
1

CS678 - Advanced NLP

Intro:
Neural Language Models

Antonis Anastasopoulos

antonis@gmu.edu

mailto:antonis@gmu.edu

Our goal today
What is natural language processing?

Specifically today:

- Class Logistics

- Neural Networks for NLP and Language Modeling

3

Hello, everyone!
Research Interests: NLP and AI

NLP for Low-Resource Languages
Machine Translation
Multilinguality and Cross-Lingual Learning
Fairness in NLP

Collaborations:
Carnegie Mellon University, U. Washington, Google,
Amazon (AWS), Meta, U. of Notre Dame, Microsoft,
Karya.

Antonis Anastasopoulos,
Asst. Prof.@GMU CS

Researcher @Archimedes AI

4

A bit about you
5

Language
is Hard!

6

Are These Sentences OK?

7

Are These Sentences OK?

7

Jane went to the store.

Are These Sentences OK?

7

Jane went to the store.

store to Jane went the.

Are These Sentences OK?

7

Jane went to the store.

store to Jane went the.

Jane went store.

Are These Sentences OK?

7

Jane went to the store.

store to Jane went the.

Jane went store.

Jane goed to the store.

Are These Sentences OK?

7

Jane went to the store.

store to Jane went the.

Jane went store.

Jane goed to the store.

The store went to Jane.

Are These Sentences OK?

7

Jane went to the store.

store to Jane went the.

Jane went store.

Jane goed to the store.

The store went to Jane.

The food truck went to Jane.

Engineering Solutions

8

Jane went to the store.

store to Jane went the.

Jane went store.

Jane goed to the store.

The store went to Jane.

The food truck went to Jane.

Engineering Solutions

8

} Create a grammar of
the language

Jane went to the store.

store to Jane went the.

Jane went store.

Jane goed to the store.

The store went to Jane.

The food truck went to Jane.

Engineering Solutions

8

} Create a grammar of
the language

} Consider
morphology and exceptions

Jane went to the store.

store to Jane went the.

Jane went store.

Jane goed to the store.

The store went to Jane.

The food truck went to Jane.

Engineering Solutions

8

} Create a grammar of
the language

} Consider
morphology and exceptions

} Semantic categories,
preferences

Jane went to the store.

store to Jane went the.

Jane went store.

Jane goed to the store.

The store went to Jane.

The food truck went to Jane.

Engineering Solutions

8

} Create a grammar of
the language

} Consider
morphology and exceptions

} Semantic categories,
preferences
} And their exceptions

Jane went to the store.

store to Jane went the.

Jane went store.

Jane goed to the store.

The store went to Jane.

The food truck went to Jane.

Are These Sentences OK?
ジェインは店へ⾏った。

は店⾏ったジェインは。

ジェインは店へ⾏た。

店はジェインへ⾏った。

屋台はジェインのところへ⾏った。

9

Μπορείτε να διαβάσετε αυτήν
την πρόταση;

Potete leggere questa frase?

इस वाक्य क्या आप को पढ़ सकते हैं?

mungawerenge chiganizo ichi?

Phenomena to Handle
Morphology

Syntax

Semantics/World Knowledge

Discourse

Pragmatics

Multilinguality

10

Neural Nets for NLP

11

Neural Nets for NLP
Neural nets are a tool to do hard things!

11

Neural Nets for NLP
Neural nets are a tool to do hard things!

Combined with lots of data and compute, they can approximate any
function!

11

What do you think of
when you think of NLP?

12

What will you learn?

13

What will you learn?

13

1. The generics of how large pre-trained neural language models are trained and operate

What will you learn?

13

1. The generics of how large pre-trained neural language models are trained and operate

2. Understand the limitations of current technologies

What will you learn?

13

1. The generics of how large pre-trained neural language models are trained and operate

2. Understand the limitations of current technologies

3. Learn about the harms associated with their use and ways to mitigate them

How will you learn?
(syllabus highlights)

14

Syllabus Highlights

15

Syllabus Highlights
Mostly lectures, but
 I’ll try to have some sort of interactive element every day

15

Syllabus Highlights
Mostly lectures, but
 I’ll try to have some sort of interactive element every day

15

Syllabus Highlights
Mostly lectures, but
 I’ll try to have some sort of interactive element every day

- I will provide additional readings for anyone interested

15

Lectures

16

Lectures
You should ask lots of questions

16

Lectures
You should ask lots of questions

- interrupting (by raising a hand) to ask your question is strongly
encouraged

16

Lectures
You should ask lots of questions

- interrupting (by raising a hand) to ask your question is strongly
encouraged

- Asking questions later (or in real time)

16

Lectures
You should ask lots of questions

- interrupting (by raising a hand) to ask your question is strongly
encouraged

- Asking questions later (or in real time)

16

Lectures
You should ask lots of questions

- interrupting (by raising a hand) to ask your question is strongly
encouraged

- Asking questions later (or in real time)

Interaction improves learning!

16

Logistics
We will use Discord for

Announcements

Distributing course materials before/after class

17

Language Models

18

Calculating the Probability
of a Sentence

P(X) =
n

∏
i=1

P(xi)

Jane went to the store .

Calculating the Probability
of a Sentence

P(X) =
n

∏
i=1

P(xi)

Jane went to the store .

Unigram

Calculating the Probability
of a Sentence

P(X) =
n

∏
i=1

P(xi)

Jane went to the store .

Unigram

P(Jane went to the store) = P(Jane) × P(went) × P(to) ×
P(the) × P(store) × P(.) .

Calculating the Probability
of a Sentence

P(X) =
n

∏
i=1

P(xi)

Jane went to the store .

Unigram

P(Jane went to the store) = P(Jane) × P(went) × P(to) ×
P(the) × P(store) × P(.) .

But word order and context matters!

Calculating the Probability
of a Sentence

P (X) =
IY

i=1

P (xi | x1, . . . , xi�1)

Next Word Context

Calculating the Probability
of a Sentence

P (X) =
IY

i=1

P (xi | x1, . . . , xi�1)

Next Word Context

P(Jane went to the store) = P(Jane | < s >) × P(went |Jane) ×
P(to |went) × P(the | to) ×
P(store | the) × P(. |store)
P(< /s > | .)

Calculating the Probability
of a Sentence

P (X) =
IY

i=1

P (xi | x1, . . . , xi�1)

Next Word Context

P (xi | x1, . . . , xi�1)
The big problem: How do we predict

?!?!

Count-based Language
Models

Count-based Language
Models

• Count up the frequency and divide:

PML(xi | xi�n+1, . . . , xi�1) :=
c(xi�n+1, . . . , xi)

c(xi�n+1, . . . , xi�1)

Count-based Language
Models

• Count up the frequency and divide:

PML(xi | xi�n+1, . . . , xi�1) :=
c(xi�n+1, . . . , xi)

c(xi�n+1, . . . , xi�1)

Corpus:
 The cat sat on the mat .
 A dog chased the cat .

A mouse ate some cheese .
The mouse ran under a mat .

Count-based Language
Models

• Count up the frequency and divide:

PML(xi | xi�n+1, . . . , xi�1) :=
c(xi�n+1, . . . , xi)

c(xi�n+1, . . . , xi�1)

p(chased |dog) = ? p(cat | the) = ? p(the | < s >) = ?

Corpus:
 The cat sat on the mat .
 A dog chased the cat .

A mouse ate some cheese .
The mouse ran under a mat .

Count-based Language
Models

• Count up the frequency and divide:

PML(xi | xi�n+1, . . . , xi�1) :=
c(xi�n+1, . . . , xi)

c(xi�n+1, . . . , xi�1)

Corpus:
 The cat sat on the mat .
 A dog chased the cat .

p(chased |dog) =
1
1

= 1 p(cat | the) =
1
4

= 0.25 p(the |<s>) = 0.5

A mouse ate some cheese .
The mouse ran under a mat .

Count-based Language
Models

• Count up the frequency and divide:

PML(xi | xi�n+1, . . . , xi�1) :=
c(xi�n+1, . . . , xi)

c(xi�n+1, . . . , xi�1)

Corpus:
 The cat sat on the mat .
 A dog chased the cat .

p(A cat chased the mouse .) = ?

A mouse ate some cheese .
The mouse ran under a mat .

Count-based Language
Models

Corpus:
 The cat sat on the mat .
 A dog chased the cat .

p(A cat chased the mouse .) =
p(<s> |A) ×
p(cat |a) ×
p(chased |cat) ×
p(the |chased) ×
p(mouse | the) ×
p(. |mouse)

A mouse ate some cheese .
The mouse ran under a mat .

Count-based Language
Models

Corpus:
 The cat sat on the mat .
 A dog chased the cat .

p(A cat chased the mouse .) =
p(<s> |A) ×
p(cat |a) ×
p(chased |cat) ×
p(the |chased) ×
p(mouse | the) ×
p(. |mouse)

A mouse ate some cheese .
The mouse ran under a mat .

Count-based Language
Models

• Count up the frequency and divide:

PML(xi | xi�n+1, . . . , xi�1) :=
c(xi�n+1, . . . , xi)

c(xi�n+1, . . . , xi�1)

• Add smoothing to deal with zero counts:

p(xi |xi−n+1:i−1) =
c(xi−n+1:i) + α

c(xi−n+1:i−1) + α |V |

Count-based Language
Models

Corpus:
 The cat sat on the mat .
 A dog chased the cat .

A mouse ate some cheese .
The mouse ran under a mat .

|V | = |{the, a, cat, sat, . . . } | = 15 α = 1

Count-based Language
Models

Corpus:
 The cat sat on the mat .
 A dog chased the cat .

A mouse ate some cheese .
The mouse ran under a mat .

p(A cat chased the mouse .) =
p(<s> ||A) ×
p(cat |a) ×
p(chased |cat) ×
p(the |chased) ×
p(mouse | the) ×
p(. |mouse)

|V | = |{the, a, cat, sat, . . . } | = 15 α = 1

An Alternative:
Featurized Log-Linear Models

An Alternative:
Featurized Models

An Alternative:
Featurized Models

• Calculate features of the context

An Alternative:
Featurized Models

• Calculate features of the context

• Based on the features, calculate probabilities

An Alternative:
Featurized Models

• Calculate features of the context

• Based on the features, calculate probabilities

• Optimize feature weights using gradient descent,
etc.

Example:
Previous words: “giving a"

Example:
Previous words: “giving a"

a
the
talk
gift
hat
…

Words we’re
predicting

Example:
Previous words: “giving a"

a
the
talk
gift
hat
…

Words we’re
predicting

3.0
2.5
-0.2
0.1
1.2
…

b=

How likely
are they?

Example:
Previous words: “giving a"

a
the
talk
gift
hat
…

Words we’re
predicting

3.0
2.5
-0.2
0.1
1.2
…

b=

How likely
are they?

-6.0
-5.1
0.2
0.1
0.5
…

w1,a=

How likely
are they

given prev.
word is “a”?

Example:
Previous words: “giving a"

a
the
talk
gift
hat
…

Words we’re
predicting

3.0
2.5
-0.2
0.1
1.2
…

b=

How likely
are they?

-6.0
-5.1
0.2
0.1
0.5
…

w1,a=

How likely
are they

given prev.
word is “a”?

-0.2
-0.3
1.0
2.0
-1.2
…

w2,giving=

How likely
are they

given 2nd prev.
word is “giving”?

Example:
Previous words: “giving a"

a
the
talk
gift
hat
…

Words we’re
predicting

3.0
2.5
-0.2
0.1
1.2
…

b=

How likely
are they?

-6.0
-5.1
0.2
0.1
0.5
…

w1,a=

How likely
are they

given prev.
word is “a”?

-0.2
-0.3
1.0
2.0
-1.2
…

w2,giving=

How likely
are they

given 2nd prev.
word is “giving”?

-3.2
-2.9
1.0
2.2
0.6
…

s=

Total
score

Softmax
• Convert scores into probabilities by taking the

exponent and normalizing (softmax)

Softmax
• Convert scores into probabilities by taking the

exponent and normalizing (softmax)

P (xi | xi�1
i�n+1) =

es(xi|xi�1
i�n+1)

P
x̃i
es(x̃i|xi�1

i�n+1)

Softmax
• Convert scores into probabilities by taking the

exponent and normalizing (softmax)

P (xi | xi�1
i�n+1) =

es(xi|xi�1
i�n+1)

P
x̃i
es(x̃i|xi�1

i�n+1)

-3.2
-2.9
1.0
2.2
0.6
…

s=

0.002
0.003
0.329
0.444
0.090

…

p=

A Computation Graph View
giving a

Each vector is size of output vocabulary

A Computation Graph View
giving a

lookup2

A Computation Graph View
giving a

lookup2 lookup1

A Computation Graph View
giving a

lookup2 lookup1

+ +

bias

A Computation Graph View
giving a

lookup2 lookup1

+ +

bias

=

scores

A Computation Graph View
giving a

lookup2 lookup1

+ +

bias

=

scores

softmax

probs

A Computation Graph View
giving a

lookup2 lookup1

+ +

bias

=

scores

softmax

probs

Each vector is size of output vocabulary

Neural Networks:
A Tool for Doing Hard Things

55

An Example Prediction Problem: Sentence Classification

56

An Example Prediction Problem: Sentence Classification

56

I hate this movie

An Example Prediction Problem: Sentence Classification

56

I hate this movie

I love this movie

An Example Prediction Problem: Sentence Classification

56

I hate this movie

I love this movie

very good
good

neutral
bad

very bad

An Example Prediction Problem: Sentence Classification

56

I hate this movie

I love this movie

very good
good

neutral
bad

very bad

very good
good

neutral
bad

very bad

An Example Prediction Problem: Sentence Classification

56

I hate this movie

I love this movie

very good
good

neutral
bad

very bad

very good
good

neutral
bad

very bad

An Example Prediction Problem: Sentence Classification

56

I hate this movie

I love this movie

very good
good

neutral
bad

very bad

very good
good

neutral
bad

very bad

A First Try:
Bag of Words (BOW)

Each word has a vector of weights for each tag

57

I hate this movie

A First Try:
Bag of Words (BOW)

Each word has a vector of weights for each tag

57

I hate this movie

lookup

A First Try:
Bag of Words (BOW)

Each word has a vector of weights for each tag

57

I hate this movie

lookup lookup

A First Try:
Bag of Words (BOW)

Each word has a vector of weights for each tag

57

I hate this movie

lookup lookup lookup

A First Try:
Bag of Words (BOW)

Each word has a vector of weights for each tag

57

I hate this movie

lookup lookup lookup lookup

A First Try:
Bag of Words (BOW)

Each word has a vector of weights for each tag

57

I hate this movie

lookup lookup lookup lookup bias

A First Try:
Bag of Words (BOW)

Each word has a vector of weights for each tag

57

I hate this movie

lookup lookup lookup lookup

+ + + +

bias

A First Try:
Bag of Words (BOW)

Each word has a vector of weights for each tag

57

I hate this movie

lookup lookup lookup lookup

+ + + +

bias scores

A First Try:
Bag of Words (BOW)

Each word has a vector of weights for each tag

57

I hate this movie

lookup lookup lookup lookup

+ + + +

bias

=

scores

A First Try:
Bag of Words (BOW)

Each word has a vector of weights for each tag

57

I hate this movie

lookup lookup lookup lookup

+ + + +

bias

=

scores

softmax

probs

What do Our Vectors Represent?

58

What do Our Vectors Represent?
Each word has its own 5 elements corresponding to [very good, good,
neutral, bad, very bad]

58

What do Our Vectors Represent?
Each word has its own 5 elements corresponding to [very good, good,
neutral, bad, very bad]

“hate” will have a high value for “very bad”, etc.

58

Build It, Break It

59

Build It, Break It

59

I don’t love this movie

Build It, Break It

59

I don’t love this movie

very good
good

neutral
bad

very bad

Build It, Break It

59

I don’t love this movie

very good
good

neutral
bad

very bad

Build It, Break It

59

There’s nothing I don’t
love about this movie

I don’t love this movie

very good
good

neutral
bad

very bad

Build It, Break It

59

There’s nothing I don’t
love about this movie

very good
good

neutral
bad

very bad

I don’t love this movie

very good
good

neutral
bad

very bad

Build It, Break It

59

There’s nothing I don’t
love about this movie

very good
good

neutral
bad

very bad

I don’t love this movie

very good
good

neutral
bad

very bad

Combination Features

60

Combination Features
Does it contain “don’t” and “love”?

60

Combination Features
Does it contain “don’t” and “love”?

Does it contain “don’t”, “i”, “love”, and “nothing”?

60

Basic Idea of Neural Networks (for NLP Prediction Tasks)

61

I hate this movie

Basic Idea of Neural Networks (for NLP Prediction Tasks)

61

I hate this movie

lookup

Basic Idea of Neural Networks (for NLP Prediction Tasks)

61

I hate this movie

lookup lookup

Basic Idea of Neural Networks (for NLP Prediction Tasks)

61

I hate this movie

lookup lookup lookup

Basic Idea of Neural Networks (for NLP Prediction Tasks)

61

I hate this movie

lookup lookup lookup lookup

Basic Idea of Neural Networks (for NLP Prediction Tasks)

61

I hate this movie

lookup lookup lookup lookup

some complicated function
to extract combination

features
(neural net)

Basic Idea of Neural Networks (for NLP Prediction Tasks)

61

I hate this movie

lookup lookup lookup lookup

some complicated function
to extract combination

features
(neural net)

scores

Basic Idea of Neural Networks (for NLP Prediction Tasks)

61

I hate this movie

lookup lookup lookup lookup

softmax

probs

some complicated function
to extract combination

features
(neural net)

scores

Continuous Bag of Words (CBOW)
Each word has a feature vector, each feature has weights

62

I hate this movie

Continuous Bag of Words (CBOW)
Each word has a feature vector, each feature has weights

62

I hate this movie

lookup

Continuous Bag of Words (CBOW)
Each word has a feature vector, each feature has weights

62

I hate this movie

+ + +

lookup lookup lookuplookup

Continuous Bag of Words (CBOW)
Each word has a feature vector, each feature has weights

62

I hate this movie

+ + +

lookup lookup lookuplookup

=

Continuous Bag of Words (CBOW)
Each word has a feature vector, each feature has weights

62

I hate this movie

+ + +

lookup lookup lookuplookup

W

=

Continuous Bag of Words (CBOW)
Each word has a feature vector, each feature has weights

62

I hate this movie

+

bias

+ + +

lookup lookup lookuplookup

W

=

Continuous Bag of Words (CBOW)
Each word has a feature vector, each feature has weights

62

I hate this movie

+

bias

=

scores

+ + +

lookup lookup lookuplookup

W

=

What do Our Vectors Represent?

63

What do Our Vectors Represent?
Each vector has “features” (e.g. is this an animate object? is this a positive
word, etc.)

63

What do Our Vectors Represent?
Each vector has “features” (e.g. is this an animate object? is this a positive
word, etc.)

We sum these features, then use these to make predictions

63

What do Our Vectors Represent?
Each vector has “features” (e.g. is this an animate object? is this a positive
word, etc.)

We sum these features, then use these to make predictions

Still no combination features: only the expressive power of a linear model,
but dimension reduced

63

Deep CBOW
Add several feature transforms

64

I hate this movie

Deep CBOW
Add several feature transforms

64

I hate this movie

+ + +

=

Deep CBOW
Add several feature transforms

64

I hate this movie

+ + +

=
tanh(
 W1*h + b1)

Deep CBOW
Add several feature transforms

64

I hate this movie

+ + +

=
tanh(
 W1*h + b1)

tanh(
 W2*h + b2)

Deep CBOW
Add several feature transforms

64

I hate this movie

+

bias

=

scores

W

+ + +

=
tanh(
 W1*h + b1)

tanh(
 W2*h + b2)

What do Our Vectors Represent?

65

What do Our Vectors Represent?
Now things are more interesting!

65

What do Our Vectors Represent?
Now things are more interesting!

We can learn feature combinations (a node in the second layer might be
“feature 1 AND feature 5 are active”)

65

What do Our Vectors Represent?
Now things are more interesting!

We can learn feature combinations (a node in the second layer might be
“feature 1 AND feature 5 are active”)

e.g. capture things such as “not” AND “hate”

65

What is a Neural Net?
Computation Graphs

66

Original Motivation: The Brain

Current Implementation

“Neural” Nets

67 Image credit: Wikipedia

Original Motivation: The Brain

Current Implementation

“Neural” Nets

67

Original Motivation: Neurons in the Brain

Image credit: Wikipedia

Original Motivation: The Brain

Current Implementation

“Neural” Nets

67

Original Motivation: Neurons in the Brain

Image credit: Wikipedia

Current Conception: Computation Graphs

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi

68

y = x>Ax+ b · x+ c

expression:

68

y = x>Ax+ b · x+ c

expression:

x

graph:

68

y = x>Ax+ b · x+ c

A node is a {tensor, matrix, vector, scalar} value

expression:

x

graph:

69

y = x>Ax+ b · x+ c

x

expression:

graph:

f(u) = u>

69

y = x>Ax+ b · x+ c

x

expression:

graph:

An edge represents a function argument
(and also an data dependency). They are just
pointers to nodes.

f(u) = u>

69

y = x>Ax+ b · x+ c

x

expression:

graph:

An edge represents a function argument
(and also an data dependency). They are just
pointers to nodes.
A node with an incoming edge is a function of that
edge’s tail node.

f(u) = u>

69

y = x>Ax+ b · x+ c

x

expression:

graph:

An edge represents a function argument
(and also an data dependency). They are just
pointers to nodes.
A node with an incoming edge is a function of that
edge’s tail node.

f(u) = u>

A node knows how to compute its value and the
value of its derivative w.r.t each argument (edge)
times a derivative of an arbitrary input .@F

@f(u)

@f(u)

@u

@F
@f(u)

=

✓
@F

@f(u)

◆>

70

y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

expression:

graph:

Functions can be nullary, unary,
binary, … n-ary. Often they are unary or binary.

71

y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

expression:

graph:

Computation graphs are directed and acyclic

72

y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

x A

f(x,A) = x>Ax

@f(x,A)

@A
= xx>

@f(x,A)

@x
= (A> +A)x

expression:

graph:

73

y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi

expression:

graph:

74

y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

y
f(x1, x2, x3) =

X

i

xi

expression:

graph:

74

y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

y
f(x1, x2, x3) =

X

i

xi

expression:

graph:

variable names are just labelings of nodes.

Algorithms (1)
Graph construction
Forward propagation

In topological order, compute the value of the node given its inputs

75

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

Forward Propagation

76

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

Forward Propagation

77

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

Forward Propagation

78

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

Forward Propagation

79

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

x>A

Forward Propagation

80

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

x>A

b · x

Forward Propagation

81

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

x>A

b · x

x>Ax

Forward Propagation

82

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

x>A

b · x

x>Ax

Forward Propagation

83

x>Ax+ b · x+ c

Algorithms (2)

84

Algorithms (2)
Back-propagation:

Process examples in reverse topological order

Calculate the derivatives of the parameters with respect to the final value
(This is usually a “loss function”, a value we want to minimize)

84

Algorithms (2)
Back-propagation:

Process examples in reverse topological order

Calculate the derivatives of the parameters with respect to the final value
(This is usually a “loss function”, a value we want to minimize)

Parameter update:
Move the parameters in the direction of this derivative
W -= α * dl/dW

84

BACKPROPAGATION OF ERRORS
Intuitions

81

85

Error Back-Propagation

82
Slide from (Stoyanov & Eisner, 2012)

86

Error Back-Propagation

83
Slide from (Stoyanov & Eisner, 2012)

87

Error Back-Propagation

84
Slide from (Stoyanov & Eisner, 2012)

88

Error Back-Propagation

85
Slide from (Stoyanov & Eisner, 2012)

89

Error Back-Propagation

86
Slide from (Stoyanov & Eisner, 2012)

90

Error Back-Propagation

87
Slide from (Stoyanov & Eisner, 2012)

91

Error Back-Propagation

88
Slide from (Stoyanov & Eisner, 2012)

92

Error Back-Propagation

89
Slide from (Stoyanov & Eisner, 2012)

93

Error Back-Propagation

90
Slide from (Stoyanov & Eisner, 2012)

94

Error Back-Propagation

91

y(i)

p(y|x(i))

z

ϴ

Slide from (Stoyanov & Eisner, 2012)
95

Text Credit: Max Deutsch (https://medium.com/deep-writing/)

Language Models
• Language models are generative models of text

s ~ P(x)

Text Credit: Max Deutsch (https://medium.com/deep-writing/)

Language Models
• Language models are generative models of text

s ~ P(x)

Text Credit: Max Deutsch (https://medium.com/deep-writing/)

“The Malfoys!” said Hermione.

Harry was watching him. He looked like Madame Maxime. When she strode up
the wrong staircase to visit himself.

“I’m afraid I’ve definitely been suspended from power, no chance — indeed?”
said Snape. He put his head back behind them and read groups as they crossed a
corner and fluttered down onto their ink lamp, and picked up his spoon. The
doorbell rang. It was a lot cleaner down in London.

Language Models
• Language models are generative models of text

The Generation Problem

The Generation Problem
• We have a model of P(Y|X), how do we use it to

generate a sentence?

The Generation Problem
• We have a model of P(Y|X), how do we use it to

generate a sentence?

• Two methods:

The Generation Problem
• We have a model of P(Y|X), how do we use it to

generate a sentence?

• Two methods:

• Sampling: Try to generate a random sentence
according to the probability distribution.

The Generation Problem
• We have a model of P(Y|X), how do we use it to

generate a sentence?

• Two methods:

• Sampling: Try to generate a random sentence
according to the probability distribution.

• Argmax: Try to generate the sentence with the
highest probability.

Ancestral Sampling

Ancestral Sampling

• Randomly generate words one-by-one.

Ancestral Sampling

• Randomly generate words one-by-one.

while yj-1 != “</s>”:
 yj ~ P(yj | X, y1, …, yj-1)

Ancestral Sampling

• Randomly generate words one-by-one.

• An exact method for sampling from P(X), no further
work needed.

while yj-1 != “</s>”:
 yj ~ P(yj | X, y1, …, yj-1)

Greedy Search

Greedy Search
• One by one, pick the single highest-probability word

Greedy Search
• One by one, pick the single highest-probability word

while yj-1 != “</s>”:
 yj = argmax P(yj | X, y1, …, yj-1)

Greedy Search
• One by one, pick the single highest-probability word

• Not exact, real problems:

while yj-1 != “</s>”:
 yj = argmax P(yj | X, y1, …, yj-1)

Greedy Search
• One by one, pick the single highest-probability word

• Not exact, real problems:

• Will often generate the “easy” words first

while yj-1 != “</s>”:
 yj = argmax P(yj | X, y1, …, yj-1)

Greedy Search
• One by one, pick the single highest-probability word

• Not exact, real problems:

• Will often generate the “easy” words first

• Will prefer multiple common words to one rare word

while yj-1 != “</s>”:
 yj = argmax P(yj | X, y1, …, yj-1)

