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Outline

▸ Day 1: Motivation & Introduction to Deep Reinforcement
Learning

▸ Day 2: Inverse Reinforcement Learning and Connections to
Probabilistic Inference

▸ Day 3: Imitation Learning

▸ Day 4: Non-Markovian, Multimodal Imitation Learning

▸ Day 5: Imitating in Constrained Settings, Multiagent
Imitation Learning.
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Imitation Learning

Learning to behave from demonstrations

Examples

R.L lab @ Imperial

from Y. Yue 3 / 58



Imitation Learning

Problem (ambiguous) statement

Given a set of demonstrated trajectories D generated by an
unknown expert policy πϵ, learn a policy π that generates
trajectories that are “as close as possible” to the expert
trajectories.

4 / 58



Imitation learning

What can go wrong?

▸ Lack of training data

▸ Noisy or erroneous training data

▸ Distribution mismatch

▸ Compounding errors

▸ Discrimination ability (different actions in very similar
settings)

▸ Collapsing multi-modal behaviour in executing tasks in a
single policy

▸ Being unaware of other agents’ policies in multi-agent settings
(collaborative or not)

▸ ... and others that will be revealed during the course
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Introduction to (Deep) Reinforcement Learning

Reinforcement Learning provides a formalism for behaviour

Basic Loop
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Introduction to (Deep) Reinforcement Learning

Reinforcement Learning provides a formalism for behaviour

Examples

R.L lab @ Imperial

from Y. Yue 7 / 58



Introduction to (Deep) Reinforcement Learning

Reinforcement Learning provides a formalism for behaviour

Basic Loop in a more rigorous way to introduce notation
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Introduction to (Deep) Reinforcement Learning

What does the agent learns?

▸ A policy π: mapping from states S to actions P(A), based on
past experience)

▸ Mind the dimensionality of state, action space
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Introduction to (Deep) Reinforcement Learning

What does the agent learns?

▸ A policy π: mapping from states S to actions P(A), based on
past experience)

▸ Mind the dimensionality of state, action space

Figure from P.Abeel lectures on RL
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Introduction to (Deep) Reinforcement Learning

Reinforcement Learning involves

▸ Optimization

▸ Exploration

▸ Generalization

▸ Consequences and Rewards (sparse and/or delayed).
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Introduction to (Deep) Reinforcement Learning

Reinforcement Learning involves

▸ Optimization:
▸ Find an optimal way to make decisions, yielding the best

outcomes or at least very good outcomes.
In other words: Find the optimal policy π∗ that maximizes the
sum of rewards that the agent gets while executing a task

▸ Exploration

▸ Generalization

▸ Consequences and Rewards (sparse and/or delayed).
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Introduction to (Deep) Reinforcement Learning

Reinforcement Learning involves

▸ Optimization
▸ Exploration:

▸ Learn while interacting in the world (and failing)
▸ Limited interaction means limited experience and knowledge

(what would have happened if..?)
▸ How much curiosity should be involved in the process? What if

loosing everything while learning?

▸ Generalization

▸ Consequences and Rewards (sparse and/or delayed).
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Introduction to (Deep) Reinforcement Learning

Reinforcement Learning involves

▸ Optimization

▸ Exploration
▸ Generalization:

▸ Is it possible to learn how to take optimal decisions at every
possible state?

▸ What about transferring decision-making knowledge between
tasks?

▸ Consequences and Rewards (sparse and/or delayed).
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Introduction to (Deep) Reinforcement Learning

Reinforcement Learning involves

▸ Optimization

▸ Exploration

▸ Generalization
▸ Consequences and Rewards (sparse and/or delayed).

▸ Decisions at any particular state may have crucial impacts later
on.

▸ Temporal credit assignment when learning: what caused a very
good or a very bad outcome?

▸ Decisions when acting in the real world involve reasoning
about long-term effects.
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Introduction to (Deep) Reinforcement Learning

Why Deep Reinforcement Learning is important?

▸ Generalization abilities

▸ End-to-end training (what does it mean for RL)?

16 / 58



Introduction to (Deep) Reinforcement Learning

Why Deep Reinforcement Learning is important?

▸ Generalization abilities

▸ End-to-end training (what does it mean for RL)?

17 / 58



Introduction to (Deep) Reinforcement Learning

Why Deep Reinforcement Learning is important?

▸ Generalization abilities πθ(at ∣ot), at , rt
▸ End-to-end training (what does it mean for RL)?

▸ Advances in DRL go in par with advances in DL.
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Introduction to (Deep) Reinforcement Learning

Notation

st state πθ(at ∣st) fully observable
ot observation πθ(at ∣ot) partially observable

at action rt(st , at) reward

19 / 58



Introduction to (Deep) Reinforcement Learning

The objective given a POMDP (S ,A,O,E ,T , r), is to learn a
policy that generates the best trajectories with high probability

Probability of τ given a policy πθ

pθ(τ) = p(s1)∏
T
t=1 πθ(at ∣st)p(st+1∣st , at)

Objective: tune θ to get

θ∗ = argmaxθEτ∼pθ[∑t rt], rt = r(st , at)
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Introduction to (Deep) Reinforcement Learning

Probability of τ given a policy πθ

pθ(τ) = p(s1)∏
T
t=1 πθ(at ∣st)p(st+1∣st , at)

Objective: tune θ to get

θ∗ = argmaxθEτ∼pθ[∑t rt], rt = r(st , at)

Objective for finite time horizons

θ∗ = argmaxθ∑
T
t=1E(st ,at)∼pθ(st ,at)[rt], where pθ(st , at) the state,

action marginal

Objective for infinite time horizons

θ∗ = argmaxθE(s,a)∼µ[r(s, a)], where µ = pθ(s, a) the stationary
distribution of states, actions
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Introduction to (Deep) Reinforcement Learning

Definitions
▸ Quality of action at state

Qπ(st , at) = ∑
T
t Eπθ

[r(st , at)∣st , at]
Given a policy π and Qπ(s, a), then we can improve π, by
choosing a = argmaxaQ

π(s, a)

▸ Value of state
V π(st) = ∑

T
t Eπθ

[r(st , at)∣st] = Eat∼πθ(at ∣st)[Q
π(st , at)]

In case Qπ(s, a) > V π(s) then π can be modified by
increasing the probability of a.

▸ Advantage
Aπ(st , at) = [Q

π(st , at) −V
π(st)]

Bellman backup

Qπ
(s, a) = r(st , at) +E[(V π

t+1(st+1))]
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Introduction to (Deep) Reinforcement Learning

The anatomy of DRL algorithms
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Introduction to (Deep) Reinforcement Learning

The anatomy of DRL algorithms
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Introduction to (Deep) Reinforcement Learning

The anatomy of DRL algorithms
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Introduction to (Deep) Reinforcement Learning

The anatomy of DRL algorithms: Value based
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Introduction to (Deep) Reinforcement Learning

The anatomy of DRL algorithms: Q-Learning
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Introduction to (Deep) Reinforcement Learning

The anatomy of DRL algorithms: Direct policy gradient
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Introduction to (Deep) Reinforcement Learning

The anatomy of DRL algorithms: Actor Critic
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Introduction to (Deep) Reinforcement Learning

The anatomy of Q-Learning algorithms

With a target network.
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Introduction to (Deep) Reinforcement Learning

The anatomy of Q-Learning algorithms

Double Q Learning with target.
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Introduction to (Deep) Reinforcement Learning

So far...
▸ Motivation for DRL

▸ Notation and Definitions

▸ Specification of the DRL objective

▸ Anatomy of any DRL algorithm
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Stochastic and sub-optimal behaviour

Important questions related to (D)RL

▸ Does (D)RL provide a reasonable model of human behaviour?

▸ Can we derive optimality and planning as probabilistic
inference?
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Introduction to (Deep) Reinforcement Learning
We need to take into account stochastic and sub-optimal behaviour

R.L lab @ Imperial

from Y. Yue
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Introduction to (Deep) Reinforcement Learning

”Strict” rationality

In any fully observed setting we can prove that there exist
deterministic optimal policies, given that the objective is linear in
the state, action marginals.
Recall that

▸ Objective for finite time horizons:

θ∗ = argmaxθ
T

∑
t=1

E(st ,at)∼pθ(st ,at)[rt]

, where pθ(st , at) the state, action marginal

▸ Objective for infinite time horizons:

θ∗ = argmaxθE(s,a)∼µ[r(s, a)]

, where µ = pθ(s, a) the stationary distribution of states,
actions

So we need to recover rationality to take into account randomness
and sub-optimality (which is very natural for any human behaviour)
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Introduction to (Deep) Reinforcement Learning
Recovering rationality using probabilistic graphical models for
sub-optimal behaviour1

Let p(Ot ∣st , at) = exp(r(st , at)), then

p(τ ∣O1∶T ) =
p(τ,O1∶T )
p(O1∶T )

∝ p(τ)∏
t

exp(r(st , at))

= p(τ)exp(∑
t

r(st , at))

Any case with low reward is exponentially less likely to be chosen.
1Levine (2018) “RL and control as probabilistic inference: Tutorial and review” 37 / 58



Introduction to (Deep) Reinforcement Learning

Recovering rationality using probabilistic graphical models for
sub-optimal behaviour2

p(τ ∣O1∶T ) = p(τ)exp(∑
t

r(st , at))

Any case with low reward is exponentially less likely to be chosen.

▸ So we can model suboptimal behaviour - e.g. given
demonstrations of near optimal choices while performing a
task (inverse and imitation learning)

▸ Formulates stochastic behaviour - useful for exploration,
generalization and transfer learning.

▸ We can apply inference algorithms to solve control and
planning problems (under specific conditions)

2Levine (2018) “RL and control as probabilistic inference: Tutorial and review”
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Introduction to (Deep) Reinforcement Learning

Recovering rationality using probabilistic graphical models for
near-optimal behaviour3

Then we can compute the near optimal policy

π(at ∣st) = p(at ∣st ,O1∶T ) = p(at ∣st ,Ot ∶T ) =
p(Ot ∶T ∣st , at)
p(Ot ∶T ∣st)

p(at ∣st)

=
β(st , at)

β(st)
c

where, c is the action prior which is constant, assuming a uniform
distribution, and β are backward messages computed recursively
from t = T to t = 1, assuming knowledge of transition probabilities.

3Levine (2018) “RL and control as probabilistic inference: Tutorial and review”
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Introduction to (Deep) Reinforcement Learning

Recovering rationality using probabilistic graphical models for
sub-optimal behaviour4

Given,

p(Ot ∣st , at)∝ exp(r(st , at))

p(st+1∣st , at)

Then we can compute backward messages recursively

for t = T − 1 to 1 ∶

β(st , at) = p(Ot ∣st , at)Est+1∼p(st+1∣st ,at)[βt+1(st+1)]

β(st) = Eat∼p(at ∣st)[β(st , at)]

4Levine (2018) “RL and control as probabilistic inference: Tutorial and review”
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Introduction to (Deep) Reinforcement Learning
Recovering rationality using probabilistic graphical models for
sub-optimal behaviour5

We can also compute forward messages (useful for inverse
reinforcement learning)

at(st) = p(st ∣O1∶t−1)

recursively, starting from the usually known a1(s1),
as well as the marginal probabilities

p(st ∣O1∶T )∝ βt(st)at(st)

5Levine (2018) “RL and control as probabilistic inference: Tutorial and review” 41 / 58



Introduction to (Deep) Reinforcement Learning

Recovering rationality using probabilistic graphical models for
sub-optimal behaviour6

β(st , at) = p(Ot ∣st , at)Est+1∼p(st+1∣st ,at)[βt+1(st+1)]

β(st) = Eat∼p(at ∣st)[β(st , at)]

let Qt(st , at) = logβt(st , at) = r(st , at) + logE[exp(Vt+1(st+1))]
let Vt(st) = logβt(st) = log ∫ exp(Qt(st , at))dat

Notice:
1. The optimistic transition implied by Qt and
2. The softmax in the definition of Vt(st), as Qt(st , at) gets
bigger.

6Levine (2018) “RL and control as probabilistic inference: Tutorial and review”
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Introduction to (Deep) Reinforcement Learning
Recovering rationality using probabilistic graphical models for
sub-optimal behaviour7

Qt(st , at) = logβt(st , at)
Vt(st) = logβt(st)

for t = T − 1 to 1 ∶

Qt(st , at) = r(st , at) + logE[exp(Vt+1(st+1))]

Vt(st) = log ∫ exp(Qt(st , at))dat

π(at ∣st) =
β(st ,at)
β(st) = exp(Qt(st , at) −Vt(st)) = exp(At(st , at))

adding temperature we can balance between deterministic (α → 0)
and stochastic (soft) (α →∞) policy:

π(at ∣st) =
β(st , at)

β(st)
= exp(

1

α
Qt(st , at) −

1

α
Vt(st)) = exp(

1

α
At(st , at))

7Levine (2018) “RL and control as probabilistic inference: Tutorial and review”
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Introduction to (Deep) Reinforcement Learning

The anatomy of DRL algorithms: Soft Q-Learning with
optimality bias
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Introduction to (Deep) Reinforcement Learning

Variational inference8

To
avoid the optimistic bias of increasing the probabilities of actions
that result into high rewards in very infrequent cases, we need to

consider how to act near optimally given the “original” 9 transition
probabilities.
Variational inference leads to obtaining an approximation
p̂(s1∶T , a1∶T ) of p(s1∶T , a1∶T ∣O1∶T ) with dynamics p(st+1∣st , at)

8Levine (2018) “RL and control as probabilistic inference: Tutorial and review”
9 i.e. Those not affected by our optimized decisions, p(st+1 ∣st , at ,O1∶T )
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Introduction to (Deep) Reinforcement Learning

Recovering rationality using probabilistic graphical models for
sub-optimal behaviour

Variational inference leads to obtaining an approximation
p̂(s1∶T , a1∶T ) of p(s1∶T , a1∶T ∣O1∶T ) with dynamics p(st+1∣st , at).
Let

p̂(s1∶T , a1∶T ) = p(s1)∏
t

p(st+1∣st , at)p̂(at ∣st)

It is proved that by setting the variational lower bound

logp(O1∶T ) ≥ E(s1∶T ,a1∶T )∼p̂[∑
t

r(st , at) − log p̂(at ∣st)]

this translates to maximize the reward and action entropy:

logp(O1∶T ) ≥∑
t

E(st ,at)∼p̂[r(st , at) +H(p̂(at ∣st)]
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Introduction to (Deep) Reinforcement Learning

Recovering rationality using probabilistic graphical models for
sub-optimal behaviour10

logp(O1∶T ) ≥∑
t

E(st ,at)∼p̂[r(st , at) +H(p̂(at ∣st)]

is optimized when p̂(at ∣st)∝ exp(Q(st , at)) resulting into

π(at ∣st) = p̂(at ∣st) = exp(Q(st , at) −V (st))

V (st) = log ∫ exp(Qt(st , at))dat

with the regular (unbiased) Bellman backup

Qt(s, a) = r(st , at) +E[Vt+1(st+1)]

10Levine (2018) “RL and control as probabilistic inference: Tutorial and review”
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Introduction to (Deep) Reinforcement Learning

The anatomy of DRL algorithms: Soft Q-Learning
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Introduction to (Deep) Reinforcement Learning

Soft Actor Critic (T.Haarnooja et al., 2018)

DKL(πθ(a∣s)∣∣
1

Z
exp(Qϕ(s, a))) = Es [Ea∼πθ(s)[logπθ(a∣s) −Qϕ(s, a)]]
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Introduction to (Deep) Reinforcement Learning

So far...
▸ Recovering rationality considering sub-optimal behaviour

▸ Incorporating MaxEnt terms in the RL objective

▸ Q-Learning and Soft Q-learning

▸ Soft Actor Critic
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Introduction to (Deep) Reinforcement Learning

Policy Gradient

Goal: maxJ(θ) = Eτ∼pθ(τ)[∑t r(st , at)] ≈
1
N ∑i ∑t r(si ,t , ai ,t)

∇J(θ) = Eτ∼πθ(τ)[(∑
t

∇θlogπθ(at ∣st))(∑
t

r(st , at))]

∇J(θ) ≈
1

N

N

∑
i=1
(∑

t

∇θlogπθ(at ∣st))(∑
t

r(st , at))

θ ← θ + α∇θJ(θ)

REINFORCE Algorithm:

1. sample τi from πθ(at ∣st)

2. ∇J(θ) ≈ 1
N ∑

N
i=1(∑t ∇θlogπθ(at ∣st))(∑t r(st , at))

3. θ ← θ + α∇θJ(θ)

4. Go to 1.
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Introduction to (Deep) Reinforcement Learning

Policy Gradient with Causality and baselines

1. sample τi from πθ(at ∣st)

2. ∇J(θ) ≈ 1
N ∑

N
i=1(∑t ∇θlogπθ(at ∣st))(∑t r(st , at))

3. θ ← θ + α∇θJ(θ)

4. Go to 1.

where

Reward to go: Q̂(st , at) =
T

∑
t′=t

Eπθ
[r(st′ , at′ ∣st , at)]

It can simply be: Q̂(st , at) =
T

∑
t′=t

r(st , at)

and
Baseline: b = V (st) = Eat∼πθ(at ∣st)[Q(st , at)]

It can simply be: b =
1

N
∑
i

Q̂(s it , a
i
t)
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Introduction to (Deep) Reinforcement Learning

Policy Gradient with Causality and baselines

Reward to go: Q(st , at) ≈
T

∑
t′=t

Eπθ
[r(st′ , at′ ∣st , at)]

Baseline: b = V (st) = Eat∼πθ(at ∣st)[Q(st , at)]

Advantage: A(st , at) = Q(st , at) −V (st)

Usually, a simple fit Â(st , at)suffices.
So,

1. sample τi from πθ(at ∣st)

2. ∇J(θ) ≈ 1
N ∑

N
i=1(∑t ∇θlogπθ(a

i
t ∣s

i
t))Â(s

i
t , a

i
t)

3. θ ← θ + α∇θJ(θ)

4. Go to 1.
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Introduction to (Deep) Reinforcement Learning

Policy Gradient with Causality and baselines and Importance
sampling

Making the algorithm off-policy (i.e. exploit samples from previous
iteration):

∇J(θ) = Eτ∼πθ(τ)[∑
t

∇θlogπθ(at ∣st)(∑
t

r(st , at))] =

Eτ∼πθ′(τ)[∑
t

πθ(at ∣st)

πθ′(at ∣st)
∇θlogπθ(at ∣st)(∑

t

r(st , at)]

The Algorithm:

1. sample τi from πθ′(at ∣st)

2. ∇J(θ) ≈ 1
N ∑

N
i=1(∑t

πθ(at ∣st)
πθ′(at ∣st)∇θlogπθ(a

i
t ∣s

i
t))Â(s

i
t , a

i
t)

3. θ ← θ + α∇θJ(θ)

4. Go to 1.
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Introduction to (Deep) Reinforcement Learning
Policy Gradient with Causality and baselines and Importance
sampling

The Algorithm:

1. sample τi from πθ′(at ∣st)

2. ∇J(θ) ≈ 1
N ∑

N
i=1(∑t

πθ(at ∣st)
πθ′(at ∣st)∇θlogπθ(a

i
t ∣s

i
t))Â(s

i
t , a

i
t)

3. θ ← θ + α∇θJ(θ)

4. Go to 1.
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Introduction to (Deep) Reinforcement Learning

Trust Region Policy Optimization (TRPO)

J.Schulman et al.,“Trust Region Policy Optimization”, 2015
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Introduction to (Deep) Reinforcement Learning

Proximal Policy Optimization (PPO)

J.Schulman et al.,“Proximal Policy Optimization”, 2017

where rt(θ) = πθ(at ∣st)/πθk (at ∣st)
- Clipping prevents policy from having incentive to go far away
from θk+1
- Clipping seems to work at least as well as PPO with KL penalty,
but is simpler to implement
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Introduction to (Deep) Reinforcement Learning

In this last part of the DRL intro we addressed...

▸ Policy Gradient (addressing variance and bias)

▸ Importance sampling for sample efficiency

▸ Natural Policy Gradient (TRPO)

▸ Proximal Policy Optimization (PPO)

58 / 58


