Learning to behave via Imitation
ESSAI 2024 Course
Lecture 3/5

George Vouros

University of Piraeus, Greece

July 24, 2024

Outline

Day 1: Motivation & Introduction to Deep Reinforcement
Learning

Day 2: Inverse Reinforcement Learning and Connections to
Probabilistic Inference

Day 3: Imitation Learning
Day 4: Non-Markovian, Multimodal Imitation Learning

Day 5: Imitating in Constrained Settings, Multiagent
Imitation Learning.

2/53

Imitation Learning

Problem (ambiguous) statement

Given a set of demonstrated trajectories D generated by an
unknown expert policy 7, learn a policy 7 that generates
trajectories that are “as close as possible” to the expert

trajectories.

3/53

Imitation learning

What can go wrong?

>

>

| 2

Lack of training data

Noisy or erroneous training data

Distribution mismatch

compounding errors

Discrimination ability (different actions in very similar
settings)

Collapsing multi-modal behaviour in executing tasks in a
single policy

Being unaware of other agents’ policies in multi-agent settings
(collaborative or not)

. and others that will be revealed during the course

4/53

Introduction to (Deep) Reinforcement Learning

Reinforcement Learning provides a formalism for behaviour
Examples

Imitation Learning

Basic Setting (Behavioural Cloning)

Demonstrations
ke : : from p*(1)

6/53

Imitation Learning

Basic Setting Example

Example Scenario
Learning to drive from demonstrations

Input: Output:

‘l\ w @

Camera Image

Steering in [-1,1]

Hard left turn Hard right turn

Ross et al., (2011) “A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning”

7/53

Imitation Learning

Basic Setting Example

Supervised Training Procedure

Dataset

Expert Trajectories %
- = O
=" @

Learned Policy: 7,,, =argmin l!;: [/(7ys, 7 (5))]
s~D(x*)

mell

Ross et al., (2011) “A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning”

8/53

Imitation Learning

v

Does Behavioural Cloning work well?

v

Under which circumstances?

> How to mitigate limitations?

v

Better algorithms?

9/53

Imitation Learning

What is important to imitation learning?

What is the major difference to supervised learning?

10 /53

Imitation Learning

What is important to imitation learning?

The difference to supervised learning: Test data are not i.i.d and

depend on the policy (current decisions affect future states
and observations)

11/53

Imitation Learning
Basic Setting (Behavioural Cloning)

Dean Pomerleau X
@deanpomerleau - Follow

Replying to @GTARobotics

GPU? Gez, ALVINN ran on 100 MFLOP CPU,
~10x slower than iWatch; Refrigerator-size &
needed 5000 watt generator.
@olivercameron

What’s Hidden in the Hidden Layers?

The contents can be easy 1o find with a geometrical problem,
but the hidden layers have yet 1o give up all their secrets

David S. Touretzky and Dean A. Pomerleau AUGUST 1999 + BYTE 201

milliseconds on the Sun-3/160 worksta- work chooses a representation in which

"The hidden layer represcntations AL~ roads at various posit
VINN develops are ineresting. When tons. When trained on oads
rained on rosds of a fixed width,the net.

e per hour skong 8 puth
a adjoining the
acge Mellon carpus, uader & v’

rately drive the NAVLAB vehicle at
h

12 /53

Imitation Learning

Autonomous Land Vehicle In a Neural Network (ALVINN)
The video

13 /53

https://youtu.be/ntIczNQKfjQ

Imitation Learning

Basic Setting (Behavioural Cloning)

Road Intensity 45 Direction
Feedback Unit Output Units

8x32 Range Finder
Input Retina

30x32 Video
Input Retina

Figure 1: ALVINN Architecture

14 /53

Imitation Learning

Why does not work in general?

15 /53

Imitation Learning

Potential factors making it work well

» Not much stochasticity in demonstrated actions
» Similar situations require same action

> Situations not from the training data set are unlikely

16 /53

Imitation Learning

Can we make it work?

Ans: YES! : The DAVE autonomous car Video

During training:

Recorded
steering
wheel angle

Left camera ‘

Center camera
L J

: Right camera J

During inference:

Cenlsr carnera

Bojarski et al (2016) INVIDIA

Adijust for shift Desired steering command
and rotation
Network
computed
>/ steering P AN .
Random shift command \
| and rotation -{ CNN [=)
- "
A

Back propagation | Ermor
weight adjustment

Network
computed
steering

CNN command | Drive by wire
Interface

17 /53

https://youtu.be/NJU9ULQUwng

Imitation Learning

Can we make it work?
Ans: YES! : The Quadcopter Video

18 /53

https://youtu.be/umRdt3zGgpU

Imitation Learning

Potential factors making it work well

> Collect data covering the states and actions space or be smart
about it.

» Train robust and/or powerful models

» Transfer knowledge from different tasks

19/53

Imitation Learning

A subtle issue

We train my using samples from pp, and this results into
generating output under py, different from pp.
Under the perspective of “compounding errors”, there is a subtle
difference between supervised and imitation learning:

> Supervised learning: maxy E ., (s,)[l0gma(at(st))]

> Imitation learning: minE,, ., (s)[c(st;at))]

20/53

Imitation Learning

A subtle issue

> Imitation learning: minE,,., (s)[c(st;at))]
The cost measures the mistaken decisions made by 7y

21/53

Imitation Learning

A subtle issue

> Imitation learning: minE,, ., (s)[c(st;at))]
The cost measures the mistaken decisions made by 7y.
A simple one:

0 ifat = 7'('*(51-)
c(sg,ar) =)
S {1 otherwise

22 /53

Imitation Learning

What is the worst case?

O If dt = 7T* (St)
1 otherwise

c(st,ar) = {

assume that mg(a # 7*(s)|s) <, for all s € Dyain

o ——

Cost to fail at step k: (1-e)'e (T-k-1),

k=1, eT
k=2, (1-e)e(T-1)
k=3, (1-e)2e(T-2)

etc.

Therefore,

J(mp) = E[Y c(st,a:)] = O(eT?)

t

Because it does not know how to recover from errors.

23 /53

Imitation Learning

How worse can it be for s ~ pyain?

0 ifat :W*(St)

1 otherwise

c(st,a) = {

assume that mg(a # 77(s)[s) <, for all s~ ptrain
and E,,, . s)[ma(a# 7 (s)|s)] <e

The bound

It can be shown that

J(mg) = IE[Z c(st,ar)] = O(eT2)

t

Ross et al., (2011) “A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning”

24 /53

Imitation Learning

Early reduction-based approaches

Previous Work: Forward Training

[Ross 2010]
*» Sequentially learn one policy/step

* # mistakes grows linearly:
=J(m,q) <Te

* Impractical if T large

Ross et al., (2011) “A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning”

25 /53

Imitation Learning

Early approaches

Previous Work: SMlLe

[Ross 2010]
Learn stochastic policy, changing policy slowly
M= Mg+ an(n'n = 1[*)
— 1, trained to mimic n* under D(x,,,)
— Similar to SEARN [Daume 2009]

* Near-linear bound:
—J(m) £ O(Tlog(T)e + 1) L
Steering

from expert

1(

» Stochasticity undesirable

Ross et al., (2011) “A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning”

26 /53

Imitation Learning

Main idea:
Intentionally add (some) mistakes and actions of recovery:

Essentially, shift psrain = pp towards py, or incorporate agents'’
experience given s ~ py into p;,... = pp
Also called "data augmentation”.

27 /53

Imitation Learning

Making po (se) = po(s)
So, augment pp(s;) by states (and expert labels) sampled from

po(st)-

DAgger: Dataset Aggregation
Collect data from py(s;), by running the policy 7y(a¢|s;) and
getting labels a; for unseen states s;.

28 /53

Imitation Learning

DAgger: Dataset Aggregation

Collect data from py(s;), by running the policy my(a¢|s;) and
getting labels a; for unseen states s;.

DAgger: The algorithm

1. train my from expert demonstrations
D= {51) a1,52,d82, ..+, ST, aT}

2. run mg(a¢|s;) to get dataset Dy = {s{,s5,...,5p4}
3. ask the human to label Dy with actions a;

4. Aggregate D <~ Du Dy

5. GoTo 1

29 /53

Imitation Learning

DAgger: The algorithm

1. train py from expert demonstrations
D={s1,a1,%,a,...,s7,ar}

2. run py(at|se) to get dataset Dy = {s1,5,..., 54}
3. ask the human to label Dy with actions a;

4. Aggregate D < Du Dy

5. GoTo 1

DAgger: The problem

The problem is step 3: Humans cannot easily label a huge amount
of data or even a small amount of data with detailed,
multi-dimensional, continuous actions.

30/53

Imitation Learning

DAgger in the context of adversarial and online learning
Cost of my:

E(Trg) =]ESthg(St) [C(St’ af))]

Learning a new policy:

”*1 = argmin, Z L; = argmin, ZEStNP (St)[c(st, at)]
i=1

pgu = argmm.,Zf, z e~y (sc) [e(se,2))] *_ ['(Trﬂ) sl~pg(5;)[c(st:at))]

. p(adversarial
Go | > (1) > T A sample)
Here A is a kind of
adversary that
Demonstrations prc::;:jlzi?y?:a"rr;p:les
from p*(1) g

challenging the
abilities of the

Generator 31 / 53

Imitation Learning

DAgger in the context of adversarial and online learning

Py = argmin: 3L = Z spy (500656 3¢))] G L(79) = Ey,py sy [€525 22))]

N p(adversarial
Go | > e() > T A sample)
Here A is a kind of
adversary that
Demonstrations prq;ﬁ:ﬁy?:atgp:les
from p*(1) 9

challenging the
abilities of the
Generator

Avg.Regret

1 n I . n
n= ;[Z Li(my) = ming,en Y, Li(mg)]
a P

32/53

Imitation Learning
Theoretical guarantees of DAgger

Pyt = argminy ZL, = Z 10 (50) [(511 2t))]| e £(T9) = E sy [€(5t, 3¢))]

. p(adversarial
Gg | p(T) m——gp T A sample)

Here Aiis a kind of
adversary that
provides examples
"falsifying" or
challenging the
abilities of the
Generator

Demonstrations
from p*(1)

The best policy in the sequence of policies 75V guarantees:

J(mg) < T(en +yn) + O(T/N)
where,
» ¢n: Average loss on aggregated dataset
» ~vn: Average regret of 71N
> N: lterations of DAgger

33/53

Imitation Learning

Theoretical guarantees of DAgger

n

it = argmin; Y. L = Z[Es..p;(s,)[f(Snﬂr))] s L(779) = Epy sy [€(St; at))]

. p(adversarial
Gg | p(T) m——gp T A sample)

Here Aiis a kind of
adversary that
provides examples
"falsifying" or
challenging the
abilities of the
Generator

Demonstrations
from p*(1)

The best policy in the sequence of policies 75V guarantees:

J(mg) < T(en +yn) + O(T/N)

Follow-the-Leader is a no-regret algorithm.
For strongly convex loss, N = O(TlogT) iterations:

J(7T9) < Teny+ O(l)

34 /53

Imitation Learning

DAgger: The algorithm

1.

A AN

train py from expert demonstrations
D= {51, di1,52,d2,...,8T, aT}

run pp(ae|st) to get dataset Dy = {s1,s5,..., 5}
ask the human to label Dy with actions a;
Aggregate D < D u Dy

GoTo 1

DAgger: The problem

The problem is step 3: Humans cannot easily label a huge amount
of data or even a small amount of data with detailed,
multi-dimensional, continuous actions.

For DAgger, if the number of trajectories sampled per
iteration is small, then the probability of getting a high
bound on error increases.

35/53

Imitation Learning

Can machines learn autonomously?

Lets revisit the objective of minimizing mistaken decisions.

36 /53

Imitation Learning

A subtle issue

> Imitation learning: minE,, ., (s)[c(st;at))]
The cost measures the mistaken decisions made by my.

0 ifat = 71'*(51-)
c(s,ae) =)
(st, 2¢) {1 otherwise

37/53

Imitation Learning

A subtle issue

Imitation learning objective
meln EatNﬂ'H(at|5t),5t+1~P(St+1|St,3t) [C(St+1)]

mein Es.r,anr [Z c(st, ar)]
t
38/53

Imitation Learning

A subtle issue

Imitation learning objective

mein]ESI:T7aliT [Z _rE(St7 at)]

t

39/53

Imitation Learning

Assuming that demonstrations are produced by THE expert, who
acts with a reward rg, unknown to us.

meaXESLT,aLT[Z rE(Sta at)]
t
recall that given the probabilistic model

p(Or.7|7) = exp(D re(se, ar))

thus,
Z re(st, ar) = logp(O1.7|T)

t

40 /53

Imitation Learning

mﬁ’aXIEsl:TvalzT [Z re(st; ar)]
t

with
Z re(se, at) = logp(Or.1|T)
t

Maximum likelihood learning:

1 N
Z re(7i) - logZ
1:1

L= max@—Z/ogp(T,\Ol 7,E) = maxg—

Z= [p(rexw(re(r)) dr

41/53

Imitation Learning

Maximum likelihood learning:

1Y 1Y
L= maxeﬁ Z logp(7i|O1.7,E) = max@N Z re(7i) - logZ
i=1 i=1

Z= [p(r)exp(re(r) dr

and it turns out that the objective is:

L =maxg[Eqrre(ryre(T) = Erery(r)re(7)]
Assuming the rg is known, in the MaxEnt RL setting

L= maxe(ETNm (1) [re(T)] + Eny [H(mg(7))]) — Erorr (T)rE(T)

42 /53

Imitation Learning

However, the expert reward is unknown, so the objective in an
IRL setting would be:

£ =ming [maxgEq () [F(7) + H(m ()] ~ Eyere 1y r(7)]

43 /53

Imitation Learning

Given this objective, can we approximate the expert policy
without learning the reward?

L= minf[maXQETNW(T)[r(T) + H(W(T)))] - ETNW*(T)r(T)]

In an IRL setting, we solve this problem by finding a reward
function such that the expert performs better than the other
policies.

An then, running RL on the output of IRL to approximate the
expert policy.

Can we skip the first part, avoiding the RL part for every reward
approximation?

44 /53

Imitation Learning

Given this objective, can we approximate the expert policy
without learning the reward?

Consider occupancy measures: states, actions distributions that an
agent encounters when navigating the environment with policy 7

p:SxA—-R
Defined to bel

p(s.a) = n(als) fg 2t P(s; = s|m).

1Hl:) & Ermon, Generative Adversarial Learning, 2016

45 / 53

Imitation Learning

Imitation Learning in Constrained Settings

As shown by (Puterman, 1994) the set of valid occupancy
measures can be written as a feasible set of affine constraints

D={p:p>0and
2 n(s,2) = p(s) +v), P(sls’,a)p(s, a),
a s’,a

Vse S}

Very inefficient to evaluate and we need to know the transition
function.

Puterman, M. L. “Markov Decision Processes: Discrete Stochastic Dynamic
Programming”. John Wiley Sons, Inc., USA, 1st edition, 1994.

46 /53

Imitation Learning

Imitation Learning in Constrained Settings
Given DD here is an one-to-one relation between occupancy
measures and policies.

text given peD,p(s,a) < m,(s,a) = z/:(;(vz)a,)

— Syed, U., et al., “Apprenticeship learning using linear programming”, 2008.
— Ho, J. and Ermon, S. Generative adversarial imitation learning, 2016.

47 /53

Imitation Learning

Imitation Learning in Constrained Settings
Given that the causal entropy

A== p(s,2)(log(p(s. a)/ 3 p(s. &)

for occupancy measures is strictly concave, and for all 7w € 1 and
p €D, it holds that

H(r) = F(px) and H(r,) = F(p)

, allow us to switch between policies and occupancy measures
when considering functions involving causal entropy and expected
rewards.

Ho, J. and Ermon, S. Generative adversarial imitation learning, 2016.

48 /53

Imitation Learning

So, what about “matching” occupancy measures between 7
and 77
Given the objective

L = min[maxgBEr . [r(1) + H(w(7)))] = Errr(ryr(7)]

This results to the following optimization problem

maxz,enH(mg) subject to pr,(s,a) = pe(s,a),VseS,ac A

49 /53

Imitation Learning

So, what about “matching” occupancy measures between mg
and my?
Given the objective

L= minr[maX9E7'~7r(T)[r(T) + H(W(T)))] - ETNW*(T)r(T)]

This results to the following optimization problem

maxe[)\H(Fe) - Dm(pﬂ'g(s’ a)a pE(sa a))]

where, D, is a distance metric between distributions, penalizing
violations in difference between occupancy measures.

50 /53

Imitation Learning

So, what about “matching” occupancy measures between 7
and 77

Given the optimization problem

maxg[AH(79) — Dm(pnry, pe(S,a))]
and setting

Dm(pﬂ'eva(S?a)) =
Dys(pry; pE(S,a)) =
Dii(pry|l(pmy + pE)/2) + Drci(pEl(Pry + PE)[2)

it turns out the optimal loss is the optimal negative log loss of the
binary classification problem of distinguishing state,action pairs of
mg and mg:

maxDe(071)5xAE7r6 [log(D(s,a))] +Ex.[log(1-D(s,a))]
51/53

Inverse reinforcement learning: connection to probabilistic
models

Generative Adversarial Imitation Learning (GAIL)

E., [Vglog ms(a|s)Q(s,a)] — AV H (ms),

where Q(5,a) = Ex,[log(D, (5,)) | 50 = 5,00 —] e E17,[¥ 1 108(D(5,))] + By [V log(1 — Dus(s.a))]

Go > melr) P (52) D

D: The discriminator
implemented as a
binary classifier

G: The generator
implemented by

TRPO :
Demonstrations

from p*(1)

The generator improves itself to foul the discriminator, while the
discriminator is updated to distinguish expert samples from those
of the generator, as better as possible.

52 /53

Inverse reinforcement learning: connection to probabilistic
models

Generative Adversarial Imitation from Observations (GAIfO)

loss

cost
R € — (B ltog(Puts,)] + Fopy o1 = Pa(s, 1))

& et P o

D: The discriminator
implemented as a
binary classifier

G: The generator
implemented by

TRPO :
Demonstrations

from p*(1)

53 /53

