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Day 1: Motivation & Introduction to Deep Reinforcement
Learning

Day 2: Inverse Reinforcement Learning and Connections to
Probabilistic Inference

Day 3: Imitation Learning
Day 4: Non-Markovian, Multimodal Imitation Learning

Day 5: Imitating in Constrained Settings, Multiagent
Imitation Learning.
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Imitation Learning

Problem (ambiguous) statement

Given a set of demonstrated trajectories D generated by an
unknown expert policy 7, learn a policy 7 that generates
trajectories that are “as close as possible” to the expert

trajectories.
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Imitation learning

What can go wrong?
> Lack of training data
> Noisy or erroneous training data
> Distribution mismatch
» Compounding errors

» Discrimination ability (different actions in very similar
settings)
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Imitation Learning

What else can go wrong?

> Partial observability imposing non-Markovian behaviour

» Collapsing multi-modal behaviour in executing tasks in a
single policy

5/55



Imitation Learning

non-Markovian Behaviour

7o (at|or)

VS
mo(atlo1, 02, ..., 0¢)

Usually behaviour depends on history of observations:
mg: H—>P(A)

where H=T]}_; O, t =2,3....
History provides (temporal) context.
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Imitation Learning

non-Markovian Behaviour: Basic

W9(3t|011 02, ..., ot)
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Imitation Learning

non-Markovian Behaviour: with Sequential models

shared weights

-

Sequence
model
(e.g. RNN,
[Transformers)

# >Action

8/55



Imitation Learning

non-Markovian Behaviour: with Sequential models

Using H may exacerbate correlations occurring in demonstrations:
Instantiations of an action correlate to future actions.

Scenario A: Full Information

policy attends to brake indicator

See also de Haan et al., “Causal Confusion in Imitation Learning”
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Imitation Learning

non-Markovian Behaviour: with Sequential models

Causal misidentification: access to more information leads to worse
generalization performance in the presence of distributional shift.

Scenario A: Full Information Scenario B: Incomplete Information

policy attends to brake indicator policy attends to pedestrian

See also de Haan et al., “Causal Confusion in Imitation Learning”
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Imitation Learning

non-Markovian Behaviour: with Sequential models

Using H may exacerbate correlations occurring in demonstrations:
Instantiations of an action correlate to future actions.

Figure 2: Causal dynamics of imitation. Par-
ents of a node represent its causes.

See also de Haan et al., “Causal Confusion in Imitation Learning”
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Imitation Learning

non-Markovian Behaviour: with Sequential models

Causal misidentification: access to more information leads to worse
generalization performance in the presence of distributional shift.
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Figure 4: Diagnosing causal misidentification: net reward (y-axis) vs number of training samples (x-axis) for
ORIGINAL and CONFOUNDED, compared to expert reward (mean and stdev over 5 runs). Also see Appendix E.

See also de Haan et al., “Causal Confusion in Imitation Learning”
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Imitation Learning

non-Markovian Behaviour: with Sequential models

Using H may exacerbate correlations occurring in demonstrations:
Causal misidentification is the phenomenon whereby cloned
policies fail by misidentifying the causes of expert actions

Figure 2: Causal dynamics of imitation. Par-
ents of a node represent its causes.

Solutions proposed:

> Learn policies corresponding to various causal graphs

> Perform targeted interventions to efficiently search over the
hypothesis set for the correct causal model.

* Intervention with expert advise (DAgger style)
» Use environmental returns (if you can) and compute the

likelihood of graphs by means of exp(R), rolling-out the
policies 13/55



Imitation Learning

non-Markovian Behaviour: with VAE
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See also Bastas and Vouros “Data-driven prediction of Air Traffic Controllers

reactions to resolving conflicts”
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Imitation Learning

non-Markovian Behaviour: with VAE in a supervised setting
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See also Bastas and Vouros “Data-driven prediction of Air Traffic Controllers

reactions to resolving conflicts”
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Imitation Learning

non-Markovian Behaviour: with VAE for state reconstruction

(although originally proposed in a MARL setting)
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only during training

Work done by A.Kontogiannis et al.
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Imitation Learning

Multimodal Behaviour

17 /55



Imitation Learning

Multimodal Behaviour

A
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Imitation Learning

Multimodal Behaviour
The same expert may take different actions in the same situation.

. o
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Imitation Learning

Multimodal Behaviour: Mode collapse
Most imitation learning algorithms suffer from mode collapse: |.e.
their inability to distinguish between modalities and learn the

average.
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Imitation Learning

Multimodal Behaviour: Mode collapse

Given the analogy, take Dk, as an example: Given that P is the
state action distribution from the demonstrations, and @ is the
state action distribution learnt.

Should you compare @ against P or P against Q7

Minimising Q’Exclusive
KL©I|P)

R Inclusive
Minimising .
KL|0) Q p
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Imitation Learning

Multimodal Behaviour: Mode collapse
GAIL suffers from the mode collapse problem.

M
1

Vol ~ e E Vo log ma(75) log Dy (75) ‘ ¥« argmaxy Ey.pe [logDy ()] + Etery [log(1 - Dy(7)]
=Tt

Gg :; Tig(T) a T Dy py(real sample Ix)
Here the
. discriminator is a
Demonstrations standard NN binary
from p*(t) classifier
Inclusive

Minimising '
Tipr = argmax|Ly, (7) — CDRE™ (i, 7)) KL(P||() Q P
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Imitation Learning

Multimodal Behaviour for discrete actions
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Imitation Learning

Multimodal Behaviour for continuous actions

Averaging different modalities !
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?

» More expressive continuous distributions
> Discretization with high-dimentional action spaces

» Compute the likelihood of each different option (and break
ties randomly)
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?
» More expressive continuous distributions

> Mixture of Gaussians
> Latent variable models
> Diffusion models
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?

» More expressive continuous distributions
> Mixture of Gaussians

woow
(11.,01)4u2.02) / (K0

a amax

m(alo) = Z wiN (pi, o)

> Latent variable models
> Diffusion models

27 /55



Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?

» More expressive continuous distributions
> Mixture of Gaussians

woow
(11.,01)4u2.02) / (K0

at @max

m(alo) = 3 wilN (i, o)

You must choose k: number of modes (how many?)
> Latent variable models
» Diffusion models
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?
» More expressive continuous distributions

» Mixture of Gaussians

> Latent variable models
Using latent variables models you can represent any
distribution (conditional to the size of the NN).

ﬂ/am,\

£~N(O,D) £~ N(O1) & NN

The particular way to correlate these variables to actual
inputs/outputs is by means of variational autoencoders (VAEs).
» Diffusion models
29 /55



Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?

» More expressive continuous distributions

> Mixture of Gaussians
> Latent variable models: The InfoGAIL case

? @ 8 ¢

Li et al 2017, “InfoGAIL: Interpretable Imitation Learning from Visual Demonstrations”
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?
» More expressive continuous distributions

> Mixture of Gaussians
> Latent variable models: The InfoGAIL case

? @ o @
InfoGAIL assumes a mixture of expert policies wg = {W%,W,l:-, .

and specifies a generative process of expert trajectories 7 based
on GAIL, as:

S0 ~ pPo,C~ P(C)ﬂT ~ P(7T|C)a ag ~ 7T(3t|5ta C)75t+1 ~ (5t+1|at75t)

where the policies 7(a|s, ¢) are also conditioned to the discrete
latent variable c.

Li et al 2017, “InfoGAIL: Interpretable Imitation Learning from Visual Demonstrations”
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?

> More expressive continuous distributions

> Mixture of Gaussians
> Latent variable models: The InfoGAIL case

? € ¢ ¢

InfoGAIL seeks to maximize the mutual information between
latent codes and trajectories, denoted /(c; 7), introducing the
variational lower bound

LI(7T7 q) = IEc~p(c),a~7r(~|s,c)[/qu(c|7—)] + H(C) < I(C; T)
where q(c|T) ~ q(c|s,a) is an approximation of the true posterior
P(c|T).

Li et al 2017, “InfoGAIL: Interpretable Imitation Learning from Visual Demonstrations”
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?

» More expressive continuous distributions

> Mixture of Gaussians
> Latent variable models: The InfoGAIL case

? @ o ¢
InfoGAIL objective:

Ll(ﬂ-7 q) = IEc~p(c),a~7r(~|s,c)[/qu(c|7—)] + H(C) < I(C; T)
ming, gqmaxpEr,[log(D(s,a))]|+Ex.[log(1-D(s,a))]- M H (mg)-A1Li(79, q)

Li et al 2017, “InfoGAIL: Interpretable Imitation Learning from Visual Demonstrations”
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?
> More expressive continuous distributions
» Mixture of Gaussians
> Latent variable models: The Triple-GAIL case

z ~Right B _
£4 Keeping 24 E!
i —Left g2 2
=0 = 3’ 89
£2 g2 g2
54 S k-
50 75 100 135 150 175 200 225 S0 75 100 125 150 175 200 225 =5 7 00 125 150
Longitudinal Dis. (m) Longitudinal Dis. (m) Longitudinal Dis. (m)
BC GAIL Triple-GAIL

Fei et al, 2020, “Triple-GAIL: A Multi-Modal Imitation Learning framework with Generative Adversarial Nets”
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?

» More expressive continuous distributions

» Mixture of Gaussians
> Latent variable models: The Triple-GAIL case

Triple-GAIL consists of three main components:
» a selector C,(cls,a), characterizing pc, (cls, a)
> a generator my(als, ¢), characterizing pr,(als, c)
» a discriminator D (s, a, c)

Seeking for an equilibrium between pc,_ (c|s,a) and pr,(als, c),
assuming that p(s,c) and p(s,a) can be obtained from the
demonstrations and generated data, respectively.

Adversarial game: The generator and the selector play against
the discriminator.

Fei et al, 2020, “Triple-GAIL: A Multi-Modal Imitation Learning framework with Generative Adversarial Nets”
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Imitation Learning
Multimodal Behaviour for continuous actions
How to resolve this problem?

» More expressive continuous distributions

» Mixture of Gaussians
> Latent variable models: The Triple-GAIL case

Triple-GAIL consists of three main components:
» a selector C,(cls,a), characterizing pc, (cls, a)
> a generator my(als, c) , characterizing pr,(als, c)
» a discriminator Dy (s, a, c)

Triple-GAIL objective:

ming, c,maxp,Ez, [log(Dy(s,a,c))] +Ex [log(1 - Dy(s,a,c))]+
(1-w)Ec,[log(Dy(s,a,c))]+
)\ERE + )\GRG - )\HH(’]T@)

Fei et al, 2020, “Triple-GAIL: A Multi-Modal Imitation Learning framework with Generative Adversarial Nets"
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?
» More expressive continuous distributions

> Mixture of Gaussians
> Latent variable models: The Directed-Info GAIL case
Learning intra-trajectory modalities.
\
\
|
(

IIIER

ARARLY

Hopper-v2 Walker2d-v2

Sharma et al, “Directed-Info GAIL: Learning Hierarchical Policies from Unsegmented Demonstrations using

Directed Information”
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?
» More expressive continuous distributions

> Mixture of Gaussians
> Latent variable models: The Directed-Info GAIL case
Learning intra-trajectory modalities.

1

T epperz Walker2d-2

c
¢ c, : c, »I(c C, »(Cu
< LR <«
» » Y a v v v v
T, L cee T, » T T (T, > (T Ty » (T

Figure 1: Left: Graphical model used in Info-GAIL Li et al. (2017). Right: Causal model in this
work. The latent code causes the policy to produce a trajectory. The current trajectory, and latent
code produce the next latent code

Sharma et al, “Directed-Info GAIL: Learning Hierarchical Policies from Unsegmented Demonstrations using

38 /55
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?
» More expressive continuous distributions

> Mixture of Gaussians
> Latent variable models: The Directed-Info GAIL case
Learning intra-trajectory modalities.

Directed-Info GAIL objective: Variational lower bound of the directed
information:

Ll(ﬂ', q) = ZECMNP(CM)7ar—1~7r(,|5r-17c1:t—1)[/qu(Ctlclzt_l,let)]+H(C) < /(T — C)
t

ming, qmaxpEr,[log(D(s,a))]+Ex.[log(1-D(s,a))]-A1H(mg)-A1L1 (7, q)
A VAE is pre-trained on the expert trajectories to estimate p(c'?)

Sharma et al, “Directed-Info GAIL: Learning Hierarchical Policies from Unsegmented Demonstrations using 39 / 55



Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?
> More expressive continuous distributions

» Mixture of Gaussians
> Latent variable models
> Diffusion models
> Forward diffusion process: adds noise to input
> Reverse denoising process that learns to generate data by
denoising

Forward diffusion process (fixed)

Reverse denoising process (generative)

Picture from Jiaming Song et al., “Denoising Diffusion Models: A generative big bang”
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?
> More expressive continuous distributions

> Mixture of Gaussians
> Latent variable models
> Diffusion models

. E
X *

Forward diffusion process (fixed)

. .
x

2 3 X
—_—— A — o~~~

q(Xt’Xt—l) = N(Xti V1- /BtXt—la/Btl)’ Q(XN‘XO) “N(XN; 0, |))

N
g(xenlxo) = [ T a(xelxe-1)
t=1

Picture from Jiaming Song et al., “Denoising Diffusion Models: A generative big bang”
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?
» More expressive continuous distributions

> Mixture of Gaussians
> Latent variable models
> Diffusion models

Goal: Generate data by approx. the denoising model g(x;—1|x¢).
p(xn) = N(xn; 0, 1)

N
Po(xe-1|xt) = N (xe-1; o (xe, ), 021) = po(x0:7) = p(x7) [ Po(Xe-1/x¢)
t=1

42 /55

Picture from Jiaming Song et al., "Denoising Diffusion Models: A generative big bang”



Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?

» More expressive continuous distributions

> Mixture of Gaussians
> Latent variable models
> Diffusion models

Adding noise:

CI(Xt|Xt—1) = N(Xt; V1= 5tXt—1,ﬂt|), with CI(XN|XO) ”N(XM 0, |))
Denoising:

p(xn) = N(xn; 0, 1), and pp(xe_1lxe) = N (xe—1; o (xe, 1)), o21)
Different choices:

- Xj = a;
- Xi =Ti = [(56a36)7 (51735)’ 0y (S%—,al—r)]
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?
> More expressive continuous distributions

> Mixture of Gaussians
> Latent variable models
> Diffusion models

Noising Actions: x; = ai

a(t) = true action

a£+1 = ai + f(st, a’;), f(st, ai) = noise
Learned model= f(s;, a;)

ar = ar—f(se, ),
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?
» More expressive continuous distributions

> Mixture of Gaussians
> Latent variable models
> Diffusion models

Noising Actions: x; = ai
Represent the policy via the reverse process:

mo(als) = po(a®M]s) = N (a™; 0. TV, po(aY]a', 5)
where

po(a'~t|a’,s) is modeled as a Gaussian distribution
N (@™ pg(a,s,i),020).
Objective: Train the denoising model by sampling from
demonstrated trajectories.

Wang et al 2023 “Diffusion Policies as an Expressive Policy Class for Offline Reinforcement Learning”
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?
> More expressive continuous distributions

> Mixture of Gaussians
> Latent variable models
> Diffusion models

Noising Actions: x; = a}

Diffusion Policy: Visuomotor Policy
Learning via Action Diffusion

Cheng Chi*", Zhenjia Xu*", Siyuan Feng?, Eric Cousineau?, Yilun Du3, Benjamin Burchfiel?,
Russ Tedrake 2%, Shuran Song'*

Learning Fine-Grained Bimanual Manipulation with
Low-Cost Hardware

Tony Z. Zhao!  Vikash Kumar’  Sergey Levine’ Chelsea Finn'
1 Stanford University 2 UC Berkeley  Meta
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?
» More expressive continuous distributions

> Mixture of Gaussians
> Latent variable models
> Diffusion models

Noising Trajectories: x; = 7/
po(T' ) = N (77 Mg (i, 1), 071)

What really happens here?

Janner et al 2022 "Planning with Diffusion for Flexible Behavior Synthesis”
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https://diffusion-planning.github.io/

Imitation Learning

Multimodal Behaviour for continuous and multidimentional
actions
Easy to discretize continuous actions in 1D

but what if we have nD?
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Imitation Learning

Multimodal Behaviour for continuous and multidimentional

actions
> Autoregressive discretization
consider multidimensional (nD) actions
1.2
ar = (at,at,...)
We need to learn my(a¢|s:):
mo(atlse) =

7T9(‘91-7 a?v cee a?lst) =

W@(a?|shagaa%a'"73?_1)7T9(at 1|5taat7at7 2)

) .7r9(3}|st)
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Imitation Learning
Multimodal Behaviour for continuous and multidimentional
actions

> Autoregressive discretization

mo(at|st) = mo(af|st, a? ... ag_l)ﬂg(ag_1|st, ag ... a?_z) .. .7['9(811.|St)
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Imitation Learning

Mitigating compounding error via learning many tasks

> Already discussed: making mistakes to learn a robust policy

> Learn reaching different goal states

51/55



Imitation Learning
Mitigating compounding error via learning many tasks
> Already discussed: making mistakes to learn a robust policy

> Learn reaching different goal states: Goal Conditioned
Behavioural Cloning

Learn: my(als,g), where g is a goal state

Maximizing logmg(a|s{,g' = st)

Given demos {s{,a},s5,a5,...5_,a_4,s%} for reaching goal
states g' = sy 52 /55



Imitation Learning

Learn reaching different goal states via behavioural cloning

Going beyond just imitation?

Learning to Reach Goals via Iterated Supervised

Learning
Dibya Ghosh® Abhishek Gupta® Ashwin Reddy Justin Fu
UC Berkeley UC Berkeley UC Berkeley UC Berkeley
Coline Devin Benjamin Eysenbach Sergey Levine
UC Berkeley Carnegie Mellon University UC Berkeley
Relabel goals
- |[(s0. a3, B) ..., (s7.a%. B)]f}

[1

\/,
((s0. ad, A) ..~ (s, a7 AL | [

e 53 /55




Imitation Learning
Goal Conditioned Behavioural Cloning

Relay Policy Learning: Solving Long-Horizon Tasks
via Imitation and Reinforcement Learning

bhishek Gupta® Vikash Kumar Corey Lynch
Bericley Al Rescarch, Gongle Google Google
edu com com
Sergey Lo Karol Hausman
Berkeley Al Rescarch, Google Google
o odu karel
Relay Imitation Relay Reinforcement

Leaming Fine-tuning
Reward
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Imitation Learning
Goal Conditioned Behavioural Cloning
GNM: A General Navigation Model to Drive Any Robot

Dhruv Shah'?, Ajay Sridhar!?, Arjun Bhorkar®, Noriaki Hirose®”, Sergey Levine”

Shared Abstraction

{potie d

CNN Encoder
(MobileNetv2)

(s12he) )
sJake] 54

CNN Encoder

(MobileNetv2)

Goal Image
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The GNM video
The VIiNT video


https://www.youtube.com/watch?v=ICeD6iOglKc
https://www.youtube.com/watch?v=6kNex5dJ5sQ

