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Outline

▸ Day 1: Motivation & Introduction to Deep Reinforcement
Learning

▸ Day 2: Inverse Reinforcement Learning and Connections
to Probabilistic Inference

▸ Day 3: Imitation Learning

▸ Day 4: Non-Markovian, Multimodal Imitation Learning

▸ Day 5: Imitating in Constrained Settings, Multiagent
Imitation Learning.
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Inverse Reinforcement Learning

▸ Is it possible to always define manually the reward function,
assumed known by RL algorithms?

▸ Learn a reward approximation from expert demonstrations

▸ Draw connections to probabilistic models of behavior and
inference

▸ Review some of the practical algorithms
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Why should we care about inverse reinforcement learning?
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Inverse Reinforcement Learning

Question to be answered
Given that we deal with rational agents, aiming to maximize their
expected utility, how to uncover this rationality given few
demonstrations of executing their tasks?
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Recall the Reinforcement Learning objective

Probability of τ given a policy πθ
pθ(τ) = p(s1)∏

T
t=1 πθ(at ∣st)p(st+1∣st , at)

Objective: tune θ to get

θ∗ = argmaxθEτ∼pθ[∑t rt], rt = r(st , at)

Objective for finite time horizons

θ∗ = argmaxθ∑
T
t=1E(st ,at)∼pθ(st ,at)[rt], where pθ(st , at) the state,

action marginal

Objective for infinite time horizons

θ∗ = argmaxθE(s,a)∼µ[r(s, a)], where µ = pθ(s, a) the stationary
distribution of states, actions
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Inverse Reinforcement Learning

Question to be answered
Given that we deal with rational agents, aiming to maximize their
expected utility, how to uncover this rationality given
demonstrations of executing their tasks?

RL objective: find the most rewarding course of actions

▸ Deterministic case:
τ = (a1, s1), (a2, s2), . . . , (aT , sT ) =
argmaxa1,a2,...aT ∑

T
t=1 r(st , at), st+1 = f (st , at)

▸ Stochastic case:
θ∗ = argmaxθEτ∼pθ[∑t r(st , at)], at ∼ πθ(at ∣st) and
st+1 ∼ p(st+1∣st , at)
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Inverse Reinforcement Learning

Question to be answered
Given that we deal with rational agents, aiming to maximize their
expected utility, how to uncover this rationality given
demonstrations of executing their tasks?

IRL Objective:

Find a reward function that explains the demonstrations.
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Why should we care about inverse reinforcement learning?
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Why should we care about inverse reinforcement learning?

Imitation learning perspective:

Imitation of actions Imitation of humans

10 / 46



Why should we care about inverse reinforcement learning?

Imitation learning perspective:

Imitation of actions to learn how Imitation of humans to learn
to perform a task humans’ objectives or intentions
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Why should we care about inverse reinforcement learning?

What can a reward function be?
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Why should we care about inverse reinforcement learning?

The goal of inverse reinforcement learning is to infer the
reward function from demonstrations
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Why should we care about inverse reinforcement learning?

There can be many reward functions explaining the
demonstrated behaviour
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Why should we care about inverse reinforcement learning?

There can be many reward functions explaining the
demonstrated behaviour
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Why should we care about inverse reinforcement learning?

There can be many reward functions explaining the
demonstrated behaviour
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Inverse reinforcement learning

Formal constituents of the problem

▸ states s ∈ S

▸ actions a ∈ A

▸ (maybe) transition probabilities p(s ′∣s, a)

▸ samples τi sampled from (unknown) π∗

▸ Goal: learn rψ(s, a), where ψ are function parameters
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Inverse reinforcement learning

Formal constituents of the problem

▸ states s ∈ S

▸ actions a ∈ A

▸ (maybe) transition probabilities p(s ′∣s, a)

▸ samples τi sampled from π∗

▸ Goal: learn rψ(s, a), where ψ are function parameters

and then use rψ(s, a) to learn πrψ = π̂∗
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Inverse reinforcement learning

Reward parameters

▸ Assuming a linear function, these are features’ coefficients:

rψ(s, a) =∑
i

ψi fi(s, a) = ψ
T f(s,a)

Note: Features can be of arbitrary complexity

▸ Or we may have a function approximator (a neural net) with
parameters ψ, input (s, a) and output rψ(s, a)
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Inverse reinforcement learning

Assuming a linear reward function

rψ(s, a) =∑
i

ψi fi(s, a) = ψ
T f(s,a)

we need to match features on expectation:

Eπrψ [f(s,a)] = Eπ∗[f(s,a)]

Again: there can be many reward functions satisfying this property.
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Inverse reinforcement learning

Assuming a linear reward function

rψ(s, a) =∑
i

ψi fi(s, a) = ψ
T f(s,a)

we need to match features on expectation:

Eπrψ [f(s,a)] = Eπ∗[f(s,a)]

use the max margin principle:

maxψ,mm, such that ψTEπ∗[f(s,a)] ≥ maxπ∈Πψ
TEπ[f(s,a)] +m
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Inverse reinforcement learning

Assuming a linear reward function

rψ(s, a) =∑
i

ψi fi(s, a) = ψ
T f(s,a)

we need to match features on expectation:

Eπrψ [f(s,a)] = Eπ∗[f(s,a)]

use the max margin principle:

maxψ,mm, such that ψTEπ∗[f(s,a)] ≥ maxπ∈Πψ
TEπ[f(s,a)] +m

or by “weighting” policies using a kind of similarity to π∗:

minψ
1

2
∣∣ψ∣∣2, such that ψTEπ∗[f(s,a)] ≥ maxπ∈Πψ

TEπ[f(s,a)]+D(π∗, π)
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Inverse reinforcement learning

Assuming a linear reward function

we need to match features on expectation:

Eπrψ [f(s,a)] = Eπ∗[f(s,a)]

use the max margin principle:

maxψ,mm, such that ψTEπ∗[f(s,a)] ≥ maxπ∈Πψ
TEπ[f(s,a)] +m

or (re-statement):

minψ
1

2
∣∣ψ∣∣2, such that ψTEπ∗[f(s,a)] ≥ maxπ∈Πψ

TEπ[f(s,a)]+D(π∗, π)

However, an arbitrary heuristic, and does not account for
sub-optimality of the expert.
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Inverse reinforcement learning: connection to probabilistic
models

Probabilistic graphical models

p(Ot ∣st , at) = exp(r(st , at)),

p(τ ∣O1∶T ) =
p(τ,O1∶T )

p(O1∶T )

∝ p(τ)∏
t

exp(r(st , at)

= p(τ)exp(∑
t

r(st , at))
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Inverse reinforcement learning: connection to probabilistic
models

Probabilistic graphical models

The Inverse problem:
Given the demonstrated trajectories, can we infer a reward function
so that the demonstrated trajectories are most likely?
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Inverse reinforcement learning: connection to probabilistic
models

Question to be answered:
Given, a set of demonstrations τi ,
what is the reward function rψ(s, a) that maximizes the likelihood
of demonstrated trajectories to be inferred from the probabilistic
graphical model, given πrψ(τ)?
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Inverse reinforcement learning: connection to probabilistic
models

Probabilistic graphical models

p(Ot ∣st , at , ψ) = exp(rψ(st , at))

p(τ ∣O1∶T , ψ)∝ p(τ)exp(∑
t

rψ(st , at))
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Inverse reinforcement learning: connection to probabilistic
models

Probabilistic graphical models

p(Ot ∣st , at , ψ) = exp(rψ(st , at))

p(τ ∣O1∶T , ψ)∝ p(τ)exp(∑
t

rψ(st , at))

maximum likelihood learning:

L = maxψ
1

N

N

∑
i=1

logp(τi ∣O1∶T , ψ)
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Inverse reinforcement learning: connection to probabilistic
models

Probabilistic graphical models

p(Ot ∣st , at , ψ) = exp(rψ(st , at))

p(τ ∣O1∶T , ψ)∝ p(τ)exp(∑
t

rψ(st , at))

maximum likelihood learning:

L = maxψ
1

N

N

∑
i=1

logp(τi ∣O1∶T , ψ) = maxψ
1

N

N

∑
i=1

rψ(τi) − logZ
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Inverse reinforcement learning: connection to probabilistic
models

p(τ ∣O1∶T )∝ p(τ)exp(∑
t

rψ(st , at))

maximum likelihood learning:

L = maxψ
1

N

N

∑
i=1

logp(τi ∣O1∶T , ψ) = maxψ
1

N

N

∑
i=1

rψ(τi) − logZ

, where

Z = ∫ p(τ)exp(rψ(τ))dτ

and it turns out that

∇ψL = Eτ∼π∗(τ)[∇ψrψ(τ)] −Eτ∼p(τ ∣O1∶T ,ψ)[∇ψrψ(τ)]
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Inverse reinforcement learning: connection to probabilistic
models

∇ψL = Eτ∼π∗(τ)[∇ψrψ(τ)] −Eτ∼p(τ ∣O1∶T ,ψ)[∇ψrψ(τ)]

for the 2nd term

Eτ∼p(τ ∣O1∶T ,ψ)[∇ψrψ(τ)] =

Eτ∼p(τ ∣O1∶T ,ψ)[∇ψ
T

∑
t=1

rψ(st , at)] =

E(st ,at)∼p(st ,at ∣O1∶T ,ψ)[∇ψ
T

∑
t=1

rψ(st , at)]
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Inverse reinforcement learning: connection to probabilistic
models

∇ψL = Eτ∼π∗(τ)[∇ψrψ(τ)] −E(st ,at)∼p(st ,at ∣O1∶T ,ψ)[∇ψ
T

∑
t=1

rψ(st , at)]

and

p(st , at ∣O1∶T , ψ) =

p(at ∣st ,O1∶T , ψ)p(st ∣O1∶T , ψ)∝

β(st , at)

β(st)
α(st)β(st) = β(st , at)α(st)

let µ(st , at)∝ β(st , at)α(st)

i.e., a product of backward and forward messages.
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Inverse reinforcement learning: connection to probabilistic
models

∇ψL = Eτ∼π∗(τ)[∇ψrψ(τ)] −E(st ,at)∼p(st ,at ∣O1∶T ,ψ)[∇ψ
T

∑
t=1

rψ(st , at)] =

1

N

N

∑
i=1

T

∑
t=1
∇ψrψ(si ,t , ai ,t) −

T

∑
t=1
∫ ∫ µt(st , at)∇ψrψ(st , at)dst dat
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Inverse reinforcement learning: connection to probabilistic
models

MaxEnt IRL algorithm1

Iterate over the following steps:
1. Given ψ, compute backward message β(st , at)
2. Given ψ, compute forward message α(st)
3. Compute µ(st , at)∝ β(st , at)α(st)
4. Evaluate ∇ψL =
1
N ∑

N
i=1∑

T
t=1∇ψrψ(si ,t , ai ,t)−∑

T
t=1 ∫ ∫ µt(st , at)∇ψrψ(st , at)dst dat

5. ψ ← ψ + η∇ψL

1Ziebart et al., (2018) “Maximum Entropy Inverse Reinforcement Learning”
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Inverse reinforcement learning: connection to probabilistic
models

MaxEnt IRL algorithm

Iterate over the following steps:
1. Given ψ, compute backward message β(st , at)
2. Given ψ, compute forward message α(st)
3. Compute µ(st , at)∝ β(st , at)α(st)
4. Evaluate ∇ψL =
1
N ∑

N
i=1∑

T
t=1∇ψrψ(si ,t , ai ,t)−∑

T
t=1 ∫ ∫ µt(st , at)∇ψrψ(st , at)dst dat

5. ψ ← ψ + η∇ψL

So what?
1. In the case of linearity rψ(s, a) = ψ

T f(s,a) it is shown that it
optimizes maxψH(π

rψ) such that Eπrψ [f] = Eπ∗[f]], but
2. In low dimensional spaces of actions and states with known
dynamics
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Inverse reinforcement learning: connection to probabilistic
models

What we need to apply IRL to practical problem settings:

1. Handle large and continuous state and action spaces
2. Obtain states only via sampling
3. Solve in cases of unknown dynamics
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Inverse reinforcement learning

Recall that

∇ψL = Eτ∼π∗(τ)[∇ψrψ(τ)] −Eτ∼p(τ ∣O1∶T ,ψ)[∇ψrψ(τ)]

Obtain the dynamics by sampling (as in standard RL)

Learn p(at ∣st ,O1∶T , ψ) using a MaxEnt RL algorithm maximizing
the following objective and run the policy to sample.

J(θ) =∑
t

E(st ,at)∼π(st ,at)[r(st , at)] +Est∼π(st)H(π(at ∣st)]

Then,

∇ψL =
1

N

N

∑
i=1
∇ψrψ(τi) −

1

M

M

∑
i=1
∇ψrψ(τj)
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Inverse reinforcement learning

Obtain the dynamics by sampling (as in standard RL)

Learn p(at ∣st ,O1∶T , ψ) using a MaxEnt RL algorithm and run the
policy to sample, at any gradient step for the reward function.

∇ψL =
1

N

N

∑
i=1
∇ψrψ(τi) −

1

M

M

∑
j=1
∇ψrψ(τj)

Too expensive!
Try to build on previous policy approximations, using samples
generated by them using importance sampling to fight bias.

∇ψL =
1

N

N

∑
i=1
∇ψrψ(τi) −

1

∑j wj

M

∑
j=1

wj∇ψrψ(τj)
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Inverse reinforcement learning

Obtain the dynamics by sampling (as in standard RL)

Build on previous policy approximations, using samples generated
by them using importance sampling to fight bias.

∇ψL =
1

N

N

∑
i=1
∇ψrψ(τi) −

1

∑j wj

M

∑
j=1

wj∇ψrψ(τj)

with (as in importance sampling)

wj =
p(τj)exp(rψ(τj))

π(τj)
=

p(s1)∏t p(st+1∣st , at)exp(rψ(st , at))

p(s1)∏t p(st+1∣st , at)π(at ∣st)
=
exp(∑t rψ(st , at))

∏t π(at ∣st)

Each policy update given an rψ, brings these importance weights
closer to 1

39 / 46



Inverse reinforcement learning
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Inverse reinforcement learning: connection to probabilistic
models

Isn’t like an adversarial game?

The policy improves to get high reward, while the reward is
updated to distinguish expert samples from those of the policy.41 / 46



Inverse reinforcement learning

Can you see the analogy to GANs?

The generator improves itself to foul the discriminator, while the
discriminator is updated to distinguish expert samples from those
of the generator, as better as possible.
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Inverse reinforcement learning

What can the discriminator be?
At convergence, for GANs the optimal discriminator represents the
density ratio between p∗ and pθ:

D∗(x) =
p∗(X )

pθ(x) + p∗(x)

For IRL, given that πθ(τ)∝ p(τ)exp(r(τ))

Dψ(τ) =
p(τ)(1/Z)exp(rψ(τ))

pθ(τ) + p(τ)(1/Z)exp(rψ(τ))
=

(1/Z)exp(rψ(τ))

∏t πθ(at ∣st) + (1/Z)exp(rψ(τ))
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Inverse reinforcement learning

What can the discriminator be?
For IRL, given that πθ(τ)∝ p(τ)exp(r(τ))

Dψ(τ) =
(1/Z)exp(rψ(τ))

∏t πθ(at ∣st) + (1/Z)exp(rψ(τ))

We optimize the reward (and Z) with the objective2

ψ ← argmaxψEτ∼p∗[logDψ(τ)] +Eτ∼πθ[log(1 −Dψ(τ)]

2Finn et al., (2016) “A Connection between Generative Adversarial Networks, Inverse Reinforcement Learning,
and Energy-Based Models”
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Inverse reinforcement learning

IRL as a GAN

The generator improves itself to foul the discriminator, while the
discriminator is updated to distinguish expert samples from those
of the generator, as better as possible.
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Inverse reinforcement learning
We will return to this style of learning while talking on
imitation learning

The generator improves itself to foul the discriminator, while the
discriminator is updated to distinguish expert samples from those
of the generator, as better as possible.
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