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Previously
Arc consistency:

– The arc (Vi,Vj) is arc consistent iff for each value x from the domain Di there exists a value 
y in the domain Dj such that the assignment Vi =x a Vj = y satisfies all the binary 
constraints on Vi, Vj.

Note: The concept of arc consistency is directional, i.e., arc consistency of (Vi,Vj) does not 
guarantee consistency of (Vj,Vi).

– CSP is arc consistent iff every arc (Vi,Vj) is arc consistent (in both directions).

Example:

Sometimes AC directly provides a solution.
 any domain is empty ® no solution exists
 all domains are singleton ® this is a solution

In general, AC decreases the size of the search space.

CSP is arc consistent
but there is no solution!
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Path consistency (PC)

How to strengthen the consistency level?
 More constraints are assumed together!

Definition:
– The path (V0,V1,…, Vm) is path consistent iff for every pair  of 

values xÎD0 a yÎDm satisfying all the binary constraints on 
V0,Vm there exists an assignment of variables V1,…,Vm-1 such 
that all the binary constraints between the neighbouring 
variables  Vi,Vi+1 are satisfied.

– CSP is path consistent iff every path is consistent.

Beware:
– only the constraints between

the neighboring variables must
be satisfied
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PC and paths of length two

It is not very practical to make all paths consistent.
 Fortunately, it is enough to make path of length 2 consistent!

Theorem: CSP is PC if and only if all paths of length 2 are PC.
Proof:

1) PC Þ paths of length 2 are PC
2) All paths of length 2 are PC Þ "N paths of length N are PC Þ PC
induction using the path length

a) N=2 trivially true
b) N+1 (assuming that the theorem holds for N)

i) take any N+2 nodes V0,V1,…, Vn+1

ii) take any two consistent values x0ÎD0 a xn+1ÎDn+1

iii) using a) find the value xnÎDn st. P0,n and Pn,n+1 holds
iv) using induction find the other values V0,V1,…, Vn
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Montanari (1974)



Relation between PC and AC

Does PC cover AC (if CSP PC, then is it also AC)?
– arc (i, j) is consistent (AC), if the path (i,j,i) is consistent 

(PC)
– PC implies AC

Is PC stronger than AC (is there any CSP whish is AC but 
not PC)?
Example: X in {1,2}, Y in {1,2}, Z in {1,2},    X¹Z, X¹Y, Y¹Z

• It is AC, but not PC (X=1, Z=2 is not consistent over X,Y,Z)

AC removes inconsistent values from the domains.
What is done by PC algorithms?

– PC removes pairs of inconsistent values
– PC makes all relations explicit (A<B,B<C Þ A+1<C)
– unary constraint = domain of the variable



Representation of constraints

PC algorithms will remove pairs of values
Ä we need to represent the constraints explicitly

Binary constraints = {0,1}-matrix
0 – pair of values is inconsistent
1 – pair of values is consistent

Example (5-queens problem)
constraint between queens i and j: r(i) ¹ r(j) & |i-j| ¹ |r(i)-r(j)|
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Matrix representation for
constraint A(1) - C(3)
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Operations over constraints

Constraint intersection Rij & R‘ij
bitwise AND

A<B   & A³B-1  ® B-1£A<B
011  110      010 
001    & 111      =    001
000  111      000

Constraint join Rik * Rkj ® Rij

Binary matrix multiplication
A<B    *  B<C ®  A<C-1
011 011    001 
001    * 001     =    000
000 000    000

Induced constraint is intersected with the original constraint
Rij & (Rik * Rkj) ® Rij

R25       & (R21    *    R15)    ®  R25
01101  00111 01110  01101
10110  00011 10111  10110
11011      & 10001 * 11011       = 01010
01101  11000 11101  01101
10110  11100 01110  10110
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Notes:
Rij = RTji, Rii is a diagonal matrix representing the domain of variable
REVISE((i,j)) from the AC algorithms is Rii ¬ Rii & (Rij * Rjj * Rji) 



Composing constraints

A,B,C in {1,2,3}, B>1
A<C, A=B, B>C-2

A<C

B>C-2
A=B

B>1
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Algorithm PC-1

How to make the path (i,k,j) consistent?
Rij ¬ Rij & (Rik * Rkk * Rkj) 

How to make a CSP path consistent?
Repeated revisions of paths (of length 2) while any domain changes.

procedure PC-1(Vars,Constraints)
n ¬ |Vars|, Yn ¬ Constraints
repeat

Y0 ¬ Yn

for k = 1 to n do
for i = 1 to n do
      for j = 1 to n do
           Ykij ¬ Yk-1ij & (Yk-1ik * Yk-1kk * Yk-1kj) 

until Yn=Y0

Constraints ¬ Y0

end PC-1

Mackworth (1977)

If we use
Ykii ¬ Yk-1ii & (Yk-1ik * Yk-1kk * Yk-1ki)

then we get AC-1



How to improve PC-1?

Is there any inefficiency in PC-1?
– just a few „bits“

• it is not necessary to keep all copies of Yk

one copy and a bit indicating the change is enough
• some operations produce no modification (Yk

kk = Yk-1
kk)

• half of the operations can be removed (Yji = YT
ij)

– the grand problem
• after domain change all the paths are re-revised

but it is enough to revise just the influenced paths

Algorithm of path revision

procedure REVISE_PATH((i,k,j))
Z ¬ Yij & (Yik * Ykk * Ykj) 
if Z=Yij then return false
Yij ¬ Z
return true

end REVISE_PATH

If the domain is pruned
then the influenced

paths will be revised.



Influenced paths

Because Yji = YT
ij it is enough to revise only the paths (i,k,j) where i£j.

Let the domain of the constraint (i,j) be changed when revising (i,k,j):

Situation a: i<j
all the paths containing (i,j) or (j,i) must be re-revised
but the paths (i,j,j), (i,i,j) are not revised again (no change)
Sa = {(i,j,m) | i £ m £ n & m¹j}
     È {(m,i,j) | 1 £ m £ j & m¹i}
     È {(j,i,m) | j < m £ n}
     È {(m,j,i) | 1 £ m < i}
| Sa | = 2n-2

Situation b: i=j
all the paths containing i in the middle of the path are re-revised
but the paths (i,i,i) and (k,i,k) are not revised again
Sb = {(p,i,m) | 1 £ m £ n & 1 £ p £ m} - {(i,i,i),(k,i,k)}
| Sb | = n*(n-1)/2 - 2

i j



Algorithm PC-2

Paths in one direction only (attention, this is not DPC!)
After every revision, the affected paths are re-revised

Algorithm PC-2

procedure PC-2(G)
n ¬ |nodes(G)|
Q ¬ {(i,k,j) | 1 £ i £ j £ n & i¹k & j¹k}
while Q non empty do

select and delete (i,k,j) from Q
if REVISE_PATH((i,k,j)) then

Q ¬ Q È RELATED_PATHS((i,k,j))
end while

end PC-2

procedure RELATED_PATHS((i,k,j))
if i<j then return Sa else return Sb

end RELATED_PATHS

Mackworth (1977)



Other PC algorithms

• PC-3 (Mohr, Henderson 1986)
– based on computing supports for a value (like AC-4)

• If pair (a,b) at arc (i,j) is not supported by another variable, 
then a is removed from Di and b is removed from Dj.

– this algorithm is not sound!

• PC-4 (Han, Lee 1988)
– correction of the PC-3 algorithm
– based on computing supports of pairs (b,c) at arc (i,j)

• PC-5 (Singh 1995)
– uses the ideas behind AC-6
– only one support is kept and a new support is looked for when 

the current support is lost



Drawbacks of PC

• memory consumption
– because PC eliminates pairs of values, we need to keep all

the compatible pairs extensionally, e.g. using {0,1}-matrix

• bad ratio strength/efficiency
– PC removes more (or same) inconsistencies than AC, but the 

strength/efficiency ratio is much worse than for AC

• modifies the constraint network
– PC adds redundant arcs (constraints) and thus it changes connectivity of the 

constraint network
– this complicates using heuristics derived from the structure of the 

constraint network (like density, graph width etc.)

• PC is still not a complete technique
– A,B,C,D in {1,2,3}

A¹B, A¹C, A¹D, B¹C, B¹D, C¹D
is PC but has no solution

1,2,3 1,2,3

1,2,3 1,2,3

¹

¹

¹

¹
¹ ¹



k-consistency

Is there a common formalism for AC and PC?
– AC: a value is extended to another variable
– PC: a pair of values is extended to another variable
– … we can continue

Definition:
 CSP is k-consistent if and only if any consistent assignment of 

(k-1) different variables can be extended to a consistent 
assignment of one additional variable.

1,2,3 1,2,3 1,2,3 4
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4-consistent graph



Strong k-consistency

Definition:
A CSP is strongly k-consistent iff it is j-consistent for every j £ k.

Features:
• strong k-consistency Þ k-consistency
• strong k-consistency Þ j-consistency "j£k
• k-consistency Þ strong k-consistency  does not hold in general

Naming scheme
• NC = strong 1-consistency = 1-consistency 
• AC = (strong ) 2-consistency 
• PC = (strong ) 3-consistency 

– sometimes we call NC+AC+PC together strong path consistency

1,2 1,2 1,2,3= =

=

3-consistent graph

but not 2-consistent graph!



What k-consistency is enough?

• Assume that the number of vertices is n. What level of 
consistency do we need to find out the solution?

• Strong n-consistency for graphs with n vertices!
– n-consistency is not enough - see the previous example
– strong k-consistency where k<n is not enough as well

1,2,..,n-1

1,2,..,n-1

1,2,..,n-1

1,2,..,n-1
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¹ ¹

¹

…

…

graph with n vertices
domains 1..(n-1)

It is strongly k-consistent for k<n
but it has no solution!

1,2 1,2,3=

<

<

1,2,31,2,3

And what about this graph?

AC is enough!
Because this a tree..



Backtrack-free search

Definition:
CSP is solved using backtrack-free search if for some order of variables we can 
find a value for each variable compatible with the values of already assigned 
variables.

How to find out a sufficient consistency level for a given graph?

Some observations:
– variable must be compatible with all the “previous” variables

i.e., across the „backward“ edges
– for k „backward“ edges we need (k+1)-consistency
– let m be the maximum number of backward edges for all the vertices,

 then strong (m+1)-consistency is enough
– the number of backward edges is different for different orders of variables
– of course, the order minimising m is looked for

1, 2 1, 2, 3=

<

<

1, 2, 31, 2, 3
1 2 3 4



Graph width

• Ordered graph is a graph with some total ordering of nodes.
• Node width in the ordered graph is the number of backward edges 

from this node.
• Width of the ordered graph is the maximal width of its nodes.
• Graph width is the minimal width among all possible node orders.
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1 1 1 2 1 2Graph width is 1.

procedure MinWidthOrdering((V,E))
Q ¬ {} 
while V not empty do

N ¬ select and delete node with the smallest #edges from (V,E)
enqueue N to Q

return Q
end MinWidthOrdering



Consistency level based on graph width
Theorem:
 If the constraint graph is strongly k-consistent for some k>w, where w is 

the graph width, then there exists an order of variables giving a 
backtrack-free search solution. 

Proof:
– there exists an ordering of nodes with the graph width w,
– in particular, the number of backward edges for each node is at most w,
– we will assign the variables in the order given by the above ordered graph
– now, when assigning a value to the variable:

• we need to find a value consistent with the existing assignment, i.e., 
consistent with previous variables connected via arcs with the variable,

• let m by the number of such variables, then m £ w
• the graph is (m+1)-consistent, so the value must exist

1 … i j l… … …

at most w



Can we achieve GAC faster than a general 
GAC algorithm?
– for example revision of A < B can be done much 

faster via bounds consistency.
Can we write a filtering algorithm for a 
constraint whose arity varies?
– for example all_different constraint

We can exploit semantics of the constraint 
for efficient filtering algorithms that can work 
with any number of variables.

F global constraints E

Global constraints



Programování s omezujícími 
podmínkami,  Roman Barták

Logic-based puzzle, whose
goal is to enter digits 1-9 in
cells of 9´9 table in such a way,
that no digit appears twice
or more in every row, column,
and 3´3 sub-grid.

How to model such a problem?
– variables describe the cells
– inequality constraint connect each pair of 

variables in each row, column, and sub-grid
– Such constraints do not propagate well!

• The constraint network is AC, but
• we can still remove some values.

a  b

a  b
a  b  c

¹

¹
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X X

Recall Sudoku



This constraint models a complete set of binary inequalities.
all_different({X1,…, Xk}) = {( d1,…, dk) | "i  diÎDi  & "i¹j  di ¹ dj}
Domain filtering is based on matching in bipartite graphs
(nodes = variables+values, edges = description of domains)

all-different

a

b

c

X1

X2

X3

Initialization:
1) find a maximum matching
2) remove all edges that do not belong 

to any maximum matching

Incremental propagation (X1¹a):
1) remove “deleted” edges
2) find a new maximum matching
3) remove all edges that do not belong 

to any maximum matching

´´

X1

X2

X3

a

b

c

´

´

Régin (AAAI 1994)



global cardinality

• A generalization of all-different
– the number of occurrences of a value in a set of variables is 

restricted by minimal and maximal numbers of occurrences
• Efficient filtering is based on network flows.

X1

X2

X3

X4

a

b

c

source sink

1-2

2-2

0-2

1. make a value graph
2. add sink and source 
3. set upper and lower bounds 

and edge capacities (0-1 and 
value occurrences)

Min/Max 
occurrences

Edges 
describe 
domains

Régin (AAAI 1996)

A maximal flow corresponds to a feasible assignment of variables!
We will find edges with zero flow in each maximal flow and then we 
will remove the corresponding edges.



Existence of  symmetrical solutions decreases efficiency of 
constraint satisfaction (symmetrical search spaces are 
explored).

A classical example with many symmetries – sports 
tournament scheduling.

• there are n teams
• each team plays will all other teams, i.e., (n-1) rounds
• each team plays as a home team or a guest team
How to model such a problem?

– Round I is modelled by a sequence of match codes Ki.
• Ki,j is a code of j-th match at at round i

– We can swap matches at each round – match symmetry.
• match symmetry is removed by constraint Ki,j < Ki,j+1

– We can swap complete rounds – round symmetry.
• round symmetry is removed by constraint Ki <lex Ki+1.

Symmetry breaking



lex
this constraint models lexicographic ordering of two vectors
lex({X1,…, Xn}, {Y1,…, Yn}) º (X1 £ Y1) Ù (X1 = Y1 Þ X2 £ Y2) Ù …
… Ù (X1 = Y1 Ù … Ù Xn-1 = Yn-1 Þ Xn < Yn)
Global filtering procedure uses two pointers:

a: the variables before a are all instantiated and pairwise equal
b: vectors starting at b are lexicographically ordered but “oppositely”

 floor({Xb,…, Xn}) >lex ceiling({Yb,…, Yn})

X = á {2}, {1,3,4},{1,2,3,4,5},{1,2},{3,4,5} ñ first set the pointers
Y = á {0,1,2}, {1}, {0,1,2,3,4},{0,1},{0,1,2} ñ
  a­   ­b

X = á {2}, {1,3,4},{1,2,3,4,5},{1,2},{3,4,5} ñ change Y1, so at least X1 = Y1 
Y = á {2}, {1}, {0,1,2,3,4},{0,1},{0,1,2} ñ and shift pointer a
   a­  ­b

X = á {2}, {1}, {1,2,3,4,5},{1,2},{3,4,5} ñ change X2 so at least X2 = Y2 
Y = á {2}, {1}, {0,1,2,3,4},{0,1},{0,1,2} ñ and again shift pointer a
    a­ ­b

X = á {2}, {1}, {1,2,3}, {1,2},{3,4,5} ñ because a = b -1
Y = á {2}, {1}, {2,3,4}, {0,1},{0,1,2} ñ    force constraint Xa < Ya 
    a­ ­b

Frisch et al., (CP 2002)



Rostering
– scheduling of shifts, for example in hospitals
– There are typically specific shift sequencing constraints (given by 

trade unions, law etc.)
Example:

– shifts: a, b, c, o (o means a free shift)
– constraints:

• the same shift can repeat each day
• at least one o shift is between a, b, between b, c, and between 

c, a
• a-o*-c, b-o*-a, c-o*-b are not allowed (o* is a sequence of o 

shifts)
– Any shift can be used the first day, only shifts b, o can be used the 

second day, shifts a, c, o for the third day,
shifts a, b, o for the forth day, and
shift a the fifth day.

How to model such a problem?
– variables describe shifts in days
– And what about constraints?

• using a finite state automaton (FSA)
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regular
models a sequence of symbols accepted by a FSA
regular(A, {X1,…, Xk}) = {(d1,…, dk) | "i  diÎDi  Ù d1…dkÎL(A)}
filtering is based on representing all possible computations of a FSA using a 
layered directed graph (layer=states, arc=transitions)

Initialisation
1. add arcs going from the initial state 

based on the symbols in the variables’ 
domains

2. during the backward run, remove the 
arcs that are not on paths to the final 
states

3. remove the symbols without any arc

Incremental filtering (X4 ¹ o):
1. remove arcs for the deleted symbol
2. propagate the update

in both directions
3. remove the symbols

without any arc
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slide

Let us go back to the regular constraint, which behaves like sliding a 
special transition constraint over a sequence of variables.
Such a principle can be generalized!
slidej(C, {X1,…, Xn}) º "i C(Xij+1,…, Xij+k)

– C is a k-ary constraint
– constant j determines the slide length

Some examples:
• regular(A, {X1,…, Xn}) º slide2(C, {Q0,X1,Q1, …, Xn, Qn})

C(P,X,Q) represents a transition d(P,X) = Q, Q0 = {q0}, Qn = F
• lex({X1,…, Xn}, {Y1,…, Yn}) º slide3(C, {B0,X1,Y1,B1, …, Xn, Yn, Bn})

C(B,X,Y,C) º B=C=1 or (B=C=0 and X=Y) or  (B=0, C=1 and X<Y)
B0 = 0, Bn = 1 (strict lex), Bn in {0,1} (non lex)

• stretch({X1,…, Xn}, s, l , t) º slide2(C, {X1,S1, …, Xn, Sn})
C(Xi, Si, Xi+1, Si+1) º Xi = Xi+1, Si+1 = 1+Si, Si+1 £ l(Xi),
    or  Xi ¹ Xi+1, Si ³ s(Xi), Si+1 = 1, (Xi, Xi+1) Î t
S1 = 1

…

Walsh et al., (2006)
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