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Outline

▸ Day 1: Motivation & Introduction to Deep Reinforcement
Learning

▸ Day 2: Inverse Reinforcement Learning and Connections to
Probabilistic Inference

▸ Day 3: Imitation Learning

▸ Day 4: Non-Markovian, Multimodal Imitation Learning

▸ Day 5: Imitating in Constrained Settings, Multiagent
Imitation Learning.
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Imitation Learning

Problem (ambiguous) statement

Given a set of demonstrated trajectories D generated by an
unknown expert policy πϵ, learn a policy π that generates
trajectories that are “as close as possible” to the expert
trajectories.
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Imitation learning

What can go wrong?

▸ Lack of training data

▸ Noisy or erroneous training data

▸ Distribution mismatch

▸ Compounding errors

▸ Discrimination ability (different actions in very similar
settings)
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Imitation Learning

What else can go wrong?

▸ Partial observability imposing non-Markovian behaviour

▸ Collapsing multi-modal behaviour in executing tasks in a
single policy
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Imitation Learning

non-Markovian Behaviour

πθ(at ∣ot)

vs
πθ(at ∣o1,o2, ...,ot)

Usually behaviour depends on history of observations:

πθ ∶ H→ P(A)

where H =∏t
i=1O, t = 2,3....

History provides (temporal) context.
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Imitation Learning

non-Markovian Behaviour: Basic
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Imitation Learning

non-Markovian Behaviour: with Sequential models
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Imitation Learning

non-Markovian Behaviour: with Sequential models

Using H may exacerbate correlations occurring in demonstrations:
Instantiations of an action correlate to future actions.

See also de Haan et al., “Causal Confusion in Imitation Learning”
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Imitation Learning

non-Markovian Behaviour: with Sequential models

Causal misidentification: access to more information leads to worse
generalization performance in the presence of distributional shift.

See also de Haan et al., “Causal Confusion in Imitation Learning”
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Imitation Learning
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Imitation Learning

non-Markovian Behaviour: with Sequential models

Using H may exacerbate correlations occurring in demonstrations:
Causal misidentification is the phenomenon whereby cloned
policies fail by misidentifying the causes of expert actions

Solutions proposed:

▸ Learn policies corresponding to various causal graphs
▸ Perform targeted interventions to efficiently search over the

hypothesis set for the correct causal model.
▸ Intervention with expert advise (DAgger style)
▸ Use environmental returns (if you can) and compute the

likelihood of graphs by means of exp(R), rolling-out the
policies

See also de Haan et al., “Causal Confusion in Imitation Learning”
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Imitation Learning

non-Markovian Behaviour: with VAE

See also Bastas and Vouros “Data-driven prediction of Air Traffic Controllers

reactions to resolving conflicts”
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Imitation Learning

non-Markovian Behaviour: with VAE in a supervised setting

See also Bastas and Vouros “Data-driven prediction of Air Traffic Controllers

reactions to resolving conflicts”

15 / 55



Imitation Learning

non-Markovian Behaviour: with VAE for state reconstruction
(although originally proposed in a MARL setting)

Work done by A.Kontogiannis et al.
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Imitation Learning

Multimodal Behaviour
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Imitation Learning

Multimodal Behaviour

18 / 55



Imitation Learning

Multimodal Behaviour
The same expert may take different actions in the same situation.
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Imitation Learning

Multimodal Behaviour: Mode collapse

Most imitation learning algorithms suffer from mode collapse: I.e.
their inability to distinguish between modalities and learn the
average.
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Imitation Learning

Multimodal Behaviour: Mode collapse

Given the analogy, take DKL as an example: Given that P is the
state action distribution from the demonstrations, and Q is the
state action distribution learnt.
Should you compare Q against P or P against Q?
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Imitation Learning

Multimodal Behaviour: Mode collapse

GAIL suffers from the mode collapse problem.

22 / 55



Imitation Learning

Multimodal Behaviour for discrete actions
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Imitation Learning

Multimodal Behaviour for continuous actions

Averaging different modalities !
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?

▸ More expressive continuous distributions

▸ Discretization with high-dimentional action spaces

▸ Compute the likelihood of each different option (and break
ties randomly)
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?
▸ More expressive continuous distributions

▸ Mixture of Gaussians
▸ Latent variable models
▸ Diffusion models
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?
▸ More expressive continuous distributions

▸ Mixture of Gaussians

π(a∣o) =∑
i

wiN (µi , σi)

▸ Latent variable models
▸ Diffusion models
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?
▸ More expressive continuous distributions

▸ Mixture of Gaussians

π(a∣o) =∑
i

wiN (µi , σi)

You must choose k: number of modes (how many?)
▸ Latent variable models
▸ Diffusion models 28 / 55



Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?
▸ More expressive continuous distributions

▸ Mixture of Gaussians
▸ Latent variable models

Using latent variables models you can represent any
distribution (conditional to the size of the NN).

The particular way to correlate these variables to actual
inputs/outputs is by means of variational autoencoders (VAEs).

▸ Diffusion models
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?
▸ More expressive continuous distributions

▸ Mixture of Gaussians
▸ Latent variable models: The InfoGAIL case

Li et al 2017, “InfoGAIL: Interpretable Imitation Learning from Visual Demonstrations”

30 / 55



Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?
▸ More expressive continuous distributions

▸ Mixture of Gaussians
▸ Latent variable models: The InfoGAIL case

InfoGAIL assumes a mixture of expert policies πE = {π0E , π1E , . . .}
and specifies a generative process of expert trajectories τE based
on GAIL, as:

s0 ∼ ρ0, c ∼ p(c), π ∼ p(π∣c), at ∼ π(at ∣st , c), st+1 ∼ (st+1∣at , st)

where the policies π(a∣s, c) are also conditioned to the discrete
latent variable c.

Li et al 2017, “InfoGAIL: Interpretable Imitation Learning from Visual Demonstrations”
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?
▸ More expressive continuous distributions

▸ Mixture of Gaussians
▸ Latent variable models: The InfoGAIL case

InfoGAIL seeks to maximize the mutual information between
latent codes and trajectories, denoted I (c ; τ), introducing the
variational lower bound

LI (π,q) = Ec∼p(c),a∼π(⋅∣s,c)[logq(c ∣τ)] +H(c) ≤ I (c ; τ)

where q(c ∣τ) ≈ q(c ∣s, a) is an approximation of the true posterior
P(c ∣τ).
Li et al 2017, “InfoGAIL: Interpretable Imitation Learning from Visual Demonstrations”
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?
▸ More expressive continuous distributions

▸ Mixture of Gaussians
▸ Latent variable models: The InfoGAIL case

InfoGAIL objective:

LI (π,q) = Ec∼p(c),a∼π(⋅∣s,c)[logq(c ∣τ)] +H(c) ≤ I (c ; τ)
minπθ,qmaxDEπθ [log(D(s, a))]+EπE

[log(1−D(s, a))]−λ1H(πθ)−λ1LI (πθ,q)

Li et al 2017, “InfoGAIL: Interpretable Imitation Learning from Visual Demonstrations”
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?
▸ More expressive continuous distributions

▸ Mixture of Gaussians
▸ Latent variable models: The Triple-GAIL case

BC GAIL Triple-GAIL

Fei et al, 2020,“Triple-GAIL: A Multi-Modal Imitation Learning framework with Generative Adversarial Nets”
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?
▸ More expressive continuous distributions

▸ Mixture of Gaussians
▸ Latent variable models: The Triple-GAIL case

Triple-GAIL consists of three main components:

▸ a selector Cα(c ∣s, a), characterizing pCα(c ∣s, a)
▸ a generator πθ(a∣s, c), characterizing pπθ(a∣s, c)
▸ a discriminator Dψ(s, a, c)

Seeking for an equilibrium between pCα(c ∣s, a) and pπθ(a∣s, c),
assuming that p(s, c) and p(s, a) can be obtained from the
demonstrations and generated data, respectively.
Adversarial game: The generator and the selector play against
the discriminator.

Fei et al, 2020,“Triple-GAIL: A Multi-Modal Imitation Learning framework with Generative Adversarial Nets”
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?
▸ More expressive continuous distributions

▸ Mixture of Gaussians
▸ Latent variable models: The Triple-GAIL case

Triple-GAIL consists of three main components:

▸ a selector Cα(c ∣s, a), characterizing pCα(c ∣s, a)
▸ a generator πθ(a∣s, c) , characterizing pπθ(a∣s, c)
▸ a discriminator Dψ(s, a, c)

Triple-GAIL objective:

minπθ,CαmaxDψEπθ [log(Dψ(s, a, c))] +EπE
[log(1 −Dψ(s, a, c))]+

(1 − ω)ECα[log(Dψ(s, a, c))]+
λERE + λGRG − λHH(πθ)

Fei et al, 2020,“Triple-GAIL: A Multi-Modal Imitation Learning framework with Generative Adversarial Nets”
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?
▸ More expressive continuous distributions

▸ Mixture of Gaussians
▸ Latent variable models: The Directed-Info GAIL case

Learning intra-trajectory modalities.

Sharma et al, “Directed-Info GAIL: Learning Hierarchical Policies from Unsegmented Demonstrations using

Directed Information”
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?
▸ More expressive continuous distributions

▸ Mixture of Gaussians
▸ Latent variable models: The Directed-Info GAIL case

Learning intra-trajectory modalities.

Directed-Info GAIL objective: Variational lower bound of the directed
information:

L1(π,q) =∑
t

Ec1∶t∼p(c1∶t),at−1∼π(⋅∣st−1,c1∶t−1)[logq(c t ∣c1∶t−1, τ 1∶t)]+H(c) ≤ I (τ → c)

minπθ,qmaxDEπθ [log(D(s, a))]+EπE
[log(1−D(s, a))]−λ1H(πθ)−λ1L1(πθ,q)

A VAE is pre-trained on the expert trajectories to estimate p(c1∶t)
Sharma et al, “Directed-Info GAIL: Learning Hierarchical Policies from Unsegmented Demonstrations using

Directed Information”
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?
▸ More expressive continuous distributions

▸ Mixture of Gaussians
▸ Latent variable models
▸ Diffusion models

▸ Forward diffusion process: adds noise to input
▸ Reverse denoising process that learns to generate data by

denoising

Picture from Jiaming Song et al., “Denoising Diffusion Models: A generative big bang”
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?
▸ More expressive continuous distributions

▸ Mixture of Gaussians
▸ Latent variable models
▸ Diffusion models

q(xt ∣xt−1) = N (xt ;
√
1 − βtxt−1, βtI),q(xN ∣x0) ≈ N (xN ; 0, I))

q(x1∶N ∣x0) =
N

∏
t=1

q(xt ∣xt−1)

Picture from Jiaming Song et al., “Denoising Diffusion Models: A generative big bang”

41 / 55



Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?
▸ More expressive continuous distributions

▸ Mixture of Gaussians
▸ Latent variable models
▸ Diffusion models

Goal: Generate data by approx. the denoising model q(xt−1∣xt).

p(xN) = N (xN ;O, I)

pθ(xt−1∣xt) = N (xt−1;µθ(xt , t)), σ2t I)→ pθ(x0∶T ) = p(xT )
N

∏
t=1

pθ(xt−1∣xt)

Picture from Jiaming Song et al., “Denoising Diffusion Models: A generative big bang”
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?
▸ More expressive continuous distributions

▸ Mixture of Gaussians
▸ Latent variable models
▸ Diffusion models

Adding noise:

q(xt ∣xt−1) = N (xt ;
√
1 − βtxt−1, βtI), with q(xN ∣x0) ≈ N (xN ; 0, I))

Denoising:

p(xN) = N (xN ;O, I), and pθ(xt−1∣xt) = N (xt−1;µθ(xt , t)), σ2t I)

Different choices:
- xi = ait
- xi = τi = [(s i0, ai0), (s i1, ai1), ..., (s iT , aiT )]
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?
▸ More expressive continuous distributions

▸ Mixture of Gaussians
▸ Latent variable models
▸ Diffusion models

Noising Actions: xi = ait

a0t = true action

ai+1t = ait + f (st , ait), f (st , ait) = noise

Learned model= f̂ (st , at)

ai−1t = ait − f̂ (st , ait),
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?
▸ More expressive continuous distributions

▸ Mixture of Gaussians
▸ Latent variable models
▸ Diffusion models

Noising Actions: xi = ait
Represent the policy via the reverse process:
πθ(a∣s) = pθ(a0∶N ∣s) = N (aN ;0,I)∏N

i=1 pθ(ai−1∣ai , s)
where
pθ(ai−1∣ai , s) is modeled as a Gaussian distribution
N (ai−1;µθ(ai , s, i), σ2i I).
Objective: Train the denoising model by sampling from
demonstrated trajectories.

Wang et al 2023 “Diffusion Policies as an Expressive Policy Class for Offline Reinforcement Learning”
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?
▸ More expressive continuous distributions

▸ Mixture of Gaussians
▸ Latent variable models
▸ Diffusion models

Noising Actions: xi = ait
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Imitation Learning

Multimodal Behaviour for continuous actions
How to resolve this problem?
▸ More expressive continuous distributions

▸ Mixture of Gaussians
▸ Latent variable models
▸ Diffusion models

Noising Trajectories: xi = τ i

pθ(τ i−1∣τ i) = N (τ i−1∣µθ(τi , i), σ2i I)

What really happens here?

Janner et al 2022 “Planning with Diffusion for Flexible Behavior Synthesis”
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https://diffusion-planning.github.io/


Imitation Learning

Multimodal Behaviour for continuous and multidimentional
actions
Easy to discretize continuous actions in 1D

but what if we have nD?
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Imitation Learning

Multimodal Behaviour for continuous and multidimentional
actions
▸ Autoregressive discretization

consider multidimensional (nD) actions

at = (a1t , a2t , . . . )

We need to learn πθ(at ∣st):

πθ(at ∣st) =
πθ(a1t , a2t , . . . ant ∣st) =
πθ(ant ∣st , a0t , a1t , . . . , an−1t )πθ(an−1t ∣st , a0t , a1t , . . . , an−2t ) . . . πθ(a1t ∣st)

49 / 55



Imitation Learning
Multimodal Behaviour for continuous and multidimentional
actions
▸ Autoregressive discretization

πθ(at ∣st) = πθ(ant ∣st , a0t . . . an−1t )πθ(an−1t ∣st , a0t . . . an−2t ) . . . πθ(a1t ∣st)
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Imitation Learning

Mitigating compounding error via learning many tasks

▸ Already discussed: making mistakes to learn a robust policy

▸ Learn reaching different goal states
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Imitation Learning

Mitigating compounding error via learning many tasks

▸ Already discussed: making mistakes to learn a robust policy

▸ Learn reaching different goal states: Goal Conditioned
Behavioural Cloning

Learn: πθ(a∣s,g), where g is a goal state
Maximizing logπθ(ait ∣s it ,g i = s iT )
Given demos {s i1, ai1, s i2, ai2, . . . s iT−1, aiT−1, s iT} for reaching goal
states g i = s iT 52 / 55



Imitation Learning

Learn reaching different goal states via behavioural cloning
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Imitation Learning

Goal Conditioned Behavioural Cloning
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Imitation Learning

Goal Conditioned Behavioural Cloning

The GNM video
The ViNT video
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https://www.youtube.com/watch?v=ICeD6iOglKc
https://www.youtube.com/watch?v=6kNex5dJ5sQ

