
Introduction to
Constraint Satisfaction

Roman Barták
Charles University, Prague (CZ)

Search techniques to solve CSPs

Just to recall

Constraint Satisfaction Problem (CSP) consists of:
– a finite set of variables
– domains – finite sets of possible values for variables
– a finite set of constraints

• constraint arity = the number of constrained variables

A feasible solution of a constraint satisfaction
problem is a complete consistent assignment of
values to variables.
– complete = each variable has assigned a value
– consistent = all constraints are satisfied

Local search

Generate and test explores complete but inconsistent
assignments until a complete consistent assignment is found.

Weakness of GT – the generator does not exploit fully the result
of testing

The next assignment can be constructed in such a way that
constraint violation is smaller.

– only “small” (local) changes of the assignment are allowed
– the next assignment should be “better” than the current one

• better = more constraints are satisfied
– assignments are not necessarily generated systematically

• we lost completeness, but
• we (hopefully) get better efficiency

Local search - Terminology
• state - a complete assignment of values to variables
• evaluation - a value of the objective function (# violated constraints)
• neighbourhood - a set of states locally different from the current state

(the states differ from the current state in the value of one variable)
• local optimum - a state that is not optimal and there is no state with better

evaluation in its neighbourhood
• strict local optimum - a state that is not optimal and there are only states with

worse evaluation in its neighbourhood
• non-strict local optimum - local optimum that is not strict
• plateau - a set of neighbouring states with the same evaluation
• global optimum - the state with the best evaluation

plateaulocal
minimum

global
minimum

non-strict local
minimum

ev
al

ua
tio

n

states

Hill Climbing
Hill climbing is perhaps the most known technique of local search.

– start at randomly generated state
– look for the best state in the neighbourhood of the current state

• neighbourhood = differs in the value of any variable
• neighbourhood size = Si=1..n(Di-1) (= n*(d-1))

– “escape” from the local optimum via restart
Algorithm Hill Climbing

procedure hill-climbing(Max_Steps)
restart: s ¬ random assignment of variables;
for j:=1 to Max_Steps do % restricted number of steps

if eval(s)=0 then return s
if s is a strict local minimum then

go to restart
else

s ¬ neighbourhood with the smallest evaluation value
end if

end for
go to restart

end hill-climbing

Min-Conflicts
Observation:

– the hill climbing neighbourhood is pretty large (n*(d-1))
– only change of a conflicting variable may improve the evaluation

Min-conflicts method
– select randomly a variable in conflict and try to improve it

• neighbourhood = different values for the selected variable i
• neighbourhood size = (Di-1) (= (d-1))

Algorithm Min-Conflicts
procedure MC(Max_Moves)

s ¬ random assignment of variables
nb_moves ¬ 0
while eval(s)>0 and nb_moves<Max_Moves do

choose randomly a variable V in conflict
choose a value v' that minimises the number of conflicts for V
if v' ¹ current value of V then

assign v' to V
nb_moves ¬ nb_moves+1

end if
end while
return s

end MC

It cannot leave
a local optimum

Minton, Johnston, Laird (1997)

Random Walk

How to leave a local optimum without restarting
(i.e. via a local step)?

– By adding some “noise” to the algorithm!

Random walk
– a state from the neighbourhood is selected randomly

(e.g., the value is chosen randomly)
– such technique can hardly find a solution
– so it needs some guide

• Random walk can be combined
with the heuristic guiding the search process
via probability distribution:

– p - probability of using a random step
– (1-p) - probability of using the heuristic guide

Min-Conflicts Random Walk
MC guides the search (i.e. satisfaction of all the constraints) and RW allows us
to leave the local optima.

Algorithm Min-Conflicts-Random-Walk
procedure MCRW(Max_Moves,p)

s ¬ random assignment of variables
nb_moves ¬ 0
while eval(s)>0 and nb_moves<Max_Moves do

if probability p verified then
choose randomly a variable V in conflict
choose randomly a value v' for V

else
choose randomly a variable V in conflict
choose a value v' that minimises the number of conflicts for V

end if
if v' ¹ current value of V then

assign v' to V
nb_moves ¬ nb_moves+1

end if
end while
return s

end MCRW
0.02 £ p £ 0.1

Steepest Descent Random Walk
Random walk can be combined with the hill climbing heuristic too.
Then, no restart is necessary.

Algorithm Steepest-Descent-Random-Walk
procedure SDRW(Max_Moves,p)

s ¬ random assignment of variables
nb_moves ¬ 0
while eval(s)>0 and nb_moves<Max_Moves do

if probability p verified then
choose randomly a variable V in conflict
choose randomly a value v' for V

else
choose a move <V,v'> with the best performance

end if
if v' ¹ current value of V then

assign v' to V
nb_moves ¬ nb_moves+1

end if
end while
return s

end SDRW

Local Search at Glance

LS methods explore complete but possible inconsistent
assignments until a consistent assigned is found

– opposite to GT, they generate a new assignment based on the current
assignment with the goal to increase the number of satisfied constraints

Local search algorithm is defined by:
• neighbourhood of the current assignment (state) and

a method to select the next assignment from the neighbourhood
(intensification)
– HC heuristic – select the best assignment different at one variable from the

current assignment
• sometimes, the first better assignment from the neighbourhood is taken

– MC heuristic – select the best assignment different at one selected conflict
variable from the current assignment

• a method for escaping from a local optimum (diversification)
– restart – start in a completely new assignment
– RW – select the next assignment randomly
– Tabu – forbid some assignments

Back to GT

Back to generate-and-test:
– generates a solution candidate (a complete assignment)

and tests all the constraints together at the end
– solution candidates are generated systematically, for example:

We can verify satisfaction of a constraint as soon as we know
the values of all constrained variables!

– the test stage is done during the generation stage

procedure generate_first(Variables)
for each V in Variables do

label V by the first value in DV
end for

end generate_first
procedure generate_next(Assignment)

find first X in Assignment such that all following variables are labelled by the last value
from their respective domains (name the set of these variables Vs)
if X is labelled by the last value then return fail
label X by next value in DX
for each Y in Vs do

assign first value in DY to Y
end for

end generate_next

Backtracking

Probably the most widely used systematic search algorithm that verifies
the constraints as soon as possible.

– upon failure (any constraint is violated) the algorithm goes back to
the last instantiated variable and tries a different value for it

– depth-first search
The core principle of applying backtracking to solve a CSP:

1. assign values to variables one by one
2. after each assignment verify satisfaction of constraints with known

values of all constrained variables

Open questions (to be answered later):
• What is the order of variables being instantiated?
• What is the order of values tried?

Backtracking explores partial consistent
assignments until it finds a complete
(consistent) assignment.

procedure BT(X:variables, V:assignment, C:constraints)
if X={} then return V
x ¬ select a not-yet assigned variable from X
for each value h from the domain of x do
 if constraints C are consistent with V È {x/h} then
 R ¬ BT(X – {x}, V È {x/h}, C)
 if R ¹ fail then return R
end for
return fail

end BT

Call as BT(X, {}, C)

Chronological Backtracking (a recursive version)

Note:
 If it is possible to perform the test stage for a partially generated solution

candidate then BT is always better than GT, as BT does not explore all
complete solution candidates.

procedure BT(X:variables, C:constraints)
i ¬ 1, D‘i ¬ Di
while 1 £ i £ n do
 instantiate_and_check(i, C)
 if xi = null then i ¬ i – 1 else i ¬ i + 1, D‘i ¬ Di
end while
if i = 0 then return fail
return {x1,…, xn}

end BT

Chronological Backtracking (an iterative version)

procedure instantiate_and_check(i, C:constraints)
while D‘i is not empty do
 select and delete some element b from D‘i
 xi ¬ b
 if constraints C are consistent with {x1,…, xi} then return
end while
xi ¬ null

end instantiate_and_check

Look Back

Look Ahead

Weaknesses of Backtracking

• thrashing
– throws away the reason of the conflict
Example: A,B,C,D,E :: 1..10, A>E

• BT tries all the assignments for B,C,D before finding that A¹1
Solution: backjumping (jump to the source of the failure)

• redundant work
– unnecessary constraint checks are repeated
Example: A,B,C,D,E :: 1..10, B+8<D, C=5*E

• when labelling C,E the values 1,..,9 are repeatedly checked for D
Solution: backmarking, backchecking (remember (no-)good assignments)

• late detection of the conflict
– constraint violation is discovered only when the values are known
Example: A,B,C,D,E :: 1..10, A=3*E

• the fact that A>2 is discovered when labelling E
Solution: forward checking (forward check of constraints)

Backjumping

Backjumping is a method to remove thrashing.

How to do it?
1) identify the source of the conflict (impossibility to assign a value)
2) jump to the past variable in conflict

The same forward run as in backtracking, only the back-jump can be longer
to skip irrelevant assignments!

How to find a jump position? What is the source of the conflict?
– select the constraints containing just the currently instantiated

variable and the past variables
– select the closest variable participating in the selected constraints

Graph-directed backjumping
x

1 2 3 4 5

Graph-Directed Backjumping

Assume the graph colouring problem, where the nodes are
coloured in the order x1, x2, …, x7.

– Where to jump if colouring x4 fails?
Ø to x1

– Where to jump if colouring x5 fails?
Ø to x4
• And what if x4 cannot be coloured?
Ø to x1

It looks like after failure with some node, we can jump to its
closest predecessor (in the colouring order), but …

– Where to jump if colouring x7 fails?
Ø to x5

• What if colouring x5 fails now?
Ø to x4
• And what if x4 cannot be coloured?
Ø to x3

Graph-Directed Backjumping

When jumping back, it is enough to free some dead-end
(dead-end = a node/variable, that cannot be instantiated).

• from the leaf x jump to the closest
predecessor of x in the constraint network

 (x7 ® x5, x4, x3, x1)
• from the inner node x jump to the closest

predecessor of all dead-end nodes visited
during the jumps

 (x7 ® x5, x4, x3, x1 ® x4, x3, x1 ® x3, x1)

– let anc(x) be the ancestors of x in the constraint
network ordered using the labelling order
(can be decided based on the network structure)

• anc(x7) = {x5, x4, x3, x1}

– let us backjump to node x from the nodes y1,…,yk
and let there be no more value for variable x

– then jump to the closest variable from the set
anc(x) È anc(y1) È … È anc(yk) – {x,y1,…,yk}

Graph-Directed Backjumping (a recursive version)

procedure GraphBJ(X:variables, V:assignment, C:constraints)
if X = {} then return V
x ¬ select a not-yet assigned variable from X
conflict ¬ anc(x)
for each value h from the domain of x do
 if constraints C are consistent with V È {x/h} then
 R ¬ GraphBJ(X – {x}, V È {x/h}, C)
 if R = fail(JumpSet) then % backjump

if xÏJumpSet then return R % to a variable before x
conflict ¬ conflict È JumpSet – {x} % to x

else return R % solution found
end for
return fail(conflict)

end GraphBJ

Call as GraphBJ(X, {}, C)

Graph-Directed Backjumping (an iterative version)

procedure GraphBJ(X:variables, C:constraints)
i ¬ 1, D‘i ¬ Di , li ¬ anc(xi)
while 1 £ i £ n do
 instantiate_and_check(i, C)
 if xi = null then

iprev ¬ i, i ¬ latest index in li, li ¬ li È liprev – {xi}
 else
 i ¬ i + 1, D‘i ¬ Di , li ¬ anc(xi)
 end if
end while
if i = 0 then return fail
return {x1,…, xn}

end GraphBJ
procedure instantiate_and_check(i, C:constraints)

while D‘i is not empty do
select and delete some element b from D‘i
xi ¬ b
if constraints C consistent with {x1,…, xi} then return

end while
xi ¬ null

end instantiate_and_check

Another view of Backjumping

N-queens problem

1

2

3

4

5

6

7

8

A B C D E F G H
Queens in rows are allocated
to columns.

1. Write a number of conflicting
queens to each position.

1 3,4 2,5 4,5 3,5 1 2 3 2. Select the farthest conflicting
queen for each position.

3. Select the closest conflicting
queen among positions.

Note:
Graph-directed backjumping has no effect here (due to a complete graph)!

6th queen cannot be allocated!

Identification of the conflicting variable

How to find out the conflicting variable?
Situation:

– assume that the variable no. 7 is being assigned (values are 0, 1)
– the symbol • marks the variables participating in the violated constraints

(two constraints for each value)

Neither 0 nor 1 can be assigned to
the seventh variable!

conflict
with value 0

conflict
with value 1

•
•

•

•

•

•

•

•

•

•

•

•

1
2
3
4
5
6
7

O
rd

er
 o

f a
ss

ig
nm

en
t

1. Find the closest variable in each
violated constraint (o).

2. Select the farthest variable among
the above chosen variables for each
value (O).

3. Choose the closest variable among
the conflicting variables selected for
each value and jump to it.

O
O

Gaschnig Backjumping – consistency check

procedure consistent(Labelled, Constraints, Level)
 J ¬ Level % the level to jump to
 NoConflict ¬ true % is there any conflict?
 for each C in Constraints do
 if all variables from C are Labelled then
 if C is not satisfied by Labelled then
 NoConflict ¬ false
 J ¬ min {J, max{L | X Î vars(C) & X/V/L in Labelled & L<Level}}
 end if
 end if
 end for
 if NoConflict then return true
 else return fail(J)
end consistent

In addition to consistency check we can also find out the conflicting level!

• V is a value of X
• L is the depth level of X

during labelling

Gaschnig Backjumping (a recursive version)

procedure GBJ(Unlabelled, Labelled, Constraints, PreviousLevel)
 if Unlabelled = {} then return Labelled
 pick first X from Unlabelled
 Level ¬ PreviousLevel+1
 Jump ¬ 0
 for each value V from DX do
 C ¬ consistent({X/V/Level} È Labelled, Constraints, Level)
 if C = fail(J) then
 Jump ¬ max {Jump, J}
 else
 Jump ¬ PreviousLevel
 R ¬ GBJ(Unlabelled-{X},{X/V/Level} È Labelled,Constraints, Level)
 if R ¹ fail(Level) then return R % success or jump further
 end if
 end for
 return fail(Jump) % jump to the conflicting variable
end GBJ

Call as GBJ(Variables,{},Constraints,0)

Gaschnig Backjumping (an iterative version)

procedure GBJ(X:variables, C:constraints)
i ¬ 1, D‘i ¬ Di , jumpi ¬ 0
while 1 £ i £ n do
 xi ¬ select_value(i, C)
 if xi = null then

 i ¬ jumpi
 else
 i ¬ i + 1

 D‘i ¬ Di
 jumpi ¬ 0

 end if
end while
if i = 0 then return fail
return {x1,…, xn}

end GBJ

procedure select_value(i, C:constraints)
while D‘i is not empty do

select and delete some element b from D‘i
consistent ¬ true
k ¬ 1
while k<i and consistent do

if k>jumpi then jumpi ¬ k
 if xi=b consistent with {x1,…, xk} in C then
 k ¬ k + 1
 else consistent ¬ false
 end while
 if consistent then return b
end while
return null

end select_value

Backjumping – a short summary

• Graph-directed Backjumping
– driven by the structure of constraint network only

(does not assume (dis)satisfaction of constraints)
– can do several jumps in a sequence

• Gaschnig Backjumping
– assumes which constraints are violated
– just one back-jump (if the assignment fails again, only one level

up is backtracked like in chronological backtracking)

• Conflict-driven Backjumping (CBJ)
– we can join advantages of both methods (better target to jump to

and more back-jumps in a sequence)
– when jumping back we need to keep a conflict set of variables

that is used for the next jump if no value is found for the current
variable

• we carry the source of conflict when backjumping

Redundant work in Backtracking
What is a redundant work?

– repeated computation whose result has already been obtained

Example:
A,B,C,D :: 1..10, A+8<C, B=5*D

B

B=1 B=2 B=3 B=4 B=5

A
A=1

C

C=1 C=10 C=10 C=10 C=10

D

D=1 D=10 D=10 D=10 D=10

C=1

C

D=1

D

C=1

C

D=1

D

C=1

C

D=1

D

C=1

C

D=1

D

... C=10... ... … ...

Redundant computations:
it is not necessary to repeat
them because the change
of B does not influence C.

The principles of Backmarking

Remove redundant constraint checks by memorising
negative and positive results of tests:

– Mark(X,V) is the farthest (instantiated) variable in conflict with
the assignment X=V

– BackTo(X) is the farthest variable to which we backtracked since the last
attempt to instantiate X

• Now, some constraint checks can be omitted:

Mark<BackTo Mark³BackTo

Y

X=a

Y=b

X

Y=b
Y/b is inconsistent
with X/a (and
consistent with all
variables above X)

Y/b is still in conflict
with X/a, we do not
need to check it

Mark(Y,b)

BackTo(Y)

Y/b is inconsistent with
X/a (and consistent with
all variables above X)

Mark(Y,b)

BackTo(Y)

Y=b

X=?

Y/b is OK
here

Y/b must be
checked with
these variables

X=a

Y=b

X

Y

Haralick, Elliot (1980)

Backmarking in an example

N-queens problem

1

2

3

4

5

6

7

8

A B C D E F G H
1. Queens in rows are allocated to
columns.

3. Farthest conflict queen at each
position (Mark). At beginning 1s.

1 3 2 4 3 1 2 3

2. Latest choice level is written next to
chessboard (BackTo). At beginning 1s.

5. Backtrack to 5, change BackTo.

Note:
backmarking can be combined with backjumping (for free)

4. 6th queen cannot be allocated!

1 1

1 2 1 2

1

1 4 2

1

1

1

1

1

1

1

1
6. When allocating 6th queen, all the
positions are still wrong
(MarkTo<BackTo).

1 2 3

5

procedure consistent(X/V, Labelled, Constraints, Level)
for each Y/VY/LY in Labelled such that LY³BackTo(X) do

% only possible changed variables Y are explored
% in the increasing order of LY (first the oldest one)

if X/V is not compatible with Y/VY using Constraints then
Mark(X,V) ¬ LY
return fail

end if
end for
Mark(X,V) ¬ Level-1
return true

end consistent

Consistency check for Backmarking

Only the constraints where any value is changed are re-checked,
and the farthest conflicting level is computed.

It is not necessary
to test it again
(it is satisfied)

BackTo 1

2

1 2 3 4 5 6

Algorithm Backmarking

procedure BM(Unlabelled, Labelled, Constraints, Level)
 if Unlabelled = {} then return Labelled
 pick first X from Unlabelled % fix order of variables
 for each value V from DX do
 if Mark(X,V) ³ BackTo(X) then % re-check the value
 if consistent(X/V, Labelled, Constraints, Level) then
 R ¬ BM(Unlabelled-{X}, Labelled È {X/V/Level}, Constraints, Level+1)
 if R ¹ fail then return R % solution found
 end if
 end if
 end for
 BackTo(X) ¬ Level-1 % jump will be to the previous variable
 for each Y in Unlabelled do % tell everyone about the jump
 BackTo(Y) ¬ min {Level-1, BackTo(Y)}
 end for
 return fail % backtrack to the previous variable
end BM

© 2024 Roman Barták
Charles University, Faculty of Mathematics and Physics

bartak@ktiml.mff.cuni.cz

