Learning to behave via Imitation
ESSAI 2024 Course
Lecture 1/5

George Vouros

University of Piraeus, Greece

July 22, 2024

Outline

Day 1: Motivation & Introduction to Deep Reinforcement
Learning

Day 2: Inverse Reinforcement Learning and Connections to
Probabilistic Inference

Day 3: Imitation Learning
Day 4: Non-Markovian, Multimodal Imitation Learning

Day 5: Imitating in Constrained Settings, Multiagent
Imitation Learning.

2/58

Imitation Learning

Learning to behave from demonstrations
Examples

R.L lab @ Imperial

from Y. Yue 3/58

Imitation Learning

Problem (ambiguous) statement

Given a set of demonstrated trajectories D generated by an
unknown expert policy 7, learn a policy 7w that generates
trajectories that are “as close as possible” to the expert
trajectories.

4/58

Imitation learning

What can go wrong?

>

| 2

>

v

Lack of training data

Noisy or erroneous training data

Distribution mismatch

Compounding errors

Discrimination ability (different actions in very similar
settings)

Collapsing multi-modal behaviour in executing tasks in a
single policy

Being unaware of other agents’ policies in multi-agent settings
(collaborative or not)

. and others that will be revealed during the course

5/58

Introduction to (Deep) Reinforcement Learning

Reinforcement Learning provides a formalism for behaviour

Basic Loop

Consequences

6/58

Introduction to (Deep) Reinforcement Learning

Reinforcement Learning provides a formalism for behaviour
Examples

R.L lab @ Imperial

from Y. Yue 7/58

Introduction to (Deep) Reinforcement Learning

Reinforcement Learning provides a formalism for behaviour

Basic Loop in a more rigorous way to introduce notation

—

Agent

state reward
5

'
Y

y S

Environment

action
a,

8/58

Introduction to (Deep) Reinforcement Learning

What does the agent learns?

» A policy m: mapping from states S to actions P(A), based on
past experience)

» Mind the dimensionality of state, action space

......

9/58

Introduction to (Deep) Reinforcement Learning

What does the agent learns?

» A policy m: mapping from states S to actions P(A), based on
past experience)

» Mind the dimensionality of state, action space

curse of
dimensionality

|8| — (2553)2[)(])(2[}0

(more than atoms in the universe)

Figure from P.Abeel lectures on RL

10/58

Introduction to (Deep) Reinforcement Learning

Reinforcement Learning involves
» Optimization
> Exploration
> Generalization

» Consequences and Rewards (sparse and/or delayed).

11/58

Introduction to (Deep) Reinforcement Learning

Reinforcement Learning involves
» Optimization:
> Find an optimal way to make decisions, yielding the best
outcomes or at least very good outcomes.

In other words: Find the optimal policy 7* that maximizes the
sum of rewards that the agent gets while executing a task

» Exploration
> Generalization

» Consequences and Rewards (sparse and/or delayed).

12/58

Introduction to (Deep) Reinforcement Learning

Reinforcement Learning involves

>

>

Optimization
Exploration:

» Learn while interacting in the world (and failing)

> Limited interaction means limited experience and knowledge
(what would have happened if..?)

» How much curiosity should be involved in the process? What if
loosing everything while learning?

Generalization

Consequences and Rewards (sparse and/or delayed).

13/58

Introduction to (Deep) Reinforcement Learning

Reinforcement Learning involves

>

>

>

Optimization
Exploration

Generalization:

> Is it possible to learn how to take optimal decisions at every
possible state?

» What about transferring decision-making knowledge between
tasks?

Consequences and Rewards (sparse and/or delayed).

14 /58

Introduction to (Deep) Reinforcement Learning

Reinforcement Learning involves
» Optimization
» Exploration

> Generalization
» Consequences and Rewards (sparse and/or delayed).
> Decisions at any particular state may have crucial impacts later
on.
» Temporal credit assignment when learning: what caused a very
good or a very bad outcome?
> Decisions when acting in the real world involve reasoning
about long-term effects.

15/58

Introduction to (Deep) Reinforcement Learning

Why Deep Reinforcement Learning is important?

» Generalization abilities
» End-to-end training (what does it mean for RL)?

= shape e
§y ——Features—— the geor

reward > action

function

Standard RL < -

16 /58

Introduction to (Deep) Reinforcement Learning

Why Deep Reinforcement Learning is important?

> Generalization abilities

» End-to-end training (what does it mean for RL)?

17/58

Introduction to (Deep) Reinforcement Learning

Why Deep Reinforcement Learning is important?
» Generalization abilities 7y (a¢|ot), at, re

» End-to-end training (what does it mean for RL)?

perception

Eig ' State/Observations

- Damaged
Action

» Advances in DRL go in par with advances in DL.

18/58

Introduction to (Deep) Reinforcement Learning

Notation

at

s; state mo(at|st) fully observable
o: observation my(at|o;) partially observable
a; action re(st, a¢) reward

s2

p(ste1\spay) P(ste1\stay) p(st+1lspay

19/58

Introduction to (Deep) Reinforcement Learning

The objective given a POMDP (S, A, O0,E,T,r), is to learn a
policy that generates the best trajectories with high probability

My I\
01—>a1\ ‘Oz—uaz ‘03—.2\3

[N NN

ST plstrispay 2 plswdlsia) 8 plsgfissap

trajectory T
- A\ - Y - L\
s1(01 £ a1/|:{> s2(02 :{>\a@2/:{> s3(o3 :{>%}:{>

‘1) (r2) ‘:/ra)

Probability of 7 given a policy 7y
po(T) = p(s1) HL mo(ar|se) p(st+1lSt, ar)

Objective: tune 6 to get
0" = argmaxgE,.p, [X¢ rt], re = r(St, ar)

20/58

Introduction to (Deep) Reinforcement Learning

Probability of 7 given a policy my
po(7) = p(s1) Hthl mg(at|se) p(See1lst, ar)
Objective: tune 6 to get

0" = argmaxgE,.p, [X re], re = r(se, ar)

Objective for finite time horizons

T
0% = argmaxp -1 E(s, a,)~py(se,a:) [1e], Where py(st, ar) the state,
action marginal

Objective for infinite time horizons
0 = argmaxgE s 2)...[r(s,a)], where 11 = py(s, a) the stationary
distribution of states, actions

21/58

Introduction to (Deep) Reinforcement Learning

Definitions

> Quality of action at state
Q7 (st;ar) = ZZ—Eﬂ’e[r(sta at)|st, at]
Given a policy ™ and Q™ (s, a), then we can improve 7, by
choosing a = argmax, Q" (s, a)

> Value of state

Vﬂ-(st) = ZZ—Eﬁe[r(sh at)|5t] = Eapﬂ'g(at\st)[Qﬂ-(stv at)]
In case Q7 (s,a) > V7 (s) then m can be modified by
increasing the probability of a.

» Advantage
Aﬂ(sh at) = [Qﬂ—(sh af) - vﬂ—(st)]

Bellman backup

Q7(s,a) = r(st, ar) + E[(V1(st41))]

22/58

Introduction to (Deep) Reinforcement Learning

The anatomy of DRL algorithms

23/58

Introduction to (Deep) Reinforcement Learning

The anatomy of DRL algorithms

Fit a model

24/58

Introduction to (Deep) Reinforcement Learning

The anatomy of DRL algorithms

Fit a model

Improve
the policy

25 /58

Introduction to (Deep) Reinforcement Learning

The anatomy of DRL algorithms

B Fit 2 model

Improve
the policy

26 /58

Introduction to (Deep) Reinforcement Learning

The anatomy of DRL algorithms: Value based

Fit a model

Improve
the policy

(s) = argmax,(Q" (s, a))

27/58

Introduction to (Deep) Reinforcement Learning

The anatomy of DRL algorithms: Q-Learning

Fit a model
&« ¢+ avyQu(s,a)(r(s,a) + V(') - Qu(s,2))
V(s") = max,Qu(s, 2)

Improve
the policy

w(s) = argmax,(Q" (s,a))

28/58

Introduction to (Deep) Reinforcement Learning

The anatomy of DRL algorithms: Direct policy gradient

Fit a model

)=]E'r~p9('r)[Z! r(se,ae)] » % i er(sip, aie)

Improve
the policy
0« 0+avyJ()

29/58

Introduction to (Deep) Reinforcement Learning

The anatomy of DRL algorithms: Actor Critic

Fit a model
6« ¢+avsQu(s,a)(r(s,a) + V(s') - Qs(s,2))
V(s') = max, Qy(s,)

Improve
the policy
0=0+aVE(Qy(s,a))

30/58

Introduction to (Deep) Reinforcement Learning

The anatomy of Q-Learning algorithms
With a target network.

1 Observe erwironment state (s)

2. Choose random / policy action (a] . Gradient
3. Receive resulting state {5} and a0 Qlsa's67) Qfs.a;6)

reward (1)

B TargetQ Periodic
4. store all transitions (s, @, r, 5 in e Und
Memary tworl pdates
5. Sample prieritised bateh
6 Predict Q values from Policy and R e le argmax(Q,a;6)
Target Natworks ~ 58

7 Calculate DON Loss
& Optimize in order to minimize Loss
9. Periodic Target Network updates

Li(0:) = E(s.0, Rwd,s)~v (D) [(Rwd+ymaza Q(s',a'; 67)—Q(s,a; 6;))°]

31/58

Introduction to (Deep) Reinforcement Learning

The anatomy of Q-Learning algorithms
Double Q Learning with target.

1. Observe enwironment state (s)
2 Choose random / policy action (a]) Gradient
: : e "

3. Receive resulting state s’} and mazy,Qls,a0”) Qis,a,6)

reward (r))
R . Periadic
4 Store all transitions (3, @, r, 57 in - Undat
Memary pdates

5. Sample prioritized batch

6 Predict Q values from Policy and
Target Networks

7. Calculate DON Loss

8 Optimize in order to minimize Loss

argmax(Q,a;8)

Store
- Envirenment
{s2ms)

Li(g‘i) = E[s,a,Rwd,s’)~U(D) [(Rwd+'yma,xaaQ(3', ﬂ'f; 6—;_)_(‘?('5, a; 9‘5))2]

9 Periodic Target Network updates r

Replay Memory

Q(s,a) = Q(s,a) + a(Rwd + QP (s', a*) — QV(s,a))

Y, 9Pouble = Rudyyy +vQ(se41, argmaz,Q(sis1,a; 6,); 6;)

32/58

Introduction to (Deep) Reinforcement Learning

So far...
> Motivation for DRL
> Notation and Definitions
» Specification of the DRL objective
> Anatomy of any DRL algorithm

33/58

Stochastic and sub-optimal behaviour

Important questions related to (D)RL

> Does (D)RL provide a reasonable model of human behaviour?

» Can we derive optimality and planning as probabilistic
inference?

34/58

Introduction to (Deep) Reinforcement Learning
We need to take into account stochastic and sub-optimal behaviour

R.L lab @ Imperial

from Y. Yue

35/58

Introduction to (Deep) Reinforcement Learning

" Strict” rationality
In any fully observed setting we can prove that there exist
deterministic optimal policies, given that the objective is linear in
the state, action marginals.
Recall that
> Objective for finite time horizons:
T
*
0" = argmaxy Z E(Snat)NPe(St:at) [rt]
t=1

, where py(st, a¢) the state, action marginal

> Objective for infinite time horizons:

0" = argmaxgE s 2).u[r(s,a)]

, where 11 = py(s, a) the stationary distribution of states,
actions
So we need to recover rationality to take into account randomness 355

Introduction to (Deep) Reinforcement Learning
Recovering rationality using probabilistic graphical models for
sub-optimal behaviour?

TN TN /TN

(01) (02) (©3)

N\ ,,/\ 4 ,/\ . ,/\
)

(a (ap) (ag)

S
P(strlstay) s2 p(st+1lstay) 3 p(st+1lstay)

$1

Let p(Otlst, ar) = exp(r(st, at)), then

_ p(Tv Ol:T)
p(rlOLT) = p(O1.1)

o< p(T) 1:[exp(r(se,ar))
- p(r)exp(S r(st a0)

Any case with low reward is exponentially less likely to be chosen.

L evine (2018) “RL and control as probabilistic inference: Tutorial and review” 37/58

Introduction to (Deep) Reinforcement Learning

Recovering rationality using probabilistic graphical models for
sub-optimal behaviour?

p(t|OwnT) = P(T)eXP(zt: r(st,at))

Any case with low reward is exponentially less likely to be chosen.

» So we can model suboptimal behaviour - e.g. given
demonstrations of near optimal choices while performing a
task (inverse and imitation learning)

» Formulates stochastic behaviour - useful for exploration,
generalization and transfer learning.

> We can apply inference algorithms to solve control and
planning problems (under specific conditions)

2L evine (2018) “RL and control as probabilistic inference: Tutorial and review”
38/58

Introduction to (Deep) Reinforcement Learning

Recovering rationality using probabilistic graphical models for
near-optimal behaviour3

Then we can compute the near optimal policy

P(Ot:T|5t, at)

P(Ot:T|5t) P(at|5t)

ﬂ-(at’st) = p(at|sf7 Ol:T) = p(at‘sfv Ot:T) =

— /B(St) at) c
B(st)
where, c is the action prior which is constant, assuming a uniform

distribution, and § are backward messages computed recursively
from t = T to t =1, assuming knowledge of transition probabilities.

3Levine (2018) “RL and control as probabilistic inference: Tutorial and review”
39/58

Introduction to (Deep) Reinforcement Learning

Recovering rationality using probabilistic graphical models for
sub-optimal behaviour*

Given,

P(Olst, ar) o< exp(r(st, at))

p(St+1/st, ar)
Then we can compute backward messages recursively

fort=T-1to1l:
B(st,ar) = p(Otlst, at)Est+1~p(st+1|st,at) [Ber1(st+1)]
/B(sf) = Eat~p(at|st)[/6(5ta at)]

4Levine (2018) “RL and control as probabilistic inference: Tutorial and review”
40/58

Introduction to (Deep) Reinforcement Learning

Recovering rationality using probabilistic graphical models for
sub-optimal behaviour®

r//i;\\
(O

’/ \\ / \‘

) (©2) (03)

N, S N/ N
7o " 5

1\ 2\ 3\

—
pisteqlspay | 52 P(sty1lspay s3 P(ste1lstay

$1

We can also compute forward messages (useful for inverse
reinforcement learning)

at(st) = p(5¢|O1:t-1)

recursively, starting from the usually known a;(s1),
as well as the marginal probabilities

p(st|O1.1) o< Bi(st)ar(st)

5 evine (2018) “RL and control as probabilistic inference: Tutorial and review” 41/58

Introduction to (Deep) Reinforcement Learning

Recovering rationality using probabilistic graphical models for
sub-optimal behaviour®

ﬁ(st’ at) = p(0t|st7 at)Est+1~p(st+1|st,at) [ﬁt+1(5t+1)]
6(5t) = Eat~p(at|st) [5(51“7 at)]

let Q:(st,ar) = logBi(st,ar) = r(st,ar) + logE[exp(Vir1(5t+1))]
let Vi(se) = logBe(se) = log [exp(Q¢(st, ar)) day

Notice:

1. The optimistic transition implied by @Q; and

2. The softmax in the definition of V;(s;), as Q:(s¢, ar) gets
bigger.

6L evine (2018) “RL and control as probabilistic inference: Tutorial and review”
42/58

Introduction to (Deep) Reinforcement Learning
Recovering rationality using probabilistic graphical models for
sub-optimal behaviour’

Q:(st, at) = logB:(st, at)
Vi(st) = logBe(st)

fort=T-1to1l:
Q:(st;ar) = r(se, ar) + logE[exp(Vii1(st11))]
Vi(st) = log f exp(Q¢ (st, ar)) day
m(alst) = Bés(ts’a)t) = exp(Qt(st, ar) — Vi(st)) = exp(At(st, at))

adding temperature we can balance between deterministic (o — 0)
and stochastic (soft) (a — oo) policy:

B(st, at)

B(st)

"Levine (2018) “RL and control as probabilistic inference: Tutorial and review”

w(ads) - - exp(- Qs a1) - Vi(s0) = (S Ar(sc,0))

43/58

Introduction to (Deep) Reinforcement Learning

The anatomy of DRL algorithms: Soft Q-Learning with
optimality bias

Fit a model

Qe(st, at) = r(se, ar) + logE[exp(Ver1(Se+1))]

Ve(se) = ’ﬂgf exp(Qe(se, ar)) da,

Improve the policy

m(aelse) = exp(Ay(se, ar))

44 /58

Introduction to (Deep) Reinforcement Learning

Variational inference®

To

avoid the optimistic bias of increasing the probabilities of actions
that result into high rewards in very infrequent cases, we need to

consider how to act near optimally given the “original” ° transition
probabilities.
Variational inference leads to obtaining an approximation

p(s1:7,a1.7) of p(s1.7,a1.7|O1.7) with dynamics p(st.1|st, at)

8Levine (2018) “RL and control as probabilistic inference: Tutorial and review”

9i.e. Those not affected by our optimized decisions, p(s¢41|st, at, O1.7)

4558

Introduction to (Deep) Reinforcement Learning

Recovering rationality using probabilistic graphical models for
sub-optimal behaviour
Variational inference leads to obtaining an approximation
p(s1:7,a1.7) of p(s.1,a1.7|O1.7) with dynamics p(sti1|st, ar)-
Let
p(s1.1,a17) = p(s1) H p(st+1lst, ac)Paelst)
t

It is proved that by setting the variational lower bound

10gp(O1:7) 2 B, r,a1.7)~p[2. r(st, ae) = logp(aelse)]

t

this translates to maximize the reward and action entropy:

logp(O1.1) > ZE(st,at)~ﬁ[r(5ta ar) + H(p(atlst)]
t

46 /58

Introduction to (Deep) Reinforcement Learning

Recovering rationality using probabilistic graphical models for
sub-optimal behaviour!©

logp(O1.1) > ZE(st,at)~ﬁ[r(5t, ar) + H(p(atlst)]
t
is optimized when p(a¢s:) o< exp(Q(st, at)) resulting into
m(atlst) = P(atlst) = exp(Q(st,ar) — V(st))

V(st) = log f exp(Q¢ (st, at)) day

with the regular (unbiased) Bellman backup

Q:i(s,a) = r(se,ar) + E[Vir1(ste1)]

0L evine (2018) “RL and control as probabilistic inference: Tutorial and review”
47 /58

Introduction to (Deep) Reinforcement Learning

The anatomy of DRL algorithms: Soft Q-Learning

Fit a model fit V(s) or Q(s,a)
¢ — d) + chv,Q@(S. a)(r(s.a) =+ ’)/V(SI) _ Qm(s‘a))
V() = soft maxe Qu(s',a) = log | exp(Qu(s', ')

Improve the policy

w(als) = exp(Qols, a) — V(s)) = exp(A(s, a))

48/58

Introduction to (Deep) Reinforcement Learning

Soft Actor Critic (T.Haarnooja et al., 2018)

Fit a model

Q(s,a) « 7(8,8) + Eunp,, o [Q(', 8")— log (a'[s")]

Improve the policy

7O0T6.)

Tnew = arg min Dy, (r'(-1s)

1
DKL("9(3\5)||E€XP(Q¢(57) =Es[E,nry (s5) Llogmo (als) - Qy (s, 2)]]

49/58

Introduction to (Deep) Reinforcement Learning

So far...
» Recovering rationality considering sub-optimal behaviour
> Incorporating MaxEnt terms in the RL objective
» Q-Learning and Soft Q-learning
» Soft Actor Critic

50/58

Introduction to (Deep) Reinforcement Learning

Policy Gradient
Goal: maxJ(0) =B, p, (1) [X¢ r(se,at)] ~ LY Ner(sie, aie)

vJ(0) = ETW(T)[(Z: Ve/ogﬁe(arlst))(zt: r(se, at))]

N
TI0) » 3y D5 Tologro(arie)) (3 (s 20)

0« 0+aveJ(0)

REINFORCE Algorithm:

1.
2. VI(O) ~» § 21 (Ee Valogmo(arlse)) (S r(se, a))
3.

4. Go to 1.

sample 7; from 7y (at|st)

0« 0+aved(H)

51/58

Introduction to (Deep) Reinforcement Learning
Policy Gradient with Causality and baselines

1. sample 7; from my(a¢|st)

2. VJ(O) ~ S M1 (e Vologmg(atlst)) (e r(se, ar))
3. 0 < 0+avyJ(h)

4. Go to 1.

where

-
Reward to go: Q(st,a:) = Z Ex, [r(se,av|st, ar)]

t'=t
T

It can simply be: Q(s¢, ar) = > r(st,ar)
t/'=t

and
Baseline: b= V(st) = Esor,(arfs) [@St 1)]

1w a . .
It can simply be: b= m > Q(si, a;)

52/58

Introduction to (Deep) Reinforcement Learning

Policy Gradient with Causality and baselines

-
Reward to go: Q(st,a¢) ~ Y B, [r(sy, aplst, ae)]
t'=t

Baseline: b= V(st) = E,,r,(ar/s) [Q(St; ar)]

Advantage: A(st,at) = Q(st,ar) — V(st)

Usually, a simple fit A(s;, a;)suffices.

So,
1. sample 7; from mg(a¢lst)
2. VI(0) = & 2N (5, Vologmo(allsi))A(s], al)
3. 0 < 0+avyd(H)
4. Go to 1.

53/58

Introduction to (Deep) Reinforcement Learning

Policy Gradient with Causality and baselines and Importance
sampling

Making the algorithm off-policy (i.e. exploit samples from previous
iteration):

vJ(0) = ETNM(T)[Z: Velogwe(atlst)(g r(se,ar))] =

7o (at|st)
ETNﬂgr(T) [Zt: WVHIOgWH(3t|5t)(Zt: r(st7 at)]

The Algorithm:

1.

sample 7; from my:(a¢|st)

2. V() » & SN (5, 2ol g ogmy (alls))) A(sL, af)
3.
4. Goto 1.

mor (atlst)

0« 0+aved(H)

54 /58

Introduction to (Deep) Reinforcement Learning
Policy Gradient with Causality and baselines and Importance
sampling
The Algorithm:
1. sample 7; from 7y (a¢|st)
2. vJ(O) ~ % Z,Ail(Zt ;:,((Ztthsstt)) VGIOgﬂ'é)(at|5t))A(5tv t)
3.0« 0+avel(0)
4. Go to 1.

4 Fit a model

Improve
the policy
0 < 0+avyJ(0)

55 /58

Introduction to (Deep) Reinforcement Learning

Trust Region Policy Optimization (TRPO)
J.Schulman et al., “Trust Region Policy Optimization”, 2015

X [mo(a: | 50) At}

maximize [E
0 ‘ 7r9old(af | Sf)
subject to . [KL[mg, (- | st), ma(- | 5¢)]] < 6.
» Also worth considering using a penalty instead of a constraint

R { mo(ae | st)

imi & A.| — BR,[KL . :
maximize | ool 5 t:| BE[KL[mg,, (- | 5t), ma(- | se)]]

56 /58

Introduction to (Deep) Reinforcement Learning

Proximal Policy Optimization (PPO)
J.Schulman et al., "Proximal Policy Optimization”, 2017

Input: initial policy parameters 6o, clipping threshold e
for k=0,1,2,... do
Collect set of partial trajectories Dy on policy mx = m(6k)
Estimate advantages A;* using any advantage estimation algorithm
Compute policy update
Oki1 = arg maxﬁgcup(ﬁ)

by taking K steps of minibatch SGD (via Adam), where

gL
Lg,

TN‘I\'

XT: [mln(rt Af",clip (re(0),1 —€,1+¢) A:k)]:|

t=0

end for

where r:(0) = mg(a¢|st) /7o, (at|st)

- Clipping prevents policy from having incentive to go far away
from 0.1

- Clipping seems to work at least as well as PPO with KL penalty,
but is simpler to implement

57 /58

Introduction to (Deep) Reinforcement Learning

In this last part of the DRL intro we addressed...

» Policy Gradient (addressing variance and bias)
» Importance sampling for sample efficiency

» Natural Policy Gradient (TRPO)

» Proximal Policy Optimization (PPO)

58 /58

