Harnessing Scientific AI for Knowledge Discovery: Open Research Knowledge Graph (ORKG)

Allard Oelen

TIB Leibniz Information Centre for Science and Technology, Hannover, Germany

About me

Allard Oelen

- Post-doc at TIB Hannover, Germany
- Frontend lead ORKG Team

Main research topics

- Human-Computer Interaction (HCI)
- Uls for **AI** and Knowledge Graphs (**KGs**)
- Scholarly knowledge management

About me

Allard Oelen

- Post-doc at TIB Hannover, Germany
- Frontend lead ORKG Team -

Main research topics

- Human-Computer Interaction (HCI)
- Uls for **AI** and Knowledge Graphs (**KGs**)
- Scholarly knowledge management

Programming languages and tools:

- TypeScript
- React
- Next.js
- Tailwind
- Python
- Backend-as-a-Service
- Figma

• July 25 (today): Open Research Knowledge Graph (ORKG)

• July 26 (tomorrow): ORKG Ask

- July 25 (today): Open Research Knowledge Graph (ORKG)
 Introduction
 - Current issues in scholarly communication
 - ORKG as scholarly knowledge graph
 - Content types
 - Uls for Human-Al collaboration
- July 26 (tomorrow): ORKG Ask

- July 25 (today): Open Research Knowledge Graph (ORKG)
 Introduction
 - Current issues in scholarly communication
 - ORKG as scholarly knowledge graph
 - Content types
 - Uls for Human-Al collaboration
- July 26 (tomorrow): ORKG Ask

About scholarly communication

- Scholarly knowledge is communicated in **narrative document-based** forms
- Lacking **machine-actionability**: cumbersome for machines to parse the content

About scholarly communication

Scholarly papers have not changed much over time, still the **document-based** format

Metadata

Well... some things changed

Google Scholar

Microsoft Academic Graph (MAG), Crossref, Wikidata, WikiCite, Researchgate, Semantic Scholar *etc.*

Metadata

Well... some things changed

Google Scholar

Microsoft Academic Graph (MAG), Crossref, Wikidata, WikiCite, Researchgate, Semantic Scholar *etc.* == "Metadata"

- July 25 (today): Open Research Knowledge Graph (ORKG)
 Introduction
 - Current issues in scholarly communication

ORKG as scholarly knowledge graph

- Content types
- Uls for Human-Al collaboration
- July 26 (tomorrow): ORKG Ask

If **knowledge graphs** are used to represent scholarly instead, retrieving information becomes more effective

If **knowledge graphs** are used to represent scholarly instead, retrieving information becomes more effective

Jaradeh, Mohamad Yaser, et al. "Open research knowledge graph: next generation infrastructure for semantic scholarly knowledge." *Proceedings of the 10th international conference on knowledge capture*. 2019.

If **knowledge graphs** are used to represent scholarly instead, retrieving information becomes more effective

Select by "Research problem" and "Approach"

If **knowledge graphs** are used to represent scholarly instead, retrieving information becomes more effective

If such a scholarly knowledge graph exists, the use cases are virtually limitless!

Reproductive number

FAIR scholarly knowledge

In the end, the knowledge should become Findable, Accessible, Interoperable and Reusable (FAIR)

Wilkinson, Mark D., et al. "The FAIR Guiding Principles for scientific data management and stewardship." Scientific data 3.1 (2016): 1-9.

Okay, we need a knowledge graph

But... how?

Knowledge transformation

To create a scholarly knowledge graph, a **transformation** from unstructured to structured knowledge should happen

Knowledge transformation

To create a scholarly knowledge graph, a **transformation** from unstructured to structured knowledge should happen

Can we use AI for the transformation process?

Knowledge transformation

• NLP techniques are **not sufficiently accurate** to perform this task autonomously

 But we can intertwine machine intelligence with human intelligence to get a synergy → the best of both worlds!

Unstructured to structured knowledge

Automatic transformation

AI

- + Scales well
- Not accurate

Manual transformation

Crowdsourcing

- Does not scale well
- + Accurate

Unstructured to structured knowledge

Automatic transformation

Natural Language Processing (NLP)

- + Scales well
- Not accurate

Manual transformation

Crowdsourcing

- Does not scale well
- + Accurate

Intertwining artificial intelligence with human intelligence: best of both worlds

- July 25 (today): Open Research Knowledge Graph (ORKG)
 Introduction
 - Current issues in scholarly communication
 - ORKG as scholarly knowledge graph
 - Content types
 - Uls for Human-Al collaboration
- July 26 (tomorrow): ORKG Ask

Oelen, Allard, et al. "Generate FAIR literature surveys with scholarly knowledge graphs." Proceedings of the ACM/IEEE joint conference on digital libraries in 2020. 2020.

Location

Singapore

Oelen, Allard, et al. "Generate FAIR literature surveys with scholarly knowledge graphs." Proceedings of the ACM/IEEE joint conference on digital libraries in 2020. 2020.

China and overseas

Wuhan

China and overseas

Oelen, Allard, et al. "Generate FAIR literature surveys with scholarly knowledge graphs." Proceedings of the ACM/IEEE joint conference on digital libraries in 2020. 2020.

ORKG content types

ORKG content types

Oelen, Allard, Markus Stocker, and Sören Auer. "SmartReviews: towards human-and machine-actionable reviews." *Linking Theory and Practice of Digital Libraries: 25th International Conference on Theory and Practice of Digital Libraries, TPDL 2021*,

Outline

- July 25 (today): Open Research Knowledge Graph (ORKG)
 Introduction
 - Current issues in scholarly communication
 - ORKG as scholarly knowledge graph
 - Content types
 - Uls for Human-Al collaboration
- July 26 (tomorrow): ORKG Ask

Human-AI collaboration

Human-AI collaboration

Human-AI collaboration

Human-AI collaboration in the ORKG

Al-Augmented

1. Smart suggestions

Al-supported tooltips helping users accomplish their tasks

2. Paper annotator

Annotation of key sentences in scholarly PDF articles

3. Survey extractor

Extract survey tables from existing papers

AI-Driven

4. TinyGenius

Microtasks to validate NLP generated statements

5. ORKG Ask

Tomorrow's topic

Human-AI collaboration in the ORKG

AI-Augmented

1. Smart suggestions

Al-supported tooltips helping users accomplish their tasks

2. Paper annotator

Annotation of key sentences in scholarly PDF articles

3. Survey extractor

Extract survey tables from existing papers

AI-Driven

4. TinyGenius

Microtasks to validate NLP generated statements

5. ORKG Ask

Tomorrow's topic

Transform unstructured into structured knowledge

Crowdsourcing

Unstructured

Structured

Oelen, Allard, and Sören Auer. "Leveraging Large Language Models for Realizing Truly Intelligent User Interfaces." *Extended Abstracts of the CHI Conference on Human Factors in Computing Systems.* 2024.

Transform unstructured into structured knowledge

1. Transparency The integration is clearly

distinguishable within the UI

2. Control

The integration is non-intrusive and can be hidden by the UI

3. Usability The UI integration makes the integration blend seamlessly in the UI

4. Error management

Graceful degradation: the UI does not break in case of errors

5. Feedback and statistics Users are able to give feedback

6. System performance

The integration has minimal response time, and works within seconds

Based on Nielsen, Jakob. "Enhancing the explanatory power of usability heuristics." Proceedings of the SIGCHI conference on Human Factors in Computing Systems. 1994.

Task	TaskDescriptionImplementation directions					
1. Transparency						
1.1. Distinguishable	The system shall be clearly distinguishable in the UI.	Using distinctive color scheme and recognizable icons.				
1.2. Suggestions	The system shall be displayed explicitly as suggestive.	Informing users that the suggestions can be wrong or misleading.				
1.3. Transparency	The system shall make it clear how suggestions are generated.	Mention the model (e.g., ChatGPT), model input, and prompt.				
1.4. Multiple variants*	The system shall provide multiple values when appro-	Provide a list of different options from which users have				
	priate to stress uncertainty.	to select the desired option.				
1.5. Language	The system shall use appropriate language to express	Use words such as might, could, possibly, seems to be,				
	uncertainty.	etc.				
2. Control						
2.1. Non-intrusive*	The system shall have the option to hide it.	Use collapsible UI components.				
2.2. On demand*	The system shall be displayed on demand.	Do not open the suggestions by default.				
2.3. Deactivation*	The system shall provide an option to be deactivated.	Provide a setting on user level to hide the suggestions				
		in the entire UI.				

3. Usability		
3.1. UI integration	The system shall seamlessly blend into the UI.	Instead of a separate UI, integrate the LLMs into the existing UIs, ensuring the users' attention is focused towards the task.
3.2. Consistent availability*	The system shall be available when expected by users.	Smart Suggestions should be available both when adding and editing data.
3.3. Optional usage	The system shall not be required to fulfill the task.	Users can still perform the task manually.
3.4. Modifiable*	The system shall provide the option to modify suggestions.	After selecting a recommended value, allow the possibility to edit the value.
3.5. Regenerating*	The system shall provide an option to regenerate the response.	Using a reload button to get additional LLM responses.
4. Error Management		
4.1. Graceful degradation	The system shall not break the UI when it is failing.	In case the LLM is not available or not returning the response as expected, ensure the UI remains operable and do not present them as critical errors.
4.2. Error recovery*	The system shall provide a possibility to recover from errors.	Add a reload button when errors appear and explain how to present errors.
4.3. Error prevention	The system shall minimize the user input to mitigate potential errors.	Prevent errors by built-in prompts with placeholders that contain user input.

5. Feedback and Statistics

5.1. High-level feedback*	The system shall facilitate the process of providing	A three-level scale: positive, neutral, negative to deter-
	feedback with minimal effort.	mine whether tasks are performing well, need to be
		improved, or need to be removed.
5.2. Detailed feedback*	The system shall facilitate the process of providing	Standardized answers to indicate usefulness and cor-
	more detailed feedback.	rectness. Optionally provide additional input.
5.3. Usage statistics	The system shall be recording usage statistics without	Record clicks when LLM suggestions are being used.
	explicit efforts from users.	

6. System Performance

6.1. Response time	The system shall respond within seconds.	Ensure prompts and answers are short to ensure users
		can access the LLM tool to get quick access.
6.2. Minimize requests	The system shall debounce function calls to minimize	Activate LLM support on demand when a button is
	requests for environmental and monetary reasons.	clicked.
6.3. Prevent misuse	The system shall use a backend service to generate	Prompts are stored in the service and the LLM interface
	the prompts being sent to the LLM.	is not exposed to the client, but made available through
		middleware.

Smart Suggestions implementation

Smart Suggestions implementation

Smart Suggestions implementation

- Implemented for
 6 use cases in the UI
- Recognizable icon
- Distinctive color palette

Smart suggestions prompts

Use case	Description	Prompt
1. Related Predicates	When making statements in an RDF knowledge graph, a subject, predicate, and object are required. The object can either be a resource (a piece of information with an identifier that can be linked to) or a literal (information that cannot be linked to, such as a string, numbers, dates, etc.). This type of Smart Suggestion recommends predicates to users based on a set of predicates coming from the existing paper description.	System prompt: You are an assistant for building a knowledge graph for science. Your task is to recommend additional related predicates based on the set of existing predicates. Recommend a list maximum 5 additional predicates. User prompt: The existing predicates are: [list of predicates]
2. Related Objects	This relates to the previous task but aims to find a set of related objects instead. Since it requires a prompt that provides the LLM with the necessary context, this is only activated for a selected set of predicates, namely: research problem, method, and approach. Thus, each of these predicates has its own prompt.	System prompt: A [research problem] contains a max- imum of approximately 4 words to explain the research task or topic of a paper. Provide a list of maximum 5 research problems based on the title and optionally ab- stract provided by the user. User prompt: [paper title] [abstract]

Smart suggestions prompts

Open Feedback

3. Literal Applicability	In addition to creating resources at the object position of a statement, RDF also allows creating literals, which resemble a piece of textual information that cannot be linked to. Based on our previous experiences with ORKG users, we learned that it can be difficult for users to decide whether an object should be a resource or a literal. This Smart Suggestion helps to determine the most appropriate type when creating an object. It is evaluating if a piece of text should indeed be a literal, or if it is more appropriate as a resource.	System prompt: You are an assistant in building a knowledge graph for science. You task is to advice users whether they should use a RDF resource or RDF literal. Based on a user-provided label, advice whether the type should be 'literal' or 'resource'. Literals are generally larger pieces of text and are not reusable, resource are atomic and can be reused. User prompt: [label]
4. Decomposable Resources	If resources are represented in an atomic fashion, they contain general information and can thus be reused more easily. This facilitates interconnections which en- hances the graph quality. This use case evaluates if a resource label can be decomposed into multiple labels, or if the content is already sufficiently atomic.	System prompt: You are an assistant for building a knowledge graph for science. Provide advice on if and how to decompose a provided resource label into separate resources. Only provide feedback is decomposing makes sense. User prompt: [label]

Smart suggestions - Preliminary evaluation results

					6					
1					4					1
1			2					3		
	2			1				3		
1				3					2	
		3						3		
1						5				
		3				1		1		1
		3				1		1		1
		3					2			1
1				3					2	

- 1. I am an experienced ORKG user

 2. I am looking forward to using Smart Suggestions in the ORKG
 - 3. I want more Smart Suggestions in the ORKG
- 4. I think the Smart Suggestions can help me saving time using the ORKG
- 5. I think Smart Suggestions can provide inspiration while using the ORKG
- 6. I think Smart Suggestions can partially replace human assistance while using the ORKG
 - 7. I think even if Smart Suggestions are not fully correct, they can still be helpful
 - 8. I use ChatGPT often in daily life

Neutral

Aaree

- 9. I use ChatGPT often for work related tasks
- 10. I think ChatGPT can be used to organize scientific papers
- 11. I think ChatGPT can be used effectively to assist in creating and curating ORKG content

Strongly agree

Strongly disagree 📃 Disagree

Human-AI collaboration in the ORKG

Al-Augmented

1. Smart suggestions

Al-supported tooltips helping users accomplish their tasks

2. Paper annotator

Annotation of key sentences in scholarly PDF articles

3. Survey extractor

Extract survey tables from existing papers

AI-Driven

4. TinyGenius

Microtasks to validate NLP generated statements

5. ORKG Ask

Tomorrow's topic

Paper annotator

Oelen, Allard, Markus Stocker, and Sören Auer. "Crowdsourcing scholarly discourse annotations." Proceedings of the 26th International Conference on Intelligent User Interfaces. 2021.

- Goal: annotate key sentences in scholarly articles with discourse classes
- Two Al-augmented approaches: sentence highlighting and class recommendations

Paper annotator	Save -
Completion 10%	
Smart sentence detection	
Background @	1 annotation
FG The number of scholarly publications grows steadily ev becomes harder to find, asses scholarly knowl-edge effective	s and compare
Contribution @	0 annotations
Methods @	0 annotations
Problem statement @	0 annotations
Results @	0 annotations
Related work @	1 annotation
55 Prominent examples of op available knowl-edge graphs in [4], YAGO [51] and Wikidata [t projects such as Semantic Sch Microsoft AcademicGraph [47]	nclude DBpedia 56].With nolar [3],] and Open

	Save -		
ction		Crowdsourcing Scholar Select type	ly Discourse Annotations
	1 annotation	Contribution <	Stocker Sören Auer ker@tib.eu auer@tib.eu hation Centre for TIB Leibniz Information Centre for Fechnology Science and Technology
	ry yearand it	Related work Methods Contribution Future work Model	Germany Hannover, Germany document-based. Scholarly articles are mostly published in PDF for- mat, which is specifically designed for human readability [18] and portability across systems. With this from of publishing, scholarly
effective	ly 0 annotations	Annotate scholarly knowledge from paper authors with a web-based user	knowledge is not machine actionable [9, 41]. Knowledge graphs can be employed to represent scientific contributions semantically, ren- der scholarly knowledge more machine actionable, and thus making it easier to find, compare and process knowledge. Knowledge graphs are defined as semantic networks describing entities and their in-
6	0 annotations 0 annotations	interface supported by artificial intelligence. The interface enables authors to select key sentences for annotation. It integrates multiple machine learning algorithms to assist authors during the annota- tion, including class recommendation and key sentence highlight- ing. We envision that the interface is integrated in paper submission	terrelations [42]. Prominent examples of openly available knowl- edge graphs include DBpedia [4], YAGO [51] and Wikidata [56]. With projects such as Semantic Scholar [3], Microsoft Academic Graph [47] and Open Research Knowledge Graph (ORKG) [26].
	0 annotations	processes for which we define three main task requirements: The task has to be (1) straightforward (2) time efficient (3) well-defined. We evaluated the interface with a user study in which participants were assigned the task to annotate one of their own articles. With the resulting data, we determined whether the participants were	knowledge graphs are gaining popularity in the scholarly domain to structure scholarly knowledge. Except for ORKG, these graphs only capture metadata about research articles and do not describe the content of reported research work, including research contribu- tions [44].
es of ope	1 annotation	the resulting data, we determined whether the participants were successfully able to perform the task. Furthermore, we evaluated the interface's usability and the participant's attitude towards the interface with a survey. The results suggest that sentence annota- tion is a feasible task for researchers and that they do not object to annotate their article during the submission process.	Populating knowledge graphs with scholarly metadata is a rel- atively straightforward task due to the low task complexity and high accuracy of automated parsing tools (such as GROBD [33]). In contrast, generating graphs of the contents of research articles (i.e. research contribution) is a considerably more complex task which
kidata (5 ntic Sch	6].With olar [3],	CCS CONCEPTS	can currently hardly be performed by Natural Language Processing (NLP) tools alone. Crowdsourcing can be a solution: By incl paper authors in the process of creating structured knowledg
	and Open	*Human-centered computing → Web-based interaction; *In- formation systems → Web interfaces; Crowdsourcing.	possible to leverage human intelligence. However, crowdsou

Annotation interface

sub

Lit

D

us

available knowl-edge graphs include DBpedia [4], YAGO [51] and Wikidata [56].With projects such as Semantic Scholar [3], Microsoft AcademicGraph [47] and Open

Crowdsourcing Scholarly Discourse Annotations

scholarly knowledge from paper authors with a web-based user interface supported by artificial intelligence. The interface enables authors to select key sentences for annotation. It integrates multiple machine learning algorithms to assist authors during the annotation, including class recommendation and key sentence highlighting. We envision that the interface is integrated in paper submission processes for which we define three main task requirements: The task has to be (1) straightforward (2) time efficient (3) well-defined. We evaluated the interface with a user study in which participants were assigned the task to annotate one of their own articles. With the resulting data, we determined whether the participants were successfully able to perform the task. Furthermore, we evaluated the interface's usability and the participant's attitude towards the interface with a survey. The results suggest that sentence annotation is a feasible task for researchers and that they do not object to annotate their articles during the submission process.

CCS CONCEPTS

 Human-centered computing → Web-based interaction; - Information systems → Web interfaces; Crowdsourcing. Sören Auer auer@tib.eu TIB Leibniz Information Centre for Science and Technology Hannover, Germany

document-based. Scholarly articles are mostly published in PDF format, which is specifically designed for human readability [38] and portability across systems. With this form of publishing, scholarly knowledge is not machine actionable [9, 41]. Knowledge graphs can be employed to represent scientific contributions semantically, render scholarly knowledge more machine actionable, and thus making it easier to find, compare and process knowledge. Knowledge graphs are defined as semantic networks describing entities and their interrelations [42]. Prominent examples of openly available knowledge graphs include DBpedia [4], YAGO [51] and Wikidata [56]. With projects such as Semantic Scholar [3], Microsoft Academic Graph [47] and Open Research Knowledge Graph (ORKG) [26], knowledge graphs are gaining popularity in the scholarly domain to structure scholarly knowledge. Except for ORKG, these graphs only capture metadata about research articles and do not describe the content of reported research work, including research contributions [44].

Populating knowledge graphs with scholarly metadata is a relatively straightforward task due to the low task complexity and high accuracy of automated parsing tools (such as GROBID [33]). In contrast, generating graphs of the contents of research articles (i.e. research contributions) is a considerably more complex task which can currently hardly be performed by Natural Language Processing (NLP) tools alone. Crowdsourcing can be a solution: By incl paper authors in the process of creating structured knowledg

paper authors in the process of creating structured knowledg possible to leverage human intelligence. However, crowdsou Θ

Automatic sentence highlighting

- Extractive summarization using BERT embeddings
- Summary is split by sentence endings and highlighted in the original PDF article

Highlighted sentence

the demographics data shows, participants with varying levels of expertise participated in the study.

To determine the usability of the interface, we incorporated the System Usability Scale (SUS) [8] in the questionnaire. Furthermore, to determine the workload of the task we included questions from the NASA Task Load Index (TLX) [25]. This provides insights into the perceived workload by participants for the annotation task. To reduce the length of the questionnaire, we conducted the Raw TLX, which eliminates weighting the questions. Finally, we included

Activate highlighting

Smart sentence detection

Maximum sentences per annotation

- Selected text is split per sentence
- Warning is displayed if more than two sentences are selected

It looks like you selected 4 sentences for this annotation. It is recommended to select maximum 2 sentences

It integrates multiplemachine learning algorithms to assist authors during the annota-tion, including class recommendation and key sentence highlighting. We envision that the interface is

Automatic class suggestions

A zero-shot classifier is used (from Hugging Face) to provide annotation class suggestions based on the selected sentence

System Usability Se	cale (505) [8] in the questionnaire. Furthern	nore,
Select type		-
Select		\sim
Smart suggestion	ns	
Evaluation	Related work Data	
Methods		
	Annotate	

Paper annotator - Evaluation results

Human-AI collaboration in the ORKG

Al-Augmented

1. Smart suggestions

Al-supported tooltips helping users accomplish their tasks

2. Paper annotator

Annotation of key sentences in scholarly PDF articles

3. Survey extractor

Extract survey tables from existing papers

AI-Driven

4. TinyGenius

Microtasks to validate NLP generated statements

5. ORKG Ask

Tomorrow's topic

Literature surveys

Oelen, Allard, Markus Stocker, and Sören Auer. "Creating a scholarly knowledge graph from survey article tables." *International Conference on Asian Digital Libraries.* Cham: Springer International Publishing, 2020.

- Objective: we leverage survey tables to create a scholarly knowledge graph
- Literature surveys (or reviews): consist of **relevant** and **high-quality** research data that has been **manually curated** by domain experts

Example of survey table import

Study	Location	Study date	Methods	R ₀ estimates	95% CI
Joseph et al. ¹	Wuhan	31 Dec '19 - 28 Jan '20	Stochastic Markov Chain	2.68	2.47-2.86
Shen et al. ²	Hubei province	12-22 Jan. '20	Mathematical model, dynamic	6.49	6.31-6.66
Liu et al. ³	China and overseas	23. Jan '20	Statistical exponential Growth	2.90	2.32-3.63
Publicat	transmiss Novel	Coronavirus onia in China	ribution Contribution 1 Stud Research problem 95% Cl -19 reproductive	cation	23. Jan '20 2.90
Methodology

Extract tables from survey papers to create a scholarly knowledge graph

= Human assisted by AI

ORKG

Survey table extractor ?

Q Q 🔀 8 Discard PDF

Q

• Select survey table in PDF article

- Fix formatting with spreadsheet editor
- Reference extraction
- Ontology mapping

Author	Educational context	Evaluator	Method	Result	Topic
Rub11 [13]	Elementary	Developer	Mixed-method	Positive	Bullying
Kato08 [14]	General	Independent	Experiment	Positive	Cancer treatment
Pap09 [15]	Secondary School	Developer	Experiment	Positive	Computer Science
Sind09 [16]	Higher Education	Developer	Experiment	Neutral	Computer Science
Ebn07 [18]	Higher Education	Developer	Experiment	Positive	Engineering
Chu07 [19]	Elementary	Independent	Experiment	Positive	Fire fighting
Vos11 [20]	Elementary	Independent	Experiment	Positive	First language
Asa12 [21]		Independent	Experiment	Positive	Geography
Tüz09 [22]	Elementary	Independent	Mixed-method	Positive	Geography
Vir05 [23]	Elementary	Developer	Experiment	Positive	Geography
Tüz07 [24]	Elementary	Developer	Mixed-method	Unclear	Health
Hui09 [25]	Elementary	Independent	Quasi-experimental	Positive	History
Kenn11 [26]	Higher Education	Independent	Single instance trial	Positive	History
Conn11 [27]	Secondary School	Developer	Experiment	Negative	Language
Rou06 [17]	Elementary	Unclear	Experiment	Neutral	Mathematics/conceptual
Cho11[28]	Higher Education	Independent	Case study	Positive	Mathematics
Kim10 [12]	Elementary	Independent	Survey	Negative	Mathematics
Kab10 [29]	Higher Education	Developer	Experiment	Neutral	Mathematics
Ke07 [30]	Elementary	Independent	Experiment	Positive	Mathematics
Ke08 [31]	Elementary	Independent	Extract table	Neutral	Mathematics
Kord11 [32]	Elementary	Developer	F not-study	Positive	Mathematics
Lia11 [33]	Elementary	Developer	Pilot-study	Positive	Mathematics
Main11 [34]	Elementary	Independent	Pilot-study	Positive	Mathematics
Pan12 [35]	Elementary	Independent	Experiment	Neutral	Mathematics
Sung08 [36]	Pre-school	Developer	Experiment	Positive	Mathematics
Ros03 [37]	Elementary	Developer	Experiment	Neutral	Mathematics
Wil06 [38]	Elementary	Developer	Trial	Positive	Mathematics
Liu09 [39]	Elementary	Developer	Quasi-xperimental	Positive	Natural Sciences
Wang08 [40]	Elementary	Developer	Experiment	Positive	Natural Sciences
Mun08 [41]	Elementary	Developer	Mixed-method	Positive	Nutrition
Rav02 [42]	Secondary School	Unclear	Mixed-method	Positive	Physics
Hua10 [43]	High School	Developer	Quasi-experimental	Mixed	Problem solving
Liu10 [44]	Elementary	Developer	Quasi-experimental	Positive	Second language
Piir09 [45]	Unclear	Independent	Qualitative	Positive	Second language
Yang12 [46]	Unclear	Independent	Quasi-experimental	Positive	Social Sciences
Hain11 [27]	Higher Education	Developer	Experiment	Positive	Software development
Wangen09 [47]	Higher Education	Developer	Experiment	Neutral	Software development
Gom07 [48]	Higher Education	Independent	Experiment	Positive	Surgery
Gom08 [49]	Higher Education	Independent	Experiment	Positive	Surgery
Qin10 [50]	Higher Education	Developer	Pilot-study	Positive	Surgery

- Select survey table in PDF article
- Fix formatting with spreadsheet editor
- Reference extraction
- Ontology mapping

1	Author	Educational context	Evaluator	Method	Result	Торіс
2	Rub11 [13]	Elementary	Developer	Mixed-method	Positive	Bullying
3	Kato08 [14]	General	Independent	Experiment	Positive	Cancer treatment
4	Pap09 [15]	Secondary School	Developer	Experiment	Positive	Computer Science
5	Sind09 [16]	Higher Education	Developer	Experiment	Neutral	Computer Science
6	Ebn07 [18]	Higher Education	Developer	Experiment	Positive	Engineering
7	Chu07 [19]	Elementary	Independent	Experiment	Positive	Fire fighting
8	Vos11 [20]	Elementary	Independent	Experiment	Positive	First language
9	Asa12 [21]		Independent	Experiment	Positive	Geography
10	Tüz09 [22]	Elementary	Independent	Mixed-method	Positive	Geography
11	Vir05 [23]	Elementary	Developer	Experiment	Positive	Geography
12	Tüz07 [24]	Elementary	Developer	Mixed-method	Unclear	Health
13	Hui09 [25]	Elementary	Independent	Quasi-experimental	Positive	History
14	Kenn11 [26]	Higher Education	Independent	Single instance trial	Positive	History
15	Conn11 [27]	Secondary School	Developer	Experiment	Negative	Language
16	Rou06 [17]	Elementary	Unclear	Experiment	Neutral	Mathematics/conceptual
17	Cho11 [28]	Higher Education	Independent	Case study	Positive	Mathematics
18	Kim10 [12]	Elementary	Independent	Survey	Negative	Mathematics
19	Kab10 [29]	Higher Education	Developer	Experiment	Neutral	Mathematics
20	Ke07 [30]	Elementary	Independent	Experiment	Positive	Mathematics

- Select survey table in PDF article
- Fix formatting with spreadsheet editor
- Reference extraction
- Ontology mapping

Ea	Reference extraction	×	c
Ele			ring
Ge			er treatment
Se	References used within a table can be extracted. The		puter Science
Hi			puter Science
Hi	extracted data will be added to the table		neering
El€			fighting
Ele	Select the column that contains the citation key		language
	colocit the column that contains the ortation key		graphy
Ele	Author	~	graphy
El€			graphy
Ele			th
Ele	Select the reference formatting		bry
Hi			bry
Se	Numerical ([1]; [2])	~	luage
Ele			nematics/conceptual
Hi			nematics
Ele		_	nematics
Hi	Extract reference	s	nematics
Ele	Extractioneren		rematics
	Ele Ge Se Hit Ele Ele Ele Ele Ele Ele Hit Se Ele Hit Ele	Ele Ge Se Hit Hit Ele Select the column that contains the citation key Author Ele Select the reference formatting Hit Ele Hit Ele Hit	Ele Ge Se Hit Hit Hit Select the column that contains the citation key Author Select the reference formatting Numerical ([1]; [2]) Ele Hit Ele Hit Select the reference formatting Hit Select the reference formatting Hit

 Select survey table in PDF article Table extraction (2)

- Fix formatting with spreadsheet editor
- Reference extraction
- Ontology mapping

				Method		✓ ppic
2	Rub11 [13]	Elementary		TINAA MATKAA	UAAIMUA	ullying
	Kato08 [14]		Independent	Activation method	P15180	ancer treatment
4		Secondary School				Computer Science
				Analytical method	P15620	Computer Science
	Ebn07 [18]			Anonymistion		ngineering
7	Chu07 [19]	Elementary	Independent	algorithm/method	P15666	ire fighting
	Vos11 [20]	Elementary	Independent			irst language
9	Asa12 [21]		Independent	Building Methodology	P15354	eography
10	Tüz09 [22]	Elementary	Independent	Cascaded method	P15312	eography
11	Vir05 [23]	Elementary				eography
12	Tüz07 [24]	Elementary		Clustering method	P9010	lealth
13		Elementary	Independent	Fostory Method	P15436	listory
4	Kenn11 [26]		Independent	Factory Method	P15436	listory
15	Conn11 [27]	Secondary School		сурентени	INCYALIVE	anguage
	Rou06 [17]	Elementary		Experiment	Neutral	Mathematics/conceptual
17	Cho11 [28]	Higher Education	Independent	Case study		Mathematics
	Kim10 [12]	Elementary	Independent	Survey	Negative	Mathematics
19	Kab10 [29]			Experiment	Neutral	Mathematics
	Ke07 [30]		Independent	Experiment		Mathematics

Import data

Survey extractor tool - Results

Description	Amount
Paper selection	
Amount of evaluated papers	415
Amount of selected papers	92
Table extraction	
Total amount of extractions (partial tables)	265
Amount of extracted complete tables	160
Reference extraction	
Found references	2 069
Not found references	1 137
Build graph	
Individual amount of imported papers	2 6 2 6
Imported data cells (with metadata)	40 584
Imported data cells (without metadata)	21 240

#	Issue	Percentage %
1	Columns are not extracted correctly	26
2	Rows are not extracted correctly	14
3	Empty columns in the extracted table	14
4	Text not correctly recognized (e.g., missing letters or formulas)	12
5	Issue with table header text	12
6	Vertical text not imported correctly	4
7	Cell value not supported (e.g., use of image instead of text check marks)	3
8	Table within table not extracted correctly	3

Human-AI collaboration in the ORKG

Al-Augmented

1. Smart suggestions

Al-supported tooltips helping users accomplish their tasks

2. Paper annotator

Annotation of key sentences in scholarly PDF articles

3. Survey extractor

Extract survey tables from existing papers

AI-Driven

4. TinyGenius

Microtasks to validate NLP generated statements

5. ORKG Ask

Tomorrow's topic

TinyGenius

Oelen, Allard, Markus Stocker, and Sören Auer. "TinyGenius: intertwining natural language processing with microtask crowdsourcing for scholarly knowledge graph creation." *Proceedings of the 22nd ACM/IEEE Joint Conference on Digital Libraries*. 2022.

- Leverage existing NLP tools to **process large quantities** of scholarly data
- Ask any user/visitor to validate the statements using **simple tasks** (aka microtasks)
- Users that are normally "content consumers" can become "content creators" as microtasks lower the entrance barrier to contribute significantly

TinyGenius - Validate NLP with microtasks

TinyGenius - Approach

The six-step approach **extracts** knowledge from scholarly articles, **creates** a knowledge graph, and let's humans **validate** the knowledge

TinyGenius - Approach

The six-step approach **extracts** knowledge from scholarly articles, **creates** a knowledge graph, and let's humans **validate** the knowledge

TinyGenius - NLP tools and templates

Task-specific question templates are used for the microtask generation

1. Open information extraction (ORKG abstract annotator & ORKG title parser)

2. Entity linking (Ambiverse NLU)

3. Topic modeling (CSO Classifier)

4. Summarization (*Hugging face*)

TinyGenius - NLP tools and templates

Task-specific question templates are used for the microtask generation

1. Open information extraction (ORKG abstract annotator & ORKG title parser)

Data model | Provenance

Data model | Provenance

TinyGenius - Queries

```
SELECT DISTINCT * WHERE {
     <<tinygenius:1802.01528 ?pred ?obj>>
          dcterms:creator tinygenius:ambiverse_nlu .
     tinygenius:ambiverse_nlu dcterms:hasVersion "1.1.1" .
```

```
SELECT DISTINCT * WHERE {
     <<tinygenius:1608.06993 ?pred ?obj>> ?provPred ?prov0bj .
     OPTIONAL {
          ?prov0bj ?provPred2 ?prov0bj2 .
     }
}
```

SELECT ?yea	<pre>r (COUNT(DISTINCT ?paper)</pre>	AS ?count) WHERE {
?paper	a	fabio:Work ;
66 23	fabio:hasPublicationYear	?year ;
	?predicate	<pre>tinygenius:artificial_neural_network .</pre>
} GROUP BY	?year	

Results - Statistics

Triple related statistics

Processed articles	95,376*
Triples metadata	1,521,492
Triples provenance	47,595,706
Triples total	65,608,902
Average number of triples per article	688

* Approximately 5% of the complete arXiv corpus. Includes all papers classified as "Machine Learning"

Processing time per NLP tool

Abstract annotator	62,056s (≈ 17 hour)
Title parser	87s
Ambiverse NLU	137,060s (∽ 38 hour)
CSO classifier	27,803s (≍ 8 hour)
Summarizer	N/A

I think the questions in the form of ...

TinyGenius - Results

Thank you! Any Questions?

Allard Oelen <u>allard.oelen@tib.eu</u> <u>linkedin.com/in/allard-oelen</u>

Meet the team: <u>https://orkg.org/about/9/Team</u>

