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Imitation Learning

Problem (ambiguous) statement

Given a set of demonstrated trajectories D generated by an
unknown expert policy πϵ, learn a policy π that generates
trajectories that are “as close as possible” to the expert
trajectories.
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Imitation learning in constrained settings

Up right: From W.Chow et al 2019 (not imitation learning paper but a
constrained RL one!)

See also G.Liu et al.,2023, “Benchmarking Constraint inference in Inverse

Reinforcement Learning”
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Imitation Learning

Constrained Markov Decision Processes (CMDP)

▸ S: State space

▸ A: Action space

▸ p(st+1∣st , at): Transition distributions

▸ r(st , at): Reward function

▸ f ∶ S ×A→ Rk
+: k-dimensional features accumulated at every

time step t in a trajectory, i.e. f (at , st).
▸ γ ∈ [0,1) the discount factor

An augmented indicator feature indicating the presence of a
feature, also adding binary features (e.g. for states and actions)
f̂ I ∶ S ×A→ {0,1}d ,d = k + ∣S ∣ + ∣A∣
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Imitation Learning

Constrained Markov Decision Processes (CMDP)
The augmented indicator feature indicates the presence of a
feature, adding binary features (e.g. for states and actions)

f̂ I ∶ S ×A→ {0,1}d ,d = k + ∣S ∣ + ∣A∣

f̂ Ifi (s, a) =
⎧⎪⎪⎨⎪⎪⎩

1 if fi(s, a) > 0
0 otherwise

, f̂ Ifi (s, a) =
⎧⎪⎪⎨⎪⎪⎩

1 if s = si i
0 otherwise

, f̂ Ifi (s, a) =
⎧⎪⎪⎨⎪⎪⎩

1 if a = ai
0 otherwise

with sets of constraints given by

Ci = {(s, a)∣f̂ Ii = 1}

Compound constraints: C = ∪iCi
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Imitation learning in constrained settings

Nominal MDP Constrained MDP

Images from Scobee & Sastry 2020.
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Imitation Learning

Inverse Constrained Reinforcement Learning

The IRL Goal:
Recover the constraints Ĉ which are most likely to have been
added to the nominal MDP given a set of demonstrations DE from
the agent navigating the constrained MDP.
Thus, we need to find the constraints Ĉ that maximize P(Ĉ ∣DE).
Assuming a uniform prior over possible constraints, from Bayes’
Rule it holds that

P(Ĉ ∣DE)∝ P(DE ∣Ĉ)

Therefore, we can solve an equivalent problem of finding which
constraints maximize the likelihood of the given demonstrations.
So, let’s do that: solving the maximum likelihood constraint
inference problem via solving demonstration likelihood
maximization.
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Imitation learning in constrained settings

Constrained Markov Decision Processes (CMDP)

▸ S: State space

▸ A: Action space

▸ p(st+1∣st , at): Transition distributions

▸ r(st , at): Reward function

▸ C = {(Ci , ci , ϵi), i = 1 . . .N}, where Ci the (soft) constraint
with associated cost function ci ∈ [0,∞] and ϵi the associated
cost bound.

▸ γ ∈ [0,1) the discount factor
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Imitation learning in constrained settings

Constrained Markov Decision Processes (CMDP)

It is easy to specify hard constraints with a cost function

ci(s, a) = f̂ I, and ϵi = 0, i = 1 . . .N
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Imitation Learning

Constrained Markov Decision Processes (CMDP)

The RL Goal:
Find a policy πθ that maximizes the expected discounted rewards
under the set of cumulative soft constraints, with cost functions
ci ∶ S ×A→ [0,∞].

argmaxπθEp,πθ[
T

∑
t=0

γtrt] + λH(π)

s.t.

Ep,πθ[
T

∑
t=0

γtci(st , at)] ≤ ϵi ,∀i ∈ [1,N]

Also for T →∞, with bounds on the expectation of cumulative
constraint values.
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Imitation Learning

Constrained Markov Decision Processes (CMDP)

The RL Goal:
Find a policy πθ that maximizes the expected discounted rewards
under the set of cumulative soft constraints, with cost functions
ci ∶ T → [0,∞].

argmaxπθEp,πθ[
T

∑
t=0

γtrt] + λH(π)

s.t.
Eτ∼(p,πθ)[ci(τ)] ≤ ϵi ,∀i ∈ [1,N]
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Imitation Learning

Constrained Markov Decision Processes (CMDP)

Notice that,
considering costs on trajectories may be more restrictive than the
cumulative costs.
Consider that c(τ) = 1 −∏(s,a)∈τ ϕ(s, a), where ϕ(s, a) is the
probability that performing a in s is safe (as demonstrated),
and for a (s, a) with ϕ(s, a)→ 0, then ∏(s,a)∈τ ϕ(s, a)→ 0 and
c(τ)→ 1
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Imitation Learning

Inverse Constrained Reinforcement Learning

Back to the IRL goal: Recover the minimum constraint set that
best explains the expert data,
assuming that rewards are observable.

Therefore:

Assuming rψ = r and given the probability ϕ of acting safely
given approximations ĉ of cost functions over trajectories τ ,
according to demonstrations DE .
Assuming independence of demonstrations sampled from the
MaxEnt distribution, the likelihood function is

p(DE ∣ϕ) =∏∣DE ∣
i=1 p(τi ∣ϕ, r) =∏∣DE ∣

i=1
exp(r(τi)Iϕ(τ)

Zϕ
=

1

Z
∣DE ∣

ϕ

∏∣DE ∣
i=1 exp[r(τ i)]Iϕ(τ i), where

(a) Zϕ = ∫ Iϕ(τ)exp(r(τ))dτ, and
(b) Iϕ(τ i) =∏T

t=1 ϕt(s it , ait)
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Imitation Learning

Constrained Markov Decision Processes (CMDP)

The IRL goal: Recover the minimum constraint set that best
explains the expert data, assuming that rewards are observable.

Therefore we need to maximize the demonstration probability:

p(DE ∣ϕ) =
1

Z
∣DE ∣
ϕ

∣DE ∣
∏
i=1

exp[r(τ i)]Iϕ(τ i)

recovering the set of constraints C∗ = argmaxCϕ∈Cp(DE ∣ϕ)
Scobee & Sastry 2020, “Maximum Likelihood Constraint Inference for Inverse

Reinforcement Learning”
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Imitation Learning

Constrained Markov Decision Processes (CMDP)

Goal: Maximize the demonstration probability:

p(DE ∣ϕ) =
1

Z
∣DE ∣
ϕ

∣DE ∣
∏
i=1

exp[r(τ i)]Iϕ(τ i)

Let
Tϕ = {τ ∈ T ∣Iϕ(τ) = 0}

be the set of trajectories that are made infeasible by adding the
set of constraints in the MDP.

Scobee & Sastry 2020, “Maximum Likelihood Constraint Inference for Inverse

Reinforcement Learning”
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Imitation Learning

Constrained Markov Decision Processes (CMDP)

The value of

Zϕ = ∫ Iϕ(τ)exp(r(τ))dτ, with Iϕ(τ i) =
T

∏
t=1

ϕt(s it , ait)

is minimized when the sum of exponential rewards of infeasible
trajectories is maximized. I.e., when their propability is maximized
in the unconstrained MDP

∑
τ∈T ϕ

exp(r(τ))∝ ∑
τ∈T ϕ

p(τ ∣O1∶T ) = p(T ϕ∣O1∶T )

Scobee & Sastry 2020, “Maximum Likelihood Constraint Inference for Inverse

Reinforcement Learning”
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Imitation Learning

Constrained Markov Decision Processes (CMDP)

Goal: Maximize the demonstration probability:

p(DE ∣ϕ) =
1

Z
∣DE ∣
ϕ

∣DE ∣
∏
i=1

exp[r(τ i)]Iϕ(τ i)

by optimizing

C∗ = argmaxC∈Cp(Tϕ∣O1∶T )

s.t. DE ∩ Tϕ = ∅
Scobee & Sastry 2020, “Maximum Likelihood Constraint Inference for Inverse

Reinforcement Learning”
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Imitation Learning

Constrained Markov Decision Processes (CMDP)

Goal: Maximize the demonstration probability.
This entails

▸ Reason about the probability distribution of trajectories on the
unconstrained MDP

▸ Find the constraints C such that Tϕ contains the most
probability mass, while it does not contain any demonstrated
trajectories.

Scobee & Sastry 2020, “Maximum Likelihood Constraint Inference for Inverse

Reinforcement Learning”
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Imitation Learning

Constrained Markov Decision Processes (CMDP)

Goal: Maximize the demonstration probability.
Example:

Scobee & Sastry 2020, “Maximum Likelihood Constraint Inference for Inverse

Reinforcement Learning”
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Imitation Learning

Constrained Markov Decision Processes (CMDP)

Goal: Recover the minimum constraint set that best explains the
expert data, by maximizing the demonstration probability
assuming that rewards are observable.

To infer the minimal constraints we need to penalize “heavy” ones.

However, combinations of potential minimal constraints makes the
solution of this problem intractable.

Scobee & Sastry 2020, “Maximum Likelihood Constraint Inference for Inverse

Reinforcement Learning”
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Imitation Learning

Constrained Markov Decision Processes (CMDP)

Goal: Recover the minimum constraint set that best explains the
expert data, assuming that rewards are observable by maximizing
the demonstration probability.

What about iteratively selecting individual (minimal) constraints

in a greedy manner?

Scobee & Sastry 2020, “Maximum Likelihood Constraint Inference for Inverse

Reinforcement Learning”
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Imitation Learning

Constrained Markov Decision Processes (CMDP)

Goal: Recover the minimum constraint set that best explains the
expert data, assuming that rewards are observable by maximizing
the demonstration probability.

The “Feature Accrual History Calculation” algorithm

takes as input the whole MDP, a time horizon and a time varying
policy that captures the expected behaviour of the demonstrator in
the nominal MDP.

The “Feature Accrual History Calculation” algorithm is based on
the Ziebart et al 2008 foward-backward algorithm for calculating
expected feature counts by following a policy in the MaxEnt
setting.
Details in:

Scobee & Sastry 2020, “Maximum Likelihood Constraint Inference for Inverse

Reinforcement Learning”
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Imitation Learning

Constrained Markov Decision Processes (CMDP)

Goal: Recover the minimum constraint set that best explains the
expert data, assuming that rewards are observable by maximizing
the demonstration probability.

The “Feature Accrual History Calculation” algorithm

calculates the expected proportion of trajectories to have accrued
any feature (corresponding to a minimal constraint) by time t:
This is equal to p(Tϕ∣O1∶T ) and thus it allow as to directly select
the most likely constraint according to the objective (slide 18).

Details in:

Scobee & Sastry 2020, “Maximum Likelihood Constraint Inference for Inverse

Reinforcement Learning”
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Imitation Learning

Constrained Markov Decision Processes (CMDP)

Goal: Recover the minimum constraint set that best explains the
expert data, assuming that rewards are observable by maximizing
the demonstration probability.

Remaining problem:

How to uncover the combination of constraints that covers the
most probability mass.
Greedy approach: Incorporating in each iteration the constraint
that covers the most currently uncovered probability mass.

Details in: Scobee & Sastry 2020, “Maximum Likelihood Constraint Inference

for Inverse Reinforcement Learning”
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Imitation Learning

Constrained Markov Decision Processes (CMDP)

Goal: Recover the minimum constraint set that best explains the
expert data, assuming that rewards are observable by maximizing
the demonstration probability.

Greedy Iterative Constraint Inference

Let ϕ̂ be the current estimated constraint set

incorporated into the MDP (M ϕ̂), the constraint hypothesis space
C and the demonstrations DE .

1. ϕ̂← ∅
2. Select the additional minimal constraint ϕi to fulfill the

objective for the M ϕ̂

3. Infer the effect of ϕ̂′ = ϕ̂ ∪ ϕi to approximating the PDE

4. if the approximation is close enough, return ϕ̂′

5. Else go to 2

Details in: Scobee & Sastry 2020, “Maximum Likelihood Constraint Inference

for Inverse Reinforcement Learning”
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Imitation Learning

Constrained Markov Decision Processes (CMDP)

Goal: Recover the minimum constraint set that best explains the
expert data, assuming that rewards are observable by maximizing
the demonstration probability.

Greedy Iterative Constraint Inference

- In each iteration the algorithm selects the constraint set in the
hypothesis space that covers the most currently uncovered
probability mass (slide 18)

- The stopping criterion depends on the DKL between the
emprirical distribution over trajectories in DE and the distribution
over trajectories induced by ϕ̂ .

Details in: Scobee & Sastry 2020, “Maximum Likelihood Constraint Inference

for Inverse Reinforcement Learning”
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Imitation Learning

Constrained Markov Decision Processes (CMDP)

The RL Goal: Given an CMDP, find a policy πθ that maximizes
the expected discounted rewards under the set of cumulative soft
constraints, with cost functions ci ∈ [0,∞].
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Imitation Learning

Constrained Markov Decision Processes (CMDP)

The ICRL Goal: Given an MDP and set of demonstrations that
follow a set of constraints, recover the CMDP with the minimum
constraint set that best explains the expert data,
assuming that rewards are observable.
i.e.

C∗ ← argmaxCϕp(D∣ϕ)

, where p denote the probabilities considering the MDP and
assuming a uniform prior to constraint sets.

Image from G.Liu et al.,2023, “Benchmarking Constraint inference in Inverse

Reinforcement Learning”
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Imitation Learning

Inverse Constrained Reinforcement Learning1

p(DE ∣ϕ) =
1

Z
∣DE ∣
ϕ

∣DE ∣
∏
i=1

exp[r(τ i)]Iϕ(τ i)

with (a) Zϕ = ∫ Iϕ(τ)exp(r(τ))dτ, and (b) Iϕ(τ i) =
T

∏
t=1

ϕt(s it , ait)

Therefore, assuming a binary classifier ϕω, i.e. with parameters ω,
the objective is as follows:

Lω =

maxω
1

∣DE ∣

∣DE ∣
∑
i−1
[r(τ i)+log

T

∏
t=0

ϕω(s i , ai)]−log ∫ exp[r(τ)]
T

∏
t=0

ϕω(st , at)dτ

1S.Malik et al, Inverse Constrained Reinforcement Learning, PMLR, 2021
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Imitation Learning

Inverse Constrained Reinforcement Learning2

Therefore,
∇ωLω =

1

∣DE ∣

∣DE ∣
∑
i−1
[
T

∑
t=0
∇ω logϕω(s i , ai)] −Eτ∼πϕ[

T

∑
t=0
∇ω logϕω(st , at)] =

Eτ i∼πE [
T

∑
t=0
∇ω logϕω(s i , ai)] −Eτ∼πϕ[

T

∑
t=0
∇ω logϕω(st , at)]

where, the maximum entropy policy, i.e. the one maximizing the
rewards subject to satisfying the constraints, i.e. ∑t ĉ(st , at) < ϵ,
where ĉ(st , at) = 1 − ϕω(st , at) is as follows:

πϕ(τ) =
exp(r(τ))ϕω(τ)

∫ exp(r(τ̄))ϕω(τ̄)d τ̄
2S.Malik et al, Inverse Constrained Reinforcement Learning, PMLR, 2021
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Imitation Learning

Inverse Constrained Reinforcement Learning3

Aiming to the least constraining constraints and avoid overfit to a
small number of samples, (Malik et al 2021) incorporate a
regularizer

∇ωLω = Eτ i∼πE [
T

∑
t=0
∇ω logϕω(s i , ai)]−Eτ∼πϕ[

T

∑
t=0
∇ω logϕω(st , at)]−R(ω)

where

R(ω) = −δ ∑
τ∼{DE ,πϕ}

∣1 − ϕω(τ)∣

where δ ∈ [0,1) a constant.

3S.Malik et al, Inverse Constrained Reinforcement Learning, PMLR, 2021
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Imitation Learning

Inverse Constrained Reinforcement Learning4

∇ωLϕ = Eτ i∼πE [
T

∑
t=0
∇ω logϕω(s i , ai)]−Eτ∼πϕ[

T

∑
t=0
∇ω logϕω(st , at)]−R(ω)

where

R(ω) = −δ ∑
τ∼{DE ,πϕ}

∣1 − ϕω(τ)∣

and δ ∈ [0,1) a constant.
ICRL implements ϕω as a binary classifier.

4S.Malik et al, Inverse Constrained Reinforcement Learning, PMLR, 2021
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Imitation Learning

Inverse Constrained Reinforcement Learning5

The ICRL algorithm (Malik et al 2021) makes two more “tricks”

▸ incorporating importance sampling weights

wt = w(st , at) = ϕ′ω(st ,at)
ϕω(st ,at) .

So the objective becomes

∇ωLϕ = Eτ i∼πE [
T

∑
t=0
∇ω logϕω(s i , ai)]−

Eτ∼πϕ[
T

∑
t=0

wt∇ω logϕω(st , at)] − R(ω)

▸ early stopping based on KL divergence i.e. DKL(π′ω ∣∣πω) and
DKL(πω ∣∣π′ω) bounds among policy updates in terms of
importance sampling weights

5S.Malik et al, Inverse Constrained Reinforcement Learning, PMLR, 2021
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Imitation Learning

Multi-agent imitation learning

35 / 51



Imitation Learning

Generative Adversarial Imitation Learning

Ho and Ermon, 2016.
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Imitation Learning

Multi-agent Generative Adversarial Imitation Learning

Gθ is implemented using MACK (Multi-agent Actor Critic with
Kronecker-factors) following the CTDE (Centralized Training Decentralized
Execution) paradigm, with an advantage function of all agents’ observations
and actions (no assumption of the knowledge of others’ policies).

Song et al., Multi-agent Generative Adversarial Imitation Learning, 2018.
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Imitation Learning
Cooperative Centralized Multi-agent Generative Adversarial
Imitation Learning

Learns the joint policy minimizing the distance between the
generated state-action distribution and the experts’ distribution
using the J-S divergence !

Song et al., Multi-agent Generative Adversarial Imitation Learning, 2018.
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Imitation Learning
Decentralized Multi-agent Generative Adversarial Imitation
Learning

Decentralized setting:

Discriminators interact indirectly via the environment !!

Song et al., Multi-agent Generative Adversarial Imitation Learning, 2018. 39 / 51



Imitation Learning
Interesting case: Competitive Multi-agent Generative
Adversarial Imitation Learning

In a zero-sum setting:

For agent 1: The discriminator tries to maximize
v(πE1 , π2) = EπE1 ,π2(r1(s, a)) and minimize v(π2, πE1)
Song et al., Multi-agent Generative Adversarial Imitation Learning, 2018.
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Imitation Learning

Collaborative GAIL for Human-Agent Collaboration

C.Wang et al., “Co-GAIL: Learning Diverse Strategies for Human-Robot

Collaboration”, 2023
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Imitation Learning

Collaborative GAIL for Human-Agent Collaboration

Goal: Learn policies that generate diverse human and robot
collaboration behaviors from human-human demonstrations with
an interactive co-optimization process.
How: Both polices (human and agent) co-evolve & different styles
of play are represented using a latent representation.

C.Wang et al., “Co-GAIL: Learning Diverse Strategies for Human-Robot

Collaboration”, 2023
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Imitation Learning

Collaborative GAIL for Human-Agent Collaboration

The Reward is a function of both agents’ actions.
The learned co-policy maximizes the shared expected return and it is
conditioned on the human styles of play (strategies) to complete the task.

C.Wang et al., “Co-GAIL: Learning Diverse Strategies for Human-Robot

Collaboration”, 2023
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Imitation Learning

Coordinated Multi-Agent Imitation Learning

Goal: Learning a model of coordination from demonstrations.
Approach: Learn a latent coordination model (unsupervised
learning) along with individual policies (conventional imitation
learning)

H.M.Le et al., “Coordinated Multi-Agent Imitation Learning”, 2018
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Imitation Learning

Coordinated Multi-Agent Imitation Learning

K experts (without identity) and unstructured set of synchronized
demonstrations Uk = {ut,kTt=1}, k = 1 . . .K in associated
synchronized context C = {ct}Tt=1.
Goal: Learn the joint policy that minimizes the imitation loss in
terms of generated states’ distribution.

H.M.Le et al., “Coordinated Multi-Agent Imitation Learning”, 2018
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Imitation Learning

Coordinated Multi-Agent Imitation Learning

Decentralized setting Goal: Learn the joint policy {π1 . . . πK},
where each constituent policy is tailored to a specific role, that
minimizes the imitation loss in terms of generated states’
distribution.

L =
K

∑
k=1

Es∼dπk [πk(sk)]

Roles are undefined, unobserved, and could change dynamically
within the same sequence.

H.M.Le et al., “Coordinated Multi-Agent Imitation Learning”, 2018
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Imitation Learning

Coordinated Multi-Agent Imitation Learning

Coordinated policy learning involves:

▸ Role assignment: Learn a latent variable model q for mapping
the unstructured set U to a rearrangement A(U,q).

A ∶ {U1,U2, . . . ,UK} × q → [A1,A2, . . . ,AK ]

▸ Learn the joint policy with the objective of maximizing the
mutual information between the latent structure and
demonstrations D:

L = min(πi ,i=1..,K),A
K

∑
k=1

Esk∼dπk [πk(sk)∣A,D] − λH(A∣D)

H.M.Le et al., “Coordinated Multi-Agent Imitation Learning”, 2018

47 / 51



Imitation Learning

Coordinated Multi-Agent Imitation Learning
Coordinated policy learning involves:
▸ Role assignment: A:{U1,U2, . . . ,UK} × q → [A1,A2, . . . ,AK ]
▸ Learn the joint policy:
L = min(πi ,i=1..,K),A∑

K
k=1 Esk∼dπk

[πk(sk)∣A,D] − λH(A∣D)

H.M.Le et al., “Coordinated Multi-Agent Imitation Learning”, 2018
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Imitation Learning

Coordinated Multi-Agent Imitation Learning
Coordinated policy learning involves:
▸ Role assignment: A:{U1,U2, . . . ,UK} × q → [A1,A2, . . . ,AK ]
▸ Learn the joint policy:
L = min(πi ,i=1..,K),A∑

K
k=1 Esk∼dπk

[πk(sk)∣A,D] − λH(A∣D)

The Algorithm:
Given a set of unstructured demonstrated trajectories U, and an initialized joint
policy

1. Role assignment: This results into an ordered set of trajectories Ai

corresponding to policy πi , i = 1, ..,K .

2. Update the joint policy: Each policy πk is updated using the ordered set
of trajectories.

3. Roll-out the joint policy to get a new set of unstructured trajectories.

4. Use the new set to update the parameters of the latent variables model.

5. Go to 1.

H.M.Le et al., “Coordinated Multi-Agent Imitation Learning”, 2018
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Imitation Learning

Coordinated Multi-Agent Imitation Learning

Update the joint policy: Each policy πk is updated using the
ordered set of trajectories, following a reduction-based approach
(e.g. DAgger)
For increasing prediction horizons until reaching T:

1. Iteratively perform roll-out at each time step i for all K
policies to obtain actions {âi ,k}.

2. Each policy simultaneously updates its state {ŝi ,k} using the
prediction from all other policies.

3. At the end of the current segment, all policies are updated
using the error signal from the deviation between predicted
{âi ,k} versus expert action {a∗i ,k} for all i along the
sub-segment.

H.M.Le et al., “Coordinated Multi-Agent Imitation Learning”, 2018
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Imitation Learning

Cooperative Inverse Reinforcement Learning

Hadfield-Menell et al., “Cooperative Inverse Reinforcement Learning”, 2016.
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