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My team’s recent & not so recent work...
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SAT Solving
(Clause learning,
UIPs, ...)

Quantification & CEGAR
(QBF, QMaxSAT, etc.)

Function Synthesis
(Min DNF cover, ...)

Inconsistency
(MUS, MCS, etc.)

Certification of
Reasoners

Model Checking,
Synthesizing Invariants,
ATPG, Reconfiguration

Optimization
(MaxSAT, MinSAT,
PBO, WBO, etc.)

Propositional Encodings,
Backbones, Autarkies,
Minimal models, etc.

Enumeration
(MUSes, MCSes, etc.)

Proof Systems
(DRMaxSAT, etc.)

Primes, Abduction,
DLs, etc.




New area of research, since circa 2018...
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Enhancing ML by
exploiting AR & FM !

Proof Systems
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Recent & ongoing ML successes
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Can we trust ML models?

- Accuracy in training/test data

- Complex ML models are brittle

- Extensive work on finding adversarial examples
- Extensive work on learning robust ML models

- More recently, complex ML models hallucinate

One must be able to validate operation of ML model, with rigor
- Explanations; robustness; verification
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ML models are brittle — adversarial examples

Goodfellow et al., ICLR'15
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ML models are brittle — adversarial examples

+.007 x

Goodfellow et al., ICLR'15

Eykholt et al’18 Aung et al’17

© J. Marques-Silva 6 /215



ML models are brittle — adversarial examples

Eykholt et al’18 Aung et al’17
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Adversarial examples can be very problematic

Original image Adversarial noise Adversarial example

Dermatoscopic image of a benign Perturbation computed Combined image of nevus and
melanocytic nevus, along with the by a common adversarial attack perturbation and the
diagnostic probability computed attack technique. diagnostic probabilities from
by a deep neural network. the same deep neural network.

[ | Benign | Benign
| Malignant I | Malignant

Model confidence

Model confidence
Finlayson et al, Nature 2019
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eXplainable Al (XAl)

Al System

—————————,

- Complex ML models are opaque
- Goal of XAl: to help humans understand ML models

- Many questions to address:
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- Complex ML models are opaque
- Goal of XAl: to help humans understand ML models

- Many questions to address:
- Properties of explanations

- How to be human understandable?

- How to answer Why? questions? l.e. Why the prediction?

- How to answer Why Not? questions? I.e. Why not some other prediction?
- Which guarantees of rigor?
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- Complex ML models are opaque
- Goal of XAl: to help humans understand ML models

- Many questions to address:

- Properties of explanations
- How to be human understandable?
- How to answer Why? questions? l.e. Why the prediction?
- How to answer Why Not? questions? I.e. Why not some other prediction?
- Which guarantees of rigor?

- Other queries: enumeration, membership, preferences, etc.

- Links with robustness, fairness, model learning
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nce of XAl

REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL
of 27 April 2016

on the protection of natural persons with regard to the processing of personal data and on the free
movement of such data, and repealing Directive 95/46[EC (General Data Protection Regulation)

(Text with EEA relevance)

- : I . - Proposal for a
European Union regulations on algorithmic decision-making
and a “right to explanation” REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL
Bryce Goodman,'* Seth Flaxman,” LAYING DOWN HARMONISED RULES ON ARTIFICIAL INTELLIGENCE
(ARTIFICIAL INTELLIGENCE ACT) AND AMENDING CERTAIN UNION
LEGISLATIVE ACTS

B We summarize the potential impact
that the European Union’s new General - mgm _m =
pat poection resuiaiion it e - | EXplainable Artificial Intelligence (XAI)
the routine use of machine-learning
algorithms. Slated to take effect as law
across the European Union in 2018, it|

will place restrictions on automated
individual decision making (that is,
algorithms that make decisions based
on user-level predictors) that “signifi-

cantly affect” users. When put_into EXP[MNAE[EAHTIHE\AL INTElll[iENEE
practice, the law may also effectively cre-

ate a right to explanation, whereby a T T T T
5 FV17

user can ask for an explanation of an Fris  Fvis  Fv20  Frat

algorithmic decision that significantly

> Reports and studies >

affects them. We argue that while this David Gunning

law may pose large challenges for indus-

try, it highlights opportunities for com- DARPA/ 120

puter scientists to take the lead in Program Update November 2017

designing algorithms and evaluation
frameworks that avoid discrimination
and enable explanation.

Ethics guidelines for trustworthy Al

2
a
3
g
a
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XAl & EU guidelines (Al HLEG)

© J. Marques-Silva

Search

European Commission > Strategy > Digital Single Market > Reports and studies >

Digital Single Market

REPORT / STUDY | 8 April 2019

Ethics guidelines for trustworthy Al

Following the publication of the draft ethics guidelines in
December 2018 to which more than 500 comments were
received, the independent expert group presents today their

ethics guidelines for trustworthy artificial intelligence.

About Artificial
intelligence

| Blog posts

| News
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XAl & the principle of explicability

European Commission > Strategy > Digital Single Market > Reports 204

Digital Single Market
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\e
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<inp 2\ 3 cation W intelligence
reaui’® et O e 4’ :\t'\s o™ onts were
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‘\;\;x‘r\e co“seq .1 trustworthy artificial intelligence. | N
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& thousands of recent papers!
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XAl for high-risk & safety-critical applications

High-risk (EU regulations):
- Law enforcement
- Management and operation of critical infrastructure
- Biometric identification and categorization of people

[EU21b, EU21a]

UNACCEPTABLE RISK

‘HIGH RISK

LIMITED RISK

MINIMAL RISK

RISK'IN Al SYSTEMS
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o .  portant
High-risk (EU regulations): <o of ngoa £ e
A
- Law enforcement e e"e‘{: 23y and cou\(\ e
- Management and operation of critical infr*'“‘imefmoﬁ e{{ecﬁ‘]e Y.‘Imoceﬂce{ﬁnwaﬁ“t’ E RISK

- Biometric identification and r~* er- T L i 10 yon © enty e 2T
O g WAL gt T oo sufﬁcleﬂk\ ot 2021

.o DO '
‘ge\:‘mse 1 2ot uch
et {s e 50 e y = ume
Py as WO pastict™” © ed- MINIMAL RISK

\
Ao 3, ® c\\'ﬁﬂe’ﬁ
bam??f:a\;\e and 4o RISK IN Al SYSTEMS
\a

© J. Marques-Silva 10 / 215



XAl for high-risk & safety-critical applications

High-risk (EU regulations):
- Law enforcement
- Management and operation of critical infrastructure
- Biometric identification and categorization of people

[EU21b, EU21a]

UNACCEPTABLE RISK

‘HIGH RISK

- And safety-critical: LIMITED RISK

- Self-driving cars
- Autonomous vehicles
- Autonomous aereal devices HELLETIE

MINIMAL RISK
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XAl for high-risk & safety-critical applications

High-risk (EU regulations):
- Law enforcement
- Management and operation of critical infrastructure
- Biometric identification and categorization of people

[EU21b, EU21a]

UNACCEPTABLE RISK

‘HIGH RISK

- And safety-critical:
- Self-driving cars
- Autonomous vehicles
- Autonomous aereal devices RISKIN Al SYSTEMS

Eﬁﬁ%ﬂlﬁm machine intell igence

Stop explaining black box machine learning
models for high stakes decisions and use
interpretable models instead

Cynthia Rudin®

LIMITED RISK

MINIMAL RISK

May 2019
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XAl for high-risk & safety-critical applications

High-risk (EU regulations):
- Law enforcement
- Management and operation of critical infrastructure

[EU21b, EU21a]

UNACCEPTABLE RISK

- Biometric identification and categorization of people

‘HIGH RISK

- And safety-critical:
- Self-driving cars
- Autonomous vehicles
- Autonomous aereal devices RISKIN Al SYSTEMS

LIMITED RISK

MINIMAL RISK

Correctness of explanations is paramount! [N machine intelligence

- To build trust

- To help debug Al systems Stop explaining black box machine learning
- To prevent (catastrophic) accidents models for high stakes decisions and use
interpretable models instead

Cynthia Rudin®

© ). Marques-Silva

May 2019
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XAl for high-risk & safety-critical applications

High-risk (EU regulations): (uz1h, EU21a
- Law enforcement
- Management and operation of critical infrastructure
- Biometric identification and categorization of people

UNACCEPTABLE RISK

- And safety-critical: LIMITED RISK

- Self-driving cars
- Autonomous vehicles
- Autonomous aereal devices

MINIMAL RISK

RISK'IN Al SYSTEMS

Correctness of explanations is paramount! Main motivation

- To build trust for our work!
- To help debug Al systems (since 2019)
- To prevent (catastrophic) accidents

© ). Marques-Silva
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Can we trust (non-symbolic) XAI? - some questions

- Many proposed solutions for XAl

- Most, and the better-known, are heuristic
- l.e. no guarantees of rigor

- Many proposed uses of XAl
- Regular complaints about issues with existing (heuristic) methods of XAl
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Can we trust (non-symbolic) XAI? - some questions

- Many proposed solutions for XAl

- Most, and the better-known, are heuristic
- l.e. no guarantees of rigor

- Many proposed uses of XAl
- Regular complaints about issues with existing (heuristic) methods of XAl

-+ Q: Can heuristic XAl be trusted in high-risk and/or safety-critical domains?

- Q: Can we validate results of heuristic XAlI?
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What have we been up to? 1. Created the field of symbolic (formal) XAl - |

- Rigorous, logic-based, definitions of explanations

- Relationship with abduction - abductive explanations (AXps)
- Contrastive explanations (CXps) [Mil19]

- Duality between AXps & CXps

- AXps are MHSes of CXps and vice-versa

© J. Marques-Silva 12/ 215
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- Duality between AXps & CXps

- AXps are MHSes of CXps and vice-versa
- Tractability results

- Devised efficient poly-time algorithms
- Intractability results

- Devised efficient methods
- Links with automated reasoners

- Wealth of computational problems related with AXps/CXps
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What have we been up to? 1. Created the field of symbolic (formal) XAl - |

- Rigorous, logic-based, definitions of explanations

- Relationship with abduction - abductive explanations (AXps)

Computing one XP

- Contrastive explanations (CXps) [Mil19]
- Duality between AXps & CXps E

- AXps are MHSes of CXps and vice-versa E% = ()
- Tractability results é@‘ - = 5

- Devised efficient poly-time algorithms é -------------------------------------------------------------------------
- Intractability results %

- Devised efficient methods § E:)

- Links with automated reasoners *
- Wealth of computational problems related with AXps/CXps

Effective Ineffective

Practical scalability (effectiveness)
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What have we been up to? 1. Created the field of symbolic (formal) XAl - Il

Mar24]

Efficient solutions Input distrib. New topics
XP definitions Tractability Queries Prob. XPs
2019 2020 2021 2022 2023
i RFs, DLs, BTs, etc.
e O Ll Inp. constr.

DTs, NBCs, etc. DTs, NBCs, etc.

Member, Enum., etc. Distil,, etc.
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What have we been up to? 2. Uncovered key myths of non-symbolic XAl - |

[RSG16, LL17, RSG18, Rud19]
LIME “Why Should | Trust You?” SHAP
Explaining the Predictions of Any Classifier A Unified Approach to Interpreting Model
X Predictions X
Marco Tulio Ribeiro Sameer Singh Carlos Guestrin
University of Washington University of Washington University of Washington X
Seattle, WA 98105, USA Seattle, WA 98105, USA Seattle, WA 98105, USA ScottM.Lundberg = Su-In Les )
marcotcr@cs uw.edu sameer@cs uw.edu gueslrin@cs uw.edu Paul G. Allen School of Computer Science Paul G. Allen School of Computer Science
e T T University of Washington Department of Genome Sciences
Seattle, WA 98105 University of Washington
hature lundi@cs , washington, ed Seattle, WA 98105
PERSPECT'VE IIﬁ:;.t‘hiﬂL’ iﬂl(.‘“ig,L’[lCL‘ maifen nahingren ady uulnlea:cn.vauhingtan adu

Stop explaining black box machine IearningX Anchors: High-Precision Model-Agnostic Explanations X

models for high stakes decisions and use Anchor
H H M. Tulio Ribei S Si Carlos Guestri
interpretable models instead Cnventy of Withingon  Univeriyof Califorg. Inine Universiy of Washingion

- . 0 marcotcr@cs.washington.edu sameer@uci.edu guestrin@cs. washington.edu
Cynthia Rudin Intrinsic Interpretability
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What have we been up to? 2. Uncovered key myths of non-symbolic XAl - II

MSH24, HMS24, HM23c]

research and advances

L)

Ghock for
pdates

DO0I:10.1145/3635301 kEy .ins.ights
When the decisions of ML models impact B Shapley values find extensive uses in
people, one should expect explanations to offer expl';in’i'ng machine learning models
the strongest guarantees of rigor. However, the and serve to assign importance to the
most popular XAl approaches offer none. features of the model.

BY JOAO MARQUES-SILVA AND XUANXIANG HUANG ® Shapley values for explainability also
find ever-increasing uses in high-risk

and safety-critical domains, for example,

- = medical diagnosis.
x a I na I I B This article proves that the existing
definition of Shapley values for
explainability can produce misleading

|$ NOt = Game o maton Tegardng 16O uman

decision makers in error.

66 COMMUNICATIONS OF THE ACM | JULY 2024 | VOL.67 | NO.7
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Plan for this course

-+ Lecture 01 - units:
- #01: Foundations

- Lecture 02 - units:

- #02: Principles of symbolic XAl - feature selection
- #03: Tractability in symbolic XAl (& myth of interpretability)

- Lecture 03 — units:

- #04: Intractability in symbolic XAl (& myth of model-agnostic XAl)
- #05: Explainability queries

- Lecture 04 - units:
- #06: Advanced topics

-+ Lecture 05 - units:

- #07: Principles of symbolic XAl - feature attribution (& myth of Shapley values in XAl)
- #08: Conclusions & research directions

© J. Marques-Silva 16 / 215



Unit #01

Foundations



Classification problems

- Set of features F = {1,2,...,m}, each feature i taking values from domain D;
- Features can be categorical, discrete or real-valued

- Feature space: F = II7", D;

- Set of classes K = {cy,...,Ck}

© J. Marques-Silva 17 /215
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Classification problems

- Set of features F = {1,2,...,m}, each feature i taking values from domain D;
- Features can be categorical, discrete or real-valued

- Feature space: F = II7", D;

- Set of classes K = {cy,...,Ck}

- ML model M¢ computes a (non-constant) classification function x : F — K
- Mcisatuple (F,F,K, k)

Instance (v, c) for point v = (vy,...,Vy) € [, with prediction ¢ = k(v), ce K
- Goal: to compute explanations for (v, c)
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Regression problems

- For regression problems:

- Codomain: V
- Regression function: p: F — V (non-constant)
- ML model: Mg isatuple (F,F,V,p)
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Regression problems

- For regression problems:

- Codomain: V
- Regression function: p: F — V (non-constant)
- ML model: Mg isatuple (F,F,V,p)

- General ML model:

- T: range of possible predictions
- Non-constant function 7 : F — T
- ML model: M is atuple (F,F,T,7)
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Regression pro

- For regression problems:

- Codomain: V
- Regression function: p: F — V (non-constant)
- ML model: Mg isatuple (F,F,V,p)

- General ML model:

- T: range of possible predictions
- Non-constant function 7 : F — T
- ML model: M is atuple (F,F,T,7)

- Instance: (v,q),qeT
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Example ML models - classification - decision trees (DTs)

€ {26..MxA}
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Example ML models - classification - decision trees (DTs)

€ {26..MxA}

- Literals in DTs can use = or e
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Example ML models - regression - regression trees (RTs)

- Literals in RTs can use = or e

© J. Marques-Silva 20/ 215



Example ML models - classification - rules

- Ordered rules - decision lists (DLs):

IF X1 A Xg  THEN predictY
ELSEIF —xy v x3 THEN predict N
ELSE THEN predictY

.F:{l,2q3}D1:D2:Dg:{0,1},K:{Y,N}

© J. Marques-Silva 21/ 215



Example ML models - classification - rules

- Ordered rules - decision lists (DLs):

IF X1 A Xg  THEN predictY
ELSEIF —xy v x3 THEN predict N
ELSE THEN predictY

.F:{l,2q3}D1:D2:Dg:{0,1},K:{Y,N}

- Unordered rules - decision sets (DSs):

IF X1 +x2 >0 THEN predict
IF X3 +X2 <0 THEN predict &
F:{l,Q};DlzpzzR;’C:{,E‘}

- Issues of DSs: overlap; incomplete coverage

© J. Marques-Silva 21/ 215



Example ML models - classification - random forests (RFs)

e {0}

e {0,1} ‘ € {2} e {0}

5 6

- For each input, each DT picks a class

- Result uses majority or weighted voting of the DTs

© J. Marques-Silva 22/ 215



Example ML models - classification — neural networks (NNs)

-0.5
( } +]
Inputs +] r = Z/h:o wix; Y1 = max(rg,0)

Y1 = max(X; + X2 — 0.5,0)
01 = |TE(y1 > 0, 10)
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Outline - Unit #01

Basics of (non-symbolic) XAl



Basics of (non-symbolic) XAl - more detail later

- Feature attribution:
- LIME RSG16]
- SHAP 7]
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Basics of (non-symbolic) XAl - more detail later

- Feature attribution: assign relative importance to features
- LIME RSG16]
- SHAP 7]

- Feature selection: select set of features
- Anchors [RsG18]

- Hybrid approaches:
- Saliency maps ———

- Intrinsic interpretability: [Mol20, Rud1
- DTs, DLs, ...
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Basics of (non-symbolic) XAl - more detail later

- Feature attribution: assign relative importance to features
- LIME RSG16]
- SHAP 7]

- Feature selection: select set of features
- Anchors [RsG18]

- Hybrid approaches:
- Saliency maps ———

- Intrinsic interpretability: the (interpretable) model is the explanation [Mol20, Rud1
- DTs, DLs, ...
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Some examples

- Anchors: RsG1]
IF Country = United-States AND Capital Loss = Low
AND Race = White AND Relationship = Husband
AND Married AND 28 < Age < 37
AND Sex = Male AND High School grad
AND Occupation = Blue-Collar
THEN PREDICT Salary > $50K

© J. Marques-Silva 25/ 215



Some examples

- Anchors:
IF Country = United-States AND Capital Loss = Low
AND Race = White AND Relationship = Husband
AND Married AND 28 < Age < 37
AND Sex = Male AND High School grad
AND Occupation = Blue-Collar
THEN PREDICT Salary > $50K

- SHAP: [LL17, LECT20]
Mortality model

Global feature importance Local explanation summary High
Age
Sex (F/M)
Systolic blood presssure
White blood cells
BMI
Sedimentation rate
Blood albumin
Alkaline phosphatase
Total cholesterol
Physical activity
Haematocrit

onjeA ainjeay

Uric acid

Red blood cells
Albumin present in urine
Blood protein

[rlfITfTTY‘:I

o

[ 02 04 06 08 1.0 -20 -15 -1.0 -05 0.5 1.0
Mean(|SHAP value|) SHAP value (impact on model output)
(log(relative risk of mortality))
© J. Marques-Silva 25/ 215
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Outline - Unit #01

Motivation for Explanations



What explanations do we seek? l.e. how to answer Why? questions?

- How to answer a Why? question? l.e. “ Why (the prediction)? ”
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- Our answer to a Why? question is a rule:

IF <COND> THEN k(x)=c
Explanation: set of (or just ) in <COND>; irreducibility matters!
- <COND> is for the prediction

- Obs: rules are used in tools like Anchors
- An anchor is a “high-precision rule”

- We seek a rigorous definition of rules for answering Why? questions such that,
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What explanations do we seek? l.e. how to answer Why? questions?

- How to answer a Why? question? l.e. “ Why (the prediction)? ”
- Our answer to a Why? question is a rule:

IF <COND> THEN k(x)=c

Explanation: set of literals (or just features) in <COND>; irreducibility matters!
- <COND> is sufficient for the prediction

- Obs: rules are used in tools like Anchors
- An anchor is a “high-precision rule”

- We seek a rigorous definition of rules for answering Why? questions such that,

- <COND> is sufficient for the prediction
- <COND> is irreducible

- We also seek the algorithms for the rigorous computation of such rules

© J. Marques-Silva
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A decision list example

IF —X1 A Xg THEN predictY
ELSE IF —x; A Xx3 THEN predictY
ELSEIF x4 AXs THEN predict N
ELSE THEN predictyY
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A decision list example

IF —X1 A Xg THEN predictY
ELSE IF —x; A Xx3 THEN predictY
ELSEIF x4 AXs THEN predict N
ELSE THEN predictyY

- Explanation for why x(1,1,1,1,1) = N?
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A decision list example

IF —X1 A Xg THEN predictY
ELSE IF —x; A Xx3 THEN predictY
ELSEIF x4 AXs THEN predict N
ELSE THEN predictyY

- Explanation for why x(1,1,1,1,1) = N?
- Given x = (X1, X2, X3, X4, X5),
IF(x1 =1) A (Xa=1) A (xs = 1) THEN x(x) = N
- le. {x1 =1,x4 = 1,x5 = 1} suffice for DL to predict N
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A decision list example

IF —X1 A Xg THEN predictY
ELSE IF —x; A Xx3 THEN predictY
ELSEIF x4 AXs THEN predict N
ELSE THEN predictyY

- Explanation for why x(1,1,1,1,1) = N?
- Givenx = (X1,X27X37X47X5)1
IF(x1 =1) A (Xa=1) A (xs = 1) THEN x(x) = N
- le. {x1 =1,x4 = 1,x5 = 1} suffice for DL to predict N
- Explanation for why (1,0,0,0,0) = Y?
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A decision list example

IF —X1 A Xg THEN predictY
ELSE IF —x; A Xx3 THEN predictY
ELSEIF x4 AXs THEN predict N
ELSE THEN predictyY

- Explanation for why x(1,1,1,1,1) = N?
- Given x = (X1, X2, X3, X4, X5),
IF(x1 =1) A (Xa=1) A (xs = 1) THEN x(x) = N
- le. {x1 =1,x4 = 1,x5 = 1} suffice for DL to predict N
- Explanation for why «(1,0,0,0,0) = Y?
- Given x = (X1, X2, X3, X4, X5),
IF (x4 = 0) THEN k(x) = Y
- le. {xa = 0} suffices for DL to predict Y
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A decision list example

IF —X1 A Xg THEN predictY
ELSE IF —x; A Xx3 THEN predictY
ELSEIF x4 AXs THEN predict N
ELSE THEN predictyY

- Explanation for why x(1,1,1,1,1) = N?
- Given x = (X1, X2, X3, X4, X5),
IF(x1 =1) A (Xa=1) A (xs = 1) THEN x(x) = N
- le. {x1 =1,x4 = 1,x5 = 1} suffice for DL to predict N
- Explanation for why «(1,0,0,0,0) = Y?
- Given x = (X1, X2, X3, X4, X5),
IF (x4 = 0) THEN k(x) = Y
- le. {xa = 0} suffices for DL to predict Y
- Given x = (X1, X2, X3, X4, X5),
IF (X5 = 0) THEN k(x) = Y
- le. {xs = 0} also suffices for DL to predict Y

© J. Marques-Silva 27 [ 215
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A decision tree example

>
i
>
M)
=
9
>
s

Na¥

- Explanation for why x(0,0,0,0) = 1?
- Given x = (X1, X2, X3, X4),
IF (x1 = 0) A (X2 = 0) THEN k(x) =1
- le. {x1 = 0,x2 = 0} suffice for DT to
predict 1

PP PP R,PE R P,PP,P 0000000 O
FRP PP O0OO0O0O0ORRLRRLREOOOO
PP O0OO0OFRRPOOR P OOR KL OO
FPOPRrOFROROFROROROR O
oooooooor—\n—xpor—\n—\pr—\’i\
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A decision tree example
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>
s

Na¥

- Explanation for why x(0,0,0,0) = 1?
- Given x = (X1, X2, X3, X4),
IF (x1 = 0) A (X2 = 0) THEN k(x) =1
- le. {x1 = 0,x2 = 0} suffice for DT to
predict 1

- Explanation for why x(1,1,1,1) = 0?

PR PP PP PP, O0OO0O0O0O0O0OO
PP PP OO0CO0OORRRLRERLOOOO
PP OORRPOORRPROOR KL OO
P ORPORORORLRORORORO
oooooooor—\n—xpor—xn—\pr—\’i\
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A decision tree example

X1 X2 X3 X4 K(X)

0000 1

- Explanation for why (0, 0,0,0) = 1? oL

, 0010 1

- Given x = (X1, X2, X3, X4), 00 11 1

IF (x1 = 0) A (X2 = 0) THEN x(x) =1 0100 0

- le. {x; = 0,x2 = 0} suffice for DT to 0101 1

. 0110 1

predict 1 DA

1000 0

- Explanation for why x(1,1,1,1) = 0? Lo e a o

. 1010 0

- Given x = (X1, X2, X3, X4), 1011 0

0 IF (x1 = 1) THEN k(x) = 0 1100 0
- le. {x; = 1} suffices for DT to predict 0 11010
: 1110 0
1111 0
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X1 Xo X3 X4 T1 T2 T3 h(X)
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00 00O NNN

0001 NYN

0 01 0ONNN

001 1 NNN
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01 01 NYY
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- Explanation for why (1,0,0, 1)

N
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Y

1 00 0O NNN

100 1 N Y N

1 01 0NNY
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A random forest example (iws21)
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- Explanation for why «(1,0,0,1) = N?
- Given x = (X1, X2,X3,X4), IF (X2 = 0) THEN x(x) = N
- le. {xo = 0} suffices for DT to predict N

FRP PR, R R PP, O0OO0O0O0O0OCOO
PP PP O0OO0O0OO0OR,RRLRRPL,REL,OOOO

NP P O0OOR R OO, R OOR KL OO

FOPRPOROROROROROR O

<< <=<zZZZZ2Z2Z2Z2Z2Z2z2=22Z=

zZz<zZzzZzzZz<zZzzZzzZz<zZzzZzz2<2

<< <<=<=<ZZZZ2Z2<=<zZ2ZzZ2Z2Z|5
< <<=<zZZZZZ2Z2<ZZ2Z2==
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A random forest example (iws21)

X
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- Explanation for why «(1,0,0,1) = N?
- Given x = (X1, X2,X3,X4), IF (X2 = 0) THEN x(x) = N
- le. {xo = 0} suffices for DT to predict N

- Explanation for why x(1,1,1,1) = Y?

PR R PP PP PR,OO0OO0O0OOOO
PP PP O0OO0OO0OORRPRRE,ELOOOO
PP OORRPOORRPRPROOR R, OO
PORrRrOROROROROROLR O
< < <K <K<KZ2Z2Z2222Z2222222:=2
ZZ2<Z2Z2Z2<Z2Z2Z2<Z2Z22<22
< < <K<K <K<K <KZ2Z2Z22<<Z2Z2222|:
< < <K <KZ2Z22222<zZ22222
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A random forest example (iws21)

X1 Xog Xz Xq4 Ty To T3 h(X)
000 O0NNN N
000 1NYN N
001 0NNN N
001 1NNN N
01 00NNY N
010 1NYY Y
. 01 10NNN N
- Explanation for why «(1,0,0,1) = N? 01 11NNN N
- Given x = (X1,X2,X3,X4), IF (x2 = 0) THEN s(x) = N 1000NNN N
- le. {xo = 0} suffices for DT to predict N oo LN Y NN
4 101 0NNY N
- Explanation for why x(1,1,1,1) = Y? 101 1 NNY N
. Gi — _ _ _ 1100YNY Y
Given x = (X1,X2,X3,X4), IF (X1 = 1) A (X2 =1) THEN s(x) =Y L1 01 yv vy v
- le. {x1 =1,x2 = 1} suffice for DT to predict Y 1110YNY Y
111 1YNY Y
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A [Ims21]

X1 Xo X3 X4 T, To T3 h(X)

0000NNN N

000 1NYN N

001 0NNN N

001 1 NNN N

01 00NNY N

01 01NYY Y

. 01 10NNN N

- Explanation for why «(1,0,0,1) = N? 011 1NNN N
- Given x = (X1,X2,X3,X4), IF (X2 = 0) THEN x(x) = N 1000NNN N

- le. {xo = 0} suffices for DT to predict N oo LN Y NN

4 101 0NNY N

- Explanation for why x(1,1,1,1) = Y? 101 1 NNY N
. Gi — _ _ _ 1100 Y NY Y
Given x = (X1,X2,X3,X4), IF (X1 = 1) A (X2 =1) THEN s(x) =Y L1011 Y vy v

- le. {x1 =1,x2 = 1} suffice for DT to predict Y 1110YNY VY

- Explanation for why x(0,1,1,1) = N? 11 11YNYY
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A [Ims21]

X1 Xo X3 X4 T, To T3 h(X)

0000NNN N

000 1NYN N

001 0NNN N

001 1 NNN N

01 00NNY N

01 01NYY Y

. 01 10NNN N

- Explanation for why «(1,0,0,1) = N? 01 11NNN N
- Given x = (X1,X2,X3,X4), IF (X2 = 0) THEN x(x) = N 1000NNN N

- le. {xo = 0} suffices for DT to predict N oo LN Y NN

4 101 0NNY N

- Explanation for why x(1,1,1,1) = Y? 101 1 NNY N
. Gi — _ _ _ 1100 Y NY Y
Given x = (X1,X2,X3,X4), IF (X1 = 1) A (X2 =1) THEN s(x) =Y L1011 Y vy v

- le. {x1 =1,x2 = 1} suffice for DT to predict Y 1110YNY VY

- Explanation for why x(0,1,1,1) = N? 11 11YNYY

- Given x = (X1, X2,X3,X4), IF (X1 =0) A (X2 =1) A (X3 = 1) THEN s(x) = N
- le. {x1 =0,x2 = 1,x3 = 1} suffices for DT to predict N
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A neural network example

-0.5 sum ReLU X1 Xe N KX
» n Vi 0 0 -05 0 0
0 1 05 05 1
1 0 05 05 1
|npUtS +] rh = Z/.n:(] wiX; Y1 = max(rh ()) 1 1 1.5 15 1

V1= IIlElX(X] + X2 — 05. 0)
01 = ITE(yl > 0, 10)

© J. Marques-Silva 30/ 215



A neural network example

-0.5 sum ReLU X1 Xe N KX
» n Vi 0 0 -05 0 0
0 1 05 05 1
1 0 05 05 1
|npUtS +] rh = Z/.n:(] wiX; Y1 = max(rh ()) 1 1 15 15 1

V1= IIlElX(X] + X2 — 05. 0)
01 = ITE(yl > 0, 10)

- Explanation for why x(1,1) =17
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A neural network example

-0.5 sum ReLU X1 Xe N KX
» n Vi 0 0 -05 0 0
0 1 05 05 1
1 0 05 05 1
|npUtS +] rh = Z/.n:(] wiX; Y1 = max(rh ()) 1 1 15 15 1

V1= IIlElX(X] + X2 — 05. 0)
01 = ITE(yl > 0, 10)

- Explanation for why x(1,1) =17
- Given x = (X1,X2), IF (x1 = 1) THEN s(x) =1
- le. {x1 = 1} suffices for NN to predict 1
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A neural network example

-0.5 sum ReLU X1 Xe N KX
» n Vi 0 0 -05 0 0
0 1 05 05 1
1 0 05 05 1
|npUtS +] rh = Z/.n:(] wiX; Y1 = max(rh ()) 1 1 15 15 1

V1= IIlElX(X] + X2 — 05, 0)
01 = ITE(yl > 0, 10)

- Explanation for why x(1,1) =17
- Given x = (X1,X2), IF (x1 = 1) THEN s(x) =1
- le. {x1 = 1} suffices for NN to predict 1
- Given x = (X1,X2), IF (x2 = 1) THEN x(x) =1
- le. {xo2 = 1} suffices for NN to predict Y
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An arbitrary classifier
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- Classification function:

KZ(Xl , X2, X3, X4) = X1 ATX2 VXL AX2 AXgV X1 AX2 A TX3V X9 AX3AXy

PR PR PR RPPRPPR,PO0OO0O0O0O0O0OO
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An arbitrary classifier
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- Classification function:
KZ(Xl,XQ,Xg,X4) = X1 ATX2 VXL AX2 AXgV X1 AX2 A TX3V X9 AX3AXy

- Instance: ((0,0,0,0),1)

PR PR PR PR, PP, O0OO0O0O0O0O0OO
PP PP O0OO0O0O0ORRPRREELOOOO
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An arbitrary classifier
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=

- Classification function:

KZ(Xl,XQ,Xg,X4) = X1 ATX2 VXL AX2 AXgV X1 AX2 A TX3V X9 AX3AXy
- Instance: ((0,0,0,0),1)
- Given x = (Xq,X2,X3,X4),

IF (x1 =0) A (x3 =0) THEN x(x) =1
- le. {x; = 0,x3 = 0} suffices for DT to predict 1

PR R R PR PR, PP, O0OO0O0O0OOOO
PP PP O0OO0O0O0ORRPRREELOOOO
PP OORRPROOREFROORBR O O |
P ORPORORORLROROROR O
P OPRPRORPROOODOORRRERERERRR
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Outline - Unit #01

Brief Glimpse of Logic



Standard tools of the trade

- SAT: decision problem for propositional logic

- Formulas most often represented in CNF
- There are optimization variants: MaxSAT, PBO, MinSAT, etc.
- There are quantified variants: QBF, QMaxSAT, etc.

- SMT: decision problem for (decidable) fragments of first-order logic (FOL)

- There are optimization variants: MaxSMT, etc.
- There are quantified variants

- MILP: decision/optimization problems defined on conjunctions of linear inequalities over
integer & real-valued variables

- CP: constraint programming
- There are optimization/quantified variants

© J. Marques-Silva 32/ 215
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Standard tools of the trade

Basic knowledge on
SAT & SMT assumed.
See links below.

- SAT: decision problem for propositional logic
- Formulas most often represented in CNF
- There are optimization variants: MaxSAT, PBO, MinSAT, etc.
- There are quantified variants: QBF, QMaxSAT, etc.

- SMT: decision problem for (decidable) fragments of first-order logic (FOL)

- There are optimization variants: MaxSMT, etc.
- There are quantified variants

- MILP: decision/optimization problems defined on conjunctions of linear inequalities over
integer & real-valued variables

- CP: constraint programming
- There are optimization/quantified variants

- Background on SAT/SMT: 09
- https://alexeyignatiev.github.io/ssa-school-2019/
- https://alexeyignatiev.github.io/ijcailotut/

© J. Marques-Silva 32/ 215


https://alexeyignatiev.github.io/ssa-school-2019/
https://alexeyignatiev.github.io/ijcai19tut/

SAT/SMT/MILP/CP solvers used as oracles - more detail later

- Deciding satisfiability, entailment
- Computing prime implicants/implicates

- Computing MUSes, MCSes
- Algorithms: Deletion, QuickXplain, Progression, Dichotomic, etc. MM20

- Enumeration of MUSes, MCSes
- Algorithms: Marco, Camus, etc. [LS08, LPMM16

- Solving MaxSAT, MaxSMT
- Algorithms: Core-guided, Minimum hitting sets, branch&bound, etc. MHLF 13

- Solving quantification problems, e.g. QBF
- Algorithms: Abstraction refinement JKMCT6]
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Basic definitions in propositional logic

- Atoms ({X, x1, ...}) & literals (x1, —x1)

- Well-formed formulas using —, A,v, ...

- Clause: disjunction of literals

- Term: conjunction of literals

- Conjunctive normal form (CNF): conjunction of clauses
- Disjunctive normal form (DNF): disjunction of terms

- Simple to generalize to more expressive domains
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Basic definitions in propositional logic

- Atoms ({X, x1, ...}) & literals (x1, —x1)

- Well-formed formulas using —, A,v, ...

- Clause: disjunction of literals

- Term: conjunction of literals

- Conjunctive normal form (CNF): conjunction of clauses
- Disjunctive normal form (DNF): disjunction of terms

- Simple to generalize to more expressive domains

- CO(w(x)) decides whether +(x) is satisfiable (i.e. whether it is consistent), using an oracle
for SAT/SMT/MILP/CP/etc.
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Entailment

- Let v represent some formula, defined on feature space [, and representing a function
p:F—{0,1}
- Let 7 represent some other formula, also defined on [, and with 7 : F — {0, 1}
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Entailment

- Let v represent some formula, defined on feature space [, and representing a function
p:F—{0,1}
- Let 7 represent some other formula, also defined on [, and with 7 : F — {0, 1}
- We say that 7 entails ¢, written as 7= ¢, if:

V(x e F).[r(x) > p(x)]
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Entailment

- Let v represent some formula, defined on feature space [, and representing a function
p:F—{0,1}
- Let 7 represent some other formula, also defined on [, and with 7 : F — {0, 1}
- We say that 7 entails ¢, written as 7 o, if:
V(x € F).[r(x) » p(x)]

We say that 7(x) is sufficient for ¢(x)
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Entailment

- Let v represent some formula, defined on feature space [, and representing a function
p:F—{0,1}
- Let 7 represent some other formula, also defined on [, and with 7 : F — {0, 1}
- We say that 7 entails ¢, written as 7= ¢, if:

V(x e F).[r(x) > p(x)]
We say that 7(x) is sufficient for ¢(x)

- To decide entailment:
- TE @ if 7(x) A —p(x) is not consistent, i.e. CO(7(x) A —¢(x)) does not hold
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Entailment

- Let v represent some formula, defined on feature space [, and representing a function
p:F—{0,1}
- Let 7 represent some other formula, also defined on [, and with 7 : F — {0, 1}
- We say that 7 entails ¢, written as 7= ¢, if:

V(x e F).[r(x) > p(x)]
We say that 7(x) is sufficient for ¢(x)

- To decide entailment:
- TE @ if 7(x) A —p(x) is not consistent, i.e. CO(7(x) A —¢(x)) does not hold

- An example:
- F={0,1}?
. QD(X1,X2) = X1 V X2
- Clearly, x1 = p and —x2 = ¢
- Also, CO(x1 A (—X1 A X2)) does not
hold
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Entailment

- Let v represent some formula, defined on feature space [, and representing a function
p:F—{0,1}
- Let 7 represent some other formula, also defined on [, and with 7 : F — {0, 1}
- We say that 7 entails ¢, written as 7= ¢, if:

V(x e F).[r(x) > p(x)]
We say that 7(x) is sufficient for ¢(x)

- To decide entailment:
- TE @ if 7(x) A —p(x) is not consistent, i.e. CO(7(x) A —¢(x)) does not hold

- An example: - Another example:
- F={0,1}? - F={0,1}?
. QD(X1,X2):X1V—'X2 . gO(Xl,XQ,X3):X1 A X2 V X1 A X3
- Clearly, x1 = p and —x2 = ¢ - Clearly, x1 A Xa = @pand x1 A Xsk= @
- Also, CO(x1 A (—X1 A X2)) does not - Also, CO(x1 A X2 A ((—X1 v =X2) A (—X1 v —X3)))

hold does not hold
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Entailment & explanations - how do we construct explanations?

- Classification function: X Xa X5 X wix)
0000 1

K,(Xl,Xg,Xg,X4) = X1 AT X VXL AX2 AXgV X1 AXo ATX3V T Xo AX3AXy 8 8 2 é 1
0011 1

- Instance: ((0,1,0,0),1) e —
0101 1

0110 0

0111 0

1000 0

1001 0

1010 0

101 1 1

1100 0

1101 1

1110 0

1111 1
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Entailment & explanations - how do we construct explanations?

X1 X2 X3 X4

Na¥

- Classification function:
H‘,(Xl , X2, X3, X4) = X1 AT X VXL AX2 AXgV X1 AXo ATX3V T Xo AX3AXy

- Instance: ((0,1,0,0),1)

Localized explanation: any irreducible conjunction of
literals, consistent with v, and that entails the prediction

PR PR PR PP PR,RO0OO0O0O0O0O0OO
PP PP O0OO0OO0ORRPRRE,ELOOOO
PP OORRPOORRPFROORBREL OO
P ORPORORORLROROROR O
=
ROROROOODOORREREERRR|[Y
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Entailment & explanations - how do we construct explanations?

- Classification function: X X2 X X Klx)
0000 1

K,(Xl,Xg,Xg,X4):ﬁXl/\"Xg\/Xl/\XQ/\X4VﬁX1/\Xg/\ﬁXgV“XQ/\Xg/\X;l 8 8 2 é 1
0011 1

- Instance: ((0,1,0,0),1) e —
0101 1

. . . . . . 0110 0
Localized explanation: any irreducible conjunction of 0111 o0
literals, consistent with v, and that entails the prediction 1000 O©
- Given x = (X1, X2, X3, X4), 1 8 (1) (1) g
|F(X1:0)/\(X;;ZO)THENH(X):1 10 1 1 1
1100 0

1101 1

1110 0

1111 1
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Entailment & explanations - how do we construct explanations?

. . o X1 X9 X3 X <
- Classification function: L X2 X % K(x)
0000 1

#(X1, X2, X3,X4) = —X 0001 1
1,X2,X3,X4) = 7 X1 AT X2 VXL AX2AXgV —X1 AXg ATX3V X9 AX3AXg 10 1§ ©

. 0011 1

Instance: ((0,1,0,0),1) 9400 q
0101 1

. . . . . . 0110 0
Localized explanation: any irreducible conjunction of 0111 o0
literals, consistent with v, and that entails the prediction 1000 O©
; _ 1001 0
Given x = (X1, X2, X3, X4), L 61 0 ©
|F(X1:0)/\(X;;ZO)THENH(X):1 10 1 1 1
1100 0

Global explanation: any irreducible conjunction of literals, 1 1 2 é ;
that is consistent, and that entails the prediction 1111 1
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Entailment & explanations - how do we construct explanations?

. . o X1 X9 X3 X <
- Classification function: L X2 X X K(x)
0000 1

#(X1, X2, X3,X4) = —X 00 0 1 1
1,X2,X3,X4) = 7 X1 AT X2 VXL AX2AXgV —X1 AXg ATX3V X9 AX3AXg 10 5§ o

. 0011 1

Instance: ((0,1,0,0),1) TR R
0101 1

. . . . . . 0110 0
Localized explanation: any irreducible conjunction of 0111 o0
literals, consistent with v, and that entails the prediction 1000 O©
; _ 1001 0
Given x = (X1, X2, X3, X4), L 61 0 ©
|F(X1:0)/\(X;;ZO)THENH(X):1 10 1 1 1
1100 0

Global explanation: any irreducible conjunction of literals, 1 1 2 é ;
that is consistent, and that entails the prediction 1111 1

-+ Given x = (X1, X2,X3,X4),
IF (x1 =0) A (x2 =0) THEN k(x) =1
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Outline - Unit #01

Reasoning About ML Models



Decision sets with boolean features

- Example ML model:

Features: Xi,X2,X3,xs € {0,1} (boolean)

Rules:
IF X1 A —X2 A X3 THEN predict
IF X1 A —X3 AXq THEN predict &
IF X3 A X4 THEN predict &
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Decision sets with boolean features

- Example ML model:

Features: Xi,X2,X3,xs € {0,1} (boolean)

Rules:
IF X1 A —=X2 A X3 THEN predict

IF X1 A —X3 AXq THEN predict &
IF X3 A X4 THEN predict &

- Q: Can the model predict both @ and B for some instance, i.e. is there overlap?
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Decision sets with boolean features

- Example ML model:

Features: Xi,X2,X3,xs € {0,1} (boolean)

Rules:
IF X1 A —X2 A X3 THEN predict
IF X1 A —X3 AXq THEN predict &
IF X3 A X4 THEN predict &

- Q: Can the model predict both @ and B for some instance, i.e. is there overlap?
- Yes, certainly:  pick (x1,x2,X3,Xx4) = (1,0,1,1)
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Decision sets with boolean features

- Example ML model:

Features: Xi,X2,X3,xs € {0,1} (boolean)

Rules:
IF X1 A —X2 A X3 THEN predict
IF X1 A —X3 AXq THEN predict &
IF X3 A X4 THEN predict &

- Q: Can the model predict both @ and B for some instance, i.e. is there overlap?
- Yes, certainly:  pick (x1,x2,X3,Xx4) = (1,0,1,1)
- Aformalization:
Yp1 < (X1 A X2 A Xg) A
Vo1 < (X1 A —X3 A Xa) A
Yoz < (Xa AXa) A (Vp < Yp1) A
Wn < Y1 v Yn2)) A (Vo) A (Vn)

... and solve with SAT solver (after clausification) [Tse68, PGS6]
Or use PySAT M

.". There exists a model iff there exists a point in feature space yielding both predictions
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Decision sets with ordinal features

- Example ML model:
Features: xi,x2 € {0,1,2} (integer)

Rules:
IF 2x1 +x2 >0 THEN predict B

IF 2x; —x2 <0 THEN predict &
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Decision sets with ordinal features

- Example ML model:
Features: xi,x2 € {0,1,2} (integer)

Rules:
IF 2x1 +x2 >0 THEN predict B

IF 2x; —x2 <0 THEN predict &

- Q: Can the model predict both @ and B for some instance, i.e. is there overlap?
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Decision sets with ordinal features

- Example ML model:
Features: xi,x2 € {0,1,2} (integer)

Rules:
IF 2x1 +x2 >0 THEN predict B

IF 2x; —x2 <0 THEN predict &

- Q: Can the model predict both @ and B for some instance, i.e. is there overlap?
- Yes, of course:  pickx; =0andxe =1

© J. Marques-Silva 38 /215



Decision sets with ordinal features

- Example ML model:
Features: xi,x2 € {0,1,2} (integer)

Rules:
IF 2x1 +x2 >0 THEN predict B

IF 2x; —x2 <0 THEN predict &

- Q: Can the model predict both @ and B for some instance, i.e. is there overlap?

- Yes, of course:  pickx; =0andxe =1
- Aformalization:

Yp < (2X1 +X2>0) A Yp o (21 —x2<0) A (Vo) A (Vn)

.. and solve with SMT solver (many alternatives)

.. There exists a model iff there exists a point in feature space yielding both predictions
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Neural networks

Input Hidden Output
layer layer layer

Input #1 —
Input #2 —
INnput #3 —

Input #4 —

- Each layer (except first) viewed as a block, and

- Compute x’ given input x, weights matrix A, and bias vector b
- Compute output y given x” and activation function
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Neural networks

Input Hidden Output
layer layer layer
Input #1 — —
Input #2 — \
.4>.H Output
Input #3 — /
Input #4 — i

e

- Each layer (except first) viewed as a block, and

- Compute x’ given input x, weights matrix A, and bias vector b
- Compute output y given x” and activation function

- Each unit uses a RelU activation function INH10]

© J. Marques-Silva 39 /215



Encoding NNs using MILP

Computation for a NN ReLU block, in two steps:

¥ =A-x+b

y = max(x’, 0)

© J. Marques-Silva 40 [ 215



Encoding NNs using MILP

Computation for a NN ReLU block, in two steps:

¥ =A-x+b

y = max(x’, 0)

Encoding each block:

n

I e =
j=1

zZi=1-y; <0
zZi=0—-5<0

yi=0,s; >0,z €{0,1}

7]

Simpler encodings exist, but not as effective
40 [ 215
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Encoding NNs using MILP

Computation for a NN ReLU block, in two steps:

Modeling ML models
with logic is not only
possible but also simple !

¥ =A-x+b

y = max(x’, 0)

FJ18]

Encoding each block:

n

I e =
j=1

zZi=1-y; <0
zZi=0—-5<0

Yi 20,5, >0,z €{0,1}

7]

Simpler encodings exist, but not as effective
40 [ 215
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Example - encoding a simple NN in MILP

-0.5 Sum RelLU X1 Xo r Y1 | O1

° p N Vi 0 0|-05]01]0

1 0 05 |05 1

0O 105|051

Inputs +] r=X"owx Y1 =max(ry,0) 1 1115 [15] 1

y1 = max(X; + X2 — 0.5,0)
01 = |TE(yl >0, 1())

MILP encoding: Instance: (x,c¢) = ((1,0),1) Checking: x = (0,0)

X1 +x2—05=y; —5s1 1+0-05=05-0 04+0—-05=0-0.5
z71=1->y1 <0 1v05<0 0v0<o0

zZ1=0—>51<0 0v0<0 1v05<0

01 =(y1 >0) 1=(0.5>0) 0=(0>0)

X1,X2,21,01 € {0,1} X1 =1,X2=0,z1 = 0,01 = 1 X1 =0,x2=0,21 =1,0; =0
y1,51 =20 y1 =0.5,51=0 y1 =0,51 =0.5
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Outline - Unit #01

Understanding Intrinsic Interpretability



What is intrinsic interpretability?

- Goal is to deploy /ﬂtel’pretab[e ML models [Rud19, Mol20, Rect 22, Rud22
- E.g. Decision trees, decision lists, decision sets, etc.

- The explanation is the model itself, because it is interpretable
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What is intrinsic interpretability?

- Goal is to deploy /ﬂtel’pretab[e ML models [Rud19, Mol20, Rect 22, Rud22
- E.g. Decision trees, decision lists, decision sets, etc.

- The explanation is the model itself, because it is interpretable

- But: definition of interpretability is rather subjective... (Lipis]
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What is intrinsic interpretability?

- Goal is to deploy /ﬂtel’pretab[e ML models [Rud19, Mol20, Rect 22, Rud22
- E.g. Decision trees, decision lists, decision sets, etc.

- The explanation is the model itself, because it is interpretable

- But: definition of interpretability is rather subjective... (Lipis]
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What is intrinsic interpretability?

- Goal is to deploy /ﬂtel’pretab[e ML models [Rud19, Mol20, Rect 22, Rud22
- E.g. Decision trees, decision lists, decision sets, etc.

- The explanation is the model itself, because it is interpretable

- But: definition of interpretability is rather subjective... (Lipis]
MQDX - What is an explanation for ((0,0,1),1)?
/
[o]
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What is intrinsic interpretability?

- Goal is to deploy /ﬂtel’pretab[e ML models [Rud19, Mol20, Rect 22, Rud22
- E.g. Decision trees, decision lists, decision sets, etc.

- The explanation is the model itself, because it is interpretable

- But: definition of interpretability is rather subjective... (Lip8)
W/QDX - What is an explanation for ((0,0,1),1)?
@“ - Clearly, IF =x3 A —=X2 A X3 THEN k(x) =1
/ 0 1
of
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What is intrinsic interpretability?

- Goal is to deploy /ﬂtel’pretab[e ML models [Rud19, Mol20, Rect 22, Rud22
- E.g. Decision trees, decision lists, decision sets, etc.

- The explanation is the model itself, because it is interpretable

- But: definition of interpretability is rather subjective... (Lipis]
MQDX - What is an explanation for ((0,0,1),1)?
@*’ - Clearly, IF =x; A —Xa A X3 THEN k(x) = 1
10 -+ {=x1, —X2,Xx3} or {1,2,3} is an explanation
o
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What is intrinsic interpretability?

- Goal is to deploy /ﬂtel’pretab[e ML models [Rud19, Mol20, Rect 22, Rud22
- E.g. Decision trees, decision lists, decision sets, etc.

- The explanation is the model itself, because it is interpretable

- But: definition of interpretability is rather subjective... (Lipis]
MQDX - What is an explanation for ((0,0,1),1)?
@*’ - Clearly, IF =x; A —Xa A X3 THEN k(x) = 1
10 - {=x1, =X2,X3} or {1,2,3} is an explanation  Really?
o
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What is intrinsic interpretability?

- Goal is to deploy /ﬂtel’pretab[e ML models [Rud19, Mol20, Rect 22, Rud22
- E.g. Decision trees, decision lists, decision sets, etc.

- The explanation is the model itself, because it is interpretable

- But: definition of interpretability is rather subjective... (Lip8)
MQDX - What is an explanation for ((0,0,1),1)?
@*’ - Clearly, IF =x; A —Xa A X3 THEN k(x) = 1
17 -+ {—x1, =X2,Xx3} or {1,2,3} is a weak explanation!
- Itis the case that: IF —x; A x3 THEN x(x) =1
057N .. {1,3} is also sufficient for the prediction!
[of
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What is intrinsic interpretability?

- Goal is to deploy /ﬂtel’pretab[e ML models [Rud19, Mol20, Rect 22, Rud22
- E.g. Decision trees, decision lists, decision sets, etc.

- The explanation is the model itself, because it is interpretable

- But: definition of interpretability is rather subjective... (Lipis]

MQDX - What is an explanation for ((0,0,1),1)?
@*’ - Clearly, IF =x; A —Xa A X3 THEN k(x) = 1
10 -+ {—x1, =X2,Xx3} or {1,2,3} is a weak explanation!
- Itis the case that: IF —x; A x3 THEN x(x) =1
% N .. {1,3} is also sufficient for the prediction!
@ - {1,3} is easier to grasp; also, it is irreducible

© J. Marques-Silva 42 [ 215



Are interpretable models really interpretable? - DTs

- Case of optimal decision tree (DT) HRs19]
- Explanation for (0,0, 1,0, 1), with prediction 1?
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Are interpretable models really interpretable? - DTs

- Case of optimal decision tree (DT) HRs19]
- Explanation for (0,0, 1,0, 1), with prediction 1?
- Clearly, IF =x1 A =X2 A X3 A —Xa A X5 THEN k(x) =1
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Are interpretable models really interpretable? - DTs

- Case of optimal decision tree (DT) HRs19]
- Explanation for (0,0, 1,0, 1), with prediction 1?
- Clearly, IF —=x1 A =X2 A X3 A —Xa A X5 THEN k(x) =1
- But, x1, X2, X4 are irrelevant for the prediction:
X3 X5 X1 X2 Xa H(X)

1000

PR R R R R R
N Y
[ e = e
m R, O ORr KL O
O R OFr O R
e  E G
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Are interpretable models really interpretable? - DTs

© J. Marques-Silva

- Case of optimal decision tree (DT) HRs19]
- Explanation for (0,0, 1,0, 1), with prediction 1?
- Clearly, IF —=x1 A =X2 A X3 A —Xa A X5 THEN k(x) =1
- But, X1, X2, X4 are irrelevant for the prediction:
X3 X5 X1 X2 Xa H(X)

1000

PR R R R R R
N Y
[ e = e
m R, O ORr KL O
O R OFr O R
e  E G

- fixing {3, 5} suffices for the prediction
Compare with {1, 2, 3,4, 5}...
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Are interpretable models really interpretable? - DLs (512

Ry : IF (X1 A X3) THEN  k(x)=1
Ro : ELSEIF (X2 A Xa A Xg) THEN k(x)=0
R3 : ELSE IF (—‘Xl A X;;) THEN ,‘i(x) =1
Ry : ELSE IF (Xa A X6) THEN  k(x) =0
Rs : ELSEIF  (—=Xx1 A —x3) THEN k(x)=1
Re : ELSE IF (X6) THEN  k(x) =0
Rper : ELSE Kk(x) =1

- Instance: ((0,1,0,1,0,1),0), i.e. rule Ry fires

© J. Marques-Silva 44 [ 215



Are interpretable models really interpretable? - DLs (512

Ry : IF (X1 A X3) THEN  k(x)=1
Ro : ELSEIF (X2 A Xa A Xg) THEN k(x)=0
R3 : ELSE IF (—‘Xl A X;;) THEN ,‘i(x) =1
Ry : ELSE IF (Xa A X6) THEN  k(x) =0
Rs : ELSEIF  (—=Xx1 A —x3) THEN k(x)=1
Re : ELSE IF (X6) THEN  k(x) =0
Rper : ELSE Kk(x) =1

- Instance: ((0,1,0,1,0,1),0), i.e. rule Ry fires

- What is an explanation for the prediction?
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Are interpretable models really interpretable? - DLs (512

Ry : IF (X1 A X3) THEN  k(x)=1
Ro : ELSEIF (X2 A Xa A Xg) THEN k(x)=0
R3 : ELSE IF (—‘Xl A X;;) THEN ,‘i(x) =1
Ry : ELSE IF (Xa A X6) THEN  k(x) =0
Rs : ELSEIF  (—=Xx1 A —x3) THEN k(x)=1
Re : ELSE IF (X6) THEN  k(x) =0
Rper : ELSE Kk(x) =1

- Instance: ((0,1,0,1,0,1),0), i.e. rule Ry fires
- What is an explanation for the prediction?
- Fixing {3,4,6} suffices for the prediction

© J. Marques-Silva 44 [ 215



Are interpretable models really interpretable? - DLs (512

Ry : IF (X1 A X3) THEN  k(x)=1
Ro : ELSEIF (X2 A Xa A Xg) THEN k(x)=0
R3 : ELSE IF (—‘Xl A X;;) THEN ,‘i(x) =1
Ry : ELSE IF (Xa A X6) THEN  k(x) =0
Rs : ELSEIF  (—=Xx1 A —x3) THEN k(x)=1
Re : ELSE IF (X6) THEN  k(x) =0
Rper : ELSE Kk(x) =1

- Instance: ((0,1,0,1,0,1),0), i.e. rule Ry fires
- What is an explanation for the prediction?

- Fixing {3,4,6} suffices for the prediction
- Why?
- We need 3 (or 1) so that Ry cannot fire
- With 3, we do not need 2, since with 4 and 6 fixed, then R4 is guaranteed to fire
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Are interpretable models really interpretable? - DLs (512

Ry : IF (X1 A X3) THEN  k(x)=1
Ro : ELSEIF (X2 A Xa A Xg) THEN k(x)=0
R3 : ELSE IF (—‘Xl A X;;) THEN ,‘i(x) =1
Ry : ELSE IF (Xa A X6) THEN  k(x) =0
Rs : ELSEIF  (—=Xx1 A —x3) THEN k(x)=1
Re : ELSE IF (X6) THEN  k(x) =0
Rper : ELSE Kk(x) =1

- Instance: ((0,1,0,1,0,1),0), i.e. rule Ry fires
- What is an explanation for the prediction?
- Fixing {3,4,6} suffices for the prediction

- Why?

- We need 3 (or 1) so that Ry cannot fire
- With 3, we do not need 2, since with 4 and 6 fixed, then Ry is guaranteed to fire

- Some questions:
- Would average human decision maker be able to understand the irreducible set {3, 4, 6}7?
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Are interpretable models really interpretable? - DLs (512

Ry : IF (X1 A X3) THEN  k(x)=1
Ro : ELSEIF (X2 A Xa A Xg) THEN k(x)=0
R3 : ELSE IF (—‘Xl A X;;) THEN ,‘i(x) =1
Ry : ELSE IF (Xa A X6) THEN  k(x) =0
Rs : ELSEIF  (—=Xx1 A —x3) THEN k(x)=1
Re : ELSE IF (X6) THEN  k(x) =0
Rper : ELSE Kk(x) =1

- Instance: ((0,1,0,1,0,1),0), i.e. rule Ry fires
- What is an explanation for the prediction?

- Fixing {3,4,6} suffices for the prediction
- Why?
- We need 3 (or 1) so that Ry cannot fire
- With 3, we do not need 2, since with 4 and 6 fixed, then Ry is guaranteed to fire
- Some questions:

- Would average human decision maker be able to understand the irreducible set {3, 4, 6}7?
- Would he/she be able to compute the set {3, 4, 6}, by manual inspection?
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Lecture 02
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Recapitulate first lecture

- ML models: classification & regression
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Recapitulate first lecture

- ML models: classification & regression

- Glimpse of heuristic XAl
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Recapitulate first lecture
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- Answers to Why? questions as logic rules
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Recapitulate first lecture

- ML models: classification & regression

- Glimpse of heuristic XAl

- Answers to Why? questions as logic rules
- Logic-based reasoning of ML models

- Apparent difficulties with explaining interpretable models
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Plan for this course

-+ Lecture 01 - units:
- #01: Foundations

- Lecture 02 - units:

- #02: Principles of symbolic XAl - feature selection
- #03: Tractability in symbolic XAl (& myth of interpretability)

- Lecture 03 — units:

- #04: Intractability in symbolic XAl (& myth of model-agnostic XAl)
- #05: Explainability queries

- Lecture 04 - units:
- #06: Advanced topics

-+ Lecture 05 - units:

- #07: Principles of symbolic XAl - feature attribution (& myth of Shapley values in XAl)
- #08: Conclusions & research directions

© J. Marques-Silva 48 [ 215



Unit #02

Principles of Symbolic XAl - Feature Selection



Outline - Unit #02

Definitions of Explanations



What is an explanation?

- Notation:

Original DT (pm
Rewritten DT

@\ Mapping
Long / Short 1// 0 -
@»’ x1 =1 iff Length = Long
m xo =1 iff Thread = New
New / mmw up j/ N x3 = 1 iff Author = Known
() k() =1 iff &'(---) = Reads
» #(-) =0 iff #/(---) = Skips
unknown Known @K .
:

- What is an explanation?

Reads

49 | 215
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What is an explanation?

- Notation:

Original DT (pm
Rewritten DT

Long / Short 1// 0
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/
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@ 1
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- What is an explanation?

- Answer to question “Why (the prediction)?” is a rule:

© J. Marques-Silva

Mapping

x1 = 1 iff Length = Long

X9 = 1 iff Thread = New

x3 = 1 iff Author = Known
k(-) =1 iff K'(---) = Reads
k() =0 iff k'(---) = Skips

IF <COND> THEN k(x) =c¢
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What is an explanation?

- Notation:

Original DT tpm7
Rewritten DT

Long / Short 1// 0
of
Sk|ps
New / FOHO\V up

Reads 0,
/
Unknowr w ’ Known .
@ 1
Skips Reads

- What is an explanation?

- Answer to question “Why (the prediction)?” is a rule:

Mapping

x1 = 1 iff Length = Long

X9 = 1 iff Thread = New

x3 = 1 iff Author = Known
k(-) =1 iff K'(---) = Reads
k() =0 iff k'(---) = Skips

IF <COND> THEN k(x) =c¢

Explanation: set of literals (or just features) in <COND>; irreducibility matters!
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Long / Short 1// 0 -
/ x1 = 1 iff Length = Long

m @ X9 = 1 iff Thread = New
New / mmw up j/ N x3 = 1 iff Author = Known
() R(:) =1 iff &(---) = Reads
» #(-) =0 iff &'(---) = Skips
Unknowr n Known @K .
;

- What is an explanation?
- Answer to question “Why (the prediction)?” is a rule:
Explanation: set of literals (or just features) in <COND>; irreducibility matters!

Reads

IF <COND> THEN k(x) =c¢

- E.g.: explanation for v = (—x1, =X2,X3)?
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What is an explanation?

- Notation:

Original DT tpm7
Rewritten DT

@\ Mapping
Long / Short 1// 0 -
/ x1 = 1 iff Length = Long

m @ X9 = 1 iff Thread = New
New / mmw up j/ N x3 = 1 iff Author = Known
() R(:) =1 iff &(---) = Reads
» #(-) =0 iff &'(---) = Skips
Unknowr n Known @K .
;

- What is an explanation?
- Answer to question “Why (the prediction)?” is a rule:
Explanation: set of literals (or just features) in <COND>; irreducibility matters!

Reads

IF <COND> THEN k(x) =c¢

- E.g.: explanation for v = (—x1, =X2,X3)?
- Itis the case that, IF —x1 A —=X2 A x3 THEN k(x) =1
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What is an explanation?

- Notation:

Original DT tpm7
Rewritten DT

@\ Mapping
Long / Short 1// 0 -
/ x1 = 1 iff Length = Long

m @ X9 = 1 iff Thread = New
New / mmw up j/ N x3 = 1 iff Author = Known
() R(:) =1 iff &(---) = Reads
» #(-) =0 iff &'(---) = Skips
Unknowr n Known @K .
;

- What is an explanation?
- Answer to question “Why (the prediction)?” is a rule:
Explanation: set of literals (or just features) in <COND>; irreducibility matters!

Reads

IF <COND> THEN k(x) =c¢

- E.g.: explanation for v = (—x1, =X2,X3)?
- Itis the case that, IF —x1 A —=X2 A x3 THEN k(x) =1

- One possible explanation is {—x1, —x2,x3} or simply {1, 2, 3}
49 [ 215
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The similarity predicate

- Recall ML models for classification & regression:
- Classification: Mc¢ = (F,F,K, k)
- Regression: Mg = (F,F,V,p)
- General: M = (F,F,T,7)
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- Classification: M¢ = (F,F, K, k)
- Regression: Mg = (F,F,V,p)
- General: M = (F,F,T,7)

- Similarity predicate: o : F — {T, 1}
- Classification: o(x) == [k(x) = (V)]
- Obs: For boolean classifiers, no need for o

- Regression: o(x) == [|p(x) — p(v)| < d], where § is user-specified
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The similarity predicate

- Recall ML models for classification & regression:
- Classification: M¢ = (F,F, K, k)
- Regression: Mg = (F,F,V,p)
- General: M = (F,F,T,7)

- Similarity predicate: o : F — {T, 1}
- Classification: o(x) == [k(x) = (V)]
- Obs: For boolean classifiers, no need for o

- Regression: o(x) == [|p(x) — p(v)| < d], where § is user-specified

- Bottom line:
Reason about symbolic explainability by abstracting away type of ML model
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Abductive explanations - answering Why? questions

- Instance (v,q), i.e. c = 7(v)
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Abductive explanations - answering Why? questions

- Instance (v,q), i.e.c = 7(v)

- Abductive explanation (AXp, Pl-explanation): [scot8, INMI9a
- Subset-minimal set of features X < F sufficient for ensuring prediction

WAXp(X) = VY(xeF). /\jex(x,- =) >(0(x))

- Defining AXp (from weak AXps, WAXps):

AXP(X) := WAXP(X) A V(X' < X).—~WAXp(X')

- But, WAXp is monotone; hence,

AXP(X) = WAXP(X) A V(t € X).~WAXp(X\{t})

- Finding one AXp (example algorithm; many more exist): (MA20
- Let X = F, i.e. fix all features
- Invariant: WAXp(X') must hold. Why?
- Analyze features in any order, one feature i at a time
- If WAXp(X\{i}) holds, then remove i from X, i.e. i becomes free
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A simple example - AXp’s

- Classifier:
4

K(X17X2?X3?X4) = \/ Xj

=il
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- Pointv = (0,0,0,1) with prediction x(v) = 1. AXp?
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- Define ¥ ={1,2,3,4} = F

- Can feature 1 be removed, i.e. V(x € {0, 1}%).=Xa A —X3 A X4 — K(X1, X2, X3, X4)?

Recap weak AXp: V(x € F). Ajcx (x; = vj) —(o(x))

© J. Marques-Silva 52 /215



A simple example - AXp’s

- Classifier:
4

K(X11X27X33X4> = \/ Xj

=il

- Pointv = (0,0,0,1) with prediction x(v) = 1. AXp?
- Define ¥ ={1,2,3,4} = F

- Can feature 1 be removed, i.e. V(x € {0, 1}%).=Xa A —X3 A X4 — K(X1, X2, X3,X4)? Yes

Recap weak AXp: V(x € F). Ajcx (x; = vj) —(o(x))

© J. Marques-Silva 52 /215



A simple example - AXp’s

- Classifier:
4

K(X11X27X33X4> = \/ Xj

=il

- Pointv = (0,0,0,1) with prediction x(v) = 1. AXp?
- Define ¥ ={1,2,3,4} = F
- Can feature 1 be removed, i.e. V(x € {0, 1}%).=Xa A —X3 A X4 — K(X1, X2, X3,X4)? Yes

- Can feature 2 be removed, i.e. V(x € {0, 1}%).=X3 A Xq — K(X1, X2, X3,X4)?

Recap weak AXp: V(x € F). Ajcx (x; = vj) —(o(x))

© J. Marques-Silva 52 /215



A simple example - AXp’s

- Classifier:
4

K(X11X27X33X4> = \/ Xj

=il

- Pointv = (0,0,0,1) with prediction x(v) = 1. AXp?
- Define ¥ ={1,2,3,4} = F
- Can feature 1 be removed, i.e. V(x € {0, 1}%).=Xa A —X3 A X4 — K(X1, X2, X3,X4)? Yes

- Can feature 2 be removed, i.e. V(x € {0,1}%).—x3 A X4 — K(X1, X2, X3,X4)? Yes

Recap weak AXp: V(x € F). Ajcx (x; = vj) —(o(x))

© J. Marques-Silva 52 /215



A simple example - AXp’s

- Classifier:
4

K (X1, X2, X3, Xa) = \//':1 Xi

- Pointv = (0,0,0,1) with prediction x(v) = 1. AXp?

- Define ¥ ={1,2,3,4} = F

- Can feature 1 be removed, i.e. V(x € {0, 1}%).=Xa A —X3 A X4 — K(X1, X2, X3,X4)? Yes
- Can feature 2 be removed, i.e. V(x € {0,1}%).—x3 A X4 — K(X1, X2, X3,X4)? Yes

- Can feature 3 be removed, i.e. V(x € {0, 1}*).x4 — k(X1, X2, X3,X4)?

Recap weak AXp: V(x € F). Ajcx (x; = vj) —(o(x))

© J. Marques-Silva 52 /215



A simple example - AXp’s

- Classifier:
4

K (X1, X2, X3, Xa) = \//':1 Xi

- Pointv = (0,0,0,1) with prediction x(v) = 1. AXp?

- Define ¥ ={1,2,3,4} = F

- Can feature 1 be removed, i.e. V(x € {0, 1}%).=Xa A —X3 A X4 — K(X1, X2, X3,X4)? Yes
- Can feature 2 be removed, i.e. V(x € {0,1}%).—x3 A X4 — K(X1, X2, X3,X4)? Yes

- Can feature 3 be removed, i.e. V(x € {0,1}*).x4 — (X1, X2, X3,X4)? YeS

Recap weak AXp: V(x € F). Ajcx (x; = vj) —(o(x))

© J. Marques-Silva 52 /215



A simple example - AXp’s

- Classifier:
4

’L{(X17X27X33X4> = \/ Xj

=il

- Pointv = (0,0,0,1) with prediction x(v) = 1. AXp?

- Define ¥ ={1,2,3,4} = F

- Can feature 1 be removed, i.e. V(x € {0, 1}%).=Xa A —X3 A X4 — K(X1, X2, X3,X4)? Yes

- Can feature 2 be removed, i.e. V(x € {0,1}%).—x3 A X4 — K(X1, X2, X3,X4)? Yes

- Can feature 3 be removed, i.e. V(x € {0,1}*).x4 — (X1, X2, X3,X4)? YeS
( )

- Can feature 4 be removed, i.e. V(x € {0, 1}*).T — r (X1, X2, X3,X4)?

Recap weak AXp: V(x € F). Ajcx (x; = vj) —(o(x))

© J. Marques-Silva 52 /215



A simple example - AXp’s

- Classifier:
4

’L{(X17X27X33X4> = \/ Xj

=il

- Pointv = (0,0,0,1) with prediction x(v) = 1. AXp?

- Define ¥ ={1,2,3,4} = F

- Can feature 1 be removed, i.e. V(x € {0, 1}%).=Xa A —X3 A X4 — K(X1, X2, X3,X4)? Yes

- Can feature 2 be removed, i.e. V(x € {0,1}%).—x3 A X4 — K(X1, X2, X3,X4)? Yes

- Can feature 3 be removed, i.e. V(x € {0,1}*).x4 — (X1, X2, X3,X4)? YeS
( )

- Can feature 4 be removed, i.e. V(x € {0, 1}*).T — r(X1, X2, X3,X4)? NO

Recap weak AXp: V(x € F). Ajcx (x; = vj) —(o(x))

© J. Marques-Silva 52 /215



A simple example - AXp’s

- Classifier:
4

’L{(X17X27X33X4> = \/ Xj

=il

- Pointv = (0,0,0,1) with prediction x(v) = 1. AXp?

- Define ¥ ={1,2,3,4} = F

- Can feature 1 be removed, i.e. V(x € {0, 1}%).=Xa A —X3 A X4 — K(X1, X2, X3,X4)? Yes
- Can feature 2 be removed, i.e. V(x € {0,1}%).—x3 A X4 — K(X1, X2, X3,X4)? Yes

- Can feature 3 be removed, i.e. V(x € {0,1}*).x4 — (X1, X2, X3,X4)? YeS

- Can feature 4 be removed, i.e. V(x € {0, 1}*).T — r(X1, X2, X3,X4)? NO

- AXp X = {4}

Recap weak AXp: V(x € F). Ajcx (x; = vj) —(o(x))

© J. Marques-Silva 52 /215



A simple example - AXp’s

- Classifier:
4

’L{(X17X27X33X4> = \/ Xj

=il

- Pointv = (0,0,0,1) with prediction x(v) = 1. AXp?

- Define ¥ ={1,2,3,4} = F

- Can feature 1 be removed, i.e. V(x € {0, 1}%).=Xa A —X3 A X4 — K(X1, X2, X3,X4)? Yes
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- Can feature 3 be removed, i.e. V(x € {0,1}*).x4 — (X1, X2, X3,X4)? YeS

- Can feature 4 be removed, i.e. V(x € {0, 1}*).T — r(X1, X2, X3,X4)? NO

- AXp X = {4}

- In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners

Recap weak AXp: V(x € F). Ajcx (x; = vj) —(o(x))

© J. Marques-Silva 52 /215



A simple example - AXp’s

Classifier:

4
K (X1, X2, X3, Xa) = \//':1 Xi

- Pointv = (0,0,0,1) with prediction x(v) = 1. AXp?
- Define ¥ ={1,2,3,4} = F

- Can feature 1 be removed, i.e. V(x € {0, 1}%).=Xa A —X3 A X4 — K(X1, X2, X3,X4)? Yes
- Can feature 2 be removed, i.e. V(x € {0,1}%).—x3 A X4 — K(X1, X2, X3,X4)? Yes
- Can feature 3 be removed, i.e. V(x € {0,1}*).x4 — (X1, X2, X3,X4)? YeS

- Can feature 4 be removed, i.e. V(x € {0, 1}*).T — r(X1, X2, X3,X4)? NO

- AXp X = {4}

- In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners
- Obs: for some classes of classifiers, poly-time algorithms exist

Recap weak AXp: V(x € F). Ajcx (x; = vj) —(o(x))
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- Notation x5 = vgs:
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- Definition of Y(S):
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- Definition of Y(S):
T(S) = {xel|xs=vs}

- Expected value, non-real-valued features:

E[r(x)|xs = vs] = l/ms?”‘zxms;vﬁ(x)
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- Notation x5 = vgs:

ks =vs] = A\xi=v)

- Definition of Y(S):
T(S) = {xel|xs=vs}

- Expected value, non-real-valued features:

E[r(x)|xs = vs] = 1/\T<s;v>\ZXGT(S;V)T(X)

- Expected value, real-valued features:

E[7(x)|xs =vs] = 1/1(s;v) L(S_ )T(X)dx

© J. Marques-Silva 53 /215



Other definitions of WAXps/AXps

- Using probabilities, non-real-valued features: (WMHKZ1, 1HI 22, ABOS22, IHI 23

WAXp(S) = Pr(o(x)|xs=vs) =1
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Other definitions of WAXps/AXps

- Using probabilities, non-real-valued features: (WMHKZ1, 1HI 22, ABOS22, IHI 23

WAXp(S) = Pr(o(x)|xs=vs) =1

- Using expected values:

WAXp(S)

E[o(x)|xs =vs] =1
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Other definitions of WAXps/AXps

- Using probabilities, non-real-valued features: (WMHKZ1, 1HI 22, ABOS22, IHI 23

WAXp(S) = Pr(o(x)|xs=vs) =1

- Using expected values:

WAXp(S) E[o(x) | xs = vs] = 1

- Definition of AXp remains unchanged
- This is true when comparing against 1
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Constrastive explanations — answering Why not? questions

- Instance (v, ¢), i.e. ¢ = k(v)
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Constrastive explanations — answering Why not? questions

- Instance (v,¢), i.e. ¢ = k(v)

- Contrastive explanation (CXp): Mil19, INAM20
- Subset-minimal set of features Y < F sufficient for changing prediction

Woxp(Y) = 3xeF). A (4 =1) A (~o()

- Defining CXp:

CXp(Y) = WCXp(Y) A V(' < ¥).—~WCXp(Y')
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Constrastive explanations — answering Why not? questions

- Instance (v,¢), i.e. ¢ = k(v)

- Contrastive explanation (Cxp): Mil19, INAM20
- Subset-minimal set of features Y < F sufficient for changing prediction

WCXp(Y) = 3(xeF). /\W(xj =v)) A (—o(x))

- Defining CXp:

CXp(Y) == WCXp(Y) A V(' < V).—WCXp())

- But, WCXp is also monotone; hence,

Xp(Y) = WCXp(Y) A ¥(t € V).—WCXp(W\{t})

. Flndlng one CXp: [MM20
- Let Y = F, i.e. free all features
- Invariant: WCXp(Y’) must hold. Why?
- Analyze features in any order, one feature i at a time
- IfWCXp(Y\{i}) holds, then remove i from Y, i.e. i is becomes fixed
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A simple example - CXp's

- Classifier:
4

K(X1, X2, X3,Xq) = \/ Xi

=1

- Point v = (0,0,0,1) with prediction x(v) =1
- Define Y ={1,2,3,4} = F
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© J. Marques-Silva 56 / 215



A simple example - CXp's

- Classifier:
4

K(X1, X2, X3,X4) = \//_:] b
- Point v = (0,0,0,1) with prediction x(v) =1
- Define Y ={1,2,3,4} = F

- Can feature 1 be removed, i.e. 3(x € {0,1}*).—x1 A —k(X1, X2, X3,X4)? Yes

Recap weak CXp: 3(x € ). Ajgy, (X; = V) A (—o(x))

© J. Marques-Silva 56 / 215



A simple example - CXp's

- Classifier:

- Point v = (0,0,0,1) with prediction x(v) =1
- Define Y ={1,2,3,4} = F
- Can feature 1 be removed, i.e. 3(x € {0,1}*).—x1 A —k(X1, X2, X3,X4)? Yes

- Can feature 2 be removed, i.e. 3(x € {0, 1}%).=x1 A —X2 A —K(X1, X2, X3,X4)?

Recap weak CXp: 3(x € ). Ajgy, (X; = V) A (—o(x))

© J. Marques-Silva 56 / 215



A simple example - CXp's

- Classifier:

- Point v = (0,0,0,1) with prediction x(v) =1
- Define Y ={1,2,3,4} = F
- Can feature 1 be removed, i.e. 3(x € {0,1}*).—x1 A —k(X1, X2, X3,X4)? Yes

- Can feature 2 be removed, i.e. 3(x € {0, 1}%).=x; A —X2 A —K(X1, X2, X3,X4)? Yes

Recap weak CXp: 3(x € ). Ajgy, (X; = V) A (—o(x))

© J. Marques-Silva 56 / 215



A simple example - CXp's

- Classifier:

- Point v = (0,0,0,1) with prediction x(v) =1

- Define Y ={1,2,3,4} = F

- Can feature 1 be removed, i.e. 3(x € {0,1}*).—x1 A —k(X1, X2, X3,X4)? Yes

- Can feature 2 be removed, i.e. 3(x € {0, 1}%).=x; A —X2 A —K(X1, X2, X3,X4)? Yes

- Can feature 3 be removed, i.e. 3(x € {0, 1}%).=X1 A =X A —=X3 A —=K(X1, X2, X3,X4)?

Recap weak CXp: 3(x € ). Ajgy, (X; = V) A (—o(x))

© J. Marques-Silva 56 / 215



A simple example - CXp's

- Classifier:

- Point v = (0,0,0,1) with prediction x(v) =1

- Define Y ={1,2,3,4} = F

- Can feature 1 be removed, i.e. 3(x € {0,1}*).—x1 A —k(X1, X2, X3,X4)? Yes

- Can feature 2 be removed, i.e. 3(x € {0, 1}%).=x; A —X2 A —K(X1, X2, X3,X4)? Yes

- Can feature 3 be removed, i.e. 3(x € {0, 1}%).=x1 A —X2 A —=X3 A —K(X1,X2,X3,X4)? YES

Recap weak CXp: 3(x € ). Ajgy, (X; = V) A (—o(x))
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A simple example - CXp's

- Classifier:

- Point v = (0,0,0,1) with prediction x(v) =1
- Define Y ={1,2,3,4} = F

- Can feature 1 be removed, i.e. 3(x € {0,1}*).—x1 A —k(X1, X2, X3,X4)? Yes
- Can feature 2 be removed, i.e. 3(x € {0, 1}%).=x; A —X2 A —K(X1, X2, X3,X4)? Yes

X1 A T X9 A TX3 A “K(Xl,XQ,Xg,XZl)? Yes
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(
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(
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A simple example - CXp's

- Classifier:

- Point v = (0,0,0,1) with prediction x(v) =1
- Define Y ={1,2,3,4} = F

- Can feature 1 be removed, i.e. 3(x € {0,1}*).—x1 A —k(X1, X2, X3,X4)? Yes
- Can feature 2 be removed, i.e. 3(x € {0, 1}%).=x; A —X2 A —K(X1, X2, X3,X4)? Yes

X1 A T X9 A TX3 A “K(Xl,XQ,Xg,XZl)? Yes

—_ — ~— —

(
- Can feature 3 be removed, i.e. 3(x € {0, 1}*
(

- Can feature 4 be removed, i.e. 3(x € {0,1}%).=x; A =X A =X3 A X4 A =K (X1, X2,X3,X4)? NO

Recap weak CXp: 3(x € ). Ajgy, (X; = V) A (—o(x))
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A simple example - CXp's

- Classifier:

- Point v = (0,0,0,1) with prediction x(v) =1
- Define Y ={1,2,3,4} = F

- Can feature 1 be removed, i.e. 3(x € {0,1}*).—x1 A —k(X1, X2, X3,X4)? Yes
- Can feature 2 be removed, i.e. 3(x € {0, 1}%).=x; A —X2 A —K(X1, X2, X3,X4)? Yes

X1 A T X9 A TX3 A “K(Xl,XQ,Xg,XZl)? Yes

—_ — ~— —

(
- Can feature 3 be removed, i.e. 3(x € {0, 1}*
- Can feature 4 be removed, i.e. 3(x € {0,1}*
- Xp Y = {4}
- Obs: AXp is MHS of CXp and vice-versa...

TX] A TXg A TX3 A Xg A —R(X1, X2, X3,X4)? NO

Recap weak CXp: 3(x € ). Ajgy, (X; = V) A (—o(x))
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Other definitions of WCXps/CXps

- Using probabilities, non-real-valued features:

WCXp(S) = Pr(o(x)|xs=vs) <1

© J. Marques-Silva 57 [ 215



Other definitions of WCXps/CXps

- Using probabilities, non-real-valued features:

WCXp(S) = Pr(o(x)|xs=vs) <1

- Using expected values:

WCXp(S)

Elo(x)|xs =vs] <1
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Other definitions of WCXps/CXps

- Using probabilities, non-real-valued features:

WCXp(S) = Pr(o(x)|xs=vs) <1

- Using expected values:

WCXp(S)

Elo(x)|xs =vs] <1

- Definition of CXp remains unchanged

© J. Marques-Silva 57 [ 215



Detour: global explanations

- AXps and CXps are defined locally (because of v) but hold globally

- Localized explanations
- Can be viewed as attempt at formalizing local explanations [RSG16, LL17, RSG18]

- One can define explanations without picking a given point in feature space
- Let g € T, and refefine the similarity predicate:
- Classification: o(x) = [k(x) = q]
- Regression: o(x) = [|k(x) — g| < 4], d is user-specified
cletl={(x;=vVvi)|ie F AnvieV}
- Let S ¢ L be a subset of literals that does not repeat features, i.e. S is not inconsistent
- Then, S is a global AXp if,

V(xel). /\(X’:v’)ES(X, =v;) —(o(x))

- Counterexamples are minimal hitting sets of global AXps and vice-versa (INM19b]
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Outline - Unit #02

Duality Properties



Duality in explainability — basic results

[INAM20, Mar22]
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- Claim:
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(MHS) of the set of CXps
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Duality in explainability — basic results

- Claim:
S < Fisan AXp iff it is @ minimal hitting set
(MHS) of the set of CXps

- Claim:
S C Fisa Xp iffit is a minimal hitting set (MHS)
of the set of AXps

- An example, (v,c) = ((0,0,1,0,1),1):
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Duality in explainability — basic results

- Claim:
S < Fisan AXp iff it is @ minimal hitting set
(MHS) of the set of CXps

- Claim:
S C Fisa Xp iffit is a minimal hitting set (MHS)
of the set of AXps

- An example, (v,c) = ((0,0,1,0,1),1):
- AXps: {{3,5}}
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Duality in explainability — basic results

- Claim:
S < Fisan AXp iff it is @ minimal hitting set
(MHS) of the set of CXps

- Claim:
S C Fisa Xp iffit is a minimal hitting set (MHS)
of the set of AXps

- An example, (v,c) = ((0,0,1,0,1),1):
- AXps: {{3,5}}
- CXps:
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Duality in explainability — basic results

- Claim:
S < Fisan AXp iff it is @ minimal hitting set
(MHS) of the set of CXps

- Claim:
S C Fisa Xp iffit is a minimal hitting set (MHS)
of the set of AXps

- An example, (v,c) = ((0,0,1,0,1),1):
- AXps: {{3,5}}
- Chps: {{3}, {5}}
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Duality in explainability — basic results

- Claim:
S < Fisan AXp iff it is @ minimal hitting set
(MHS) of the set of CXps

- Claim:
S C Fisa Xp iffit is a minimal hitting set (MHS)
of the set of AXps

- An example, (v,c) = ((0,0,1,0,1),1):
- AXps: {{3,5}}
- Xps: {{3}, {5}}
- Each AXp is an MHS of the set of CXps
- Each CXp is an MHS of the set of AXps
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Duality in explainability — basic results

- Claim:
S < Fisan AXp iff it is @ minimal hitting set
(MHS) of the set of CXps

- Claim:
S C Fisa Xp iffit is a minimal hitting set (MHS)
of the set of AXps

- An example, (v,c) = ((0,0,1,0,1),1):
- AXps: {{3,5}}
-+ Xps: {{3}, {5}}
- Each AXp is an MHS of the set of CXps
- Each CXp is an MHS of the set of AXps
- BTW,
- {2,5} isnota CXp
- {1,2,3,4,5},{1,2,3,5} and {1, 3,5} are not AXps
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Duality in explainability — basic results

- Claim:
S < Fisan AXp iff it is @ minimal hitting set
(MHS) of the set of CXps

- Claim:
S C Fisa Xp iffit is a minimal hitting set (MHS)
of the set of AXps

- An example, (v,c) = ((0,0,1,0,1),1):

- AXps: {{3,5}}

-+ Xps: {{3}, {5}}

- Each AXp is an MHS of the set of CXps

- Each CXp is an MHS of the set of AXps

- BTW,
- {2,5} isnota CXp
- {1,2,3,4,5},{1,2,3,5} and {1, 3,5} are not AXps
- Why?
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Outline - Unit #02

Computational Problems



Computational problems in (formal) explainability

Compute one abductive/contrastive explanation
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- Enumerate all abductive/contrastive explanations
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Computational problems in (formal) explainability

Compute one abductive/contrastive explanation

- Enumerate all abductive/contrastive explanations

- Decide whether feature included in all abductive/contrastive explanations

- Decide whether feature included in some abductive/contrastive explanation
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Computing one AXp/CXp

- Encode classifier into suitable logic representation 7 & pick suitable reasoner
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Computing one AXp/CXp

- Encode classifier into suitable logic representation 7 & pick suitable reasoner
- For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds
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Computing one AXp/CXp

- Encode classifier into suitable logic representation 7 & pick suitable reasoner
- For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds
- For CXp: start from S = F and drop (i.e. fix) features from S while WCXp condition holds
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Computing one AXp/CXp

- Encode classifier into suitable logic representation 7 & pick suitable reasoner

- For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds
- For CXp: start from S = F and drop (i.e. fix) features from S while WCXp condition holds

- Monotone predicates for WAXp & WCXp:

Paxp(S) = = €O ([(Aies(i =) A (=0 Posp(8) = €O ([(Aiemsi =) A (mo@)] )
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Computing one AXp/CXp

- Encode classifier into suitable logic representation 7 & pick suitable reasoner

- For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds

- For CXp: start from S = F and drop (i.e. fix) features from S while WCXp condition holds
predicates for WAXp & WCXp:

Paxp(S) = = €O ([(Aies(i =) A (=0 Posp(8) = €O ([(Aiemsi =) A (mo@)] )

Input: Predicate P, parameterized by 7, M
Output: One XP S

1. procedure oneXP(P)

2 S F = Initialization: P(S) holds
3: forie F do = Loop invariant: P(S) holds
4 if P(S\{i}) then

5 S < S\{i} > Update S only if P(S\{i}) holds

6: return S > Returned set S: P(S) holds
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Computing one AXp/CXp

- Encode classifier into suitable logic representation 7 & pick suitable reasoner

- For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds

- For CXp: start from S = F and drop (i.e. fix) features from S while WCXp condition holds
predicates for WAXp & WCXp:

Paxp(S) = = €O ([(Aies(i =) A (=0 Posp(8) = €O ([(Aiemsi =) A (mo@)] )

Input: Predicate P, parameterized by 7, M
Output: One XP S

1. procedure oneXP(P)

2 S F Exploiting MSMP, i.e. = Initialization: P(S) holds
3 forie Fdo basic algorithm used = Loop invariant: P(S) holds
4 if P(S\{i}) then for different problems.

5 S < S\{i} > Update S only if P(S\{i}) holds

6: return S > Returned set S: P(S) holds
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Detour: More Connections with Automated Reasoning
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Prime implicants & implicates

- A conjunction of literals = (which will be viewed as a set of literals where convenient) is a
prime implicant of some function ¢ if,

1. mE@
2. Foranyn’ < m, 7' ¥ @
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Prime implicants & implicates

- A conjunction of literals = (which will be viewed as a set of literals where convenient) is a
prime implicant of some function ¢ if,

1. mE@
2. Foranyn’ < m, 7' ¥ @

- Example:
- F=1{0,1}3
. (,D(X1,X2,X3) = X1 A X2 VX1 A X3
- Clearly, x1 A Xa = ¢
- Also, x1 H p and xa £ ¢
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Prime implicants & implicates

- A conjunction of literals = (which will be viewed as a set of literals where convenient) is a
prime implicant of some function ¢ if,

1. mE@
2. Foranyn’ < m, 7' ¥ @

- Example:
- F=1{0,1}3
. (,D(X1,X2,X3) = X1 A X2 VX1 A X3
- Clearly, x1 A Xa = ¢
- Also, x1 H p and xa £ ¢

- A disjunction of literals n (also viewed as a set of literals where convenient) is a prime
implicate of some function ¢ if

1. pEn
2. Foranyn' < n, o# 7
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Reasoning about inconsistency (mzol

- Formula 7 = B u S, with
- B: background knowledge (base), i.e. hard constraints
- S: additional (inconsistent) knowledge, i.e. soft constraints
- And, TE L
© BEg B ={(x1VvXa),(x1 v—x3)}, S = {(—x1), (—x2), (X3)}
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- B: background knowledge (base), i.e. hard constraints
- S: additional (inconsistent) knowledge, i.e. soft constraints
- And, TE L
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- Minimal unsatisfiable subset (MUS):
- Subset-minimalsetid = S, st BullE L
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© J. Marques-Silva 64 [ 215



Reasoning about inconsistency (mzol

- Formula 7 = B u S, with
- B: background knowledge (base), i.e. hard constraints
- S: additional (inconsistent) knowledge, i.e. soft constraints
- And, TE L
© B8 B={(x1VvX2),(x1 v —x3)}, S = {(—x1), (—x2), (X3)}
- Minimal unsatisfiable subset (MUS):
- Subset-minimalsetid = S, st BullE L
©Eg U ={(—x1), (—x2)}
- Minimal correction subset (MCS):
- Subset-minimalsetC € §,st. Bu (S\C) ¥ L
- E.C = {(-x1)}
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Reasoning about inconsistency (mzol

- Formula 7 = B u S, with
- B: background knowledge (base), i.e. hard constraints
- S: additional (inconsistent) knowledge, i.e. soft constraints
- And, TE L
© B8 B={(x1VvX2),(x1 v —x3)}, S = {(—x1), (—x2), (X3)}
- Minimal unsatisfiable subset (MUS):
- Subset-minimalsetid = S, st BullE L
©Eg U ={(—x1), (—x2)}
- Minimal correction subset (MCS):
- Subset-minimalsetC € §,st. Bu (S\C) ¥ L
cEgC={(-x)}
- Duality:
- MUSes are minimal-hitting sets (MHSes) of the MCSes, and vice-versa [Reig7]
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Reasoning about inconsistency (mzol

- Formula 7 = B u S, with
- B: background knowledge (base), i.e. hard constraints
- S: additional (inconsistent) knowledge, i.e. soft constraints
- And, TE L
© B8 B={(x1VvX2),(x1 v —x3)}, S = {(—x1), (—x2), (X3)}
- Minimal unsatisfiable subset (MUS):
- Subset-minimalsetid = S, st BullE L
©Eg U ={(—x1), (—x2)}
- Minimal correction subset (MCS):
- Subset-minimalsetC € §,st. Bu (S\C) ¥ L
cEgC={(-x)}
- Duality:
- MUSes are minimal-hitting sets (MHSes) of the MCSes, and vice-versa [Reig7]

- Variants:
- Smallest(-cost) MCS, i.e. complement of maximum(-cost) satisfiability (MaxSAT)
- Smallest(-cost) MUS
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Computing AXps (resp. CXps) as MUSes (resp. MCSes)

- Recap:

WAXp(X) = VY(xeF)./\
WCXp(Y) = 3xeF). A\
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Computing AXps (resp. CXps) as MUSes (resp. MCSes)

- Recap:

WAXp(X) = VY(xeF)./\
WCXp(Y) = 3xeF). A\

- Let,

- Hard constraints, B:
B = nier (Si—(Xi = Vi) A Encoder(—o(x))
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Computing AXps (resp. CXps) as MUSes (resp. MCSes)

- Recap:

WAXp(X) = V(xeF). /\jeX(xj =vj) —(0(x))
WCXp(Y) = 3I(xeF). /\jw(x, =) A (—o(x))

- Let,

- Hard constraints, B:
B = nier (Si—(Xi = Vi) A Encoder(—o(x))

- Soft constraints: S = {s;|i e F}
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Computing AXps (resp. CXps) as MUSes (resp. MCSes)

- Recap:

WAXp(X) = VY(xeF)./\
WCXp(Y) = 3xeF). A\

- Let,
- Hard constraints, B:
B = nier (Si—(Xi = Vi) A Encoder(—o(x))

- Soft constraints: S = {s;|i e F}

- Claim: Each MUS of (B, S) is an AXp & each MCS of (B,S) is a CXp
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Computing AXps (resp. CXps) as MUSes (resp. MCSes)

- Recap:

WAXp(X) = VY(xeF)./\
WCXp(Y) = 3xeF). A\

- Let,
- Hard constraints, B:
B = nier (Si—(Xi = Vi) A Encoder(—o(x))

- Soft constraints: S = {s;|i e F}

- Claim: Each MUS of (B, S) is an AXp & each MCS of (B,S) is a CXp
- Can use MUS/MCS algorithms for AXps/CXps
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Unit #03

Tractability in Symbolic XAl



Outline - Unit #03

Explanations for Decision Trees



DT explanations

middle-middle=x

g
Q
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DT explanations

middle-middle=x

g
Q

- Run Pl-explanation algorithm based on
NP-oracles

- Worst-case exponential time
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DT explanations
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paths with prediction 0 remain
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DT explanations in polynomial time

middle-middle=x

Q

- Run Pl-explanation algorithm based on
NP-oracles

- Worst-case exponential time
- For prediction 1, it suffices to ensure all
paths with prediction 0 remain
inconsistent

- le. find a subset-minimal hitting set of
all 0 paths; these are the features to
keep

- E.g BR and TR suffice for prediction

- Well-known to be solvable in
polynomial time [£G95]
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Outline - Unit #03

XAl Queries for DTs



Answering queries in DTs

- Finding one AXp in polynomial-time - covered

© J. Marques-Silva 67 [ 215



Answering queries in DTs

- Finding one AXp in polynomial-time - covered

- Finding one CXp in polynomial-time
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Answering queries in DTs

- Finding one AXp in polynomial-time - covered
- Finding one CXp in polynomial-time

- Finding all CXps in polynomial-time
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Answering queries in DTs

- Finding one AXp in polynomial-time - covered
- Finding one CXp in polynomial-time

- Finding all CXps in polynomial-time; hence, finding one CXp also in polynomial-time
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Answering queries in DTs

- Finding one AXp in polynomial-time - covered
- Finding one CXp in polynomial-time
- Finding all CXps in polynomial-time; hence, finding one CXp also in polynomial-time

- Practically efficient enumeration of AXps - later
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Finding all CXps in polynomial-time

- Basic algorithm:
- L=
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- For each leaf node not predicting g:
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- Basic algorithm:
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- Remove from £ non-minimal sets
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Finding all CXps in polynomial-time

- Basic algorithm:
- L=
- For each leaf node not predicting g:
- T features with literals inconsistent with v
- AddZto L
- Remove from £ non-minimal sets
- L contains all the CXps of the DT
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Finding all CXps in polynomial-time

- Basic algorithm:
- L=
- For each leaf node not predicting g:

- T features with literals inconsistent with v
- AddZto L

- Remove from £ non-minimal sets
- L contains all the CXps of the DT

- Example: instance is ((1,1,1,1),1)
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Finding all CXps in polynomial-time

- Basic algorithm:
- L=
- For each leaf node not predicting g:

- T features with literals inconsistent with v
- AddZto L

- Remove from £ non-minimal sets
- L contains all the CXps of the DT

- Example: instance is ((1,1,1,1),1)
- Add {1,2} to £
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Finding all CXps in polynomial-time

- Basic algorithm:
- L=
- For each leaf node not predicting g:

- T features with literals inconsistent with v
- AddZto L

- Remove from £ non-minimal sets

- L contains all the CXps of the DT
- Example: instance is ((1,1,1,1),1)

- Add {1,2} to £

- Add {1,3} to £
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Finding all CXps in polynomial-time

- Basic algorithm:
- L=
- For each leaf node not predicting g:
- T features with literals inconsistent with v
- AddZto L
- Remove from £ non-minimal sets
- L contains all the CXps of the DT

- Example: instance is ((1,1,1,1),1)
- Add {1,2} to £
- Add {1,3}to £
- Add {1,4} to £
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Finding all CXps in polynomial-time

- Basic algorithm:
- L=
- For each leaf node not predicting g:
- T features with literals inconsistent with v
- AddZto L
- Remove from £ non-minimal sets
- L contains all the CXps of the DT

- Example: instance is ((1,1,1,1),1)
- Add {1,2} to £
- Add {1,3}to £
- Add {1,4} to £
- Add {3} to £
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Finding all CXps in polynomial-time

- Basic algorithm:
- L=
- For each leaf node not predicting g:
- T: features with literals inconsistent with v
- AddZto L
- Remove from £ non-minimal sets
- L contains all the CXps of the DT
- Example: instance is ((1,1,1,1),1)
- Add {1,2} to £
- Add {1,3} to £
- Add {1,4} to L
- Add {3} to £
- Add {4} to £
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Finding all CXps in polynomial-time

- Basic algorithm:
- L=
- For each leaf node not predicting g:
- T: features with literals inconsistent with v
- AddZto L
- Remove from £ non-minimal sets
- L contains all the CXps of the DT
- Example: instance is ((1,1,1,1),1)
- Add {1,2} to £
- Add {1,3} to £
- Add {1,4} to L
- Add {3} to £
- Add {4} to £
- Remove from £: {1,3} and {1, 4}

© J. Marques-Silva 68 / 215



Finding all CXps in polynomial-time

- Basic algorithm:
- L=
- For each leaf node not predicting g:
- T: features with literals inconsistent with v
- AddZto L
- Remove from £ non-minimal sets
- L contains all the CXps of the DT
- Example: instance is ((1,1,1,1),1)
- Add {1,2} to £
- Add {1,3} to £
- Add {1,4} to L
- Add {3} to £
- Add {4} to £
- Remove from £: {1,3} and {1, 4}
-« Xps: {{1,2}, {3}, {4}}

© J. Marques-Silva 68 / 215



Finding all CXps in polynomial-time

- Basic algorithm:
- L=
- For each leaf node not predicting g:
- T features with literals inconsistent with v
- AddZto L
- Remove from £ non-minimal sets
- L contains all the CXps of the DT
- Example: instance is ((1,1,1,1),1)
- Add {1,2} to £
- Add {1,3} to £
- Add {1,4} to L
- Add {3} to £
- Add {4} to £
- Remove from £: {1,3} and {1, 4}
-+ Xps: {{1,2}, {3}, {4}}
- AXps: {{1,3,4},{2,3,4}}, by computing all MHSes
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Outline - Unit #03

Myth #01: Intrinsic Interpretability



Are interpretable models really interpretable? - DTs

- Case of optimal decision tree (DT) HRs19]
- Explanation for (0,0, 1,0, 1), with prediction 1?
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- Case of optimal decision tree (DT) HRs19]
- Explanation for (0,0, 1,0, 1), with prediction 1?
- Clearly, IF =x1 A =X2 A X3 A —Xa A X5 THEN k(x) =1
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Are interpretable models really interpretable? - DTs

- Case of optimal decision tree (DT) HRs19]
- Explanation for (0,0, 1,0, 1), with prediction 1?
- Clearly, IF —=x1 A =X2 A X3 A —Xa A X5 THEN k(x) =1
- But, x1, X2, X4 are irrelevant for the prediction:
X3 X5 X1 X2 Xa H(X)

1000

PR R R R R R
N Y
[ e = e
m R, O ORr KL O
O R OFr O R
e  E G
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Are interpretable models really interpretable? - DTs

- Case of optimal decision tree (DT) HRs19]
- Explanation for (0,0, 1,0, 1), with prediction 1?
- Clearly, IF —=x1 A =X2 A X3 A —Xa A X5 THEN k(x) =1
- But, X1, X2, X4 are irrelevant for the prediction:
X3 X5 X1 X2 Xa H(X)

1000

PR R R R R R
N Y
[ e = e
m R, O ORr KL O
O R OFr O R
e  E G

c.one AXp is {3,5}
Compare with {1, 2, 3,4, 5}...
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Are interpretable models really interpretable? - large DTs

[GzMm20]
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Are interpretable models really interpretable? - large DTs

[GzMm20]

Path with 19 internal nodes.

By manual inspection, at least
10 literals are redundant!

(And at least 9 features dropped)

© ). Marques-Silva 70 / 215



Are interpretable models really interpretable? - large DTs

[GzMm20]

Path with 19 internal nodes.

By manual inspection, at least
10 literals are redundant!

(And at least 9 features dropped)
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And the cognitive limits of human
decision makers are well-known [Mil56]
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Are interpretable models really interpretable? - large DTs

Redundancy can be arbitrary large
on path length [IIM20, HIIM21, 1IM22]

[GzMm20]

Path with 19 internal nodes.

By manual inspection, at least
10 literals are redundant!

(And at least 9 features dropped)
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And the cognitive limits of human
decision makers are well-known [Mil56]
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Are interpretable models really interpretable? — arbitrary redundancy gz, i, i

- Classifier, with xq, ..., xn € {0, 1}:

© J. Marques-Silva 71/ 215



Are interpretable models really interpretable? — arbitrary redundancy gz, i, i

- Classifier, with xq, ..., xn € {0, 1}:

- Build DT, by picking variables in order {iy, s, ..., imy, permutation of (1,2,..., m):
e{()} U (oo E{O}m e {1} m

e {1} e {1} e {1} € {0}

0]
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Are interpretable models really interpretable? — arbitrary redundancy gz, i, i

Classifier, with xq,...,xm € {0, 1}:
- Build DT, by picking variables in order {iy, s, ..., imy, permutation of (1,2,..., m):

e{O} ey (oo e{o}/Xim\ € {1) A
e {1} e {1} e {1} e {0}

- Point: (Xj,, Xi,, - - - ,xim_l,x,-m) = (0707...,07 1), and prediction 1
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Are interpretable models really interpretable? — arbitrary redundancy gz, i, i

- Classifier, with xq, ..., xn € {0, 1}:
- Build DT, by picking variables in order {iy, s, ..., imy, permutation of (1,2,..., m):

e {0} a 767{9}7 777777 i e {0} m e {1} m
<t ¢ e (1) ¢ (0)

- Point: (Xi,, Xiy, - - -5 Xip,_15Xi,) = (0,0,...,0,1), and prediction 1

- Explanation using path in DT: {iy,i2,...,im}, i.€.

X, =0 AX,=0)A.c.onXi,_, =0)A (X, =1) > K(X1,...,Xm)
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Are interpretable models really interpretable? — arbitrary redundancy gz, i, i

- Classifier, with xq, ..., xn € {0, 1}:
- Build DT, by picking variables in order {iy, s, ..., imy, permutation of (1,2,..., m):

e {0} a 767{9}7 777777 i e {0} m e {1} m
€ {1} e {1} e {1} c (0}
0]

- Point: (Xi,, Xiy, - - -5 Xip,_15Xi,) = (0,0,...,0,1), and prediction 1

- Explanation using path in DT: {iy,i2,...,im}, i.€.
X, =0 AX,=0)A.c.onXi,_, =0)A (X, =1) > K(X1,...,Xm)

But {i,,} suffices for prediction, i.e. V(x € {0,1}™).(x;, ) — k(x)
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Are interpretable models really interpretable? — arbitrary redundancy gz, i, i

- Classifier, with xq, ..., xn € {0, 1}:
- Build DT, by picking variables in order {iy, s, ..., imy, permutation of (1,2,..., m):

e {0} a 767{9}7 777777 i e {0} m e {1} m
€ {1} e {1} e {1} c (0}
0]

- Point: (Xi,, Xiy, - - -5 Xip,_15Xi,) = (0,0,...,0,1), and prediction 1

- Explanation using path in DT: {iy,i2,...,im}, i.€.
X, =0 AX,=0)A.c.onXi,_, =0)A (X, =1) > K(X1,...,Xm)

But {i,,} suffices for prediction, i.e. V(x € {0,1}™).(x;, ) — k(x)
- AXp’s can be arbitrarily smaller than paths in (optimal) DTs! M20, 122]
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Explanation redundancy in DTs is ubiquitous - published DT examples (a2l

DT Ref D #N #P YR %C %m %M Yavg
[Alp14, Ch. 09, Fig. 9.1] 2 5 3 33 25 50 50 50
[Alp16, Ch. 03, Fig. 3.2] 2 5 3 33 25 50 50 50
[Bra20, Ch. 01, Fig. 1.3] 4 9 5 60 25 25 50 36
[BA97, Figure 1] 3 12 7 14 8 33 33 33
[BBHK10, Ch. 08, Fig. 8.2] 37 4 25 12 50 50 50
[BFOS84, Ch. 01, Fig. 1.1] 3 7 4 50 25 33 33 33
[DLO1, Ch. 01, Fig. 1.2a] 2 5 3 33 25 33 33 33
[DLO1, Ch. 01, Fig. 1.2b] 2 5 3 33 25 33 33 33
[KMND20, Ch. 04, Fig. 4.14] 3 7 4 25 12 50 50 50
[KMND20, Sec. 4.7, Ex. 4] 2 5 3 33 25 50 50 50
[Quig3, Ch. 01, Fig. 1.3] 3 12 7 28 17 33 50 41
[RMOS, Ch. 01, Fig. 1.5] 3 9 5 2 12 33 33 33
[RMQS, Ch. 01, Fig. 1.4] 3 7 4 50 25 33 33 33
[WFHP17, Ch. 01, Fig. 1.2] 3 7 4 25 12 50 50 50
[VLET 16, Figure 4] 6 39 20 65 63 20 40 33
[Fla12, Ch. 02, Fig. 2.1(right)]l 2 5 3 33 25 50 50 50
[Kot13, Figure 1] 3 10 6 33 11 33 33 33
[Mor82, Figure 1] 3 9 5 8 75 33 50 41
[PM17, Ch. 07, Fig. 7.4] 3 7 4 50 25 33 33 33
[RN10, Ch. 18, Fig. 18.6] 4 12 8 25 6 25 33 29
[SB14, Ch. 18, Page 212] 2 5 3 33 25 50 50 50
[zho12, Ch. 01, Fig. 1.3] 2 5 3 33 25 33 33 33
[BHOO9, Figure 1b] 4 13 7 71 50 33 50 36
[Zho21, Ch. 04, Fig. 4.3] 4 14 9 11 2 25 25 25
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that are not minimal XPs — Russell&Norvig's book

/
12
French -~ Thai
-7 Italian Burger
e

/ Yes
/

No

- Explanation for (P, H, T, W) = (Full, Yes, Thai, No)?

© J. Marques-Silva
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Many DTs have paths that are not minimal XPs — Zhou's book

isy > 0.73?

- Explanation for (x,y) = (1.25, —1.13)7?
Obs: True explanations can be computed for categorical, integer or real-valued features !
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Many DTs have paths that are not minimal XPs — Alpaydin’s book

[Alp14]

- Explanation for (xq,x2) = (e, 8), with @ > wyg and 8 < wyg?
Obs: True explanations can be computed for categorical, integer or real-valued features !
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that are not minimal XPs - S.-S.&B.-D.s book

other 7 Pale Grade
///
Not Tasty @
Other , Gives2Pressume
’ Not Tasty ‘ ’ Tasty ‘

- Explanation for (color, softness) = (Pale Grade, Other)?
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Many DTs have paths that are not minimal XPs — Poole&Mackworth’s book

[PM17]

Unknown , Known
/

- Explanation for (L, T,A) = (Short, Follow-Up, Unknown)?
- Explanation for (L, T,A) = (Short, Follow-Up, Known)?
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[1IM20, HIIM21, 1IM22]

© J. Marques-Silva

Dataset (#F  #S) Al m
D #N %A #P YR %C %m %M %avg D #N %A #P YR %C %m %M Yavg

adult (12 6061) 6 83 78 42 33 25 20 40 25 17 509 73 255 75 91 10 66 22
anneal (38 886) 6 29 99 15 26 16 16 33 21 9 31 100 16 25 4 12 20 16
backache (32 180) 4 17 72 9 33 39 25 33 30 3 9 91 5 80 87 50 66 54
bank (19 36293) 6 113 88 57 5 12 16 20 18 19 1467 86 734 69 64 7 63 27
biodegradation (41 1052) 5 19 65 10 30 1 25 50 33 8 7176 36 50 8§ 14 40 21
cancer (9 449) 6 37 87 19 36 9 20 25 21 5 21 84 11 54 10 25 50 37
car (6 1728) 6 43 96 22 8 89 20 80 45 11 57 98 29 65 41 16 50 30
colic (22 357) 6 55 81 28 46 6 16 33 20 4 17 80 9 33 27 25 25 25
compas (11 1155) 6 77 34 39 17 8 16 20 17 15 183 37 92 66 43 12 60 27
contraceptive (9 1425) 6 99 49 50 8 2 20 60 37 17 385 48 193 27 32 12 66 21
dermatology (34 366) 6 33 90 17 23 3 16 33 21 7 17 9 9 22 0 14 20 17
divorce (54 150) 5 15 9 8 50 19 20 33 24 2 5 96 3 33 16 50 50 50
german (21 10000 6 25 61 13 38 10 20 40 29 10 99 72 50 46 13 12 40 22
heart-c (13 302) 6 43 65 22 36 18 20 33 22 4 15 75 8 87 8 25 50 34
heart-h (13 293) 6 37 59 19 31 4 20 40 24 8 25 77 13 61 60 20 50 32
kr-vs-kp (36 3196) 6 49 96 25 80 75 16 60 33 13 67 99 34 79 43 7 70 35
lending (9 5082) 6 45 73 23 73 80 16 50 25 14 507 65 254 69 80 12 75 25
letter (16 18668) 6 127 58 64 1 0 20 20 20 46 4857 68 2429 6 7 6 25 9
lymphography (18 148) 6 61 76 31 35 25 16 33 21 6 21 8 11 9 0 16 16 16
mortality (118 13442) 6 111 74 56 8 14 16 20 17 26 865 76 433 61 61 7 54 19
mushroom (22 8124) 6 39 100 20 80 44 16 33 24 5 23 100 12 50 31 20 40 25
pendigits (16 10992) 6 121 88 61 O 0o - = = 38 937 85 469 25 86 6 25 11
promoters (58 106) 1 3 9 2 0 0 — — — 3] 9 81 5 20 14 33 33 33
recidivism (15 3998) 6 105 61 53 28 22 16 33 18 15 611 51 306 53 38 9 44 16
seismic_bumps (18 2578) 6 37 89 19 42 19 20 33 24 8 39 93 20 60 79 20 60 42
shuttle (9 5800) 6 63 99 32 28 7 20 33 23 23 159 99 80 33 9 14 50 30
soybean (35 623) 6 63 8 32 9 5 25 25 25 16 71 89 36 22 1 9 12 10
spambase (57 4210) 6 63 75 32 37 12 16 33 19 15 143 91 72 76 98 7 58 25
spect (22 228) 6 45 82 23 60 51 20 50 35 6 15 86 8 87 98 50 83 65
splice (2 3178) 3 7 50 4 0 0o - — — 88 177 55 89 0 ® = - —
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Are interpretable models really interpretable? - DLs (512

Ry : IF (X1 A X3) THEN  k(x)=1
Ro : ELSEIF (X2 A Xa A Xg) THEN k(x)=0
R3 : ELSE IF (—‘Xl A X;;) THEN ,‘i(x) =1
Ry : ELSE IF (Xa A X6) THEN  k(x) =0
Rs : ELSEIF  (—=Xx1 A —x3) THEN k(x)=1
Re : ELSE IF (X6) THEN  k(x) =0
Rper : ELSE Kk(x) =1

- Instance: ((0,1,0,1,0,1),0), i.e. rule Ry fires

© J. Marques-Silva 75 [ 215



Are interpretable models really interpretable? - DLs (512

Ry : IF (X1 A X3) THEN  k(x)=1
Ro : ELSEIF (X2 A Xa A Xg) THEN k(x)=0
R3 : ELSE IF (—‘Xl A X;;) THEN ,‘i(x) =1
Ry : ELSE IF (Xa A X6) THEN  k(x) =0
Rs : ELSEIF  (—=Xx1 A —x3) THEN k(x)=1
Re : ELSE IF (X6) THEN  k(x) =0
Rper : ELSE Kk(x) =1

- Instance: ((0,1,0,1,0,1),0), i.e. rule Ry fires

- What is the abductive explanation?
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Are interpretable models really interpretable? - DLs (512

Ry : IF (X1 A X3) THEN  k(x)=1
Ro : ELSEIF (X2 A Xa A Xg) THEN k(x)=0
R3 : ELSE IF (—‘Xl A X;;) THEN ,‘i(x) =1
Ry : ELSE IF (Xa A X6) THEN  k(x) =0
Rs : ELSEIF  (—=Xx1 A —x3) THEN k(x)=1
Re : ELSE IF (X6) THEN  k(x) =0
Rper : ELSE Kk(x) =1

- Instance: ((0,1,0,1,0,1),0), i.e. rule Ry fires
- What is the abductive explanation?
- Recall: one AXp is {3,4,6}
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Are interpretable models really interpretable? - DLs (512

Ry : IF (X1 A X3) THEN  k(x)=1
Ro : ELSEIF (X2 A Xa A Xg) THEN k(x)=0
R3 : ELSE IF (—‘Xl A X;;) THEN ,‘i(x) =1
Ry : ELSE IF (Xa A X6) THEN  k(x) =0
Rs : ELSEIF  (—=Xx1 A —x3) THEN k(x)=1
Re : ELSE IF (X6) THEN  k(x) =0
Rper : ELSE Kk(x) =1

- Instance: ((0,1,0,1,0,1),0), i.e. rule Ry fires
- What is the abductive explanation?
- Recall: one AXp is {3,4,6}
- Why?
- We need 3 (or 1) so that Ry cannot fire
- With 3, we do not need 2, since with 4 and 6 fixed, then Ry is guaranteed to fire
- Some questions:

- Would average human decision maker be able to understand the AXp?
- Would he/she be able to compute one AXp, by manual inspection?
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Are interpretable models really interpretable? - DLs (512

Ry : IF (X1 A X3) THEN  k(x)=1
Ro : ELSEIF (X2 A Xa A Xg) THEN k(x)=0
R3 : ELSE IF (—‘Xl A X;;) THEN ,‘i(x) =1
Ry : ELSE IF (Xa A X6) THEN  k(x) =0
Rs : ELSEIF  (—=Xx1 A —x3) THEN k(x)=1
Re : ELSE IF (X6) THEN  k(x) =0
Rper : ELSE Kk(x) =1

- Instance: ((0,1,0,1,0,1),0), i.e. rule Ry fires
- What is the abductive explanation?
- Recall: one AXp is {3,4,6}
- Why?
- We need 3 (or 1) so that Ry cannot fire
- With 3, we do not need 2, since with 4 and 6 fixed, then Ry is guaranteed to fire
- Some questions:

- Would average human decision maker be able to understand the AXp?
- Would he/she be able to compute one AXp, by manual inspection?
(BTW, we have proved that computing one AXp for DLs is computationally hard...) [IM21, MS123]
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Are interpretable models really interpretable? - DTs/DLs in practice

100 : ;
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Outline - Unit #03

Detour: From Decision Trees to Explained Decision Sets



From DTs to explained DSs

- Decision sets raise a number of issues:

- Overlap: Two rules with different predictions can fire on the same input
- Incomplete coverage: For some inputs, no rule may fire

- A default rule defeats the purpose of unordered rules
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- Incomplete coverage: For some inputs, no rule may fire

- A default rule defeats the purpose of unordered rules

- A DS without overlap and complete coverage computes a classification function

© J. Marques-Silva 77 [ 215



From DTs to explained DSs

- Decision sets raise a number of issues:

- Overlap: Two rules with different predictions can fire on the same input
- Incomplete coverage: For some inputs, no rule may fire

- A default rule defeats the purpose of unordered rules

- A DS without overlap and complete coverage computes a classification function

- And explaining DSs is computationally hard...
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From DTs to explained DSs

[HM23a

- Decision sets raise a number of issues:

- Overlap: Two rules with different predictions can fire on the same input
- Incomplete coverage: For some inputs, no rule may fire

- A default rule defeats the purpose of unordered rules

- A DS without overlap and complete coverage computes a classification function

- And explaining DSs is computationally hard...

- One can extract explained DSs from DTs
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From DTs to explained DSs

[HM23a

- Decision sets raise a number of issues:

- Overlap: Two rules with different predictions can fire on the same input
- Incomplete coverage: For some inputs, no rule may fire

- A default rule defeats the purpose of unordered rules

- A DS without overlap and complete coverage computes a classification function

- And explaining DSs is computationally hard...

- One can extract explained DSs from DTs

- Extract one AXp (viewed as a logic rule) from each path in DT
- Resulting rules are non-overlapping, and cover feature space
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Example
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Example

Ro1: IF
Roz2: IF
Ros: IF
Roq: IF
Ros: IF
Rog: IF
Ro7: IF
Ros: IF
Rog: IF
Rio: IF
Ryp: IF
Ri2: IF

P THEN k() =Y

A A PITHEN k(-) = N
PANAVAZ=1]THEN (-) =N
PANAVAZ=2ASAG THEN k() =N
AANZ=2ASAGTHEN k() =Y
D
A
A

ANAVAZ=2ASAH THEN k(:) =N
AZ=2ASAHACTHENK(:) =Y
AZ=2AHAGITHEN k() =Y
PANAVAZ=2ACAGTHENk(-) =N
AAZ=0]THEN k() =Y
AAV]THEN k(1) =Y
A AN THEN k(:) =Y
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Outline - Unit #03

Explanations for Decision Graphs



Explanation graphs — overview of results

- Concept of explanation graph (XpG)

- Explanations of decision trees reducible to XpG's

- Explanations of decision graphs reducible to XpG's
- Explanations of OBDDs reducible to XpG's

- Explanations of OMDDs reducible to XpG's

- Explanations (AXp's and CXp's) of XpG's computed in polynomial time
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Example of XpG - DTs

- DT, point: (O, L,Y,P); prediction T:

€ {N}

e {0}/ 2

e {W,T} € {P,F}

€ {H} > \€ {L, M}

e{n}/ ®\e W

12
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Example of XpG - OMDDs

- OMBBD; point: (0, 1,2); prediction R: - XpG:
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Finding one AXp for XpGs - polynomial time

- Algorithm (with no inconsistent paths): - XpG:
S—F
For each feature i in F
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Finding one AXp for XpGs - polynomial time

- Algorithm (with no inconsistent paths): - XpG:
S—F
For each feature i in F
Drop feature i from S, i.e. i is free
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Finding one AXp for XpGs - polynomial time

- Algorithm (with no inconsistent paths): - XpG:
S—F
For each feature i in F

Drop feature i from S, i.e. i is free
If path to some 0 not blocked by
0-valued literals, then

Add feature i back to S
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Finding one AXp for XpGs - polynomial time

- Algorithm (with no inconsistent paths): - XpG:
S—F
For each feature i in F

Drop feature i from S, i.e. i is free
If path to some 0 not blocked by
0-valued literals, then

Add feature i back to S
Return &
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Finding one AXp for XpGs - polynomial time

- Algorithm (with no inconsistent paths): - XpG:
S—F
For each feature i in F

Drop feature i from S, i.e. i is free
If path to some 0 not blocked by
0-valued literals, then

Add feature i back to S
Return S
- Example:
- S§={1,2,3}
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Finding one AXp for XpGs - polynomial time

- Algorithm (with no inconsistent paths): - XpG:
S—F
For each feature i in F

Drop feature i from S, i.e. i is free
If path to some 0 not blocked by
0-valued literals, then

Add feature i back to S
Return &
- Example:
- S =1{1,2,3}
- Feature 1 cannot be dropped, e.g.

S3—>S2—>5S1 —0
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Finding one AXp for XpGs - polynomial time

- Algorithm (with no inconsistent paths): - XpG:
S—F
For each feature i in F

Drop feature i from S, i.e. i is free
If path to some 0 not blocked by
0-valued literals, then

Add feature i back to S
Return &
- Example:
- S =1{1,2,3}
- Feature 1 cannot be dropped, e.g.
S3—>S2 —S1 —0

- Both features 2 and 3 dropped from S

© J. Marques-Silva 82 /215



Finding one AXp for XpGs - polynomial time

- Algorithm (with no inconsistent paths): - XpG:
S—F
For each feature i in F

Drop feature i from S, i.e. i is free
If path to some 0 not blocked by
0-valued literals, then

Add feature i back to S
Return &
- Example:
- S =1{1,2,3}
- Feature 1 cannot be dropped, e.g.
S3—S2 —>51 —0
- Both features 2 and 3 dropped from S
- Return § = {1}
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Outline - Unit #03

Explanations for Monotonic Classifiers



Example monotonic classifier - (v, ¢) = ((10, 10,5, 0),A)

mect21]

Variable Meaning Range
k() =M Student grade € {A,B,C,D,E F}
S Final score € {0,...,10}
Feat.id  Feat.var. Feat. name Domain
1 Q Quiz {0,...,10}
2 X Exam {0,...,10}
3 H Homework {0,...,10}
4 R Project {0,...,10}
M = ITE(S>9,A,ITE(S > 7,B,ITE(S = 5,C,ITE(S > 4, D, ite(S = 2,E, F)))))
S = max[0.3xQ+0.6 xX+0.1xH,R]

Also, FXESD<C<B<xA
And, KZ(Xl) < H(Xg) if X1 < Xo

© J. Marques-Silva 83 /215



Explaining monotonic classifiers

- Instance (v, )
- Domain forie F: A(i) < xj < p(i)
- ldea: refine lower and upper bounds on the prediction

- viand vy
- Utilities:
- FixAttr(i):
Ve (Vigy ooy Vige vy Vi)
VU — (Vupy.ees Viyooay V)

(A, B) — (A\{i}, B {i})
return (vi, vy, A, B)

- FreeAttr(i):
Vi < (VL17---7)\(i)7"'7VLN)
Vuy < (VUla"'uu(i)w'wVUN)

(A, B) « (A\{i}, B u {i})
return (vi, vy, A, B)
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Computing one AXp

v — (Vi,..., W)

20 vy «— (Vi,..., W) > Ensures: k(v.) = k(vy)
3 (C,D,P)«— (F, &, D) > S: Some possible seed
4 forall ieSdo

5: (vi,vy,C, D) « FreeAttr(i,v, v, vy,C,D) = Require: x(v.) = k(vy), given S
6: forall ie F\S do = Loop inv.: k(vy) = k(vy)
7: (v, vy,C, D) < FreeAttr(i,v,v.,vy,C, D)

8: if k(v)) = r(vy) then = If invariant broken, fix it
9: (vi,vu, D, P) « FixAttr(i,v, v, vy, D, P)

10: return P

- Obs: S = ¢ for computing a single AXp/CXp
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Computing one AXp - example

- A()=0and u(i) =10
- v = (10,10,5,0), with (v) = A
- Q: find one AXp (CXp is similar)

Feat. Initial values Changed values Predictions Dec. Resulting values

\'a vy v vy k(vi) k(vy) v vy
| 1 ](10,10,5,0) (10,10,50) | (0,1050) (10,1050) | ¢ A | vV |(10,10,50) (10,10,5,0) |
| 2 ](10,10,5,0) (10,10,50) | (10,050) (10,050) | £ A | vV |(10,10,50) (10,10,5,0) |
| 3 ](10,10,5,0) (10,10,5,0) | (10,10,0,0) (10,10,10,0) | A A | X ](10,10,0,0) (10,10,10,0) |
| 4 ](10,10,0,0) (10,10,10,0) | (10,10,0,0) (10,10,10,10)| A A | X |(10,10,0,0) (10,10,10,10) |
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Outline - Unit #03

Review examples



Recap computation of (W)AXps/(W)CXps

WAXp(X) = V(xeF). /\jex(x, — ) —>(0(x))
WCXp(Y) = 3I(xel). /\W(xj =) A (—o(x))
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Recap computation of (W)AXps/(W)CXps

WAXp(X) = V(xeF). /\jex(x, — ) —>(0(x))
WCXp(Y) = 3I(xel). /\W(xj =) A (—o(x))

Input: Predicate P, parameterized by 7, M
Output: One XP S

1. procedure oneXP(P)

2 S—F = Initialization: P(S) holds
3: for ie F do = Loop invariant: P(S) holds
4 if P(S\{i}) then

5 S <« S\{i} = Update S only if P(S\{i}) holds

6: return S > Returned set S: P(S) holds
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Review exercise — one AXp for example DT

- Instance: (v,c) =((1,2,1,2),Y)
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Review exercise — one AXp for example DT

- Instance: (v,c) =((1,2,1,2),Y)

- Finding on AXp:
- 1st path inconsistent: Hy = {3}
- 2nd path inconsistent: Hy = {2}
- 3rd path inconsistent: Hz = {1}
- 4th path inconsistent: Hy = {1}

+ AXp is MHS of H; sets: {1,2, 3}
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Review exercise — all CXps & AXps for example DT

- Instance: (v,c) =((1,2,1,2),Y)
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Review exercise — all CXps & AXps for example DT

- Instance: (v,c) =((1,2,1,2),Y)

- Finding CXps:
- Ist path: Iy = {3}
- 2nd path: I, = {2}
- 3rd path: I3 = {1}
- 4th path: Iy = {1}
CL={1},{2, 8} =C
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Review exercise — all CXps & AXps for example DT

- Instance: (v,c) =((1,2,1,2),Y)

- Finding CXps:
- Ist path: Iy = {3}
- 2nd path: I, = {2}
- 3rd path: I3 = {1}
- 4th path: Iy = {1}
- L={{1},{2},{3}} =C
- Finding AXps:
(i.e. all MHSes of sets in C
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Review exercise — all CXps & AXps for example DT

- Instance: (v,c) =((1,2,1,2),Y)

- Finding CXps:
- Ist path: Iy = {3}
- 2nd path: I, = {2}
- 3rd path: I3 = {1}
- 4th path: Iy = {1}
- L={{1},{2},{3}} =C
- Finding AXps:
(i.e. all MHSes of sets in C
- A={{1,2,3}}
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Another review exercise — one AXp for example DL

- DL:
Ry : IF (X1 A X3) THEN k(x)=0
Ro : ELSE IF (X1 A X5) THEN k(x)=0
Rs : ELSE IF (X2 A Xq) THEN k(x) =1
Ry : ELSE IF (X1 A X7) THEN k(x)=0
Rs : ELSEIF  (—=x4 AXs) THEN k(x)=1
Re : ELSEIF  (—=Xx4 A —Xg) THEN k(x)=1
R7 : ELSEIF  (=X2 AXg) THEN k(x)=1
Roer : ELSE k(x) =0
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- DL:
Ry : IF (X1 A X3) THEN k(x)=0
Ro : ELSE IF (X1 A X5) THEN k(x)=0
Rs : ELSE IF (X2 A Xq) THEN k(x) =1
Ry : ELSE IF (X1 A X7) THEN k(x)=0
Rs : ELSEIF  (—=x4 AXs) THEN k(x)=1
Re : ELSEIF  (—=Xx4 A —Xg) THEN k(x)=1
R7 : ELSEIF  (=X2 AXg) THEN k(x)=1
Roer : ELSE k(x) =0

- Instance: v=(0,1,0,1,0,1,0)
- The prediction is 1, due to Rs

© J. Marques-Silva 90 / 215



Another review exercise — one AXp for example DL

- DL:
Ry : IF (X1 A X3) THEN k(x)=0
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Another review exercise — one AXp for example DL

- DL:
Ry : IF (X1 A X3) THEN k(x)=0
Ro : ELSE IF (X1 A X5) THEN k(x)=0
Rs : ELSE IF (X2 A Xq) THEN k(x) =1
Ry : ELSE IF (X1 A X7) THEN k(x)=0
Rs : ELSEIF  (—=x4 AXs) THEN k(x)=1
Re : ELSEIF  (—=Xx4 A —Xg) THEN k(x)=1
R7 : ELSEIF  (=X2 AXg) THEN k(x)=1
Roer : ELSE k(x) =0

- Instance: v=(0,1,0,1,0,1,0)
- The prediction is 1, due to Rs

- AXp: {1,2}
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Another review exercise — one AXp for example DL

- DL:
Ry : IF (X1 A X3) THEN k(x)=0
Ro : ELSEIF (X1 AX5) THEN k(x)=0
Ry : ELSEIF (o AXa) THEN s(x) =1
Ry : ELSEIF (xi Ax;) THEN w(x)=0
Rs : ELSEIF  (—=x4 AXs) THEN k(x)=1
Re : ELSEIF (—x4 A —Xg) THEN s(x) =1
R7: ELSEIF  (—x2 AXg) THEN k(x)=1
Rogr:  ELSE K(x) =0

- Instance: v=(0,1,0,1,0,1,0)
- The prediction is 1, due to Rs

- AXp: {1,2}
- Quiz: write down the constraints and confirm AXp with SAT solver
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Lecture 03
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Recapitulate second lecture

- Rigorous definitions of abductive and contrastive explanations
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Recapitulate second lecture

- Rigorous definitions of abductive and contrastive explanations
- Example algorithm for finding one AXp/CXp

- Explanations for DTs

- Explanations for XpGs

- Explanations for monotonic classifiers
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Recap AXps/CXps: DT example

- Instance: ((0,0,1,0,0),0)

€ {0}/
¥
[o]
e/ \ew e/ \ew
¥
G
e/ " \ew
¥
[0]
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Recap AXps/CXps: DT example

- Instance: ((0,0,1,0,0),0)
- One AXp: {1,4,5}
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Recap AXps/CXps: DT example

- Instance: ((0,0,1,0,0),0)
- One AXp: {1,4,5}
- All CXps:

- I1i: {5}
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Recap AXps/CXps: DT example
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- One AXp: {1,4,5}
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Recap AXps/CXps: DT example

- Instance: ((0,0,1,0,0),0)
- One AXp: {1,4,5}
- All CXps:

. 111 {5}
N /21 {4}
* IgI {2,5}
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Recap AXps/CXps: DT example

- Instance: ((0,0,1,0,0),0)
- One AXp: {1,4,5}

- All CXps:

. 111 {5}
N /21 {4}
- 31 {2,5} e (1) c,/ " \e
. ¥

la: {2, 4} [0]

e/ \ew
¥
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Recap AXps/CXps: DT example

- Instance: ((0,0,1,0,0),0)
- One AXp: {1,4,5}

- All CXps:

1 {5}

{4}

:{2,5} e {1} E{U},,'I " \e
:{2,4}

¥ ¥
o o]

n 12 13

[¥)

IS

— o S -

© J. Marques-Silva 94 [ 215



Recap AXps/CXps: DT example

- Instance: ((0,0,1,0,0),0)
- One AXp: {1,4,5}
- All CXps:
- I1i: {5}
2t {4}

- {2,5} cr,/  \e e/ " \en

e of
L= {{1}5 {4}7 {5}} E{O}// ° e {1}

¥
o

— = o S
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Recap AXps/CXps: DL example

Entry | xi X2 X3 xsa  Rule | rki(x)
. _ 00 |0 0 0 0 R 1
Rz IF ba=1) THEL O 01 |0 0 0 1 R 0
Ro: ELSEIF (xe=1) THEN 1 02 0 0 0 2 R 1
03 [0 0 1 0 R 1
Rs: ELSEIF (x4 =1) THEN 0 o o o 1 s Rnir :
05 |0 0 1 2 R 1
Roer: ELSE THEN 1 o
06 |0 1 0 0 Ry 1
07 |0 1 0 1 Ry 1
08 |0 1 0 2 Ry 1
W |0 1 1 0 R 1
0 |0 1 1 1 R 1
11 |0 1 1 2 R 1
2 |1 0 0 0 R 0
13 |1 0 0 1 R 0
% |1 0 0 2 R 0
5 |1 0 1 0 R 0
6 |1 0 1 1 R 0
7 |1 0 1 2 R 0
8 |1 1 0 0 R 0
9 |1 1 0 1 R 0
20 |1 1 0 2 R 0
20 |1 1 1 0 R 0
2 |1 1 1 1 R 0
22 |1 1 1 2 R 0
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Recap AXps/CXps: DL example

Entry | x1 X X3 x4 Rule | mi(x)
) B 00 0 0 0 0 Ry 1
Ry: [F (x1=1) THEN 0 01 0 o0 o 1 Rs 0
Ra:  ELSEIF (xa=1) THEN 1 0 U0 2 By | ¢
03 0 0 1 0 R 1
Rs: ELSEIF (x4 =1) THEN 0 04 o o0 1 1 Rs 0
Roer:  ELSE THEN 1 0 10 90 1 2 Re] 1
06 0 1 0 0 R 1
07 0 1 0 1 R 1
08 0 1 0 2 R 1
09 0 1 1 0 R 1
10 0 1 1 1 R 1
. - 11 0 01 1 2 R 1
- Instance: (v,c¢) = ((0,0,1,2),1) 5 o o - 5
. e Reenf 13 1 0 0 1 R 0
AXp's: {1, 4} (prediction unchanged) 7 IR S S 0
- CXp's: 15 1 0 1 0 R 0
- {1}, by flipping the value of feature 1 13 1 8 1 ; Ei 8
- {4}, by flipping the value of feature 4 18 1 1 0 0 R 0
. : 19 1 1 0 1 R 0
But also, {{1}, {4}} by MHS duality " L1 0 o Ri 0
21 1 1 1 0 R 0
22 1 1 1 1 Ry 0
23 1 1 1 2 Ry 0
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Plan for this course

-+ Lecture 01 - units:
- #01: Foundations

- Lecture 02 - units:

- #02: Principles of symbolic XAl - feature selection
- #03: Tractability in symbolic XAl (& myth of interpretability)

- Lecture 03 — units:

- #04: Intractability in symbolic XAl (& myth of model-agnostic XAl)
- #05: Explainability queries

- Lecture 04 - units:
- #06: Advanced topics

-+ Lecture 05 - units:

- #07: Principles of symbolic XAl - feature attribution (& myth of Shapley values in XAl)
- #08: Conclusions & research directions

© J. Marques-Silva 96 / 215



Some comments...
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Some necessary comments...

- Std question: Can we apply symbolic XAl to this highly complex ML model XYZ?
- Most likely answer: No! But ...

- Would you...
- ride in a car that fails to break 10% of the time, or that fails to turn 20% of the time?
- fly with a airliner whose planes crash in about 1% of its flights?
- undergo an optional surgery that might be life-threatening in about 5% of the cases?

- For high-risk and safety-critical domains:
- Would you use an ML model that you cannot explain with rigor, and whose heuristic
explanations are likely to be wrong, and so debugging/understanding with rigor is all but
impossible?

- What is the bottom line?
- For high-risk and safety-critical domains, one ought to deploy models that can be explained
with rigor
- If that means using a fairly unexciting NN with up to 100K neurons, that is the cost of trust; for
anything else, one is trying his/her luck, in situations that could become catastrophic!
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Some necessary comments...

- Std question: Can we apply symbolic XAl to this highly complex ML model XYZ?
- Most likely answer: No! But ...

- Would you...
- ride in a car that fails to break 10% of the time, or that fails to turn 20% of the time?
- fly with a airliner whose planes crash in about 1% of its flights?
- undergo an optional surgery that might be life-threatening in about 5% of the cases?

- For high-risk and safety-critical domains:
- Would you use an ML model that you cannot explain with rigor, and whose heuristic
explanations are likely to be wrong, and so debugging/understanding with rigor is all but
impossible?

- What is the bottom line?
- For high-risk and safety-critical domains, one ought to deploy models that can be explained
with rigor
- If that means using a fairly unexciting NN with up to 100K neurons, that is the cost of trust; for
anything else, one is trying his/her luck, in situations that could become catastrophic!
- More examples next...
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Priceless optimal sparse decision trees (OSDT) - & non-optimality!...

[HRS19]

jacket=red

/\

body=square Yes

R

head=square head=square

N
No Yes

head=round

T

body=round head=square

PN N
Yes No No Yes

Source: Xiyang Hu, Cynthia Rudin, Margo |. Seltzer:
Optimal Sparse Decision Trees.
NeurlPS 2019: 7265-7273
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Priceless optimal sparse decision trees (OSDT) - & non-optimality!... (rs19]
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BTW, highly problematic decision trees also in precision medicine...

Attribute Value

1 Glump Thickness
2 Uniformity of Cell Size
s : 3 Uniformity of Cell Shape

1
1
1
4 Marginal Adhesion 1-
5 Single Epithelial Cell Size 1- 10
1
1
1
1

& Bare Nuclei

7 Bland Chromatin
8 Normal Nucleoli
9 Mitoses

e 6>107

-1 benign

Diagnosis (Output) Q)

Example Interpretable Rules Induced by MediBoost:

A3 Unifarmity of Cell Shape < 1.0 A A2 Uniformity of Cell Size > 3.0 A AT Bland Chromatin 3.0 = predict benign
A3 Uniformity of Cell Shape > 1.0 A AB Bare Nuclei = 1.0 A A2 Uniformity of Cell Size =3.0 = predict benign

Source: G. Valdes, J.M. Luna, E. Eaton, C.B. Simone, L.H. Ungar, & T.D. Solberg.
MediBoost: a patient stratification tool for interpretable decision making in the era of precision medicine.
Scientific reports, 6(1):1-8, 2016.
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BTW, highly problematic decision trees also in precision medicine...

Attribute Value
1 Glump Thickness 1-10
2 Uniformity of Cell Size: 1-10
Yos ——» 3 Uniformity of Gell Shape 1-10
4 Marginal Adhesion 1-10
No —— 5 Single Epithelial Cell Size 1- 10
Aftribute 3 > 1.07, 6 Bare Nuclei 1-10
7 Bland Chromatin 1-10
8 Normal Nucleoli 1-10
1

= 9 Mitoses =10
4@ Awribute 6 > 1,07 Diagnosis (Outpuf) 1‘ mg:‘

Attribute 7 > 3.07

<5 rd3¢

@ W M 5@ o)

Example Interpretable Rules Induced by MediBoost:

A3 Unifarmity of Cell Shape < 1.0 A A2 Uniformity of Cell Size > 3.0 A AT Bland Chromatin 3.0 = predict benign
A3 Uniformity of Cell Shape > 1.0 A AB Bare Nuclei = 1.0 A A2 Uniformity of Cell Size =3.0 = predict benign

Source: G. Valdes, J.M. Luna, E. Eaton, C.B. Simone, L.H. Ungar, & T.D. Solberg.
MediBoost: a patient stratification tool for interpretable decision making in the era of precision medicine.
Scientific reports, 6(1):1-8, 2016.

© J. Marques-Silva

100 / 215



BTW, highly problematic decision trees also in precision medicine...

Attribute Value

1 Glump Thickness
2 Uniformity of Cell Size:
3 Uniformity of Gell Shape

1-
1
1
4 Marginal Adhesion 1
5 Single Epithelial Cell Size 1- 10
1
1
1
1

6 Bare Nuclei

7 Bland Ghromatin
8 Normal Nucleoli
9 Mitoses

-1 benign

Atvibute 6 > 1.07
1 malign

Diagnosis (Output)

And massive

l path redundancy!
2 a0

A3 Unifarmity of Cell Shape < 1.0 A A2 Uniformity of Cell Size > 3.0 A AT Bland Chromatin 3.0 = predict benign

Example Interpretable Rules Induced by MediBoost:

A3 Uniformity of Cell Shape > 1.0 A AB Bare Nuclei = 1.0 A A2 Uniformity of Cell Size =3.0 = predict benign

Source: G. Valdes, J.M. Luna, E. Eaton, C.B. Simone, L.H. Ungar, & T.D. Solberg.
MediBoost: a patient stratification tool for interpretable decision making in the era of precision medicine.
Scientific reports, 6(1):1-8, 2016.
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And more comments...

- Previous slides: two examples of obviously buggy DTs
- However, it is relatively simple to implement tree learners

- Can one really trust the operation of more complex ML models, even those subject to
extensive testing?

- And how to debug complex ML models if heuristic explanations are also incorrect (more
later)?

For trustworthy Al, there exists no alternative to rigorous logic-based explanations!

© J. Marques-Silva 101/ 215



Unit #04

(Efficient) Intractability in Symbolic XAl



Outline - Unit #04

Explaining Decision Lists



An encoding for DLs — components

© ). Marques-Silva

IF
ELSE IF

ELSE IF

ELSE IF
ELSE

(1)
(72)

(1)

(7n)

THEN
THEN

THEN

THEN
THEN

dn

dns1
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An encoding for DLs — components

Rper:

- Clauses for encoding ¢: €4 (z4, ..

- For 7 €. (8. . .)
- Forxi = vit €=y, (li,...)

- Let e; = 1 iff d; matches ¢

IF (r1) THEN
ELSEIF (r») THEN

ELSEIF () THEN

ELSEIF  (7,) THEN
ELSE THEN

dn

dns1

., suchthatz; =1iffp =1

« Prediction change with rule up to R; (with d; = ¢), if 7j# L and 7, = L, for 1 < k < j, with

[f, < (t/ R /\1<fe<j,ek:1 ﬁtkﬂ

ep=1:

© J. Marques-Silva
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Rper:

- Clauses for encoding ¢: €4 (z4, ..

- For 7 €. (8. . .)
- Forxi = vit €=y, (li,...)

- Let e; = 1 iff d; matches ¢

IF (r1) THEN
ELSEIF (r») THEN

ELSEIF () THEN

ELSEIF  (7,) THEN
ELSE THEN

dn

dns1

., suchthatz; =1iffp =1

- Require that at least one fj, with e; = 0 and 1 < j < n, to be consistent (i.e. some rule up to
j with prediction other than c to fire):

© J. Marques-Silva

(Viciene o)
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An encoding for DLs — compone

Rli IF (7'1) THEN dl
Ro: ELSEIF  (m) THEN ds

Ri ELSEIF () THEN dj

Rp:  ELSEIF  (r) THEN d,
Roer: ELSE THEN  dppy

- The set of soft clauses is given by: S = {([;),i=1,...,m}
- The set of hard clauses is given by:

B = /\1<,<m er:V,([h 00 ) A /\1<j<n G‘r/ (tj 56 .)/\
/\1<j<n,e,:0 (fl > (tj A /\1<fe</’,ek:1 ﬁtk)) A <\/1</<n,e,_off)

cBuSEL
- MUSes are AXp’'s & MCSes are CXp’s
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Outline - Unit #04

Myth #02: Model-Agnostic Explainability



What is model-agnostic explainability?

Distribution
(from training
data)

Blackbox

Model * Sample model
given input distribution

Create
Xp

= Explainer
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What is model-agnostic explainability?

Distribution
(from training
data)

LY
Blackbox . _ : Create
Model ~ Samplemodel Explainer Xp
given input distribution
- Wildly popular XAl approach [RSGT6, LL17, RSGI8
- Feature attribution: LIME, SHAP, ... RSG16, LL17]
- Feature selection: Anchors, ... [RSG18]
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What is model-agnostic explainability?

Distribution
(from training
data)

LY
Blackbox . _ : Create
Model ~ Samplemodel Explainer Xp
given input distribution
- Wildly popular XAl approach [RSGT6, LL17, RSGI8
- Feature attribution: LIME, SHAP, ... RSG16, LL17]
- Feature selection: Anchors, ... [RSG18]

- Q: Are model-agnostic explanations rigorous?
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Easy to spot problems - BT for zoo dataset (INm1Sc, tgnzo]

fish
M 0.19463414
no~>(-0.0549824126

[ amphibian L. i S bu

: H i es H ]

: Y€ »( 00547288768 ) i | Y 0.285283029 e 0.184210524
no~>( 0007924526 5 -0.0547288768 no~>{(-0.0552432425

invertebrate Y\ mammal . reptile

es H es
Y -0.0550289042 e 0.311460674 : Y 0.028965516
no H no

no 0.108808279 -0.0536704734 -0.0444687866
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Easy to spot problems - BT for zoo dataset (INm1Sc, tgnzo]

[ amphibian L. i S bu L

| p o bird g L fish

g b H es H q F H

: Y (00547288768 ) i i v 0.285283029 > 0.184210524 P YE (019463414
no—>( 0.007924526 no—»(C00s47288768) i i no—»(C0o0s52432625 ) | o> -0.0549824126

— [invertebrate]

mammal reptile

no 0.108808279 -0.0536704734 -0.0444687866

- Example instance:

IF (animal_name = pitviper) A —hair A —feathers A eggs A —milk A
—airborne A —aquatic A predator A —toothed A backbone A breathes A
venomous A —fins A (legs = 0) A tail A —~domestic A —catsize

THEN (class = reptile)
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Easy to spot problems - BT for zoo dataset & Anchor (INm1Sc, tgnzo]

[ amphibian L. i S bu L

| p o bird g L fish

g b H es H q F H

: Y (00547288768 ) i i v 0.285283029 > 0.184210524 P YE (019463414
no—>( 0.007924526 no—»(C00s47288768) i i no—»(C0o0s52432625 ) | o> -0.0549824126

— [invertebrate]

mammal reptile

no 0.108808279 -0.0536704734 -0.0444687866

- Example instance (& Anchor picks): [RsGre]

IF (animal_name = pitviper) A —hair A —feathers A eggs A —milk A
—airborne A —aquatic A predator A —toothed A backbone A breathes A
venomous A —fins A (legs = 0) A tail A —domestic A —catsize

THEN (class = reptile)
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Easy to spot problems - BT for zoo dataset & Anchor (INm1Sc, tgnzo]

[ amphibian L. i S bu L

g €S] H H H
Y »(-0.0547288768 v 0.285283029 > 0.184210524 P YE (019463414
no=>-( 0007924526 oo—»(Coosaz28s768) i i no—»(C00s52432425) no~>{(-0.0549824126

- | — [
prem—— invertebrate . mammal . reptile
H es i d es
Y -0.0550289042 e 0.311460674 Y 0.028965516
no 0.108808279 no -0.0536704734 no -0.0444687866

- Explanation obtained with Anchor: [RsG18]

IF —hair A —milk ~ —toothed A —fins
THEN (class = reptile)
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Easy to spot problems - BT for zoo dataset & Anchor

[INM19c, 1gn20]

[ amphibian . i S bu L

| p L bird g L fish

g b H es H q F H

: Y (00547288768 ) i i v 0.285283029 > 0.184210524 P YE (019463414

no 0007924526 S -0.0547288768 S -0.0552432425 no—>{ -0.0549824126

mammal reptile

— [invertebrate]

no 0.108808279 -0.0536704734 -0.0444687866

- But, explanation incorrectly “explains” another instance (from training data!)

IF (animal_name = toad) A —hair A —feathers A eggs A —milk A
—airborne A —aquatic A —predator A —toothed A backbone A breathes A
—venomous A —fins A (legs = 4) A —tail A —~domestic A —catsize

THEN (class = amphibian)

© J. Marques-Silva
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Model-agnostic explainers cannot be trusted (nmisc]

Classifier for deciding bank loans

Two samples: Bessie:=(vy,Y) and Clive = (vo, N)
Explanation X: age =45, salary =50K

And,

X is consistent with Bessie := (vy,Y)
X is consistent with Clive := (va, N)



Model-agnostic explainers cannot be trusted (nmisc]

Classifier for deciding bank loans
Two samples: Bessie:=(v1,Y) and Clive = (vy, N)
Explanation X: age =45, salary =50K

And,
X is consistent with Bessie := (vy,Y)
X is consistent with Clive := (va, N)

.. different outcomes & same explanation !?
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How to validate model-agnostic explanations

- For feature selection, checking rigor is easy
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- Let X be the features reported by model-agnostic tool
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How to validate model-agnostic explanations

- For feature selection, checking rigor is easy
- Let X be the features reported by model-agnostic tool

- Check whether X is a (rigorous) (W)AXp:
1. X is sufficient for prediction:

2. And, X is subset-minimal:

V(te X)A(xel). /\ (x; = vj) = (k(x) = )

je(X\{t})

Depending on logic encoding used for classifier, different automated reasoners can be
employed
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How to validate model-agnostic explanations

- For feature selection, checking rigor is easy
- Let X be the features reported by model-agnostic tool

- Check whether X is a (rigorous) (W)AXp:
1. X is sufficient for prediction:

2. And, X is subset-minimal:

V(te X)A(xel). /\ (x; = vj) = (k(x) = )

je(X\{t})
Depending on logic encoding used for classifier, different automated reasoners can be
employed

- Approach is bounded by scalability of rigorous explanations...
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How serious is the lack of rigor of model-agnostic explanations?

Obs: Lack of rigor of model-agnostic explanations known since 2019 [iNm1c, tgn20, visT23]
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- Results for boosted trees, due to non-scalability with NNs (cc16]
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How serious is the lack of rigor of model-agnostic explanations?

Obs: Lack of rigor of model-agnostic explanations known since 2019 [iNm1c, tgn20, visT23]
- Results for boosted trees, due to non-scalability with NNs (cc16]

- Some results for Anchors [RsG1s]

Dataset % Incorrect % Redundant % Correct

adult 80.5% 1.6% 17.9%
lending 3.0% 0.0% 97.0%
rcdv 99.4% 0.4% 0.2%
compas 84.4% 1.7% 13.9%

german 99.7% 0.2% 0.1%
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How serious is the lack of rigor of model-agnostic explanations?

Obs: Lack of rigor of model-agnostic explanations known since 2019 [iNm1c, tgn20, visT23]
- Results for boosted trees, due to non-scalability with NNs (cc16]

- Some results for Anchors [RsG1s]

Dataset % Incorrect % Redundant % Correct

adult 80.5% 1.6% 17.9%
lending 3.0% 0.0% 97.0%
rcdv 99.4% 0.4% 0.2%
compas 84.4% 1.7% 13.9%
german 99.7% 0.2% 0.1%
- Obs: Results are not positive even if we count how often prediction changes N+ 19

- In this case, BNNs were used, to allow for model counting...
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How serious is the lack of rigor of model-agnostic explanations?

Obs: Lack of rigor of model-agnostic explanations known since 2019 [iNm1c, tgn20, visT23]
- Results for boosted trees, due to non-scalability with NNs (cc16]

- Some results for Anchors [RsG1s]

Dataset % Incorrect % Redundant % Correct

adult 80.5% 1.6% 17.9%
lending 3.0% 0.0% 97.0%
rcdv 99.4% 0.4% 0.2%
compas 84.4% 1.7% 13.9%
german 99.7% 0.2% 0.1%
- Obs: Results are not positive even if we count how often prediction changes N+ 19

- In this case, BNNs were used, to allow for model counting...

- For feature attribution we proposed different ways of assessing rigor — wuoc nsmt 1o, igno, vis 231
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Incorrect explanations are ubiquitous & likely... (w15

1.0 4 T
= P p————
-~
g et ot
o %81 _.r" e .
S .~ UYL
7 | e
$ 0.6
g -'.r = Anchor (adult)
‘941 ? ApproxMC3(adult)
8 = Anchor (lending)
o!: 02 —_— ApproxMCB(.\etn.dlng)
= Anchor (recidivism)
= ApproxMC3(recidivism)
0.0 T T T T T T T
0 50 100 150 200 250 300
#anchors
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Outline - Unit #04

Progress Report on Symbolic XAl



Efficacy map - progress until 2022

[MI22, Mar22, MS23]

Computing one XP

Computationally hard
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NBCs

Effective Ineffective
Practical scalability (effectiveness)

© J. Marques-Silva

[INM19c¢, 1gn20, 11M20, MGC ™ 20, MGC ™ 21, HIIM21, IMS21, IM21, CM21, H 22 SMS22]

- Formal explanations efficient for several

families of classifiers

- Polynomial-time:
- Naive-Bayes classifiers (NBCs)
- Decision trees (DTs) 1M20, HIIM21]
- XpG's: DTs, OBDDs, OMDDs, etc. HIIM21
- Monotonic classifiers MG
- Propositional languages (e.g. d-DNNF, ..)  (xit22
- Additional results

- Comp. hard, but effective (efficient in practice):
- Random forests (RFs) IMS21
- Decision lists (DLs)
- Boosted trees (BTs)

- Comp. hard, and ineffective (hard in practice):

- Neural networks (NNs) [INM19
- Bayesian networks (BNs) [SCD1g]

[CM21, HIIT 22

[INM19¢, 1gn20, Il
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Efficacy map - recent progress

[HM23b]

Computing one XP
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[INM19c¢, 1gn20, 11M20, MGC ™ 20, MGC ™ 21, HIIM21, IMS21, IM21, CM21, H 22 SMS22]

- Formal explanations efficient for several

families of classifiers

- Polynomial-time:
- Naive-Bayes classifiers (NBCs)
- Decision trees (DTs) 1M20, HIIM21]
- XpG's: DTs, OBDDs, OMDDs, etc. HIIM21
- Monotonic classifiers MG
- Propositional languages (e.g. d-DNNF, ..)  (xit22
- Additional results

- Comp. hard, but effective (efficient in practice):

- Random forests (RFs) IMS21
- Decision lists (DLs)
- Boosted trees (BTs) [INM19c

- Comp. hard, but some practical scalability:

- Neural networks (NNs) [HM23b
- Comp. hard, and ineffective (hard in practice):

- Bayesian networks (BNs) [sco1s]

[CM21, HIIT 22

n20, Il
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Results for RFs in 2021 (with SAT) (ws21]

RF CNF SAT oracle AXp (RFxpl) Anchor

Dataset (#F #C #I)

D #N %A #var #cl  MxS MxU #S #HU  Mx m avg %w ‘ avg  %w
ann-thyroid (21 3 718)4 2192 98 17854 29230 0.12 0.15 2 18 036 0.05 013 96| 0.32 4
appendicitis (7 2 43) 6 1920 90 5181 10085 0.02 0.02 4 3 0.05 0.01 0.03 100 | 0.48 0
banknote (4 2 138)5 2772 97 8068 16776 0.01 0.01 2 2 0.03 0.02 0.02 100 | 0.19 0
biodegradation (41 2 106 5 4420 88 11007 23842 031 1.05 17 22 227 004 029 97| 4.07 &
heart-c (13 2 61) 5 3910 85 5594 11963 0.04 0.02 6 7 007 0.01 0.04 100]| 0.85 0
ionosphere (34 2 71) 5 2096 87 7174 14406 0.02 0.02 22 11 0.11 0.02 0.03 100 |12.43 0
karhunen (64 10 200)5 6198 91 36708 70224 1.06 1.41 35 29 1464 065 2.78 100 | 2815 0
letter (16 26 398 8 44304 82 28991 68148 197 331 8 8 6.91 024 161 70| 2.48 30
magic (10 2 381)6 9840 84 29530 66776 051 1.84 6 4 213 0.07 014 99| 091 1
new-thyroid (5 3 43) 5 1766 100 17443 28134 003 001 3 2 008 0.03 005 100| 036 0
pendigits (16 10 220)6 12004 95 30522 59922 240 132 10 6 411 014 094 96| 3.68 4
ring (20 2 740 6 6188 89 19114 42362 027 044 11 9 125 005 025 92| 7.25 8
segmentation (19 7 42) 4 1966 90 21288 35381 0.11 0.17 8 10 053 0.11 031 100 | 4.13 0
shuttle (9 7 116 3 1460 99 18669 29478 0.11 0.08 2 7 034 0.05 0.14 99| 042 1
sonar (60 2 42) 5 2614 88 9938 20537 0.04 0.06 36 24 043 0.04 0.09 100]|23.02 0
spectf (44 2 54) 5 2306 88 6707 13449 0.07 0.06 20 24 034 0.02 0.07 100 | 8.12 0
texture (40 11 550)5 5724 87 34293 64187 0.79 0.63 23 17 324 0.19 093 100|2813 0
twonorm (20 2 740 5 6266 94 21198 46901 0.08 008 12 8 0.28 0.06 0.10 100 | 5.73 0
vowel (13 11 198)6 10176 90 44523 88696 1.66 2.11 8 5 452 015 115 66| 1.67 34
waveform-40 (40 3 5005 6232 83 30438 58380 0.50 0.86 15 25 7.07 0.11 0.88 100 |1193 0
wpbc (33 2 78) 5 2432 76 9078 18675 1.00 153 20 13 533 003 065 79| 391 21
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Results for NNs in 2019 (with SMT/MILP) T

Minimal explanation Minimum explanation
Dataset

size  SMT(s) MILP(s) size SMT(s) MILP(s)

m 1 0.03 0.05 -

australian (14) a 8.79 1.38 0.33 -

M 14 17.00 1.43 -
m 13 0.13 0.14 - — —
backache (32) a 19.28 5.08 0.85 - — —
M 26 22.21 2.75 - — —
m 3 0.02 0.04 3 0.02 0.03
breast-cancer (9) a 5.15 0.65 0.20 4.86 2.18 0.41
M 9 6.11 0.41 9 24.80 1.81
m 4 0.05 0.07 4 = 0.07
cleve (13) a 8.62 3.32 0.32 7.89 — 5.14
M 13 60.74 0.60 13 — 39.06
m 6 0.02 0.04 4 0.01 0.04
hepatitis (19) a 11.42 0.07 0.06 9.39 1.07 2.89
M 19 0.26 0.20 19 27.05 22.23
m 3 0.01 0.02 3 0.01 0.02
voting (16) a  4.56 0.04 0.13 3.46 0.3 0.25
M 11 0.10 0.37 11 1.25 1.77
m 3 0.02 0.02 3 0.02 0.04
spect (22) a 7.31 0.13 0.07 6.44 1.61 0.67
M 20 0.88 0.29 20 8.97 10.73
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Results for NNs in 2019 (with SMT/MILP) T

First rigorous approach Minimal explanation Minimum explanation

for exp[aining NNs ! size SMT(s) MILP(s) size SMT(s) MILP(s)
1 0.03 0.05 -
australian (14) a— 8.79 1.38 0.33 -
M 14 17.00 1.43 —
m 13 0.13 0.14 - — —
backache (32) a 19.28 5.08 0.85 — — —
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m 3 0.02 0.04 3 0.02 0.03
breast-cancer (9) a 5.15 0.65 0.20 4.86 2.18 0.41
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m 4 0.05 0.07 4 - 0.07
cleve (13) a 8.62 3.32 0.32 7.89 — 5.14
M 13 60.74 0.60 13 — 39.06
m 6 0.02 0.04 4 0.01 0.04
hepatitis (19) a 11.42 0.07 0.06 9.39 1.07 2.89
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Results for NNs in 2019 (with SMT/MILP) T

First rigorous approach Minimal explanation Minimum explanation

for exp[aining NNs ! size SMT(s) MILP(s) size SMT(s) MILP(s)
1 0.03 0.05 -
australian (14) a— 8.79 1.38 0.33 -
M 14 17.00 1.43 -
m 13 0.13 0.14 - — —
backache (32) a 19.28 5.08 0.85 — — —
M 26 22.21 2.75 - — —
m 3 0.02 0.04 3 0.02 0.03
breast-cancer (9) a 5.15 0.65 0.20 4.86 2.18 0.41
M 9 6.11 0.41 9 24.80 1.81
m 4 0.05 0.07 4 - 0.07
cleve (13) a 8.62 3.32 0.32 7.89 — 5.14
M 13 60.74 0.60 13 — 39.06
m 6 0.02 0.04 4 0.01 0.04
hepatitis (19) a 11.42 0.07 0.06 9.39 1.07 2.89
M 19 0.26 0.20 19 27.05 22.23
m 3 0.01 0.02 3 0.01 0.02
voting (16) a  4.56 0.04 0.13 3.46 0.3 0.25
M 11 0.10 0.37 11 .25 1.77
m 3 0.02 0.02 3 0.02 0.04
spect (22) a 7.31 0.13 0.07 6.44 1.61 0.67
M 20 0.88 0.29 20 8.97 <

Scales to (a few)
tens of neurons...
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[HM23b]

DNN points  |AXp| #Calls Time #TO ‘ [AXpl #Calls  Time #TO
e=0.1 e =0.05

#1 3 5 185.9 0 2 5 113.8 0

ACASXU_1_5 #2 2 5 273.8 0 1 5 332 0
#3 0 5 714.2 0 0 5 4.3 0

#1 0 5 22193 0 0 5 14.2 0

ACASXU_3_1 #2 2 5 4263.5 1 0 5 1853.1 0
#3 1 5 581.8 0 0 5 3559 0

#1 3 5 137393 2 1 5 6890.1 1

ACASXU_3_2 #2 3 5 226.4 0 2 5 125.1 0
#3 2 5 1740.6 0 2 5 173.6 0

#1 4 5 43.6 0 2 5 59.4 0

ACASXU_3_5 #2 3 5 5039.4 0 2 5 43038 1
#3 2 5 55749 1 2 5 2660.3 0

#1 1 5 6225.0 1 0 5 51.0 0

ACASXU_3_6 #2 3 5 4957.2 1 2 5 18973 0
#3 1 5 196.1 0 1 5 919.2 0

#1 3 5 6256.2 0 4 5 26.9 0

ACASXU_3_7 #2 4 5 3113 0 1 5 6958.6 1
#3 2 5 7756.5 1 1 5 7807.6 1

#1 2 5 12413.0 2 1 5 5090.5 1

ACASXU_4_1 #2 1 5 5035.1 1 0 5 2335.6 0
#3 4 5 1237.3 0 4 5 1143.4 0

#1 4 5 15.9 0 4 5 12.1 0

ACASXU_4_2 #2 3 5 1507.6 0 1 5 1113 0
#3 2 5 5641.6 2 0 5 1639.1 0
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[HM23b]

DNN points  |AXp| #Calls Time #TO ‘ [AXpl #Calls  Time #TO
e=0.1 e =0.05

#1 3 5 185.9 0 2 5 113.8 0

ACASXU_1_5 #2 2 5 273.8 0 1 5 332 0

#3 0 5 714.2 0 0 5 4.3 0

#1 0 5 22193 0 0 5 14.2 0

ACASXU_3_1 #2 2 5 4263.5 1 0 5 1853.1 0

#3 1 5 581.8 0 0 5 3559 0

#1 3 5 137393 2 1 5 6890.1 1

ACASXU_3_2 #2 3 5 226.4 0 2 5 125.1 0

#3 2 5 1740.6 0 2 5 173.6 0

#1 4 5 43.6 0 2 5 59.4 0

ACASXU_3_5 #2 3 5 5039.4 0 2 5 43038 1

#3 2 5 55749 1 2 5 2660.3 0

#1 1 5 6225.0 1 0 5 51.0 0

ACASXU_3_6 #2 3 5 4957.2 1 2 5 18973 0

#3 1 5 196.1 0 1 5 919.2 0

#1 3 5 6256.2 0 4 5 26.9 0

ACASXU_3_7 #2 4 5 3113 0 1 5 6958.6 1

#3 2 5 7756.5 1 1 5 7807.6 1

#1 2 5 12413.0 2 1 5 5090.5 1

ACASXU_4_1 #2 1 5 5035.1 1 0 5 2335.6 0

#3 4 5 1237.3 0 4 5 1143.4 0

Scales to a feW #1 4 5 15.9 0 4 5 12.1 0

hundred neurons ACASXU_4_2  #2 3 5 15076 0| 1 5 1113 0

#3 2 5 5641.6 2 0 5 1639.1 0
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More recent results (from 2024)... e

Model Deletion SwiftXplain

avgC nCalls Len Mn Mx avg TO avgC nCalls Len FD% Mn Mx avg
gtsrb-dense 0.06 1024 448 52.0 76.3 63.1 0 0.23 54 447 774 10.8 14.0 12.2
gtsrb-convSmall 0.06 1024 309 59.2 82.6 65.1 0 0.22 74 313 39.7 15.1 19.5 16.2
gtsrb-conv — — - - — — 100 96.49 45 174 33.2 3858.7 6427.7 4449.4
mnist-denseSmall 0.28 784 177 190.9 420.3 220.4 0 077 111 180 15.5 77.6 104.4 85.1
mnist-dense 0.19 784 231 138.1 179.9 150.6 0 075 183 229 11.5 130.1 1455 136.8
mnist-convSmall  — = = = = — 100 98.56 52 116 21.3 4115.2 6858.3 5132.8
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More recent results (from 2024)... e

Model Deletion SwiftXplain

avgC nCalls Len Mn Mx avg TO avgC nCalls Len FD% Mn Mx avg
gtsrb-dense 0.06 1024 448 52.0 76.3 63.1 0 0.23 54 447 774 10.8 14.0 12.2
gtsrb-convSmall 0.06 1024 309 59.2 82.6 65.1 0 0.22 74 313 39.7 15.1 19.5 16.2
gtsrb-conv — — - - — — 100 96.49 45 174 33.2 3858.7 6427.7 4449.4
mnist-denseSmall 0.28 784 177 190.9 420.3 2204 0 077 111 180 15.5 77.6 104.4 85.1
mnist-dense 0.19 784 231 138.1 179.9 150.6 0 075 183 229 11.5 130.1 1455 136.8
mnist-convSmall  — = = = = — 100 98.56 52 116 21.3 4115.2 6858.3 5132.8

Scales to tens of Largest for MNIST: 10142 neurons

thousands of neurons! Largest for GSTRB: 94308 neurons
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Unit #05

Queries in Symbolic XAl



Outline - Unit #05

Enumeration of Explanations



How to navigate the space of XPs?

- Goal: iteratively list yet unlisted XPs (either AXp’s or CXp's)
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How to navigate the space of XPs?

- Goal: iteratively list yet unlisted XPs (either AXp’s or CXp's)

- Complexity results:

- For NBCs: enumeration with polynomial delay (Mot 20]
- For monotonic classifiers: enumeration is computationally hard tmect 21l
- Recall: for DTs, enumeration of CXp'sis in P [HIIM21, 1422]

- There are algorithms for direct enumeration of CXp's
- Akin to enumerating MCSes

- No known algorithms for direct enumeration of AXp's (MA20
- Akin to enumerating MUSes

- Enumeration of MCSes + dualization often not realistic (L08, Fk96
- There can be too many CXp's...

- Best solution is a MARCO-like algorithm (for enumerating MUSes) (LPMTs
- On-demand enumeration of AXp’s/CXp’s
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Recall computing one AXp/CXp - oneXP

Input: Predicate P, parameterized by 7, M
Output: One XP S

1. procedure oneXP(P)

2 S F = Initialization: P(S) holds
3: for ie F do = Loop invariant: P(S) holds
4 if P(S\{i}) then

5 S < S\{i} > Update S only if P(S\{i}) holds

6: return S > Returned set S: P(S) holds

© J. Marques-Silva 17/ 215



Generic oracle-based enumeration algorithm

Input: Parameters Paxp, Pexp, 7, F, K, v

TH—D > H defined on set U = {u1,...,um}; initially no constraints
2: repeat

3 (outc,u) « SAT(H) = Use SAT oracle to pick assignment s.t. known constraints in
4 if outc = true then

5 S {ie Fluj=0} > S: fixed features
6: U—{ieF|uj=1} = U: universal features; F =S v Ul
7 if Pep(U; T, F, K, v) then >U = F\S 2 some CXp
8 P — oneXP(U; Pexp, T, F, K, V)

9: reportCXp(P)
10: H—Ho{(Viep—Ui)} > P < U: one 1-value variable must be 0 in future iterations
1 else > S 2 some AXp
12: P «— onexP(S; Paxp, T, F, K, V)

13: reportAXp(P)

14: H—Ho{(viepUi)} > P < S: one 0-value variable must be 1in future iterations

15: until outc = false
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DT classifier — example run of enumerator

° - Instance: (v,c¢) =((0,0,1,0,1),1)
Xz Xs X1 Xa Xa  Fa(x)
1 1 0 0 O 1
11 0 0 1 1 X3 X5 X1 Xa Xa ka(X)
1 1 0 1 0 1 0O 0 0O 0 O 0
1 1 0 1 1 1 0 1 0 0 O 0
1 1 1 0 0 1 1 0 0 0 0 0
1 1 1 0 1 1 1 1 0 0 0 1
1 1 1 1 0 1
1 1 1 1 1 1
@ Iter. u S Pop(-)  AXp CXp Clause Resulting H

1 (1,1,1,1,1) %) 1 - {3} (—us) {(—us)}

2 (1,1,0,1,1) {3} 1 - {5} (—us) {(=us), (-us)}

3 (1,1,0,1,0) {3,5} 0 {3,5} = (us vus) {(—us),(—us),(usvus)}

5 [outc = false] = = = = = {(=us), (—Us), (usvus)}
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DT classifier — another example run of enumerator

° - Instance: (v,c¢) =((0,0,1,0,1),1)
X3 Xs X1 Xa Xq Ka(X)
1 1 0 0 O 1
11 0 0 1 1 X3 X X1 Xy Xy Ka(x)
1 1 0 1 0 1 0 0 0 0 0 0
1 1 0 1 1 1 0 1 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 0
1 1 1 0 1 1 1 1 0 0 0 1
1 1 1 1 0 1
1 1 1 1 1 1
@ Iter. u S Pop(-)  AXp CXp Clause Resulting H

1 (0,0,0,0,0) {1,2,3,4,5} 0 {3,5} - (uz v us) {(uz v us)}

2 (0,0,1,0,0) {1,2,4,5} 1 - {3} (—us) {(us v us), (—us)}

3 (0,0,1,0,1) {1,2,4} 1 = {5} (—us) {(usvus),(—us), (—us)}

5 [outc = false] = = = = = {(uzvus),(—us), (—us)}
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DTs admit more efficient algorithms

- Recall:

- Given instance (v, c), create setZ
- For each path Py with prediction d = c:

- Let I, denote the features with literals inconsistent with v
- Addlpto T

- Remove from Z the sets that have a proper subset in Z,
and duplicates

- T is the set of CXp’s — algorithm runs in poly-time
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DTs admit more efficient algorithms

- Recall:
- Given instance (v, c), create setZ
- For each path Py with prediction d = c:
- Let I, denote the features with literals inconsistent with v
- Add I, to Z
- Remove from Z the sets that have a proper subset in Z,
and duplicates

- T is the set of CXp’s — algorithm runs in poly-time
- For AXp's: run std dualization algorithm [FK96]

- Obs: starting hypergraph is poly-size!

- And each MHS is an AXp
- Example:

* /1 = {3}

- Iy = {5}

I3 ={2,5}

LA keep [y an Iy

- AXp's: MHSes yield {{3,5}}
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Outline - Unit #05

Feature Necessity & Relevancy



(Conditioned) Classifier Decision Problem ((C)CDP)
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- Given c € K, CDP is to decide whether the following statement holds:

IxelF).(k(x) =c0)

© J. Marques-Silva 122/ 215



(Conditioned) Classifier Decision Problem ((C)CDP)

- Given c € K, CDP is to decide whether the following statement holds:

IxelF).(k(x) =c0)

- Given § < F, instance (v, c), CCDP is to decide whether the following statement holds:

AxeF). N\ =) (5(x) =c)

€S

© J. Marques-Silva 122/ 215



(Conditioned) Classifier Decision Problem ((C)CDP)

- Given c € K, CDP is to decide whether the following statement holds:

IxelF).(k(x) =c0)

- Given § < F, instance (v, c), CCDP is to decide whether the following statement holds:

AxeF). N\ =) (5(x) =c)

€S

- Claim: (C)CDP is in polynomial-time for DTs, decision graphs, monotonic classifiers,
among others

© J. Marques-Silva 122/ 215



(Conditioned) Classifier Decision Problem ((C)CDP)

- Given c € K, CDP is to decide whether the following statement holds:

IxelF).(k(x) =c0)

- Given § < F, instance (v, c), CCDP is to decide whether the following statement holds:

AxeF). N\ =) (5(x) =c)

€S
- Claim: (C)CDP is in polynomial-time for DTs, decision graphs, monotonic classifiers,

among others
- Claim: (C)CDP is in NP-complete for DLs, RFs, BTs, boolean NNs and BNNs
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Feature necessity

- Consider instance (v, ¢)

- Sets of all AXp's & CXp's:
A={X < F|AXp(X)}

C = {X c F|Xp(X)}

A: encodes the set of all irreducible rules for prediction ¢ given v
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Feature necessity

- Consider instance (v, ¢)

- Sets of all AXp's & CXp's:
A={X < F|AXp(X)}

C = {X c F|Xp(X)}

A: encodes the set of all irreducible rules for prediction ¢ given v

- Features common to all AXps in A and all CXps in C:

Na = mXeA X

Ne = Nyec X
- Nu and N¢ need not be equal
- A= {1}, {2,3}}
- Afeature i is necessary for abductive explanations (AXp-necessary) if i € Ny

- Afeature i is necessary for contrastive explanations (CXp-necessary) if i € N¢
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More on feature necessity
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More on feature necessity

- Claim #01: t € F is AXp-necessary iff {t} is a CXp
- Claim #02: t € F is CXp-necessary iff {t} is a AXp

- Claim #03: CXp-necessity is in P if CCDP isin P
- l.e. this is the case for DTs, DGs, and monotonic classifiers, among others

- Claim #04: AXp-necessity of t € Fis in P if t has a domain size which is
polynomially-bounded on instance size
This holds for any classifier!
- Let u be obtained from v by replacing the constant v; by some variable u; € D;
- Feature tis AXp-necessary if x(u) = x(v) for some value u; € D;
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- Instance (v,c) = ((0,0,0,0),0)
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- Instance (v,c) = ((0,0,0,0),0)
- Is feature 1 AXp-necessary?
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- Instance (v,c) = ((0,0,0,0),0)

- Is feature 1 AXp-necessary?
- Does there exist uy, such that x(u1,0,0,0) = (0, 0,0,0)?
- Yes! Thus, feature 1 is AXp-necessary

- Is feature 3 AXp-necessary?
- Does there exist us, such that (0,0, us,0) = x(0,0,0,0)?
- No! Thus, feature 3 is not AXp-necessary

- Confirmation:

- OXps: {{1},{2}, {3,4}}
+ AXps:
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- Instance (v,c) = ((0,0,0,0),0)

- Is feature 1 AXp-necessary?
- Does there exist uy, such that x(u1,0,0,0) = (0, 0,0,0)?
- Yes! Thus, feature 1 is AXp-necessary

- Is feature 3 AXp-necessary?
- Does there exist us, such that (0,0, us,0) = x(0,0,0,0)?
- No! Thus, feature 3 is not AXp-necessary

- Confirmation:

° CXpS: {{1}7{2}7{374}}
- AXps: {{1,2,3}, {1,2,4}}
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Feature relevancy

- Consider instance (v, ¢)

- Sets of all AXp's & CXp's:
A={X < F|AXp(X)}

C = {X c F|Xp(X)}
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Feature relevancy

- Consider instance (v, ¢)

- Sets of all AXp's & CXp's:
A={X < F|AXp(X)}

C = {X c F|Xp(X)}

- Features occurring in some AXp in A and in some CXp in C:

Fa=Uxea ¥
fe = UXEC X
- Claim: Fa = F¢
- l.e. a feature exists in some AXp iff it exists in some CXp

- Afeature j e Fis relevant if i € F, (and so, if i € F¢)
- Afeature is relevant if it is included in some AXp (or CXp)

- Afeature ie Fisirrelevant if i ¢ F, (and so, if i ¢ F¢)
- Afeature is irrelevant if it is not included in any AXp (or CXp)
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- Consider the classifier:

- (v,¢) =((0,0,0,1),1)
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An example

- Consider the classifier: ,

K(X1, X2, X3,X4) = \/ Xi

=1

- (v,¢) =((0,0,0,1),1)

-A={{4}} =C
- Why?
- If 4 fixed, then prediction must be 1

- If 4 is allowed to change, then prediction changes
- Values of 1, 2, 3 not used to fix/change the prediction
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- Consider the classifier: ,

K (X1, X2, X3,Xq) = \/ Xi

=1

- (v,¢) =((0,0,0,1),1)

-A={{4}} =C
- Why?
- If 4 fixed, then prediction must be 1

- If 4 is allowed to change, then prediction changes
- Values of 1, 2, 3 not used to fix/change the prediction

- Feature 4 is relevant, since it is included in one (and the only) AXp/CXp
- Features 1,2, 3 are irrelevant, since there are not included in any AXp/CXp

- Obs: irrelevant features are absolutely unimportant!

We could propose some other explanation by adding features 1, 2 or 3 to AXp {4}, but
prediction would remain unchanged for any value assigned to those features

- And we aim for irreducibility (Occam’s razor is a mainstay of Al/ML)
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Deciding feature relevancy

- Deciding feature relevancy is in X5 - intuition:
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Deciding feature relevancy

- Deciding feature relevancy is in X5 - intuition:
- Pick a set of features P containing t (i.e. existential quantification), such that,

- P is a WAXp (i.e. universal quantification)
- P\{t} is a not a WAXp (i.e. universal quantification again)
- Thus, we can decide feature relevancy with 3V alternation

- For DTs, deciding feature relevancy is in P; Why?
- Obs: We know that Fa = F¢; thus
Computing all CXps in polynomial-time decides feature relevancy

- General case: best solution is to exploit abstraction refinement
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Abstraction refinement for feature relevancy

- Claim: X = F and te X. If WAXp(X) holds and WAXp(X\{t}) does not hold, then
any AXp Z € X < F must contain feature t.
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Abstraction refinement for feature relevancy

- Claim: X © Fand te X. If WAXp(X) holds and WAXp(X\{t}) does not hold, then
any AXp Z € X < F must contain feature t.

Proof:
- Llet Z € X < F be an AXp such that t ¢ Z.
- Then 2 € X\{t}.
- But then, by monotonicity, WAXp(X\{t}) must hold (i.e. any superset of Z is a
weak AXp); hence a contradiction.

- Approach:
- Repeatedly guess weak WAXp candidates X, witht € X
- Check that WAXp condition holds for X: WAXp(X) ; and
- Check that WAXp condition fails for X\{t}: =WAXp(X\{t})
- Block counterexamples in both cases

[e.g. use SAT oracle]
[e.g. use WAXp oracle]
[e.g. use WAXp oracle]
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A general abstraction refinement algorithm

Input: Instance v, Target Feature t; Feature Set F, Classifier x
1. function FRPCGR(v, t; F, k)

2: H— T > H overapproximates the subsets of F that do not contain an AXp containing t
3 repeat
4 (outc,s) « SAT(H, st) = Use SAT oracle to pick candidate WAXp containing t
5 if outc = true then
6: P—{ieF|si=1} = Set P is the candidate WAXp, and t € P
7 D —{ieF|si =0} > Set D contains the features not included in P
8 if =WAXp(P) then > IS P not a WAXp?
9: H «— H v newPosCl(D; t, k) = P is not a WAXp; must pick some non-picked feature
10: else > P is a WAXp
1: if —WAXp(P\{t}) then = P without t not a WAXp?
12: reportWeakAXp(P) = Feature tis included in any AXp X < P
13: return true
14 H «— H v newNegCl(P; t, k) = WAXp(P\{t}) holds; some feature in P must not be picked
15: until outc = false
16: return false = If H becomes inconsistent, then there is no AXp that contains t
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An example: feature relevancy for DT, using abstraction refinement

€ {0} € {1}
)
o ) e - Instance: (v,c) = ((1,1,1,1),1)
- Ist=1 relevant?
€ {0} A € {1}
(9]
6
e {0} € {1}
o]
8 9
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An example: feature relevancy for DT, using abstraction refinement

- Instance: (v,c) =((1,1,1,1),1)
- Ist=1relevant?

e {0} ’ e {1} t=1
@ s P WAXp(P) WAXp(P\{t}) Return? Clause
_ 7 (1,1,1,1) {1,2,3,4} v v —  (=Uz v —Uz v —Uy)
€ {0} e {1} (1,1,0,1) {1,2,4} v v — (—ug v —Uy)
(1,1,0,0)  {1,2} v v — (—us)
@ (1,0,0,0) {1} v X true —
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Another example

€ {0} € {1}
()
o ) e - Instance: (v,c) = ((1,1,1,1),1)
- Ist =4 relevant?
€ {0} A € {1}

€ {0} € {1}

o
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Another example

- Instance: (v,c) =((1,1,1,1),1)
- Ist=4relevant?

‘ ’ t=4
€ {0} e {1}
@ s P WAXp(P) WAXp(P\{t}) Return? Clause
) 7 (1,1,1,1)  {1,2,3,4} v v ——  (=Uup v —Ug v —U3)
e {0} e {1} (1,1,0,1) {1,2,4} v v — (—U1 v —Ug)
(1,0,0,1) {1,4} v 4 — (—u1)
@ (0,1,0,1) (2,4} v 4 == (—u2)
(0,0,0,1) {4} X — — (Uy v Uy v U3)
(0,0,1,1) {3,4} X — — (U1 v u)

[outc = false] =
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Questions?
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Recapitulate third lecture

- Logic encoding for explaining DLs
- And status of (in)tractability in logic-based XAl

- Query: enumeration of explanations
- Query: feature necessity, AXp & CXp

- Query: feature relevancy
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Recap example

- Instance (v, c) = ((0,0,0,0),0)
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Recap example
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Recap example

- Instance (v, c) = ((0,0,0,0),0)
- Is feature 1 AXp-necessary?
- Does there exist uy, such that x(u1,0,0,0) = x(0,0,0,0)?
- Yes! Thus, feature 1 is AXp-necessary (i.e. singleton CXp)
- |s feature 3 AXp-necessary?
- Does there exist us, such that (0,0, us,0) = (0, 0,0,0)?
- No! Thus, feature 3 is not AXp-necessary
- Are there CXp-necessary features?
- No! There are no singleton AXps

- Confirmation:
- OXps: {{1},{2},{3,4}} (2is also AXp-necessary)
- AXps: {{1,2,3},{1,2,4}}
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Recap example - a different instance

- Instance (v,c) = ((1,1,1,1),1)

e {1} € {0}
(«)
e {0} : € {1}
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Recap example - a different instance

- Instance (v,c) = ((1,1,1,1),1)
- Are there CXp-necessary features?

- Yes! Features 1and 2 (i.e. singleton AXps)
- Are there AXp-necessary features?

- No! There are no singleton CXps

- Confirmation:
€ {1} € {0}

- AXps: {{1}, {2}, {3,4}}
() &

- OXps: {{1,2,3}), {1,2,4}}

€ {0} e {1}
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Another example - feature necessity & relevancy

- Classifier: F ={1,2,3,4,5}; D; ={0,1},i=1,...,5 K = {0,1}

1 IF (10X1 —+ 5X2 —+ 5X3 —+ 2X4 + X5 = 15)

H(X17X25X31X4ax5) = { 0 OtherWise

- Instance: ((1,1,1,1,1),1)
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H(X17X25X31X4ax5) = { 0 OtherWise

- Instance: ((1,1,1,1,1),1)

- Obs: If x; =0, then k(x) = 0; i.e. must consider only x; =1
- Hint: Can construct restricted truth-table

- All AXps: {{1,2},{1,3}}

- All CXps: {{1},{2,3}}

- AXp-necessary: {1} (singleton CXp)

- CXp-necessary:

- Relevant: {1,2,3}

- Irrelevant: {4, 5}
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Some use cases
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- Decide feature relevancy

Q: How to decide whether some protected feature occurs in all explanations?
- Decide feature necessity

Q: What can we do if human decision maker finds computed AXp/CXp to be
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Some use cases

Q: How to decide whether some protected feature occurs in some explanation?
- Decide feature relevancy

Q: How to decide whether some protected feature occurs in all explanations?
- Decide feature necessity

Q: What can we do if human decision maker finds computed AXp/CXp to be
unsatisfactory?

- Partially enumerate AXps/CXps, exploiting bias in enumeration

© J. Marques-Silva 140 / 215



Plan for this course

-+ Lecture 01 - units:
- #01: Foundations

- Lecture 02 - units:

- #02: Principles of symbolic XAl - feature selection
- #03: Tractability in symbolic XAl (& myth of interpretability)

- Lecture 03 — units:

- #04: Intractability in symbolic XAl (& myth of model-agnostic XAl)
- #05: Explainability queries

- Lecture 04 - units:
- #06: Advanced topics

-+ Lecture 05 - units:

- #07: Principles of symbolic XAl - feature attribution (& myth of Shapley values in XAl)
- #08: Conclusions & research directions
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Detour: Monotonic Classification & Voting Power

© J. Marques-Silva 142 [ 215



Monotonically increasing boolean classifiers
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Monotonically increasing boolean classifiers

- Monotonic classifier M = (F,F, K, ), such that each D; = {0,1} and K = {0, 1} are
ordered (i.e. 0 < 1), and
- k(1) =1,
- Non-constant classifier, i.e. k(0) = 0; and
- k(x1) < K(x2) when x1 < xo
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- k(x1) < K(x2) when x1 < xo
- Letvy,vo € F be such that k(vy) = k(v2) = 1,and vi < vy
Define the explanation problems:
- &= (M, (v, 1))
- & = (M, (va,1))
&= (M, ((1,...,1),1)) = (M, (1,1))
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Monotonically increasing boolean classifiers

- Monotonic classifier M = (F,F, K, ), such that each D; = {0,1} and K = {0, 1} are
ordered (i.e. 0 < 1), and
- k(1) =1,
- Non-constant classifier, i.e. k(0) = 0; and
- k(x1) < K(x2) when x1 < xo
- Letvy,vo € F be such that k(vy) = k(v2) = 1,and vi < vy
Define the explanation problems:
- &= (M7 (V17 1))
- & = (M, (va,1))
&= (M, ((1,...,1),1)) = (M, (1,1))
- Then,
- If WAXp(S; &1) holds, then WAXp(S; £2) holds; in particular:
- A(&1) contains all the AXps of any instance of the form (v, 1)
+ Why?
- Pick any explanation problem & with instance (v, 1)
- Startfrom1=(1,1,...,1)
- Remove features that take value 0 in v, we still have an WAXp
- Then compute any AXp starting from features taking value 1in v,
.". Suffices to find explanations for & (or alternatively, the global explanations for prediction 1)
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An example

- ML model M = (F,F, K, k):
- Boolean classifier: K = {0, 1}
- Defined on 6 boolean features: F = {1,2,3,4,5,6}
- le.D;={0,1},i=1,...,6
- With classification function:

1 IF (4x1 + 4Xo + 4X3 + 2X4 + 2X5 + X = 12)

K(X1,X2,X3,X4,X5,X6) = {0 otherwise

- K is.a monotonically increasing boolean function
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- ML model M = (F,F, K, k):
- Boolean classifier: K = {0, 1}
- Defined on 6 boolean features: F = {1,2,3,4,5,6}
- le.D;={0,1},i=1,...,6
- With classification function:

1 IF (4x1 + 4Xo + 4X3 + 2X4 + 2X5 + X = 12)

K(X1,X2,X3,X4, X5, X6 = .
(X2, X2, X5, X4, X5, %) { 0 otherwise
- K is.a monotonically increasing boolean function

- We are interested in identifying the AXps of M, given the instance ((1,1,1,1,1,1),1)

- Or alternatively, the global AXps for prediction 1
- For example, with order (1,2,3,4,5,6):
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- With classification function:

1 IF (4x1 + 4Xo + 4X3 + 2X4 + 2X5 + X = 12)

K(X1,X2,X3,X4,X5,X6) = {0 otherwise

- K is.a monotonically increasing boolean function

- We are interested in identifying the AXps of M, given the instance ((1,1,1,1,1,1),1)

- Or alternatively, the global AXps for prediction 1
- For example, with order (1,2,3,4,5,6):
- Feature 1: can be dropped
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- Boolean classifier: K = {0, 1}
- Defined on 6 boolean features: F = {1,2,3,4,5,6}
- le.D;={0,1},i=1,...,6
- With classification function:

1 IF (4x1 + 4Xo + 4X3 + 2X4 + 2X5 + X = 12)

K(X1,X2,X3,X4,X5,X6) = {0 otherwise

- K is.a monotonically increasing boolean function

- We are interested in identifying the AXps of M, given the instance ((1,1,1,1,1,1),1)

- Or alternatively, the global AXps for prediction 1
- For example, with order (1,2,3,4,5,6):

- Feature 1: can be dropped

- Feature 2: can no longer be dropped; keep
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An example

- ML model M = (F,F, K, k):
- Boolean classifier: K = {0, 1}
- Defined on 6 boolean features: F = {1,2,3,4,5,6}
- le.D;={0,1},i=1,...,6
- With classification function:

1 IF (4x1 + 4Xo + 4X3 + 2X4 + 2X5 + X = 12)

K(X1,X2,X3,X4,X5,X6) = {0 otherwise

- K is.a monotonically increasing boolean function

- We are interested in identifying the AXps of M, given the instance ((1,1,1,1,1,1),1)
- Or alternatively, the global AXps for prediction 1
- For example, with order (1,2,3,4,5,6):
- Feature 1: can be dropped
- Feature 2: can no longer be dropped; keep
- Feature 3: can no longer be dropped; keep
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An example

- ML model M = (F,F, K, k):
- Boolean classifier: K = {0, 1}
- Defined on 6 boolean features: F = {1,2,3,4,5,6}
- le.D;={0,1},i=1,...,6
- With classification function:

1 IF (4x1 + 4Xo + 4X3 + 2X4 + 2X5 + X = 12)

K(X1,X2,X3,X4,X5,X6) = {0 otherwise

- K is.a monotonically increasing boolean function

- We are interested in identifying the AXps of M, given the instance ((1,1,1,1,1,1),1)
- Or alternatively, the global AXps for prediction 1
- For example with order (1,2, 3,4,5,6):
Feature 1: can be dropped
- Feature 2: can no longer be dropped; keep
- Feature 3: can no longer be dropped; keep
- Feature 4: can no longer be dropped; keep
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An example

- ML model M = (F,F, K, k):
- Boolean classifier: K = {0, 1}
- Defined on 6 boolean features: F = {1,2,3,4,5,6}
- le.D;={0,1},i=1,...,6
- With classification function:

1 IF (4x1 + 4Xg + 4X3 + 2X4 + 2X5 + X6 = 12)
K(X1, X2, X3, X4, X5,X6) = q otherwise

- K is.a monotonically increasing boolean function

- We are interested in identifying the AXps of M, given the instance ((1,1,1,1,1,1),1)
- Or alternatively, the global AXps for prediction 1
- For example with order (1,2, 3,4,5,6):
Feature 1: can be dropped
- Feature 2: can no longer be dropped; keep
- Feature 3: can no longer be dropped; keep
- Feature 4: can no longer be dropped; keep
- Feature 5: can no longer be dropped; keep
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© J. Marques-Silva

144 | 15



An example

- ML model M = (F,F, K, k):
- Boolean classifier: K = {0, 1}
- Defined on 6 boolean features: F = {1,2,3,4,5,6}
- le.D;={0,1},i=1,...,6
- With classification function:

1 IF (4x1 + 4Xo + 4X3 + 2X4 + 2X5 + X = 12)

K(X1,X2,X3,X4,X5,X6) = {0 otherwise

- K is.a monotonically increasing boolean function

- We are interested in identifying the AXps of M, given the instance ((1,1,1,1,1,1),1)
- Or alternatively, the global AXps for prediction 1
- For example with order (1,2, 3,4,5,6):

Feature 1: can be dropped

- Feature 2: can no longer be dropped; keep

- Feature 3: can no longer be dropped; keep

- Feature 4: can no longer be dropped; keep

- Feature 5: can no longer be dropped; keep

- Feature 6: can be dropped

- AXp: {2,3,4,5} ; Q:lsfeature 6 relevant?
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All AXps & all CXps...

- Classifier:

1 [F (4x 4x 4x 2X 2X5 + Xg = 12
K(X1,X2,X3, X4, X5,X5) = { (s + 4 + 45 + X0 + 266 + X )

0 otherwise

- Instance: (1,1)
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- Classifier:

1 [F (4x 4x 4x 2X 2X5 + Xg = 12
K(X1,X2,X3, X4, X5,X5) = { (s + 4 + 45 + X0 + 266 + X )

0 otherwise

- Instance: (1,1)

- Computing the AXps:
- Must pick 2 out of features {1, 2, 3}

- If only 2 out of features {1, 2, 3} picked, then we must pick both features 4 and 5
- Feature 6 is never matters, i.e. it is irrelevant...
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- Computing the AXps:
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- If only 2 out of features {1, 2, 3} picked, then we must pick both features 4 and 5
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All AXps & all CXps...

- Classifier:

1 |F(4X1 +4X2+4X3+2X4+2X5 + Xg = 12)

H(XlaX25X3aX47X57X6) = { 0 OtherWise

- Instance: (1,1)

- Computing the AXps:
- Must pick 2 out of features {1, 2, 3}
- If only 2 out of features {1, 2, 3} picked, then we must pick both features 4 and 5
- Feature 6 is never matters, i.e. it is irrelevant...
+ AXps:
A=1{{1,2,3},{1,2,4,5},{1,3,4,5},{2,3,4,5}}

+ CXps:
C={{1,2},{1,3},{2,3},{1,4},{1,5},{2,4},{2,5}, {3,4}, {3, 5}}
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What is a priori voting power?

- General set-up of weighted voting games:
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What is a priori voting power?

- General set-up of weighted voting games:

- Assembly A of voters, with m = | 4]
- Each voter i € A votes Yes with n; votes; otherwise no votes are counted (and he/she votes No)
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What is a priori voting power?

- General set-up of weighted voting games:

- Assembly A of voters, with m = | 4]
- Each voter i € A votes Yes with n; votes; otherwise no votes are counted (and he/she votes No)
- A coalition is a subset of voters, C < A

- Quota g is the sum of votes required for a proposal to be approved
- Coalitions leading to sums not less than g are winning coalitions
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What is a priori voting power?

- General set-up of weighted voting games:

- Assembly A of voters, with m = | 4]
- Each voter i € A votes Yes with n; votes; otherwise no votes are counted (and he/she votes No)

- A coalition is a subset of voters, C < A
- Quota g is the sum of votes required for a proposal to be approved

- Coalitions leading to sums not less than g are winning coalitions

- A weighted voting game (WVG) is a tuple [g; N1, . .., Nm]
- Example: [12;4,4,4,2,2,1]

9 &y &y
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What is a priori voting power?

- General set-up of weighted voting games:

© J. Marques-Silva

- Assembly A of voters, with m = | 4]
- Each voter i € A votes Yes with n; votes; otherwise no votes are counted (and he/she votes No)

- A coalition is a subset of voters, C < A
- Quota g is the sum of votes required for a proposal to be approved

- Coalitions leading to sums not less than g are winning coalitions

- A weighted voting game (WVG) is a tuple [g; N1, . .., Nm]

- Example: [12;4,4,4,2,2,1]

9 &y &y

- Problem: find a measure of importance of each voter!

- l.e. measure the a priori voting power of each voter
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An example - EEC (EU) members voting power in 1958

Coutry Acronym  # Votes

France F 4
Germany D 4
Italy | 4
Belgium B 2
Netherlands N 2
Luxembourg L 1

Quota: 12
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An example - EEC (EU) members voting power in 1958

Coutry Acronym  # Votes * WVG: [12;4,4,4,2,2,1]
France F 4 - Q: What should be the voting power of
Germany D 4 Luxembourg?
Italy | 4
Belgium B 2
Netherlands N 2
Luxembourg L 1

Quota: 12
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An example - EEC (EU) members voting power in 1958

Coutry Acronym  # Votes * WVG: [12;4,4,4,2,2,1]
France F 4 - Q: What should be the voting power of
Germany D 4 Luxembourg?
Italy | 4 - Can Luxembourg (L) matter for some
Belgium B 2 winning coalition?
Netherlands N 2
Luxembourg L 1

Quota: 12
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An example - EEC (EU) members voting power in 1958

Coutry Acronym  # Votes * WVG: [12;4,4,4,2,2,1]
France F 4 - Q: What should be the voting power of
Germany D 4 Luxembourg?
Italy | 4 - Can Luxembourg (L) matter for some
Belgium B 2 winning coalition?
Netherlands N 2 - Perhaps surprisingly, answer is No!
Luxembourg L 1 - In 1958, Luxembourg was a dummy

Quota: 12 voter/player

© J. Marques-Silva 147 [ 215



Understanding weighted voting games

- Obs: A WVG is a monotonically increasing boolean classifier
- Each subset-minimal winning coalition is an AXp of the instance (1,1)
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- Recall EEC voting example:
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Germany D 4
Italy | 4
Belgium B 2
Netherlands N 2
Luxembourg L 1

Quota: 12
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Understanding weighted voting games

- Obs: A WVG is a monotonically increasing boolean classifier
- Each subset-minimal winning coalition is an AXp of the instance (1,1)

- Recall EEC voting example:

Coutry Acronym  # Votes

France F 4

Germany D 4

Italy | 4

Belgium B 2

Netherlands N 2

Luxembourg L 1

Quota: 12
- The corresponding classifier is:
1 IF (4X1 + 4% + 4X3 + 2X4 + 2X5 + Xg > 12)
K(X1,X2,X3,X4,X5,X6) = ] ’
0 otherwise

which we have seen before! E.g. {2,3,4,5} is an AXp & feature 6 (L) is irrelevant
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Another example

- WVG: [21:12,9, 4, 4,1,1,1]
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Another example

- WVG: [21:12,9, 4, 4,1,1,1]

- Computing the AXps:
- Must include feature 1; sum of weights of others equals 20...
- Either include feature 2, or features 3 and 4, plus any one of features 5, 6, 7
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- AXps:
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Another example

- WVG: [21:12,9, 4, 4,1,1,1]

- Computing the AXps:
- Must include feature 1; sum of weights of others equals 20...
- Either include feature 2, or features 3 and 4, plus any one of features 5, 6, 7

- AXps:
A= {{17 2}5 {17 3,4, 5}7 {173747 6}7 {1, 3,4, 7}}
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Another example

- WVG: [21:12,9, 4, 4,1,1,1]

- Computing the AXps:
- Must include feature 1; sum of weights of others equals 20...
- Either include feature 2, or features 3 and 4, plus any one of features 5, 6, 7

- AXps:
A= {{17 2}5 {17 3,4, 5}7 {173747 6}7 {1, 3,4, 7}}

+ CXps:
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Another example

- WVG: [21:12,9, 4, 4,1,1,1]

- Computing the AXps:
- Must include feature 1; sum of weights of others equals 20...
- Either include feature 2, or features 3 and 4, plus any one of features 5, 6, 7

- AXps:
A= {{17 2}5 {17 3,4, 5}7 {173747 6}7 {1, 3,4, 7}}

+ CXps:
C = {{1},{2,3},{2,4},{2,5,6,7}}
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Another example

- WVG: [21:12,9, 4, 4,1,1,1]

- Computing the AXps:
- Must include feature 1; sum of weights of others equals 20...
- Either include feature 2, or features 3 and 4, plus any one of features 5, 6, 7

- AXps:
A= {{17 2}5 {17 3,4, 5}7 {173747 6}7 {1, 3,4, 7}}

+ CXps:
C = {{1},{2,3},{2,4},{2,5,6,7}}

- Q: How should features be ranked in terms of importance?
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Yet another example

- WVG:[16;9,9,7,3,1,1]
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Yet another example

- WVG:[16;9,9,7,3,1,1]

- Computing the AXps:
- Sum of any pair of the first three features (i.e. voters) exceeds/matches the quota
- The other features never matter
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Yet another example

- WVG:[16;9,9,7,3,1,1]

- Computing the AXps:
- Sum of any pair of the first three features (i.e. voters) exceeds/matches the quota
- The other features never matter

+ AXps:
A= {{172}7 {1’3}7 {253}}
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Yet another example

- WVG:[16;9,9,7,3,1,1]

- Computing the AXps:
- Sum of any pair of the first three features (i.e. voters) exceeds/matches the quota
- The other features never matter

+ AXps:
A= {{172}7 {1’3}7 {253}}
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Yet another example

- WVG:[16;9,9,7,3,1,1]

- Computing the AXps:
- Sum of any pair of the first three features (i.e. voters) exceeds/matches the quota
- The other features never matter

+ AXps:
A= {{172}7 {1’3}7 {253}}

- CXps:
C= {{1’2}7 {173}’ {273}}
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Yet another example

- WVG:[16;9,9,7,3,1,1]

- Computing the AXps:
- Sum of any pair of the first three features (i.e. voters) exceeds/matches the quota
- The other features never matter

+ AXps:
A= {{17 2}7 {1’ 3}7 {25 3}}

- CXps:
C= {{1’ 2}7 {17 3}’ {273}}

- Obs: features (resp. voters) 4, 5 and 6 are irrelevant (resp. dummy)
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Yet another example

- WVG:[16;9,9,7,3,1,1]

- Computing the AXps:
- Sum of any pair of the first three features (i.e. voters) exceeds/matches the quota
- The other features never matter

+ AXps:
A= {{17 2}7 {1’ 3}7 {25 3}}

- CXps:
C= {{1’ 2}7 {17 3}’ {273}}

- Obs: features (resp. voters) 4, 5 and 6 are irrelevant (resp. dummy)

- Q: How should features be ranked in terms of importance?
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Why should we care about voting power?

SHAP scores, i.e. the use of Shapley values for XAl, exhibit critical theoretical flaws
(more tomorrow) SH24, HMS24, H23c
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(more tomorrow) MSH24, HMS24, HMD3C

- Recently, we have devised ways of correcting SHAP scores [LHMS24]
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- In turn, this revealed novel connections between logic-based XAl and a priori voting
power
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Why should we care about voting power?

SHAP scores, i.e. the use of Shapley values for XAl, exhibit critical theoretical flaws
(more tomorrow) MSH24, HMS24, HM23c)

- Recently, we have devised ways of correcting SHAP scores [LHMS24]

- In turn, this revealed novel connections between logic-based XAl and a priori voting
power

- Homework:
- Create your own weighted voting games;
- Compute the sets of AXps and CXps; and
- Assess the importance of features and how they compare to each other
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Unit #06

Advanced Topics



Outline - Unit #06

Changing Assumptions



General definition of prediction sufficiency

- Instance (v, )
s letSc F:

+ Recall,
T(S;v) ={xel|xs =vs}

- § < F suffices for prediction c if:
VxelF).(xeY(S;v))—(c(x))

- Obs: a WAXp is just one possible example
- But there are other ways to study prediction sufficiency:

- One can envision defining other sets of points I', parameterized by & = (M, (v, €));
S < F suffices for prediction c if:

VxelF).(xeI'(S;€)) —>(o(x))

- And one can also envision generalizations of o!
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Outline - Unit #06

Inflated Explanations



Towards more expressive explanations - inflated explanations

- Recall:
WAXp(X) = V(xeF). /\jex(x, = v)) - (k(x) = ¢)

- For non-boolean features, use of = may convey little information, e.g. with real-valued features,
having x; = 1.157 does not help in understanding what values of feature 1 are also acceptable
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Towards more expressive explanations - inflated explanations

- Recall:
WAXp(X) = V(xeF). /\jex(x, = v)) - (k(x) = ¢)

- For non-boolean features, use of = may convey little information, e.g. with real-valued features,
having x; = 1.157 does not help in understanding what values of feature 1 are also acceptable

- Inflated explanations allow for more expressive literals, i.e. = replaced with €, and
individual values replaced by ranges of values

- Operational definition: Given an AXp, expand set of values of each feature, in some chosen
order, such that the set of picked features remains unchanged
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Inflated explanations — an example

[11mM22]

- Explanation for ((2,20,0),Y)? (Obs: MnA = 18; MxP > 4)

€ {4..MxP} ' € {0..3}

2

€ {MnA..25} € {26..MxA}
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Inflated explanations — an example

[11mM22]
- Explanation for ((2,20,0),Y)? (Obs: MnA = 18; MxP > 4)
- AXp: {1, 2}

€ {4..MxP} ' € {0..3}

2

€ {MnA..25} € {26..MxA}
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Inflated explanations — an example

[11mM22]

- Explanation for ((2,20,0),Y)? (Obs: MnA = 18; MxP > 4)
- AXp: {1, 2}

came) /| \e 0.3 - Default interpretation:

V(xeF).(x1 =2 A X2 = 20) > (k(x) = V)

2

€ {MnA..25} € {26..MxA}
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Inflated explanations — an example

[11mM22]
- Explanation for ((2,20,0),Y)? (Obs: MnA = 18; MxP > 4)
- AXp: {1, 2}

came) /| \e 0.3 - Default interpretation:

V(xeF).(x1 =2 A Xa = 20) >(k(x) = Y)
& P S (P - Corresponding rule:

5 IF (x1 =2 A X2 = 20) THEN (k(x) =)
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Inflated explanations — an example

[11mM22]
- Explanation for ((2,20,0),Y)? (Obs: MnA = 18; MxP > 4)
- AXp: {1, 2}

came) /| \e 0.3 - Default interpretation:

V(xeF).(x1 =2 A Xa = 20) >(k(x) = Y)
& P S (P - Corresponding rule:

5 IF (x1 =2 A X2 = 20) THEN (k(x) =)
- With inflated explanations:

V(x € F).(x1 € {2..MXP} A X2 € {MnA..25}) —(k(x) = Y)
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Inflated explanations — an example

[11mM22]

- Explanation for ((2,20,0),Y)? (Obs: MnA = 18; MxP > 4)
- AXp: {1, 2}
- Default interpretation:

€ {4..MxP} " \e {0..3}
V(ixelF).(x1 =2 A x2 =20)—(k(x) =Y)
S (P - Corresponding rule:
5 IF (x1 =2 A X2 = 20) THEN (k(x) =)
- With inflated explanations:

V(x € F).(x1 € {2..MXP} A X2 € {MnA..25}) —(k(x) = Y)

- Corresponding rule:

IF (x1 € {2..MXP} A X2 € {MnA..25}) THEN (k(x) = Y)

© J. Marques-Silva 154 [ 215



Approach

+ Compute AXp X
- For each feature:

- Categorical: iteratively add elements to literal
- Ordinal:

- Expand literal for larger values;
- Expand literal for smaller values
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+ Compute AXp X
- For each feature:

- Categorical: iteratively add elements to literal
- Ordinal:

- Expand literal for larger values;
- Expand literal for smaller values

- Obs: More complex alternative is to find AXp and expand domains simultaneously
- This is conjectured to change the complexity class of finding one explanation
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Outline - Unit #06

Probabilistic Explanations



Probabilistic (formal) explanations

[wm <?‘\ﬂ‘ 22, IH t 22, ABOS22, IHI 23, IMM24.

- Explanation size is critical for human understanding [mitse]

- Probabilistic explanations provide smaller explanations, by trading off rigor of
explanation by explanation size
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Probabilistic (formal) explanations

[wm <?‘\\‘ 22, IH t 22, ABOS22, IHI 23, IMM24.

- Explanation size is critical for human understanding [mitse]

- Probabilistic explanations provide smaller explanations, by trading off rigor of
explanation by explanation size

- Definition of weak probabilistic AXp X < F:

WPAXp(X) = Pr(k(x)=0)|xx=vx)=4

- Obs: xx = vy requires points x € F to match the values of v for the features dictated by X
- Obs: for § = 1 we obtain a WAXp

© J. Marques-Silva 156 [ 215



© J. Marques-Silva 157 [ 215



- Weak probabilistic AXp (WPAXp):

WeakPAXp(X;F, k,v,C,0) :=
HxelF:k(x)=CA (xx =vx)}|

[(xeF: (xx =va)l] =0

Pry(k(x) =C|xxy =vx) =0 =
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- Weak probabilistic AXp (WPAXp):

WeakPAXp(X;F, k,v,C,0) :=
HxelF:k(x)=CA (xx =vx)}|

[(xeF: (xx =va)l] =0

Pry(k(x) =C|xxy =vx) =0 =
- Probabilistic AXp (PAXp):

PAXp(X;F, k,v,C,0) =
WeakPAXp(X;F, k,v,C,0) A V(X' < X).—WeakPAXp(X';F, k,v,C,J)
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- Weak probabilistic AXp (WPAXp):

WeakPAXp(X;F, k,v,C,0) :=

_ HxelF:k(x)=cA (xx =vx)}|

Pri(r(x) = c|xx =vx) =0 := {xel:(xx =vx)}| =0

- Probabilistic AXp (PAXp):

PAXp(X;F, k,v,C,0) =
WeakPAXp(X;F, k,v,C,0) A V(X' < X).—WeakPAXp(X';F, k,v,C,J)

- Locally-minimal PAXp (LmPAXp):
LmPAXp(X; [, k,v,C,0) :=

WeakPAXp(X;F, k,v,C,0) A V(j € X).—=WeakPAXp(X\{j};F,k,v,C,0)
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- Weak probabilistic AXp (WPAXp): - definition is non-monotonic

WeakPAXp(X;F, k,v,C,0) :=
HxelF :k(x)=cCcnh (xx =vx)}|

Feritu—]

Pre(k(x) =Clxxy =vx) =0 :=

- Probabilistic AXp (PAXp):

PAXp(X;F, k,v,C,0) ==
WeakPAXp(X;F, k,v,C,0) A V(X' < X).—~WeakPAXp(X'; [, k,v,C,0)

- Locally-minimal PAXp (LmPAXp): - may differ from PAXp due to non-monotonicity

LmPAXp(X; [, k,v,C,0) :=
WeakPAXp(X;F, k,v,C,0) A V(j € X).—=WeakPAXp(X\{j};F,k,v,C,0)
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What is known about PAXps?

- Obs: Definition of WPAXp is non-monotonic (from previous slide)
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What is known about PAXps?

- Obs: Definition of WPAXp is non-monotonic (from previous slide)
- Standard algorithms for finding one AXp cannot be used

- For DTs, finding on PAXp is computationally hard
- In general, complexity is unwiedly [WhHK21]

- Recent dedicated algorithms for simple ML models i+ 23
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What is known about PAXps?

- Obs: Definition of WPAXp is non-monotonic (from previous slide)
- Standard algorithms for finding one AXp cannot be used

- For DTs, finding on PAXp is computationally hard
- In general, complexity is unwiedly [WhHK21]
- Recent dedicated algorithms for simple ML models i+ 23

- Recent approximate algorithms for complex ML models M2

© J. Marques-Silva 158 [ 215



Results for decision trees

MinPAXp LmPAXp Anchor
Dataset X A X

DT Path ) Length Prec Time Length Prec mc Time D Length Prec Time

N A M m avg M m avg avg avg M m avg avg avg M m avg Fgp avg avg

100 11 3 6.8 100 234 11 3 6.9 100 100 0.00 d 12 2 7.0 26.8 76.8 0.96

adult 1241 89 14 3 10.7 95 11 3 6.2 984 536 11 3 6.3 986 99.0 0.01 u 12 3 10.0 294 93.7 220
90 11 2 56 946 464 11 2 58 952 964 0.01

100 12 1 44 100 035 12 1 4.4 100 100 0.00 d 31 1 4.8 58.1 329 3.10

dermatology 71 100 13 1 51 95 12 1 4.1 997 0.37 12 1 4.1 99.7 993 0.00 u 34 1 13.1 432 872 25.13
90 11 1 40 988 035 11 1 4.0 988 100 0.00

100 12 2 4.8 100 0.93 12 2 49 100 100 0.00 d 36 2 7.9 448 69.4 1.94

kr-vs-kp 231 100 14 3 6.6 95 11 2 39 981 097 11 2 4.0 981 100 0.00 u 12 2 3.6 16.6 973 1.81
90 10 2 3.2 954 092 10 2 3.3 954 99.0 0.00

100 12 4 82 100 16.06 11 4 82 100 100 0.00 d 16 3 13.2 43.1 713 1222

letter 3261 93 14 4 11.8 95 12 4 8.0 99.6 1828 11 4 80 995 100 0.00 u 16 3 13.7 47.3 66.3 10.15
90 12 4 7.7 977 1635 10 4 7.8 97.8 100 0.00

100 14 3 6.4 100 092 14 3 6.5 100 100 0.00 d 35 2 8.6 554 33.6 5.43

soybean 219 100 16 3 7.3 95 14 3 64 998 095 14 3 6.4 998 100 0.00 u 35 3 19.2 66.0 750 38.96
90 14 3 6.1 981 094 14 3 6.1 982 985 0.00

012 3 74 100 1.23 12 3 7.5 100 100 0.01 d 38 2 6.3 653 633 24.12

spambase 141 99 14 3 85 9 9 1 3.7 961 216 9 1 38 965 100 0.01 u 57 3 28.0 86.2 653 834.70
90 6 1 24 924 215 8 1 24 922 100 0.01
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Results for naive Bayes classifiers

Dataset (HF #1)

NBC
A%

AXp

LmPAXp o

LmPAXp_,

LmPAXp.,

Length

0

Length

Precision

W%

Time

Length

Precision

Time

Length

Precision

W%

Time

adult (13

200)

8137

6.8+ 1.2

98
95
93
90

6.8+ 1.1
6.8+ 1.1
6.8+ 1.1
6.8+ 1.1

100+ 0.0
99.99+ 0.2
99.97+ 0.4
99.95+ 0.6

100
100
100
100

0.003
0.074
0.104
0.164

6.3+ 0.9
59+ 10
57+ 13
55+ 1.4

99.61+ 0.6
98.87+ 1.8
9834+ 2.6
97.86+ 3.4

0.023
0.058
0.086
0.100

48+ 13
39+ 10
3.4+ 09
3.0+ 0.8

9873+ 0.5
96.93+ 1.1
9521+ 1.6
93.46+ 1.5

0.059
0.071
0.093
0.103

agaricus (23

200)

95.41

103+ 25

98
95
93
90

7.7+£27
6.9+ 3.1
6.5+ 3.1
8584 33

99.12+ 0.8
97.62+ 21
96.65+ 2.8
9495+ 4.1

©

© ©
RSN

0.593
0.954
1.112
1.332

6.4+ 3.0
5.3EE 82
4.8+ 3.1
4.0+ 3.0

98.75+ 0.6
96.59+ 1.6
9538+ 1.9
9260+ 2.8

93

0.763
1.273
1.309
1.598

6.0+ 3.1
4.8+ 33
43+31
3.6+ 2.8

98.67+ 0.5
96.24+ 1.2
9492+ 13
92.08+ 1.7

0.870
1.217
1.390
1.830

chess (37

200)

88.34

121+ 37

98
95
93
90

8.1+ 4.1
7.7+38
U2 85
U9 &5

99.27+ 0.6
9851+ 1.4
97.56+ 2.4
97.29+ 2.9

64
68
68
70

0.383
0.404
0.419
0.413

59+ 49
5.5+ 4.4
5.0+ 4.1
494 4.0

98.70+ 0.4
97.90+ 0.9
96.26+ 2.2
9599+ 2.6

0.454
0.483
0.485
0.483

57+5.0
53+ 45
48+ 4.1
4.8+ 4.0

98.65+ 0.4
97.85+ 0.8
96.21+ 2.1
9593+ 25

0.457
0.478
0.493
0.543

vote (17

81)

89.66

53+ 1.4

98
95
93
90

53+ 1.4
53+ 1.4
53+ 14
53+ 14

100+ 0.0
100+ 0.0
100+ 0.0
100+ 0.0

100
100
100
100

0.000
0.000
0.000
0.000

B3k i3
B3e 1.3
52+ 13
52+ 13

99.95+ 0.2
9993+ 03
99.78+ 1.1
99.78+ 1.1

0.007
0.008
0.012
0.012

4.6+ 1.1
41+ 1.0
41+ 09
4.0+ 12

99.60+ 0.4
9825+ 1.7
98.10+ 1.9
9724+ 3.1

0.014
0.018
0.018
0.022

kr-vs-kp (37

200)

88.07

12.2+ 39

98
95
93
90

7.8+ 42
73£39
6.9+ 3.5
6.8+ 3.5

99.19+ 0.5
98.29+ 1.4
9721+ 25
96.65+ 3.1

64
64
69
69

0.387
0.416
0.422
0.418

6.5+ 4.7
6.0+ 4.3
5.6+ 3.8
5.4+ 3.8

98.99+ 0.4
97.89+ 1.1
96.82+ 2.2
95.69+ 3.0

0.427
0.453
0.448
0.468

6.1+ 4.9
55+ 45
5.2+ 4.0
5.0+ 4.0

98.88+ 0.3
97.79+ 0.9
96.71+ 2.1
95.59+ 2.8

0.457
0.462
0.468
0.487

mushroom (23
© ). Marques-Silva

200)

9551

107+ 23

98
95
93

7.5+ 2.4
6.5+ 2.6
58+ 2.8

98.99+ 0.7
9735+ 1.8
95.77+ 2.7

90
96
96

0.641
1.011
1.257

6.5+ 2.6
51+ 25
44425

98.74+ 0.5
96.52+ 1.0
9467+ 1.6

0.751
1.130
1.297

6.3+ 27
5.0+ 25
42+ 2.4

98.70+ 0.4
96.39+ 0.8
94.48+ 1.3

0.828
1.113
1.324460 / 215



Results for decision diagrams

MinPAXp LmPAXp

SEIEE HlLHE OMDD 9 Length Prec Time Length Prec mc Time
#N A% M m avg avg avg M m avg avg avg

100 9 6 80 100 2424 9 6 79 100 100 1.57

lending 100 9 1103 817 95 9 5 78 997 2148 9 6 78 998 100 1.49
90 9 4 72 96 2465 9 5 7.4 97.0 100 1.48

100 6 4 51 100 010 6 4 51 100 100 0.03

monk2 100 6 70 793 95 6 4 51 100 0.09 6 4 51 100 100 0.03
90 6 3 48 981 009 6 3 48 981 100 0.03

100 8 4 61 100 026 8 4 62 100 100 0.04

postoperative 74 8 109 80 95 8 2 60 993 025 8 2 60 993 100 0.04
90 8 2 53 959 023 8 2 54 966 946 004

100 9 5 7.7 100 360 9 5 78 100 100 0.38

tic_tac_toe 100 9 424 703 95 9 5 75 995 324 9 5 77 996 990 038
90 9 3 73 983 406 9 3 75 986 980 038

100 9 4 46 100 010 9 4 46 100 100 0.03

xd6 100 9 76 831 95 9 3 38 97 009 9 3 38 970 99.0 0.03
90 9 3 33 948 010 9 3 34 946 100 0.03
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Remarks on LmPAXps

[IHIT23

- LmPAXps ignore non-monotonicity, and so overapproximate PAXps
- Theoretical guarantees, but may be reducible
- For DTs, computation of LmPAXps is in P

- Experimental results confirm LmPAXps match PAXps in most cases

- Recent results on approximating LmPAXps for RFs
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Outline - Unit #06

Constrained Explanations



Not all inputs may be possible - input constraints

- The (implicit) assumption that all inputs are possible is often unrealistic
- le. it may be impossible for some points in feature space to be observed
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- The (implicit) assumption that all inputs are possible is often unrealistic
- le. it may be impossible for some points in feature space to be observed
- Infer constraints on the inputs

- Learn simple rules relating inputs
- Represent rules as a constraint set, e.g. C(x)

- Redefine WAXps/WCXps to account for input constraints:
V(x € F). {/\M(xj = V) A C(x)} S (k(x) = ©)
I(xel). {/\/GX(Xj =Vj) A C(x)} A (k(x) =0)

- Compute AXps/CXps given new definitions

- Constrained AXps/CXps find other applications!
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- Instance: ((1,1,1,1),1)
€ {0} ef{
- Unconstrained AXps:

2

e {0} € {1}

A

e {1} € {0}

€ {0} € {1}

- Constraint: {(x3 —X4), (X4 — X3)}
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3

€ {0} e {1}
- Unconstrained AXps:
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€
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€ {0} e {1}
- Unconstrained AXps:

- AXps: {{1}, {2}, {3,4}} cor/  \ew

- Constrained AXps:
' e {0}
o]

e {1}

6
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- Instance: ((1,1,1,1),1)

3

€ {0} € {1}
- Unconstrained AXps:
© AXps: ({1}, {2}, {3,4}} : 3
€ {0} € {1}
- Constrained AXps:
- If feature 3 is fixed (with value 1), then feature 4 e {1} e {0}
must be assigned value 1 @ @
€ {0} i € {1}

- Constraint: {(x3 —X4), (X4 — X3)}
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6

- If feature 4 is fixed (with value 1), then feature 3

. € {0} € {1}
must be assigned value 1 n
1
8 9

- Constraint: {(x3 —X4), (X4 — X3)}

© J. Marques-Silva 164 [ 215



- Instance: ((1,1,1,1),1)

3

€ {0} € {1}
- Unconstrained AXps:
© AXps: ({1}, {2}, {3,4}} : 3
e {0} € {1}
- Constrained AXps:
- If feature 3 is fixed (with value 1), then feature 4 e {1} e {0}
must be assigned value 1 @ @

6

- If feature 4 is fixed (with value 1), then feature 3

. € {0} € {1}
must be assigned value 1 n
1
- AXps: 8 9

- Constraint: {(x3 —X4), (X4 — X3)}
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- Ins

- Un

tance: ((1,1,1,1),1)

constrained AXps:
- AXps: {{1}7 {2}7 {34}}

- Constrained AXps:

© J. Marques-Silva

- If feature 3 is fixed (with value 1), then feature 4
must be assigned value 1

- If feature 4 is fixed (with value 1), then feature 3
must be assigned value 1

- AXps: {{1},{2}, {3}, {4}}

3

€ {0} € {1}

3

2

e {0} € {1}

e {1} ' € {0}
(«) 1o

6

€ {0} € {1}

- Constraint: {(xs — X4), (X4 — X3)}
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Outline - Unit #06

Distance-Restricted Explanations



How to tackle poor performance on NNs?

- For NNs, computation of plain AXps scales to a few tens of neurons NM19al
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How to tackle poor performance on NNs?

- For NNs, computation of plain AXps scales to a few tens of neurons NM19al
- But, robustness tools scale for much larger NNs

- Q: can we relate AXps with adversarial examples?
- Obs: we already proved some basic (duality) properties for global explanations NMI9D]

- Change definition of WAXp/WCXp to account for [, distance to v:

Vxe ). [\ 05 = %) A (I =vli, < 9] (o)
I(x e F). {/\jex(x,- =) A (x|, < e)} A (—o(x))

- Norm [, is arbitrary, e.g. Hamming, Manhattan, Euclidean, etc.
Distance-restricted explanations: dAXp/0oCXp
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An example - DT & instance ((1,1,1,1),1)
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An example - DT & instance ((1,1,1,1),1)

- Plain AXps/CXps:
- AXps? {{1,3,4},{2,3,4}}
-« OXps? {{1,2}, {3}, {4}}

- Distance-restricted AXps/CXps, 9AXp/0CXp, with
Hamming distance (ly) and e = 1:
- Points of interest:
{(1,1,1,1),(0,1,1,1),(1,0,1,1),(1,1,0,1), (1,1,1,0)}
- 0AXps? {{3,4}}
- 0CXps? {{3}, {4}}

- Given ¢, larger adversarial examples are excluded

© J. Marques-Silva 166 / 215



Another example - DT & instance ((1,1,1,1),1)
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Another example - DT & instance ((1,1,1,1),1)

- Plain AXps/CXps:

© AXps? {{1}, {2}{3,4}} W
- OXps? {{1,2,3},{1,2,4}}

- Distance-restricted AXps/CXps, 9AXp/0CXp, with
Hamming distance (ly) and e = 1:
- Points of interest:
{(1,1,1,1),(0,1,1,1),(1,0,1,1),(1,1,0,1), (1,1,1,0)}
- Constant function...
- 0AXps? {T}
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Relating explanations with adversarial examples

- Distance-restricted WAXps/WCXps:
V(xe F). [\, 05 =) A (Ix = vll, < &)] =(e()
Ixe ). [N\ =% A (Ix=vly, <&)] A (o)
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Relating explanations with adversarial examples

- Distance-restricted WAXps/WCXps:
V(xe F). [\, 05 =) A (Ix = vll, < &)] =(e()
Ixe ). [N\ =% A (Ix=vly, <&)] A (o)

- Given norm [, and distance e, there exists a (distance-restricted) WCXp iff there exists an
adversarial example

Use robustness tool to decide existence of WCXp
- But, WAXp decided given non existence of CXp!

- Efficiency of distance-restricted explanations correlates with efficiency of finding
adversarial examples

- One can use most complete robustness tools, e.g. VNN-COMP BMBT 23]

- Clear scalability improvements for explaining NNs (see next) [HM23b, W23, 1HMF- 242, 1M 26b]
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Basic algorithm (imazzb]

Input: Arguments: ¢; Parameters: &, p
Output: One 0AXp S

1. function FindAXpDel(e; £, p)

2 S—F = Initially, no feature is allowed to change
3 forie Fdo = Invariant: OWAXp(S)
4 S «— S\{i}

5 outc < FindAdvEx(e, S; E,p)

6 if outc then

7 S—Su{i}

8: return S = OWAXpP(S) A minimal(S) — 2AXp(S)
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Basic algorithm (imazzb]

Input: Arguments: ¢; Parameters: &, p
Output: One 0AXp S

1. function FindAXpDel(e; £, p)

2 S—F = Initially, no feature is allowed to change
3 forie Fdo = Invariant: OWAXp(S)
4 S «— S\{i}

5 outc < FindAdvEx(e, S; E,p)

6 if outc then

7: S—Su{i}

8: return S = OWAXpP(S) A minimal(S) — 2AXp(S)

- Obs: Efficiency of logic-based XAl tracks efficiency of robustness tools

- Limitation: Running time grows with number of features
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[HM23b]

DNN points  |AXp| #Calls Time #TO ‘ [AXpl #Calls  Time #TO
e=0.1 e =0.05

#1 3 5 185.9 0 2 5 113.8 0

ACASXU_1_5 #2 2 5 273.8 0 1 5 332 0
#3 0 5 714.2 0 0 5 4.3 0

#1 0 5 22193 0 0 5 14.2 0

ACASXU_3_1 #2 2 5 4263.5 1 0 5 1853.1 0
#3 1 5 581.8 0 0 5 3559 0

#1 3 5 137393 2 1 5 6890.1 1

ACASXU_3_2 #2 3 5 226.4 0 2 5 125.1 0
#3 2 5 1740.6 0 2 5 173.6 0

#1 4 5 43.6 0 2 5 59.4 0

ACASXU_3_5 #2 3 5 5039.4 0 2 5 43038 1
#3 2 5 55749 1 2 5 2660.3 0

#1 1 5 6225.0 1 0 5 51.0 0

ACASXU_3_6 #2 3 5 4957.2 1 2 5 18973 0
#3 1 5 196.1 0 1 5 919.2 0

#1 3 5 6256.2 0 4 5 26.9 0

ACASXU_3_7 #2 4 5 3113 0 1 5 6958.6 1
#3 2 5 7756.5 1 1 5 7807.6 1

#1 2 5 12413.0 2 1 5 5090.5 1

ACASXU_4_1 #2 1 5 5035.1 1 0 5 2335.6 0
#3 4 5 1237.3 0 4 5 1143.4 0

#1 4 5 15.9 0 4 5 12.1 0

ACASXU_4_2 #2 3 5 1507.6 0 1 5 1113 0
#3 2 5 5641.6 2 0 5 1639.1 0
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#1 3 5 6256.2 0 4 5 26.9 0

ACASXU_3_7 #2 4 5 3113 0 1 5 6958.6 1

#3 2 5 7756.5 1 1 5 7807.6 1

#1 2 5 12413.0 2 1 5 5090.5 1

ACASXU_4_1 #2 1 5 5035.1 1 0 5 2335.6 0

#3 4 5 1237.3 0 4 5 1143.4 0

Scales to a feW #1 4 5 15.9 0 4 5 12.1 0

hundred neurons ACASXU_4_2  #2 3 5 15076 0| 1 5 1113 0

#3 2 5 5641.6 2 0 5 1639.1 0
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Recent improvements

Input: Arguments: ¢; Parameters: &, p
Output: One 0AXp S

1. function FindAXpDel(e; &€, p)

2 S—F = Initially, no feature is allowed to change
3 forie F do = Invariant: OWAXp(S)
4: S — S\{i}

5 outc < FindAdvEx(e, S; €, p)

6 if outc then

7: S~ Sul{i}

8 return S = IWAXp(S) A minimal(S) — dAXp(S)
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- To drop features from S < F, it is open whether paralellization might be applicable

- Algorithm FindAXpDel is mostly sequential (see above)
- Exploit parallelization for other algorithms, e.g. dichotomic search (1M 26b]
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1. function FindAXpDel(e; &€, p)

2 S—F = Initially, no feature is allowed to change
3 forie F do = Invariant: OWAXp(S)
4: S — S\{i}

5 outc < FindAdvEx(e, S; €, p)

6 if outc then

7: S~ Sul{i}

8 return S = IWAXp(S) A minimal(S) — dAXp(S)

- To drop features from S < F, it is open whether paralellization might be applicable

- Algorithm FindAXpDel is mostly sequential (see above)

- Exploit parallelization for other algorithms, e.g. dichotomic search (1M 26b]
- However, to decide whether S is an AXp, we can exploit parallelization:

- Recall: AXp(X) := WAXp(X) A V(t € X).=WAXp(X\{t})

- Each =WAXp(-) (and also WAXp(-)) check can be run in parallel!

- Do this opportunistically, i.e. when set S is expected to be AXp [IHM+24b]
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More recent results (from 2024)... e

Model Deletion SwiftXplain

avgC nCalls Len Mn Mx avg TO avgC nCalls Len FD% Mn Mx avg
gtsrb-dense 0.06 1024 448 52.0 76.3 63.1 0 0.23 54 447 774 10.8 14.0 12.2
gtsrb-convSmall 0.06 1024 309 59.2 82.6 65.1 0 0.22 74 313 39.7 15.1 19.5 16.2
gtsrb-conv — — - - — — 100 96.49 45 174 33.2 3858.7 6427.7 4449.4
mnist-denseSmall 0.28 784 177 190.9 420.3 220.4 0 077 111 180 15.5 77.6 104.4 85.1
mnist-dense 0.19 784 231 138.1 179.9 150.6 0 075 183 229 11.5 130.1 1455 136.8
mnist-convSmall  — = = = = — 100 98.56 52 116 21.3 4115.2 6858.3 5132.8
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More recent results (from 2024)... e

Model Deletion SwiftXplain

avgC nCalls Len Mn Mx avg TO avgC nCalls Len FD% Mn Mx avg
gtsrb-dense 0.06 1024 448 52.0 76.3 63.1 0 0.23 54 447 774 10.8 14.0 12.2
gtsrb-convSmall 0.06 1024 309 59.2 82.6 65.1 0 0.22 74 313 39.7 15.1 19.5 16.2
gtsrb-conv — — - - — — 100 96.49 45 174 33.2 3858.7 6427.7 4449.4
mnist-denseSmall 0.28 784 177 190.9 420.3 2204 0 077 111 180 15.5 77.6 104.4 85.1
mnist-dense 0.19 784 231 138.1 179.9 150.6 0 075 183 229 11.5 130.1 1455 136.8
mnist-convSmall  — = = = = — 100 98.56 52 116 21.3 4115.2 6858.3 5132.8

Scales to tens of Largest for MNIST: 10142 neurons

thousands of neurons! Largest for GSTRB: 94308 neurons
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Outline - Unit #06

Additional Topics



Surrogate models in logic-based XAl

- Motivation:

- Logic-based XAl does not yet scale for highly complex ML models
- Surrogate models find many uses in ML, for approximating complex models
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- Target high accuracy of surrogate model
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Surrogate models in logic-based XAl

- Motivation:

- Logic-based XAl does not yet scale for highly complex ML models
- Surrogate models find many uses in ML, for approximating complex models

- Approach:
- Train a surrogate model, e.g. DT, RF/TE, small(er) NN, etc.

- Target high accuracy of surrogate model

- Explain the surrogate model
- Compute rigorous explanation: plain AXp, probabilistic AXp,
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Surrogate models in logic-based XAl

[BAMT21

- Motivation:
- Logic-based XAl does not yet scale for highly complex ML models

- Surrogate models find many uses in ML, for approximating complex models
- Approach:
- Train a surrogate model, e.g. DT, RF/TE, small(er) NN, etc.

- Target high accuracy of surrogate model

- Explain the surrogate model
- Compute rigorous explanation: plain AXp, probabilistic AXp,

- Report computed explanation as explanation for the complex ML model
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Certified explainer (for monotonic classification)

- The implementation of a correct algorithm may not be correct
- Even comprehensive testing of implemented algorithms does not guarantee correctness
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- The implementation of a correct algorithm may not be correct
- Even comprehensive testing of implemented algorithms does not guarantee correctness

- Certification of implementations is one possible alternative

- Formalize algorithm, e.g. explanations for monotonic classifiers, e.g. using Coq
- Prove that formalized algorithm is correct
- Extract certified algorithm from proof of correctness
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Certified explainer (for monotonic classification)

- The implementation of a correct algorithm may not be correct

- Even comprehensive testing of implemented algorithms does not guarantee correctness

- Certification of implementations is one possible alternative

- Formalize algorithm, e.g. explanations for monotonic classifiers, e.g. using Coq
- Prove that formalized algorithm is correct
- Extract certified algorithm from proof of correctness

- Downsides:

- Efficiency of certified algorithm
- Dedicated algorithm for each explainer

- Certification envisioned for any explainability algorithm
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Plan for this course - light at the end of the tunnel...

-+ Lecture 01 - units:
- #01: Foundations

- Lecture 02 - units:

- #02: Principles of symbolic XAl - feature selection
- #03: Tractability in symbolic XAl (& myth of interpretability)

- Lecture 03 — units:

- #04: Intractability in symbolic XAl (& myth of model-agnostic XAl)
- #05: Explainability queries

- Lecture 04 - units:
- #06: Advanced topics

-+ Lecture 05 - units:

- #07: Principles of symbolic XAl - feature attribution (& myth of Shapley values in XAl)
- #08: Conclusions & research directions
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Questions?
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Lecture 05

77 [ 215



Recapitulate fourth lecture

- Monotonic classifiers vs. weighted voting games

- Advanced topics:
- Inflated explanations
- Probabilistic explanations
- Constrained explanations
- Distance-restricted explanations
- Explanations using surrogate models
- Certified explainability
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Monotonicity & WCGs

- Every WVG G, described by [g;ny,...,ny], can be represented as a monotonically
increasing boolean classifier M = (F,{0,1}",{0, 1}, k), such that:
- Each voter i is mapped to a boolean feature i, such that feature i takes value 1 if voter | votes
Yes; otherwise it takes value 0;
- The classification function x : F — {0, 1} is defined by:

1 if >0, nixi = q
K(x) = ~

0 otherwise

- The target instance is (1, 1); and
- Each minimal winning coalition C corresponds to an AXp of & = (M, (1, 1))
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Monotonicity & WCGs

- Every WVG G, described by [g;ny,...,ny], can be represented as a monotonically
increasing boolean classifier M = (F,{0,1}",{0, 1}, k), such that:
- Each voter i is mapped to a boolean feature i, such that feature i takes value 1 if voter | votes
Yes; otherwise it takes value 0;
- The classification function x : F — {0, 1} is defined by:

1 if >0, nixi = q
K(x) = ~

0 otherwise

- The target instance is (1, 1); and
- Each minimal winning coalition C corresponds to an AXp of & = (M, (1, 1))

.. WVGs can be analyzed by studying the AXps/CXps of monotonically increasing boolean
classifiers
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Another WVG

- WVG: [25;10,9,7,1,1,1,1,1,1]
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Another WVG
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- Computing the AXps:
- Winning coalitions must include both 1and 2
- We can pick 3 or, alternatively, all the other ones
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- WVG: [25;10,9,7,1,1,1,1,1,1]

- Computing the AXps:
- Winning coalitions must include both 1and 2
- We can pick 3 or, alternatively, all the other ones

- AXps:
A={{1,2,3},{1,2,4,5,6,7,8,9}}

+ CXps:
C={{1},{2},{3,4},{3,5},{3,6},{3,7},{3,8},{3,9}, }
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Another WVG

- WVG: [25;10,9,7,1,1,1,1,1,1]

- Computing the AXps:
- Winning coalitions must include both 1and 2
- We can pick 3 or, alternatively, all the other ones

- AXps:
A={{1,2,3},{1,2,4,5,6,7,8,9}}

+ CXps:
C={{1},{2},{3,4},{3,5},{3,6},{3,7},{3,8},{3,9}, }

- Q: How should features be ranked in terms of importance?
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Plan for this course - light at the end of the tunnel...

-+ Lecture 01 - units:
- #01: Foundations

- Lecture 02 - units:

- #02: Principles of symbolic XAl - feature selection
- #03: Tractability in symbolic XAl (& myth of interpretability)

- Lecture 03 — units:

- #04: Intractability in symbolic XAl (& myth of model-agnostic XAl)
- #05: Explainability queries

- Lecture 04 - units:
- #06: Advanced topics

-+ Lecture 05 - units:

- #07: Principles of symbolic XAl - feature attribution (& myth of Shapley values in XAl)
- #08: Conclusions & research directions
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Unit #07

Principles of Symbolic XAl - Feature Attribution



Outline - Unit #07

Exact Shapley Values for XAl



Detour: Standard SHAP Intro (from another course...)

182 / 215



What are Shapley values?

- First proposed in game theory in the early 50s by L. S. Shapley
- Measures the contribution of each player to a cooperative game
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What are Shapley values?

- First proposed in game theory in the early 50s by L. S. Shapley
- Measures the contribution of each player to a cooperative game

. Application in XAl since the 2000s LCO1, SK10, SK14, DSZ16, LL17, ABBM21, VLSS21, VLSS22, ABBM23
- Popularized by SHAP LL17)
- Used for feature attribution, i.e. relative feature importance
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What are Shapley values?

First proposed in game theory in the early 50s by L. S. Shapley Shas3
- Measures the contribution of each player to a cooperative game

. Application in XAl since the 2000s LCO1, SK10, SK14, DSZ16, LL17, ABBM21, VLSS21, VLSS22, ABBM23
- Popularized by SHAP Lw7)
- Used for feature attribution, i.e. relative feature importance

- Shapley values are becoming ubiquitous in XAl.. - E.g. see slides from other XAl course...

O & nhttps:/fenwikipedia.orgjwiki/Shapley_value Accessed 2023/06/14

In machine learning [eci)

The Shapley value provides a principled way to explain the predictions of nonlinear models common in the field of machine leaming. By interpreting a
model trained on a set of features as a value function on a coalition of players, Shapley values provide a natural way to compute which features contribute
to a prediction.!'7] This unifies several other methods including Locally Interpretable Model-Agnostic Explanations (LIME),!'®] DeepLIFT,['®! and Layer-Wise
Relevance Propagation.'w 17. » Lundberg, Scott M.; Lee, Su-In (2017). "A Unified Approach to
Interpreting Model Predictions” (2. Al in Neural | ion Processing
Systemns. 30: 4765-4774. arXiv:1705.07874 . Retrieved 2021-01-30.
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What are Shapley values?

First proposed in game theory in the early 50s by L. S. Shapley
- Measures the contribution of each player to a cooperative game

. Application in XAl since the 2000s LCO1, SK10, SK14, DSZ16, LL17, ABBM21, VLSS21, VLSS22, ABBM23
- Popularized by SHAP Lw7)
- Used for feature attribution, i.e. relative feature importance

- Shapley values are becoming ubiquitous in XAl.. - E.g. see slides from other XAl course...

O & nhttps:/fenwikipedia.orgjwiki/Shapley_value Accessed 2023/06/14

In machine learning [eci)

The Shapley value provides a principled way to explain the predictions of nonlinear models common in the field of machine leaming. By interpreting a
model trained on a set of features as a value function on a coalition of players, Shapley values provide a natural way to compute which features contribute
to a prediction.!'7] This unifies several other methods including Locally Interpretable Model-Agnostic Explanations (LIME),!'®] DeepLIFT,['®! and Layer-Wise
Relevance Propagation. % 17. A Lundberg, Scott M.; Lee, Su-In (2017). A Unified Approach to
Interpreting Model Predictions” (2. Al in Neural | ion Processing
Systems. 30: 4765-4774, arXiv:1705,07874 . Retrieved 2021-01-30.

- Q: Do Shapley values for XAl really provide a rigorous measure of feature importance?
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How are Shapley values used in explainability?

- Instance: (v, ¢)
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How are Shapley values used in explainability?

- Instance: (v, ¢)
- Y: 27 — 2F defined by, [ABBM21, ABBM23

T(S)={xel| rjesXi = Vi}

T (S) gives points in feature space having the features in S fixed to their values in v
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How are Shapley values used in explainability?

- Instance: (v, ¢)
o e 2]: - 2[F deﬁ ned by, [ABBM21, ABBM23

T(S)={xel| rjesXi = Vi}

T (S) gives points in feature space having the features in S fixed to their values in v
- ¢: 27 — R defined by,

P(S) = 1217 err(s) r(x) = ve(S)

¢(8S) represents the expected value of the classifier on the points given by Y(S)
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How are Shapley values used in explainability?

- Instance: (v, ¢)
- Y: 27 — 2F defined by, [ABBM21, ABBM23

T(S)={xel| rjesXi = Vi}

T (S) gives points in feature space having the features in S fixed to their values in v
- ¢: 27 — R defined by,

$(S) =175 (5 () = ve(S)

¢(8S) represents the expected value of the classifier on the points given by Y(S)
- Sc¢: F — R defined by,

Se) = T my I 65 () - 0(5)

For all subsets of features, excluding i, compute the expected value of the classifier, with
and without i fixed, weighted by %(lgl)f1
- Obs: Uniform distribution assumed; it suffices for our purposes
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How are Shapley values used in explainability?

- Instance: (v, c ; L
(v,0) Marginal contribution

o (e 2]: — 2[F defined by, (in SHAP lingo)! [ABBM21, ABBM23
T(S) ={xeF| njies Xi = vi}

T (S) gives points in feature space having the features in S fixed tc their values in v
- ¢: 27 — R defined by,

$(S) =175 (5 () = ve(S)

¢(8S) represents the expected value of the classifier on the points ¢iven by Y(S)
- Sc¢: F — R defined by,

Se) = Ty I 65 () - 0(5)

For all subsets of features, excluding i, compute the expected value of the classifier, with
and without i fixed, weighted by %(lgl)f1
- Obs: Uniform distribution assumed; it suffices for our purposes
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How are Shapley values computed in practice?

- Exact evaluation is computationally (very) hard VL5521, ABBM21, VLS522, ABBM23, HIS24]
- SHAP proposes a sample-based approach; with no guarantees of rigor L
- Recent experiments revealed little to no correlation between Shapley values and SHAP's
results [HM23c]
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How are Shapley values computed in practice?

- Exact evaluation is computationally (very) hard VL5521, ABBM21, VLS522, ABBM23, HIS24]

- SHAP proposes a sample-based approach; with no guarantees of rigor L

- Recent experiments revealed little to no correlation between Shapley values and SHAP's
results [HM23c]

- Polynomial-time algorithm for deterministic decomposable boolean circuits [aBEM21]

- Polynomial-time algorithm for boolean functions represented with a truth-table [HM23c]
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What do Shapley values tell in terms of feature importance?

- [SK10] reads:
“According to the 2nd axiom, if two features values have an identical influence on the
prediction they are assigned contributions of equal size. The 3rd axiom says that if a
feature has no influence on the prediction it is assigned a contribution of 0."
(Obs: the axioms refer to the axiomatic characterization of Shapley values.)
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- [SK10] reads:
“According to the 2nd axiom, if two features values have an identical influence on the
prediction they are assigned contributions of equal size. The 3rd axiom says that if a
feature has no influence on the prediction it is assigned a contribution of 0."
(Obs: the axioms refer to the axiomatic characterization of Shapley values.)

- And [SK10] also reads:
“When viewed together, these properties ensure that any effect the features might have
on the classifiers output will be reflected in the generated contributions, which effectively
deals with the issues of previous general explanation methods.”
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What do Shapley values tell in terms of feature importance?

- [SK10] reads:
“According to the 2nd axiom, if two features values have an identical influence on the
prediction they are assigned contributions of equal size. The 3rd axiom says that if a
feature has no influence on the prediction it is assigned a contribution of 0."
(Obs: the axioms refer to the axiomatic characterization of Shapley values.)

- And [SK10] also reads:
“When viewed together, these properties ensure that any effect the features might have
on the classifiers output will be reflected in the generated contributions, which effectively
deals with the issues of previous general explanation methods.”

- Obs: Shapley values are defined axiomatically, i.e. no immediate relationship with
AXp’'s/CXp's or with feature (ir)relevancy

-+ Qs: can we have irrelevant features with a non-zero Shapley value, and/or relevant features
with a Shapley of zero?

- Recall: relevant features occur in some AXp/CXp; irrelevant features do not occur in any AXp/CXp
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Outline - Unit #07

Myth #03: Shapley Values for XAl



Shapley values vs. feature (ir)relevancy — identified iSSUS s, sz, e, mizs, sae, msia

- Boolean classifier, instance (v, ¢), and some i, iy, iy € F:
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Shapley values vs. feature (ir)relevancy — identified iSSUS s, sz, e, mizs, sae, msia

- Boolean classifier, instance (v, ¢), and some i, iy, iy € F:

- Issue 11 occurs if,
Irrelevant(i) A (Sv(i) = 0)
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- Boolean classifier, instance (v, ¢), and some i, iy, iy € F:

- Issue 11 occurs if,
Irrelevant(i) A (Sv(i) = 0)

- Issue 12 occurs if,
Irrelevant(i1) A Relevant(iz) A (|Sv(ir)| > |Sv(i2)])
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Shapley values vs. feature (ir)relevancy — identified iSSUS s, sz, e, mizs, sae, msia

- Boolean classifier, instance (v, ¢), and some i, iy, iy € F:

- Issue 11 occurs if,
Irrelevant(i) A (Sv(i) = 0)

- Issue 12 occurs if,
Irrelevant(i1) A Relevant(iz) A (|Sv(ir)| > |Sv(i2)])

- Issue I3 occurs if,
Relevant(i) A (Sv(i) = 0)
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Shapley values vs. feature (ir)relevancy — identified iSSUS s, sz, e, mizs, sae, msia

- Boolean classifier, instance (v, ¢), and some i, iy, iy € F:

- Issue 11 occurs if,
Irrelevant(i) A (Sv(i) = 0)

- Issue 12 occurs if,
Irrelevant(i1) A Relevant(iz) A (|Sv(ir)| > |Sv(i2)])

- Issue I3 occurs if,
Relevant(i) A (Sv(i) = 0)

- Issue |14 occurs if,
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- Boolean classifier, instance (v, ¢), and some i, iy, iy € F:

- Issue 11 occurs if,
Irrelevant(i) A (Sv(i) = 0)

- Issue 12 occurs if,
Irrelevant(i1) A Relevant(iz) A (|Sv(ir)| > |Sv(i2)])
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Shapley values vs. feature (ir)relevancy — identified iSSUS s, sz, e, mizs, sae, msia

- Boolean classifier, instance (v, ¢), and some i, iy, iy € F:

- Issue 11 occurs if,
Irrelevant(i) A (Sv(i) = 0)

- Issue 12 occurs if,
Irrelevant(i1) A Relevant(iz) A (|Sv(ir)| > |Sv(i2)])

- Issue I3 occurs if,
Relevant(i) A (Sv(i) = 0) Any of these issues is a cause

of (serious) concern per se!

- Issue |14 occurs if,

[Irrelevant(iy) A (Sv(iy) = 0)] A [Relevant(iz) A (Sv(iz) = 0)]

- Issue I5 occurs if,
[Irrelevant(i) A Vigj<m j=i (|SV()| < |Sv(i)])]
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Some stats - all boolean functions with 4 variables 2z, I, T, 55, TS (e

Issue-related metric Value Recap issue

# of functions 65536

# number of instances 1048576

# of 11 issues 781696

# of functions with 11 issues 65320

% |1 issues / function 99.67 [Irrelevant(i) A (Sv(i) = 0)]

# of 12 issues 105184

# of functions with 12 issues 40448

% 12 issues /[ function 61.72 [Irrelevant(i1) A Relevant(iz) A (|Sv(i1)| > |Sv(i2)])]
# of I3 issues 43008

# of functions with I3 issues 7800

% 13 issues / function 11.90 [Relevant(i) A (Sv(i) = 0)]

# of |4 issues 5728

# of functions with 14 issues 2592

% |4 issues [ function 3.96 [Irrelevant(i1) A (Sv(i1) = 0)] A [Relevant(i2) A (Sv(i2) = 0)]
# of I5 issues 1664

# of functions with 15 issues 1248

% 15 issues [ function 1.90 [Irrelevant(i) A Vigj<m, j=i (ISV()| < ISv(i)])]
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Previous results do matter! Let's go non-boolean...

© J. Marques-Silva

row# x3 Xe X3 ki(x) ka(x)
1 0 0 O 0 0
2 0 0 1 4 2
3 0 0 2 0 0
4 0 1 0 0 0
5 0 1 1 7 3
6 0 1 2 0 0
7 1 0 0 1 1
8 1 0 1 1 1
9 1 0 2 1 1
10 1 1 0 1 1
11 1 1 1 1 1
12 1 1 2 1 1

Tabular representations

€ {0} 1 e {1}

€ {1} ’ € {0,2}

o]

5

e {0} € {1}

DT2
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Instance ((1,1,2),1) - which feature matters the most for prediction 1?

© J. Marques-Silva

row# x3 Xe X3 ki(x) ka(x)
1 0 0 O 0 0
2 0 0 1 4 2
3 0 0 2 0 0
4 0 1 0 0 0
5 0 1 1 7 3
6 0 1 2 0 0
7 1 0 0 1 1
8 1 0 1 1 1
9 1 0 2 1 1
10 1 1 0 1 1
11 1 1 1 1 1
12 1 1 2 1 1

Tabular representations

€ {0} 1 e {1}

€ {1} ’ € {0,2}

o]

5

e {0} ) € {1}

DT2
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Computing XPs — make sense...

row# x3 Xe X3 ki(x) ka(x)
1 0 0 O 0 0
2 0 0 1 4 2
3 0 0 2 0 0
4 0 1 0 0 0
5 0 1 1 7 3
6 0 1 2 0 0
7 1 0 0 1 1
8 1 0 1 1 1
9 1 0 2 1 1
10 1 1 0 1 1
11 1 1 1 1 1
12 1 1 2 1 1

XPs: AXps/CXps

DT  AXps CXps

DT1 {1} {1}
DT2 {1} {1}

© J. Marques-Silva

Tabular representations

€ {0} 1 e {1}

€ {1} ’ € {0,2}

o]

5

e {0} € {1}

DT2
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Computing XPs, AEs - also make sense...

row# x3 Xe X3 ki(x) ka(x)
1 0 0 O 0 0
2 0 0 1 4 2
3 0 0 2 0 0
4 0 1 0 0 0
5 0 1 1 7 3
6 0 1 2 0 0
7 1 0 0 1 1
8 1 0 1 1 1
9 1 0 2 1 1
10 1 1 0 1 1
11 1 1 1 1 1
12 1 1 2 1 1

XPs: AXps/CXps

DT  AXps CXps

DT1 {1} {1}
DT2 {1} {1}

© ). Marques-Silva

Tabular representations

Adversarial Examples

DT lp-minimal AEs

DT1 {1}
DT2 {1}

€ {0} 1 e {1}

€ {1} ’ € {0,2}

o]

5

e {0} € {1}

DT2
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Computing XPs, AEs & Svs

XPs: AXps/CXps

DT  AXps CXps

DT1 {1} {1}
DT2 {1} {1}

© J. Marques-Silva

€ {0} 1 e {1}

€ {1} ’ € {0,2}

o]

5

€ {1}

DT2

Shapley values

Sc(1)  Sc(2)  Sc(3)

row# x3 Xe X3 ki(x) ka(x)
1 0 0 O 0 0
2 o 0 1 4 2
3 o 0 2 0 0
4 0O 1 0 0 0
5 o 1 1 7 3
6 0o 1 2 0 0
7 1 0 0 1 1
8 1 0 1 1 1
9 1 0 2 1 1
10 1 1 0 1 1 c (0}
11 1 1 1 1 1
2 1 1 2 1 1 |
6
Tabular representations
Adversarial Examples
DT lp-minimal AEs DT
DT1 {1} DT1
DT2 {1} DT2

0.000 0.083 -0.500
0278 0.028 -0.222
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Computing XPs, AEs & Svs — what???

XPs: AXps/CXps

DT  AXps CXps

DT1 {1} {1}
DT2 {1} {1}

© J. Marques-Silva

€ {0} 1 e {1}

€ {1} ’ € {0,2}

o]

5

€ {1}

DT2

Shapley values

Sc(1)  Sc(2)  Sc(3)

row# x3 Xe X3 ki(x) ka(x)
1 0 0 O 0 0
2 o 0 1 4 2
3 o 0 2 0 0
4 0O 1 0 0 0
5 o 1 1 7 3
6 0o 1 2 0 0
7 1 0 0 1 1
8 1 0 1 1 1
9 1 0 2 1 1
10 1 1 0 1 1 c (0}
11 1 1 1 1 1
2 1 1 2 1 1 |
6
Tabular representations
Adversarial Examples
DT lp-minimal AEs DT
DT1 {1} DT1
DT2 {1} DT2

0.000 0.083 -0.500 M
0278 0.028 -0.222
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Computing XPs, AEs & Svs — what???

XPs: AXps/CXps

DT  AXps CXps

DT1 {1} {1}
DT2 {1} {1}

© J. Marques-Silva

€ {0} 1 e {1}

€ {1} ’ € {0,2}

o]

5

€ {1}

DT2

Shapley values

Sc(1)  Sc(2)  Sc(3)

row# x3 Xe X3 ki(x) ka(x)
1 0 0 O 0 0
2 o 0 1 4 2
3 o 0 2 0 0
4 0O 1 0 0 0
5 o 1 1 7 3
6 0o 1 2 0 0
7 1 0 0 1 1
8 1 0 1 1 1
9 1 0 2 1 1
10 1 1 0 1 1 c (0}
11 1 1 1 1 1
2 1 1 2 1 1 |
6
Tabular representations
Adversarial Examples
DT lp-minimal AEs DT
DT1 {1} DT1
DT2 {1} DT2

0.000 0.083 -0.500 M
0278 0.028 -0.222 !
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Computing XPs, AEs & Svs — what???

row# x3 Xe X3 ki(x) ka(x)
1 0 0 O 0 0
2 0 0 1 4 2
3 0 0 2 0 0
4 0 1 0 0 0
5 0 1 1 7 3
6 0 1 2 0 0
7 1 0 0 1 1
8 1 0 1 1 1
9 1 0 2 1 1
10 1 1 0 1 1
11 1 1 1 1 1
12 1 1 2 1 1

XPs: AXps/CXps

DT  AXps CXps

DT1 {1} {1}
DT2 {1} {1}

© J. Marques-Silva

Tabular representations

Adversarial Examples

DT lp-minimal AEs

DT1 {1}
DT2 {1}

.". Shapley values can mislead
human decision-makers !

€ {0} 1 e {1}
3
2
€ {1} € {0,2}

o]

5

e {0} ‘ € {1}

DT2

Shapley values

DT  Sc(1) Sc(2) Sc(3)

DT1 0.000 0.083 -0.500 !
DT2 0.278 0.028 -0.222 !
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Computing XPs, AEs & Svs — what???

row# x3 Xe X3 ki(x) ka(x)
1 0 0 O 0 0
2 0 0 1 4 2
3 0 0 2 0 0
4 0 1 0 0 0
5 0 1 1 7 3
6 0 1 2 0 0
7 1 0 0 1 1
8 1 0 1 1 1
9 1 0 2 1 1
10 1 1 0 1 1
11 1 1 1 1 1
12 1 1 2 1 1

XPs: AXps/CXps

DT  AXps CXps

DT1 {1} {1}
DT2 {1} {1}

© J. Marques-Silva

Tabular representations

Adversarial Examples

DT lp-minimal AEs

DT1 {1}
DT2 {1}

.". Shapley values can mislead
human decision-makers !

€ {0} 1 e {1}
3
2
€ {1} € {0,2}

o]

5

e {0} € {1}

DT2

Sv issues also occur
in practice [HM23e]

Shapley values

DT  Sc(1) Sc(2) Sc(3)

DT1 0.000 0.083 -0.500 !
DT2 0.278 0.028 -0.222 !
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Another example - arbitrary mistakes!

[LHAMS24]
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Another example - arbitrary mistakes!

- Instance: ((1,1),1)
- Obs:a=1

© ). Marques-Silva

[LHAMS24]
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Another example - arbitrary mistakes!

- Instance: ((1,1),1)

- Obs:a=1
- Sc(l)=0
- Sc(2) =«

© ). Marques-Silva

[LHAMS24]

€ {0} e {1}
€ {0} € {1}
[1-60] |1+ 20]
4 5
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Another example - arbitrary mistakes!

[LHAMS24]

€ {0} e {1}
e {0} ZX‘{H
[1-60] ]1+2a\
4 5

- Instance: ((1,1),1)

- Obs:a=1

- Sc(l)=0

- Sc(2) =« (you can pick the c...)
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Another example - arbitrary mistakes!

[LHAMS24]

€ {0} e {1}
e {0} ZX‘{H
[1-60] ]1+2a\
4 5

- Instance: ((1,1),1)

- Obs:a=1

- Sc(l)=0

- Sc(2) =« (you can pick the c...)

Example devised by O. Letoffe, PhD student at IRIT
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More detail

row X, X p(x) pa(x)  po(x)

a=1p a=1/ i S rows(S) wve(S)
€ {0} € {1}
1 0 0 1-6a -2 —1/ %) 1,2,3,4 1—«
2 0 1 142 2 32 ! xi} 3.4 1
310 1 1 1 cor/ T \e {X2} 2,4  l1+a
4 1 1 1 1 1 X1, X 4 1
| | [1-6a] [1+2a] Loy}
=1
S 0e(8) ve(SuU{l}) A1(S) <(S) <(S) x A1(S)
g l1-a 1 « 1/2 a/2
{2} 1+a 1 (@) /2 —a/z
SCE(l) = 0
=2
S we(S) ve(Suf2)) AsxS) <(S) <(S) xAs(S)
g l—a 1+« 2a /2 @
11 1 0 1 0
SCE(Q) = «

© ). Marques-Silva
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Outline - Unit #07

Corrected SHAP Scores



Corrected SHAP scores & feature importance scores

[LHMS24, LHAMS24

- Is the theory of Shapley values incorrect?
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Corrected SHAP scores & feature importance scores
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- Is the theory of Shapley values incorrect?  No!
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Corrected SHAP scores & feature importance scores

[LHMS24, LHAMS24

- Is the theory of Shapley values incorrect?  No!

What is inadequate is the characteristic function used in XAl SK10, SK14, LU

- In XAl: characteristic function uses the expected value
- This defines the marginal contribution in SHAP lingo...
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Corrected SHAP scores & feature importance scores

[LHMS24, LHAMS24
- Is the theory of Shapley values incorrect?  No!

What is inadequate is the characteristic function used in XAl SK10, SK14, LU

- In XAl: characteristic function uses the expected value
- This defines the marginal contribution in SHAP lingo...

- Replace characteristic function based on expected values by new characteristic function
based on AXps/WAXps

- Resulting scores are (still) Shapley values & identified issues no longer observed
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- In XAl: characteristic function uses the expected value
- This defines the marginal contribution in SHAP lingo...

- Replace characteristic function based on expected values by new characteristic function
based on AXps/WAXps
- Resulting scores are (still) Shapley values & identified issues no longer observed

- Observed tight connection between feature attribution and power indices from a priori
voting power
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Corrected SHAP scores & feature importance scores

[LHMS24, LHAMS24
- Is the theory of Shapley values incorrect?  No!

What is inadequate is the characteristic function used in XAl SK10, SK14, LU

- In XAl: characteristic function uses the expected value
- This defines the marginal contribution in SHAP lingo...

- Replace characteristic function based on expected values by new characteristic function
based on AXps/WAXps
- Resulting scores are (still) Shapley values & identified issues no longer observed

- Observed tight connection between feature attribution and power indices from a priori
voting power

- Feature importance scores: [LHAMS24]

- Generalize recent axiomatic aggregations (Il 24]
- Adapt best known power indices
- Devise new scores for XAl
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An initial compromise

[LHAMS24

- Replace the characteristic function used for SHAP scores:

ve(S) = E[r(x)|xs = vs]

© J. Marques-Silva 193 / 215



An initial compromise

[LHAMS24

- Replace the characteristic function used for SHAP scores:

ve(S) = E[r(x)|xs = vs]

- Recall the similarity predicate:

—_

) if (r(x) = #(v))
0 otherwise

© J. Marques-Silva 193 / 215



An initial compromise

[LHAMS24

- Replace the characteristic function used for SHAP scores:

ve(S) = E[r(x)|xs = vs]

- Recall the similarity predicate:

o) _{ 1 if (k(x) = K(V))

0 otherwise

- The new characteristic function becomes:
vs(S) = Elo(x)|xs = vs]
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- Recall the similarity predicate:

o) _{ 1 if (k(x) = K(V))

0 otherwise

- The new characteristic function becomes:
vs(S) = Elo(x)|xs = vs]

- Issues with non-boolean classifiers disappear; issues with boolean classifiers remain
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An initial compromise

[LHAMS24
- Replace the characteristic function used for SHAP scores:

ve(S) = E[r(x)|xs = vs]

- Recall the similarity predicate:

o) _{ 1 if (k(x) = K(V))

0 otherwise

- The new characteristic function becomes:
vs(S) = Elo(x)|xs = vs]

- Issues with non-boolean classifiers disappear; issues with boolean classifiers remain

- Developed SSHAP prototype using SHAP's code base LHMs24]
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Fixing the known issues of SHAP scores
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Fixing the known issues of SHAP scores

- New characteristic function (based on WAXps):

S) 1 ifE[o(x)|xs =vs] =1
(V) =
‘ 0 otherwise
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Fixing the known issues of SHAP scores

- New characteristic function (based on WAXps):

S) 1 ifE[o(x)|xs =vs] =1
(V) =
‘ 0 otherwise

- Recall: E[o(x)|xs =vs] =1 holdsiff Sisa WAXp
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Fixing the known issues of SHAP scores

- New characteristic function (based on WAXps):

S) 1 ifE[o(x)|xs =vs] =1
(V) =
‘ 0 otherwise

- Recall: E[o(x)|xs =vs] =1 holdsiff Sisa WAXp

- Known issues of SHAP scores guaranteed not to occur
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Fixing the known issues of SHAP scores

- New characteristic function (based on WAXps):

S) 1 ifE[o(x)|xs =vs] =1
(V) =
‘ 0 otherwise

- Recall: E[o(x)|xs =vs] =1 holdsiff Sisa WAXp

- Known issues of SHAP scores guaranteed not to occur

- Corrected SHAP scores reveal tight connection between XAl by feature selection (i.e.
WAXps) and feature attribution

© J. Marques-Silva 194 [ 215



Outline - Unit #07

Voting Power & Power Indices



Recap: weighted voting games

- General set up of weighted voting games:

- Assembly A of voters, with m = | 4]
- Each voter | € A votes Yes with n; votes; otherwise no votes are counte (and he/she votes No)

- A coalition is a subset of voters, C < A
- Quota g is the sum of votes required for a proposal to be approved
- Coalitions leading to sums not less than g are winning coalitions

- A weighted voting game (WVG) is a tuple [g; N1, . .., Nm]
- Example: [12;4,4,4,2,2,1]

9 &y &y

- Problem: find a measure of importance of each voter!

- l.e. measure the a priori voting power of each voter
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What are power indices?

- Power indices assign a measure of importance to each voter
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What are power indices?

- Power indices assign a measure of importance to each voter
- Many power indices proposed over the years:

- Penrose ]
- Shapley-Shubik |
- Banzhaf BI6S)
- Coleman olr]
- Johnston -
- Deegan-Packel (oP78]
- Holler-Packel o
- Andjiga [ACL03]
- Responsability* [CHos, BILF24]
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What are power indices?

- Power indices assign a measure of importance to each voter

- Many power indices proposed over the years:
- Penrose penss]
- Shapley-Shubik ss54]
- Banzhaf Bi65]
- Coleman colr1]
- Johnston Joh7s]
- Deegan-Packel [DP78]
- Holler-Packel [HP83]
- Andjiga [ACL03]
- Responsability* [CHos, BILF24]

- What characterizes power indices?
- Account for the cases when voter is critical for a winning coalition
- E.g.in previous example, Luxembourg is never critical for a winning coalition

- Account for whether coalition is subset-minimal or cardinality-minimal
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Towards defining power indices

- Understanding criticality (used at least since 1954):
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Towards defining power indices

- Understanding criticality (used at least since 1954): [sss4

- Since the work of Shapley-Shubik [SS54], the criticality of a voter has been accounted for:
“Our definition of the power of an individual member depends on the chance he has of being
critical to the success of a winning coalition.”
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Towards defining power indices

- Understanding criticality (used at least since 1954): [sss4
- Since the work of Shapley-Shubik [SS54], the criticality of a voter has been accounted for:
“Our definition of the power of an individual member depends on the chance he has of being
critical to the success of a winning coalition.”
- This means that a voter i is critical when:

- If the voter votes Yes, then we have a winning coalition; and
- If the voter votes No, then we have a losing coalition.
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Towards defining power indices

- Understanding criticality (used at least since 1954): [sss4

- Since the work of Shapley-Shubik [SS54], the criticality of a voter has been accounted for:
“Our definition of the power of an individual member depends on the chance he has of being
critical to the success of a winning coalition.”

- This means that a voter i is critical when:

- If the voter votes Yes, then we have a winning coalition; and
- If the voter votes No, then we have a losing coalition.

- Understanding (subset-)minimal winning coalitions:
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- Since the work of Shapley-Shubik [SS54], the criticality of a voter has been accounted for:
“Our definition of the power of an individual member depends on the chance he has of being
critical to the success of a winning coalition.”

- This means that a voter i is critical when:

- If the voter votes Yes, then we have a winning coalition; and
- If the voter votes No, then we have a losing coalition.

- Understanding (subset-)minimal winning coalitions:
- A winning coalition is subset-minimal if removing any single voter results in a losing coalition
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Towards defining power indices

- Understanding criticality (used at least since 1954): [sss4
- Since the work of Shapley-Shubik [SS54], the criticality of a voter has been accounted for:
“Our definition of the power of an individual member depends on the chance he has of being
critical to the success of a winning coalition.”
- This means that a voter i is critical when:

- If the voter votes Yes, then we have a winning coalition; and
- If the voter votes No, then we have a losing coalition.

- Understanding (subset-)minimal winning coalitions:

- A winning coalition is subset-minimal if removing any single voter results in a losing coalition
- A winning coalition is cardinality-minimal if it has the smallest cardinality among
subset-minimal winning coalitions
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Towards defining power indices

- Understanding criticality (used at least since 1954):

- Since the work of Shapley-Shubik [SS54], the criticality of a voter has been accounted for:
“Our definition of the power of an individual member depends on the chance he has of being
critical to the success of a winning coalition.”

- This means that a voter i is critical when:

[SS54

- If the voter votes Yes, then we have a winning coalition; and
- If the voter votes No, then we have a losing coalition.

- Understanding (subset-)minimal winning coalitions:

- A winning coalition is subset-minimal if removing any single voter results in a losing coalition
- A winning coalition is cardinality-minimal if it has the smallest cardinality among
subset-minimal winning coalitions

- Recall that minimal winning coalitions can be obtained by computing the AXps of a
monotonically increasing boolean classifier
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Example power indices |

[LHAMS24

- Necessary definitions (using formal XAl notation...):
WA(E) = {S = F|WAXp(S;E) A i€ 8}
WCi(€E) ={S < F|WCXp(S;&) n i€ S}
AN(E) ={S  F|AXp(S;E) n i€ S}
Ci(€) ={S < F|CXp(S;E) nie S}

i
i

- Definitions of WA, WC, A, and C mimic the ones above, but without specifying a voter
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Example power indices |

[LHAMS24

- Necessary definitions (using formal XAl notation...):
WA(E) = {S < F|WAXp(S;E) Aie S}
WCi(€E) ={S < F|WCXp(S;&) n i€ S}
AN(E) ={S  F|AXp(S;E) n i€ S}
Ci(€) ={S < F|Xp(S;&) nieS}

i
i

- Definitions of WA, WC, A, and C mimic the ones above, but without specifying a voter

Power indices of Holler-Packel and Deegan-Packel: HPg3, DP78

Scu(i;€) = st,(s) (1/1aE)1)

SCo(13 €) = Y gy ey (011 x I0ED)
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Example power indices |

[LHAMS24

- Necessary definitions (using formal XAl notation...):
WA(E) = {S < F|WAXp(S;E) Aie S}
WCi(€E) ={S < F|WCXp(S;&) n i€ S}
AN(E) ={S  F|AXp(S;E) n i€ S}
Ci(€) ={S < F|Xp(S;&) nieS}

i
i

- Definitions of WA, WC, A, and C mimic the ones above, but without specifying a voter
Power indices of Holler-Packel and Deegan-Packel: HPg3, DP78

ScH(i;€) = st,(s) (1a@)1)

SCo(13 €) = Y gy ey (011 x I0ED)

- Obs: One only needs the AXps
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Example power indices I

- Additional definitions:
Crit(i,8; &) = WAXP(S;E) A =WAXp(S\{i}; )
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Example power indices I

- Additional definitions:
Crit(i,8; &) = WAXP(S;E) A =WAXp(S\{i}; )

Power indices of Shapley-Shubik, Banzhaf and Johnston: 5554, Bl6s, Joh7]

A 7| -1
Ses(ih €)= ESQFAcm(/',s;E) (1/<\f\ ) (IS\ - 1)>)
Scg(€) = ZSQ]—'/\Crit(i,S;S) (/2717

SG(i;€)

= 1
ZSE}-/\CH‘E([,S;E) ( /A(S))
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Example power indices I

- Additional definitions:
Crit(i,8; &) = WAXP(S;E) A =WAXp(S\{i}; )

Power indices of Shapley-Shubik, Banzhaf and Johnston: 5554, Bl6s, Joh7]

A 7| -1
Ses(ih €)= ESQFAcm(/',s;E) (1/<\f\ ) (IS\ - 1)>)
Scg(€) = ZSQ]—'/\Crit(i,S;S) (/2717

SG(i;€)

_ 1
o ngrmir(i,s;g) (/acs)

- One needs the WAXps to find critical voters...
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Example #01

- WVG: [9:9,2,2,2,2,1,1]
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Example #01

- WVG: [9:9,2,2,2,2,1,1]

- AXps:

DN DN =
w w
NN
Ol Ot
o
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Example #01

- WVG: [9:9,2,2,2,2,1,1]

- AXps:

DN DN =
w w
NN
Ol Ot
o

- Holler-Packel scores: {0.333,0.667,0.667,0.667,0.667, 0.333, 0.333)
- Banzhaf scores (normalized): <0.813,0.040, 0.040, 0.040, 0.040,0.013,0.013)
- Shapley-Shubik scores: {0.810,0.043, 0.043, 0.043,0.043,0.010, 0.010)

- Different relative orders of voter importance... which ones seem more realistic?
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Example #02

- WVG: [16;10,6,4,2,2]
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Example #02

- WVG: [16;10,6,4,2,2]

- AXps:

— = =
w W N
(2 BTSN
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Example #02

- WVG: [16;10,6,4,2,2]

- AXps:

— = =
w W N
(2 BTSN

- Deegan-Packel scores: (0.389,0.167,0.222,0.111,0.111)
- Banzhaf scores (normalized): (0.524,0.238,0.143,0.048, 0.048)
- Shapley-Shubik scores: (0.617,0.200,0.117,0.033, 0.033)

- Different relative orders of voter importance... which ones seem more realistic?
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Example #03

- WVG: [6:4,2,1,1,1,1]
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Example #03

- WVG: [6:4,2,1,1,1,1]

- AXps:

[ T e N = )
WEN LW = W W
YOO U
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Example #03

- WVG: [6:4,2,1,1,1,1]

- AXps:

[ T e N = )
WEN LW = W W
YOO U

- Deegan-Packel scores: {0.312,0.087,0.150,0.150,0.150, 0.150)
- Banzhaf scores (normalized): (0.542,0.125,0.083,0.083, 0.083,0.083)
- Shapley-Shubik scores: {0.533,0.133,0.083, 0.083, 0.083, 0.083)

- Different relative orders of voter importance... which ones seem more realistic?
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Example #04

- WVG: [21512,9,4,4,1,1,1]
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Example #04

- WVG: [21512,9,4,4,1,1,1]

- AXps:
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Example #04

- WVG: [21512,9,4,4,1,1,1]

- AXps:

=== =
W wwN
SN
~J O Ot

- Deegan-Packel scores: {0.312,0.125,0.188,0.188,0.062,0.062, 0.062)
- Banzhaf scores (normalized): <0.481,0.309, 0.086,0.086,0.012,0.012,0.012)
- Shapley-Shubik scores: (0.574,0.257,0.074,0.074,0.007,0.007, 0.007)

- Different relative orders of voter importance... which ones seem more realistic?
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Outline - Unit #07

Feature Importance Scores



From power indices to feature importance scores

- A Feature Importance Score (FIS) is a measure of feature importance in XAl
parameterizable on an explanation problem and a chosen characteristic function

- Explanation problem: (M, (v, q))
- Define characteristic function using explanation problem (more next slide)

- Obs: Can adapt (generalized) power indices as templates for feature importance scores

- Obs: Can devise new templates and/or new FISs
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Some examples (1 of 2)

- More notation:
Ai(S;E,v) = v(S;E) — v(S\{i}; €)

Can use any characteristic function, including those presented earlier in this lecture
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Some examples (1 of 2)

- More notation:
Ai(S;€,v) =v(S;E) —v(S\{i}€)

Can use any characteristic function, including those presented earlier in this lecture

- Some templates:
- Shapley-Shubik:

TSCs(i: €,0) = (MS;?;:))
seireryiery \IFI = (j5/21)
- Banzhaf: .
TSce(i; E,v) := (%)
Se{T<F|ieT}
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Some examples (1 of 2)

- More notation:
Ai(S;€,v) =v(S;E) —v(S\{i}€)

Can use any characteristic function, including those presented earlier in this lecture

- Some templates:
- Shapley-Shubik:

TSCs(i: €,0) = (MS;?;:))
seireryiery \IFI = (j5/21)
- Banzhaf: .
TSce(i; E,v) := (%)
Se{T<F|ieT}

- Can use other templates

- Can devise FISs without exploiting existing templates
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Some examples (2 of 2)

- Recall WAXp based characteristic function:

(S) 1 ifE[o(x)|xs =vs] =1
U, =
‘ 0 otherwise
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Some examples (2 of 2)

- Recall WAXp based characteristic function:

(S) 1 ifE[o(x)|xs =vs] =1
U, =
‘ 0 otherwise

+ Some FISs:
- Shapley-Shubik:

Scs(is €) 1= TSCs(is €, va) = M)

|F|-1
Se{T<F|ieT} (|]:| & (|5\_1

- Banzhaf:

Scg(i; &) := TSc(i; €, va) := Z (M)

, 2171-1
Se{T<F|ieT}
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A concrete example

+ AXps: {{1,3,4},{2,3,4}}

- Feature attribution:
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A concrete example

+ AXps: {{1,3,4},{2,3,4}}

- Feature attribution:
- 55:(0.083,0.083,0.417,0.417)
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A concrete example

+ AXps: {{1,3,4},{2,3,4}}

- Feature attribution:
- 55:(0.083,0.083,0.417,0.417)
- B (norm.): €0.125,0.125, 0.375, 0.375)
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A concrete example

+ AXps: {{1,3,4},{2,3,4}}

- Feature attribution:
- SS:¢0.083,0.083,0.417,0.417)
- B (norm.): €0.125,0.125,0.375,0.375)
- J(norm.): €0.111,0.111,0.389, 0.389)
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A concrete example

+ AXps: {{1,3,4},{2,3,4}}

- Feature attribution:
- SS:¢0.083,0.083,0.417,0.417)
- B (norm.): €0.125,0.125,0.375,0.375)
- J(norm.): €0.111,0.111,0.389, 0.389)
- HP:(0.167,0.167,0.333,0.333)
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A concrete example

+ AXps: {{1,3,4},{2,3,4}}

- Feature attribution:
- SS:¢0.083,0.083,0.417,0.417)
- B (norm.): €0.125,0.125,0.375,0.375)
- J(norm.): €0.111,0.111,0.389, 0.389)
- HP:(0.167,0.167,0.333,0.333)
- DP:<0.167,0.167,0.333,0.333)
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Questions?
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Unit #08

Conclusions & Research Directions



Outline - Unit #08

Some Words of Concern



Can heuristic XAl's myths be stopped?

LIME on 2023/05/31:

< C 8 @ scholar.google.com/scholar S L m =
= Go gle Scholar " Why should i trust you?" Explaining the predictions of any classifier SIGN IN
* Articles @ Myoprofle  d My library

Any time " Why should i trust you?" Explaining the predictions of any classifier [PDF] arxiv.org

Since 2023 MT Ribeiro, S Singh, C Guestrin - Proceedings of the 22nd ACM ..., 2016 - dl.acm.org

Since 2022 Despite widespread adoption, machine learning models remain mostly black boxes.

Since 2019 Understanding the reasons behind predictions is, however, quite important in assessing

trust, which is fundamental if one plans to take action based on a prediction, or when
choosing whether to deploy a new model. Such understanding also provides insights into

the model, which can be used to transform an untrustworthy model or prediction into a
trustworthy one. In this work, we propose LIME, a novel explanation technique that explains ...
Sort by date ¥¢ Save 9 Cite Cited by 12683 Related articles All 36 versions

Custom range...

Sort by relevance

Any type Showing the best result for this search. See all results

Review articles

include patents

/ include citations

© J. Marques-Silva 209 / 215



Can heuristic XAl's myths be stopped?

LIME on 2024/07/02:

= Go g|e Scholar " Why should i trust you?" Explaining the predictions of any classifier n

Articles # My profile
Any time " Why should i trust you?" Explaining the predictions of any classifier [PDF] acm.org

Since 2024 MT Ribeiro, S Singh, C Guestrin

Since 2023 Proceedings of the 22nd ACM SIGKDD international conference on knowledge ..., 2016 - dl.acm.org

Since 2020

Despite widespread adoption, machine learning models remain mostly black boxes.
Understanding the reasons behind predictions is, however, quite important in assessing
trust, which is fundamental if one plans to take action based on a prediction, or when
choosing whether to deploy a new model. Such understanding also provides insights into

Custom range...

Sort by relevance

Sort by data the model, which can be used to transform an untrustworthy model or prediction into a
Any type
Review articles SHOW MORE

Y¢ Save DU Cite Cited by 17991 Related articles All 39 versions
include patents

v include citations  Showing the best result for this search. See all results
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Can heuristic XAl's myths be stopped?

SHAP on 2023/05/31:

< C 8 [ @ scholar.google.com/scholar

e L =
= Go gle Scholar A unified approach to interpreting model predictions SIGN IN
4 Articles @ Myprofle Y My library

Any time A unified approach to interpreting model predictions [PDF] neurips.cc

Since 2023 SM Lundberg, Sl Lee - Advances in neural information ..., 2017 - proceedings.neurips.cc

Since 2022 Understanding why a model makes a certain prediction can be as crucial as the prediction’s

Since 2019 accuracy in many applications. However, the highest accuracy for large modern datasets is

often achieved by complex models that even experts struggle to interpret, such as ensemble
or deep learning models, creating a tension between accuracy and interpretability. In
response, various methods have recently been proposed to help users interpret the
predictions of complex models, but it is often unclear how these methods are related and ...
Sort by date ¢ Save D9 Cite Cited by 13080 Related articles All 17 versions 99

Custom range...

Sort by relevance

Any type Showing the best result for this search. See all results
Review articles

include patents

/ include citations
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Can heuristic XAl's myths be stopped?

SHAP on 2024/07/02:

= Go 9|€ Scholar A unified approach to interpreting model predictions n

Articles # My profile
Any time A unified approach to interpreting model predictions [PDF] neurips.cc
Since 2024 SM Lundberg, Sl Lee

Since 2023 Advances in neural information processing systems, 2017 - proceedings.neurips.cc

Since 2020 Abstract

Custom range... Understanding why a model makes a certain prediction can be as crucial as the

prediction's accuracy in many applications. However, the highest accuracy for large
modern datasets is often achieved by complex models that even experts struggle to
Sort by date interpret, such as ensemble or deep learning models, creating a tension between

accuracy and interpretability. In response, various methods have recently been proposed
Any type tey hal int I

Sort by relevance

Review articles
SHOW MORE +~
include patents % save DY Cite Cited by 23321 Related articles  All 22 versions 56
+" include citations
Showing the best result for this search. See all results
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What's the bottom line?
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What's the bottom line?

- (Heuristic) XAl research experiences a persistent “Don’t Look Up” moment...

LEONARDO JENNIFER
DiCAPRIO  LAWRENCE

W WM WWE s oon  em
MORGAN HILL AYLANCE PERRY CHALAMET PERLWAN GRANDE MESCUDI BLACHETT STREEP

BASED ON
TRULY
POSSIBLE
EVENTS

§ DAVID SIROTA
[R]. INSELECT THEATERS DECEMBER AND ON NETFLIX
NETFLIX | DECEMBER 24
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What's the bottom line?

- (Heuristic) XAl research experiences a persistent “Don’t Look Up” moment...

© J. Marques-Silva

LEONARDO JENNIFER
DiCAPRIO  LAWRENCE

e e
Mok HiLL mvLANce PERRY CHRLAMET pesLilan GRANDE WESEUD BLARGHETT STREEP

~~tiﬂ@k

BASED ON
TRULY
POSSIBLE
EVENTS

§ DAVID SIROTA
[R]. INSELECT THEATERS DECEMBER AND ON NETFLIX
NETFLIX | DECEMBER 24

BTW, there are a multitude
of proposed uses of
LIME/SHAP in medicine... A\
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Some unsettling works...

- For DTs:
- One AXp in polynomial-time [1IM20, HIlMZ1, 11M22]
- All CXps in polynomial-time [HIM21, 11M22]
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Some unsettling wo

-+ For DTs:
- One AXp in polynomial-time [11M20, HIIM21, 1IM22]
- All CXps in polynomial-time [HIM21, 11M22]

Declarative Reasoning on Explanations Using
Constraint Logic Programming

Abstract. Explaining opaque Machine Learning (ML) models is an in-
creasingly relevant problem. Current explanation in Al {XAI) methods
suffer several shortcomings, among others an insufficient incorporation
of background knowledge, and a lack of abstraction and interactivity
with the user. We propose REASONX, an explanation method based on
Constraint Logic Programming (CLP). REASONX can provide declara-
tive, interactive explanations for decision trees, which can be the ML
models under analysis or global/local surrogate models of any black-box
model. Users can express background or common sense knowledge using
linear constraints and MILP optimization over features of factual and
contrastive instances, and interact with the answer constraints at differ-
ent levels of abstraction through constraint projection. We present here
the architecture of REASONX, which consists of a Python layer, closer to
the user, and a CLP layer. REASONX's core execution engine is a Prolog
meta-program with declarative semantics in terms of logic theories.

arXiv:2309.00422v1 [cs.Al] 1 Sep 2023
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Some unsettling works...

- For DTs:
- One AXp in polynomial-time [1IM20, HIlMZ1, 11M22]
- All CXps in polynomial-time [HIM21, 11M22]

HHAI 2024: Hybrid Human Al Systems for the Social Good

F. Lorig et al. (Eds.)

© 2024 The Authors.

This article is published online with Open Access by 10S Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA240183

Exploring Large Language Models
Capabilities to Explain Decision Trees
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Some unsettling works...

-+ For DTs:
- One AXp in polynomial-time
- All CXps in polynomial-time

Explainable Artificial Intelligence for Academic Performance
Prediction. An Experimental Study on the Impact of Accuracy and
Simplicity of Decision Trees on Causability and Fairness

, o Perceptions
FAceT ‘24, June 0306, 2024, Rio de Janciro, Brazil
© 2024 Copyright held by the owner/author(s)

ACM ISBN 979-8-4007-0450-5/24/06
https://doi.org/10.1145/3630106.3658953
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Some unsettling works

- For DTs:

- One AXp in polynomial-time
- All CXps in polynomial-time

Basic exam |

passed

No

IM21, 11M22]

[HIIM21, 11M22]

Basic exam Il

passed

Age of

> Dropout enrollment < =

27.5years

Younger than 27.5 y. | Older than 27.5y.

> No Dropout > Dropout

<=15

Grade Module
A

Lower than Better than 1.5

Number of

attempts
basic exam Il

No attempt 1 or more attempts

Age of
enrollment < =
19.5 years

> No Dropout
Older than 19.5y.

Grade Module
A
<=25

Lower than 2.5 | Better than 2.5

-> Dropout

> No Dropout

Grade Module
- Dropout A
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Some unsettling works

- For DTs:

- One AXp in polynomial-time
- All CXps in polynomial-time

Basic exam |

passed

No

IM21, 11M22]

[HIIM21, 11M22]

Basic exam Il

passed

Age of

> Dropout enrollment < =

27.5years

Younger than 27.5 y. | Older than 27.5y.

> No Dropout > Dropout

<=15

Grade Module
A

Lower than Better than 1.5

Number of

attempts
basic exam Il

No attempt 1 or more attempts

Age of
enrollment < =
19.5 years

> No Dropout
Older than 19.5y.

Grade Module
A
<=25

Lower than 2.5 | Better than 2.5

-> Dropout

> No Dropout

Grade Module
- Dropout A

Plenty of redundancy
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Better than 2.85 | Lower than 2.85

> No Dropout > Dropout
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Outline - Unit #08

Conclusions & Research Directions



Conclusions

- Covered logic-based (aka symbolic, aka formal) XAl & its recent progress:
- Abductive & contrastive explanations
- Reviewed their computation in practice
- Duality & enumeration

- Other explainability queries - feature necessity & relevancy
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Conclusions

- Covered logic-based (aka symbolic, aka formal) XAl & its recent progress:
- Abductive & contrastive explanations
- Reviewed their computation in practice
- Duality & enumeration

- Other explainability queries - feature necessity & relevancy
- Showed that formal XAl disproves some myths of (heuristic) XAl:
Explainability using intrinsic interpretability is a myth
The rigor of model-agnostic explanations is a myth

The rigor of SHAP scores as a measure of relative feature importance is a myth
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- Showed that formal XAl disproves some myths of (heuristic) XAl:
Explainability using intrinsic interpretability is a myth
The rigor of model-agnostic explanations is a myth

The rigor of SHAP scores as a measure of relative feature importance is a myth

- Demonstrated tight connection between (rigorous) feature selection and (rigorous)
feature attribution in XAl
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Conclusions

- Covered logic-based (aka symbolic, aka formal) XAl & its recent progress:
- Abductive & contrastive explanations
- Reviewed their computation in practice
- Duality & enumeration
- Other explainability queries - feature necessity & relevancy

- Showed that formal XAl disproves some myths of (heuristic) XAl:
Explainability using intrinsic interpretability is a myth
The rigor of model-agnostic explanations is a myth

The rigor of SHAP scores as a measure of relative feature importance is a myth

- Demonstrated tight connection between (rigorous) feature selection and (rigorous)
feature attribution in XAl

- Symbolic XAl exhibits links with many fields of research:
machine learning, artificial intelligence, formal methods, automated reasoning,
optimization, computational social choice (& game theory), etc.
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Research directions
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Research directions

- Scalabilitty, scalability, and scalability
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Research directions

- Scalabilitty, scalability, and scalability
- Probabilitistic explanations

- Distance-restricted explanations

- Rigorous feature attribution

- Preferred explanations

- Certified XAl tools

- New topics from discussions with participants of ESSAI'24 -  Thank you!
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Research directions

- Scalabilitty, scalability, and scalability

- Probabilitistic explanations

- Distance-restricted explanations

- Rigorous feature attribution

- Preferred explanations

- Certified XAl tools

- New topics from discussions with participants of ESSAI'24 -  Thank you!

.. And trying to curb the massive momentum of (heuristic) XAl myths!
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What this course covered

-+ Lecture 01 - units:
- #01: Foundations

- Lecture 02 - units:

- #02: Principles of symbolic XAl - feature selection
- #03: Tractability in symbolic XAl (& myth of interpretability)

- Lecture 03 — units:

- #04: Intractability in symbolic XAl (& myth of model-agnostic XAl)
- #05: Explainability queries

- Lecture 04 - units:
- #06: Advanced topics

-+ Lecture 05 - units:

- #07: Principles of symbolic XAl - feature attribution (& myth of Shapley values in XAl)
- #08: Conclusions & research directions
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Q&A

Acknowledgment: joint work with X. Huang, Y. Izza, O. Létoffé, A. Ignatiev, N. Narodytska, M.
Cooper, N. Asher, A. Morgado, J. Planes, et al.
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Marques-Silva

BLACK BOX MODELS

My ML MODEL..

IS LKE A
(BLACK) BOX OF
CHOCOLATES.

I NEVER KNOW WHAT

"M GONNa GET.

BUT WHY?

01686 & hiip Yemxioedt!
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