper : ELSE Kk(x) =1

- Instance: ((0,1,0,1,0,1),0), i.e. rule Ry fires
- What is an explanation for the prediction?

- Fixing {3,4,6} suffices for the prediction
- Why?
- We need 3 (or 1) so that Ry cannot fire
- With 3, we do not need 2, since with 4 and 6 fixed, then Ry is guaranteed to fire
- Some questions:

- Would average human decision maker be able to understand the irreducible set {3, 4, 6}7?
- Would he/she be able to compute the set {3, 4, 6}, by manual inspection?
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Questions?
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BLACK BOX MODELS

My ML MODEL..

IS LKE A
(BLACK) BOX OF
CHOCOLATES.

BUT WHY?
I NEVER KNOW WHAT

"M GONNa GET.

01686 & hiip Yemxioedt!

Marques-Silva
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