

Harnessing Large Datasets for Large Language Models

Presented at: 2nd European Summer School on Artificial Intelligence (ESSAI 2024), Athens, Greece Date of event: 23rd July 2024 Presented by: Jennifer D'Souza (Junior Al Research Group Lead) Contact: https://www.linkedin.com/in/iennifer-I-dsouza/

- Natural Language Processing (NLP) is a tract of Artificial Intelligence and Linguistics, devoted to make computers understand the statements or words written in human languages. It came into existence to ease the user's work and to satisfy the wish to communicate with the computer in natural language.
- It can be classified into two parts:
 - Natural Language Understanding or Linguistics and
 - Natural Language Generation which evolves the task to understand and generate the text.

NLU enables machines to understand natural language and analyze it by extracting concepts, entities, emotion, keywords etc. However such functions are predicated on basic building blocks of Linguistics which we will gloss over next.

References

Khurana, Diksha, et al. "Natural language processing: State of the art, current trends and challenges." Multimedia tools and applications 82.3 (2023): 3713-3744.

Morphology is like the "building blocks" of words, where we study how words are formed from smaller parts (called morphemes) to understand their meanings and how they can change. E.g., the word "unhappiness" is made up of three morphemes: "un-" (a prefix meaning "not"), "happy" (the root word), and "-ness" (a suffix that turns an adjective into a noun).

References

Khurana, Diksha, et al. "Natural language processing: State of the art, current trends and challenges." Multimedia tools and applications 82.3 (2023): 3713-3744.

References

Khurana, Diksha, et al. "Natural language processing: State of the art, current trends and challenges." Multimedia tools and applications 82.3 (2023): 3713-3744.

Syntax is like the grammar of a language; it's the set of rules that determines how words are organized in a sentence to make it meaningful and coherent. E.g., In English syntax, the sentence "The cat chased the mouse" is considered correct, while "Chased mouse the cat" is not, illustrating how the order of words matters for making sense in a sentence.

References Khurana, Diksha, et al. "Natural language processing: State of the art, current trends and challenges." *Multimedia tools and applications* 82.3 (2023): 3713-3744.

References

Khurana, Diksha, et al. "Natural language processing: State of the art, current trends and challenges." Multimedia tools and applications 82.3 (2023): 3713-3744.

Pragmatics is like the unwritten rules of communication, helping us understand how people use language in context to convey meaning, including implied or hidden messages and the influence of social and cultural factors on language use.

E.g., In pragmatics, if someone says "It's hot in here" when the room is warm, they might be indirectly suggesting they want a window open or the air conditioning on, showing how language can convey more than just the words spoken.

References

Khurana, Diksha, et al. "Natural language processing: State of the art, current trends and challenges." Multimedia tools and applications 82.3 (2023): 3713-3744.

References

Khurana, Diksha, et al. "Natural language processing: State of the art, current trends and challenges." Multimedia tools and applications 82.3 (2023): 3713-3744.

References

Khurana, Diksha, et al. "Natural language processing: State of the art, current trends and challenges." Multimedia tools and applications 82.3 (2023): 3713-3744.

References

Khurana, Diksha, et al. "Natural language processing: State of the art, current trends and challenges." Multimedia tools and applications 82.3 (2023): 3713-3744.

References

Khurana, Diksha, et al. "Natural language processing: State of the art, current trends and challenges." Multimedia tools and applications 82.3 (2023): 3713-3744.

References

Khurana, Diksha, et al. "Natural language processing: State of the art, current trends and challenges." Multimedia tools and applications 82.3 (2023): 3713-3744.

References

Khurana, Diksha, et al. "Natural language processing: State of the art, current trends and challenges." Multimedia tools and applications 82.3 (2023): 3713-3744.

• A large language model (LLM) is a type of machine learning model that is trained on massive amounts of text data to generate natural language text.

- A large language model (LLM) is a type of machine learning model that is trained on massive amounts of text data to generate natural language text.
- LLMs are neural network-based models that use deep learning techniques to analyze patterns in language data, and they can learn to generate text that is grammatically correct and semantically meaningful.
 - As LLMs are scaled, they can unlock new capabilities, such as translating foreign languages, writing code, and more. All they have to do is observe recurring patterns in language during model training.

- A large language model (LLM) is a type of machine learning model that is trained on massive amounts of text data to generate natural language text.
- LLMs are neural network-based models that use deep learning techniques to analyze patterns in language data, and they can learn to generate text that is grammatically correct and semantically meaningful.
 - As LLMs are scaled, they can unlock new capabilities, such as translating foreign languages, writing code, and more. All they have to do is observe recurring patterns in language during model training.
- LLMs can be quite large, with billions of parameters, and they require significant computing power and data to train effectively.

- A large language model (LLM) is a type of machine learning model that is trained on massive amounts of text data to generate natural language text.
- LLMs are neural network-based models that use deep learning techniques to analyze patterns in language data, and they can learn to generate text that is grammatically correct and semantically meaningful.
 - As LLMs are scaled, they can unlock new capabilities, such as translating foreign languages, writing code, and more. All they have to do is observe recurring patterns in language during model training.
- LLMs can be quite large, with billions of parameters, and they require significant computing power and data to train effectively.
- The most well-known LLMs include OpenAl's GPT (Generative Pre-trained Transformer) models and Google's BERT (Bidirectional Encoder Representations from Transformers) models. These models have achieved impressive results in various NLP tasks, including language translation, question-answering, and text generation.

References

Model	Organization	Date	Size (# params)
ELMo	AI2	Feb 2018	94,000,000
GPT	OpenAl	Jun 2018	110,000,000
BERT	Google	Oct 2018	340,000,000
XLM	Facebook	Jan 2019	655,000,000
GPT-2	OpenAl	Mar 2019	1,500,000,000
RoBERTa	Facebook	Jul 2019	355,000,000
Megatron-LM	NVIDIA	Sep 2019	8,300,000,000
Τ5	Google	Oct 2019	11,000,000,000
Turing-NLG	Microsoft	Feb 2020	17,000,000,000
GPT-3	OpenAl	May 2020	175,000,000,000
Megatron-Turing NLG	Microsoft, NVIDIA	Oct 2021	530,000,000,000
Gopher	DeepMind	Dec 2021	280,000,000,000

Model	Organization	Date	Size (# params)	_
ELMo	AI2	Feb 2018	94,000,000	94N
GPT	OpenAl	Jun 2018	110,000,000	
BERT	Google	Oct 2018	340,000,000	
XLM	Facebook	Jan 2019	655,000,000	
GPT-2	OpenAl	Mar 2019	1,500,000,000	
RoBERTa	Facebook	Jul 2019	355,000,000	
Megatron-LM	NVIDIA	Sep 2019	8,300,000,000	
Т5	Google	Oct 2019	11,000,000,000	
Turing-NLG	Microsoft	Feb 2020	17,000,000,000	
GPT-3	OpenAl	May 2020	175,000,000,000	
Megatron-Turing NLG	Microsoft, NVIDIA	Oct 2021	530,000,000,000	
Gopher	DeepMind	Dec 2021	280,000,000,000	

	Model	Organization	Date	Size (# params)	
	ELMo	AI2	Feb 2018	94,000,000	94M
	GPT	OpenAl	Jun 2018	110,000,000	110M
_	BERT	Google	Oct 2018	340,000,000	
	XLM	Facebook	Jan 2019	655,000,000	
	GPT-2	OpenAl	Mar 2019	1,500,000,000	1.5B
	RoBERTa	Facebook	Jul 2019	355,000,000	
	Megatron-LM	NVIDIA	Sep 2019	8,300,000,000	
	Т5	Google	Oct 2019	11,000,000,000	
	Turing-NLG	Microsoft	Feb 2020	17,000,000,000	
	GPT-3	OpenAl	May 2020	175,000,000,000	175B
	Megatron-Turing NLG	Microsoft, NVIDIA	Oct 2021	530,000,000,000	
	Gopher	DeepMind	Dec 2021	280,000,000,000	

Model	Organization	Date	Size (# params)	
ELMo	AI2	Feb 2018	94,000,000	94M
GPT	OpenAl	Jun 2018	110,000,000	110M
BERT	Google	Oct 2018	340,000,000	340M
 XLM	Facebook	Jan 2019	655,000,000)
GPT-2	OpenAl	Mar 2019	1,500,000,000	1.5B
RoBERTa	Facebook	Jul 2019	355,000,000	
Megatron-LM	NVIDIA	Sep 2019	8,300,000,000	
Т5	Google	Oct 2019	11,000,000,000	11B
Turing-NLG	Microsoft	Feb 2020	17,000,000,000	
GPT-3	OpenAl	May 2020	175,000,000,000	175B
Megatron-Turing NLG	Microsoft, NVIDIA	Oct 2021	530,000,000,000	
Gopher	DeepMind	Dec 2021	280,000,000,000	

Model	Organization	Date	Size (# params)	
ELMo	AI2	Feb 2018	94,000,000	94M
GPT	OpenAl	Jun 2018	110,000,000	110M
BERT	Google	Oct 2018	340,000,000	340M
XLM	Facebook	Jan 2019	655,000,000	655M
GPT-2	OpenAl	Mar 2019	1,500,000,000	1.5B
RoBERTa	Facebook	Jul 2019	355,000,000	355M
Megatron-LM	NVIDIA	Sep 2019	8,300,000,000	
Т5	Google	Oct 2019	11,000,000,000	11B
Turing-NLG	Microsoft	Feb 2020	17,000,000,000	
GPT-3	OpenAl	May 2020	175,000,000,000	175B
Megatron-Turing NLG	Microsoft, NVIDIA	Oct 2021	530,000,000,000	
Gopher	DeepMind	Dec 2021	280,000,000,000	

Model	Organization	Date	Size (# params)	
ELMo	AI2	Feb 2018	94,000,000	94M
GPT	OpenAl	Jun 2018	110,000,000	110 M
BERT	Google	Oct 2018	340,000,000	340M
XLM	Facebook	Jan 2019	655,000,000	655M
GPT-2	OpenAl	Mar 2019	1,500,000,000	1.5B
RoBERTa	Facebook	Jul 2019	355,000,000	355M
Megatron-LM	NVIDIA	Sep 2019	8,300,000,000	8.3B
Т5	Google	Oct 2019	11,000,000,000	11B
Turing-NLG	Microsoft	Feb 2020	17,000,000,000	17B
GPT-3	OpenAl	May 2020	175,000,000,000	175B
Megatron-Turing NLG	Microsoft, NVIDIA	Oct 2021	530,000,000,000	530B
Gopher	DeepMind	Dec 2021	280,000,000,000	280B

Large Language Models (LLMs) Examples - A Few Insights

Increase in size. First, what do we mean by large? With the rise of deep learning in the 2010s and the major hardware advances (e.g., GPUs), the size of neural language models has skyrocketed. The examples we saw showed that the model sizes increased by an order of 5000x over just 4 years.

Large Language Models (LLMs) Examples - A Few Insights

- Increase in size. First, what do we mean by large? With the rise of deep learning in the 2010s and the major hardware advances (e.g., GPUs), the size of neural language models has skyrocketed. The examples we saw showed that the model sizes increased by an order of 5000x over just 4 years.
- Emergence. What difference does scale make? Even though much of the technical machinery is the same, the surprising thing is that "just scaling up" these models produces new emergent behavior, leading to qualitatively different capabilities and qualitatively different societal impact.
 - For more information on research discovering emergence please see the "Beyond the Imitation Game" project here <u>https://github.com/google/BIG-bench</u>

Model	Organization	Date	Size (# params)
Chinchilla	DeepMind	Apr 2022	70,000,000,000
PaLM	Google	Apr 2022	540,000,000,000
OPT	MetaAl	May 2022	175,000,000,000
BLOOM	Big Science, HuggingFace	Jul 2022	176,000,000,000
Flan-T5	Google	Nov 2022	11,000,000,000
ChatGPT	OpenAl	Nov 2022	175,000,000,000
LLaMA	MetaAl	Feb 2023	65,200,000,000
Alpaca	Stanford	March 2023	65,000,000,000
GPT-4	OpenAl	March 2023	170,000,000,000,000
Falcon	TII	May 2023	40,000,000,000

Model	Organization	Date	Size (# params)	
Chinchilla	DeepMind	Apr 2022	70,000,000,000	70B
PaLM	Google	Apr 2022	540,000,000,000	
OPT	MetaAl	May 2022	175,000,000,000	
BLOOM	Big Science, HuggingFace	Jul 2022	176,000,000,000	
Flan-T5	Google	Nov 2022	11,000,000,000	
ChatGPT	OpenAl	Nov 2022	175,000,000,000	
LLaMA	MetaAl	Feb 2023	65,200,000,000	
Alpaca	Stanford	March 2023	65,000,000,000	
GPT-4	OpenAl	March 2023	170,000,000,000,000	
Falcon	TII	May 2023	40,000,000,000	

Model	Organization	Date	Size (# params)	
 Chinchilla	DeepMind	Apr 2022	70,000,000,000	70B
PaLM	Google	Apr 2022	540,000,000,000	540B
OPT	MetaAl	May 2022	175,000,000,000	
 BLOOM	Big Science, HuggingFace	Jul 2022	176,000,000,000	
Flan-T5	Google	Nov 2022	11,000,000,000	11B
 ChatGPT	OpenAl	Nov 2022	175,000,000,000	
LLaMA	MetaAl	Feb 2023	65,200,000,000	
Alpaca	Stanford	March 2023	65,000,000,000	
GPT-4	OpenAl	March 2023	170,000,000,000,000	
Falcon	ТП	May 2023	40,000,000,000	

Model	Organization	Date	Size (# params)	
Chinchilla	DeepMind	Apr 2022	70,000,000,000	70B
 PaLM	Google	Apr 2022	540,000,000,000	540B
OPT	MetaAl	May 2022	175,000,000,000	175B
BLOOM	Big Science, HuggingFace	Jul 2022	176,000,000,000	
Flan-T5	Google	Nov 2022	11,000,000,000	11B
ChatGPT	OpenAl	Nov 2022	175,000,000,000	
LLaMA	MetaAl	Feb 2023	65,200,000,000	65B
Alpaca	Stanford	March 2023	65,000,000,000	
GPT-4	OpenAl	March 2023	170,000,000,000,000	
Falcon	TII	May 2023	40,000,000,000	

	Model	Organization	Date	Size (# params)	
	Chinchilla	DeepMind	Apr 2022	70,000,000,000	70B
	PaLM	Google	Apr 2022	540,000,000,000	540B
_	OPT	MetaAl	May 2022	175,000,000,000	175B
	BLOOM	Big Science, HuggingFace	Jul 2022	176,000,000,000	176B
	Flan-T5	Google	Nov 2022	11,000,000,000	11B
	ChatGPT	OpenAl	Nov 2022	175,000,000,000	
	LLaMA	MetaAl	Feb 2023	65,200,000,000	65B
	Alpaca	Stanford	March 2023	65,000,000,000	
	GPT-4	OpenAl	March 2023	170,000,000,000,000	
	Falcon	ТП	May 2023	40,000,000,000	

Model	Organization	Date	Size (# params)	
Chinchilla	DeepMind	Apr 2022	70,000,000,000	70B
PaLM	Google	Apr 2022	540,000,000,000	540B
OPT	MetaAl	May 2022	175,000,000,000	175B
BLOOM	Big Science, HuggingFace	Jul 2022	176,000,000,000	176B
Flan-T5	Google	Nov 2022	11,000,000,000	11B
ChatGPT	OpenAl	Nov 2022	175,000,000,000	176B
LLaMA	MetaAl	Feb 2023	65,200,000,000	65B
Alpaca	Stanford	March 2023	65,000,000,000	
GPT-4	OpenAl	March 2023	170,000,000,000,000	170T
Falcon	ТІІ	May 2023	40,000,000,000	
	Chinchilla PaLM OPT BLOOM Flan-T5 ChatGPT LLaMA Alpaca GPT-4	ChinchillaDeepMindPaLMGoogleOPTMetaAlBLOOMBig Science, HuggingFaceFlan-T5GoogleChatGPTOpenAlLLaMAMetaAlAlpacaStanfordGPT-4OpenAl	ChinchillaDeepMindApr 2022PaLMGoogleApr 2022OPTMetaAlMay 2022BLOOMBig Science, HuggingFaceJul 2022Flan-T5GoogleNov 2022ChatGPTOpenAlNov 2022LLaMAMetaAlFeb 2023AlpacaStanfordMarch 2023GPT-4OpenAlMarch 2023	ChinchillaDeepMindApr 202270,000,000,000PaLMGoogleApr 2022540,000,000,000OPTMetaAlMay 2022175,000,000,000BLOOMBig Science, HuggingFaceJul 2022176,000,000,000Flan-T5GoogleNov 202211,000,000,000ChatGPTOpenAlNov 2022175,000,000,000LLaMAMetaAlFeb 202365,200,000,000AlpacaStanfordMarch 2023170,000,000,000GPT-4OpenAlMarch 2023170,000,000,000

Model	Organization	Date	Size (# params)	
Chinchilla	DeepMind	Apr 2022	70,000,000,000	70B
PaLM	Google	Apr 2022	540,000,000,000	540B
OPT	MetaAl	May 2022	175,000,000,000	175B
BLOOM	Big Science, HuggingFace	Jul 2022	176,000,000,000	176B
Flan-T5	Google	Nov 2022	11,000,000,000	11B
ChatGPT	OpenAl	Nov 2022	175,000,000,000	176B
LLaMA	MetaAl	Feb 2023	65,200,000,000	65B
Alpaca	Stanford	March 2023	65,000,000,000	65B
GPT-4	OpenAl	March 2023	170,000,000,000,000	170T
Falcon	TII	May 2023	40,000,000,000	

Model	Organization	Date	Size (# params)	
Chinchilla	DeepMind	Apr 2022	70,000,000,000	70B
PaLM	Google	Apr 2022	540,000,000,000	540B
OPT	MetaAl	May 2022	175,000,000,000	175B
BLOOM	Big Science, HuggingFace	Jul 2022	176,000,000,000	176B
Flan-T5	Google	Nov 2022	11,000,000,000	11B
ChatGPT	OpenAl	Nov 2022	175,000,000,000	176B
LLaMA	MetaAl	Feb 2023	65,200,000,000	65B
Alpaca	Stanford	March 2023	65,000,000,000	65B
GPT-4	OpenAl	March 2023	170,000,000,000,000	170T
Falcon	TII	May 2023	40,000,000,000	40B

LEIBNIZ-INFORMATIONSZENTRUM TECHNIK UND NATURWISSENSCHAFTEN UNIVERSITÄTSBIBLIOTHEK

(I) Datasets for Pretraining

Jennifer D'Souza

Technische Informationsbibliothek (TIB) Welfengarten 1B // 30167 Hannover

LEIBNIZ-INFORMATIONSZENTRUM TECHNIK UND NATURWISSENSCHAFTEN UNIVERSITÄTSBIBLIOTHEK

(I) Datasets for Pretraining

Jennifer D'Souza

Technische Informationsbibliothek (TIB) Welfengarten 1B // 30167 Hannover

Pretraining?

Pre-training is the process where models are trained on huge quantities of data, which helps them comprehend a broad range of language patterns and constructs.

Pretraining Datasets?

Pretraining datasets are foundational to creating optimal LLMs for the following reasons:

- 1. Broad Language Understanding
- 2. Shared Knowledge Base
- 3. Efficient Transfer Learning
- 4. Context and World Knowledge
- 5. Generalization and Scalability

Plan for the Talk

- Browse pre-training datasets for models categorized by their pre-training architectures
 - Decoder-only
 - Encoder-only
 - Encoder-Decoder

Plan for the Talk

- Browse pre-training datasets for models categorized by their pre-training architectures
 - Decoder-only
 - Encoder-only
 - Encoder-Decoder

- Transformer Encoder only architecture
 - Bi-directional: context from the left, and the right
 - Good at extracting meaningful information
 - Sequence classification, question answering, masked language modeling
 - NLU: Natural Language Understanding
 - \circ $\,$ Examples of encoders: BERT, RoBERTa, ALBERT

- Transformer Decoder only architecture
 - Unidirectional: access to their left (or right!) context
 - Great at causal tasks; generating sequences
 - NLG: Natural language generation
 - Note this is a traditional application sense of a decoder. Recent work on LLMs leverage various input representations for wide variety of downstream tasks that are effectively addressed via the text generation objective.
 - Examples: GPT-series, Falcon, LLaMA

• Transformer - Encoder-Decoder architecture

 Combines the functionality of both the encoder and decoder architectures. Encoders produce models that are very good at natural language understanding. Decoders produce models that are very good at text generation. Encoder-decoders combined produce models that generate text based on functionalities to encode bidirectional contextual sequence representations.

- Transformer Encoder-Decoder architecture
 - The decoder's autoregressive behavior allows it to add words that it just generated as output and allows it to include it as part of the generation input sequence.

- Transformer Encoder-Decoder architecture
 - Sequence to sequence tasks; many-to-many: translation, summarization
 - Examples: BART, T5, mT5, Pegasus, mBART ...

Plan for the Talk

- Browse pre-training datasets for models categorized by their pre-training architectures
 - Decoder-only
 - Encoder-only
 - Encoder-Decoder

Plan for the Talk

- Browse pre-training datasets for models categorized by their pre-training architectures
 - Decoder-only
 - Encoder-only
 - Encoder-Decoder

- Key idea
 - Modeling every NLP problem as a text-to-text task or sequence-to-sequence generation.

References

^{1.} Raffel, Colin, et al. "Exploring the limits of transfer learning with a unified text-to-text transformer." *The Journal of Machine Learning Research* 21.1 (2020): 5485-5551.

- Key idea
 - Modeling every NLP problem as a text-to-text task or sequence-to-sequence generation.

Figure 1: A diagram of our text-to-text framework. Every task we consider—including translation, question answering, and classification—is cast as feeding our model text as input and training it to generate some target text. This allows us to use the same model, loss function, hyperparameters, etc. across our diverse set of tasks. It also provides a standard testbed for the methods included in our empirical survey. "T5" refers to our model, which we dub the "Text-to-Text Transfer Transformer".

References

- Key idea
 - Modeling every NLP problem as a text-to-text task or sequence-to-sequence generation.

Since the same model is used to perform many tasks, the way the model is told which task to perform is by prepending the input with the task.

Figure 1: A diagram of our text-to-text framework. Every task we consider—including translation, question answering, and classification—is cast as feeding our model text as input and training it to generate some target text. This allows us to use the same model, loss function, hyperparameters, etc. across our diverse set of tasks. It also provides a standard testbed for the methods included in our empirical survey. "T5" refers to our model, which we dub the "Text-to-Text Transfer Transformer".

References

- Key idea
 - Modeling every NLP problem as a text-to-text task or sequence to sequence generation.

While machine translation as a text-to-text task is straightforward, the same method is also applied to classification tasks, as seen in the red box.

Figure 1: A diagram of our text-to-text framework. Every task we consider—including translation, question answering, and classification—is cast as feeding our model text as input and training it to generate some target text. This allows us to use the same model, loss function, hyperparameters, etc. across our diverse set of tasks. It also provides a standard testbed for the methods included in our empirical survey. "T5" refers to our model, which we dub the "Text-to-Text Transfer Transformer".

References

- Key idea
 - Modeling every NLP problem as a text-to-text task or sequence to sequence generation.

Figure 1: A diagram of our text-to-text framework. Every task we consider—including translation, question answering, and classification—is cast as feeding our model text as input and training it to generate some target text. This allows us to use the same model, loss function, hyperparameters, etc. across our diverse set of tasks. It also provides a standard testbed for the methods included in our empirical survey. "T5" refers to our model, which we dub the "Text-to-Text Transfer Transformer".

For the classification task, the model is trained to predict the text. Note in traditional paradigms, we usually have a softmax layer which predict the probabilities that are then mapped to a label.

References

- Key idea
 - Modeling every NLP problem as a text-to-text task or sequence to sequence generation.

Interestingly the same textto-text framework is also applied to regression problems.

Figure 1: A diagram of our text-to-text framework. Every task we consider—including translation, question answering, and classification—is cast as feeding our model text as input and training it to generate some target text. This allows us to use the same model, loss function, hyperparameters, etc. across our diverse set of tasks. It also provides a standard testbed for the methods included in our empirical survey. "T5" refers to our model, which we dub the "Text-to-Text Transfer Transformer".

References

Men Lem Intro The spec flow The culir thro whic The citric a so Artic The lemo Assa norti Age was oran

- Pre-training data sources
 - 1. Common Crawl
 - The Common Crawl initiative is a nonprofit organization that conducts large-scale web crawling to create and maintain an openly accessible archive of web content for research and public use. <u>https://commoncrawl.org/</u>
 - A typical dump of common crawl looks as shown in the Figure below.

nu	Please enable JavaScript to use our site.	Lorem ipsum dolor sit amet, consectetur adipiscing elit.
non	Home	Curabitur in tempus guam. In mollis et ante
	Products	at consectetur.
oduction	Shipping	Aliguam erat volutpat.
	Contact	Donec at lacinia est.
elemon, Citrus Limon (l.) Osbeck, is a	FAQ	Duis semper, magna tempor interdum
cies of small evergreen tree in the		suscipit, ante elit molestie urna, eget
vering plant family rutaceae.	Dried Lemons, \$3.59/pound	efficitur risus nunc ac elit.
tree's ellipsoidal yellow fruit is used for		Fusce quis blandit lectus.
nary and non-culinary purposes	Organic dried lemons from our farm in	Mauris at mauris a turpis tristique lacinia at
bughout the world, primarily for its juice,	California.	nec ante.
ch has both culinary and cleaning uses.	Lemons are harvested and sun-dried for	Aenean in scelerisque tellus, a efficitur
juice of the lemon is about 5% to 6%	maximum flavor.	ipsum.
ic acid, with a ph of around 2.2, giving it our taste	Good in soups and on popcorn.	Integer justo enim, ornare vitae sem non, mollis fermentum lectus.
	The lemon, Citrus Limon (I.) Osbeck, is a	Mauris ultrices nisl at libero porta sodales
icle	species of small evergreen tree in the	in ac orei.
	flowering plant family rutaceae.	and the second s
origin of the lemon is unknown, though	The tree's ellipsoidal yellow fruit is used for	function Ball(r) {
ions are thought to have first grown in	culinary and non-culinary purposes	this.radius = r;
am (a region in northeast India),	throughout the world, primarily for its juice,	this.area = pi * r ** 2;
thern Burma or China.	which has both culinary and cleaning uses.	this.show = function(){
enomic study of the lemon indicated it	The juice of the lemon is about 5% to 6%	drawCircle(r);
s a hybrid between bitter orange (sour	citric acid, with a ph of around 2.2, giving it)
nge) and citron.	a sour taste.)

Common Crawl Web Extracted Text

References

- Pre-training data sources
 - 1. Common Crawl
 - The Common Crawl initiative is a nonprofit organization that conducts large-scale web crawling to create and maintain an openly accessible archive of web content for research and public use. <u>https://commoncrawl.org/</u>
 - A typical dump of common crawl looks as shown in the Figure below.

Common Crawl Web Extracted Text

References

- Pre-training data sources
 - 1. Common Crawl
 - The Common Crawl initiative is a nonprofit organization that conducts large-scale web crawling to create and maintain an openly accessible archive of web content for research and public use. <u>https://commoncrawl.org/</u>
 - A typical dump of common crawl looks as shown in the Figure below.

vikipedia page		
Menu	Please enable JavaScript to use our site.	Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Lemon	Home	Curabitur in tempus quam. In mollis et ante
Introduction	shipping a product page	at consectetur. Aliguam erat volutpat.
and output	Contact a product page	Donec at lacinia est.
The lemon, Citrus Limon (l.) Osbeck, is a	FAQ	Duis semper, magna tempor interdum
species of small evergreen tree in the	D 1 41	suscipit, ante elit molestie urna, eget
flowering plant family rutaceae. The tree's ellipsoidal yellow fruit is used for	Dried Lemons, \$3.59/pound	efficitur risus nunc ac elit. noisy site with gibberish
culinary and non-culinary purposes	Organic dried lemons from our farm in	Mauris at mauris a turpis tristique lacinia at
throughout the world, primarily for its juice,	California.	nec ante.
which has both culinary and cleaning uses.	Lemons are harvested and sun-dried for	Aenean in scelerisque tellus, a efficitur
The juice of the lemon is about 5% to 6%	maximum flavor.	ipsum.
citric acid, with a ph of around 2.2, giving it	Good in soups and on popcorn.	Integer justo enim, ornare vitae sem non,
a sour taste.	The large of the United Blocked Line	mollis fermentum lectus.
Article	The lemon, Citrus Limon (I.) Osbeck, is a species of small evergreen tree in the	Mauris ultrices nisl at libero porta sodales in ac orci.
Arucie	flowering plant family rutaceae.	in action.
The origin of the lemon is unknown, though	The tree's ellipsoidal yellow fruit is used for	function Ball(r) {
lemons are thought to have first grown in	culinary and non-culinary purposes	this.radius = r;
Assam (a region in northeast India),	throughout the world, primarily for its juice,	this.area = pi * r ** 2;
northern Burma or China.	which has both culinary and cleaning uses.	this.show = function(){
A genomic study of the lemon indicated it was a hybrid between bitter orange (sour	The juice of the lemon is about 5% to 6%	drawCircle(r);
orange) and citron.	citric acid, with a ph of around 2.2, giving it a sour taste.	

a typical Wikipedia page

This reflects the typical state of web-crawled text. It is noisy and includes a lot of stuff that isn't natural language text such as menus or code.

References

- Pre-training data sources
 - 1. Common Crawl
 - The Common Crawl initiative is a nonprofit organization that conducts large-scale web crawling to create and maintain an openly accessible archive of web content for research and public use. <u>https://commoncrawl.org/</u>
 - A typical dump of common crawl looks as shown in the Figure below.

Menu	Please enable JavaScript to use our site.	Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Lemon	Home	Curabitur in tempus quam. In mollis et ante
	Products	at consectetur.
Introduction	shipping a product page	Aliquam erat volutpat.
The lemon, Citrus Limon (l.) Osbeck, is a	Contact FAQ	Donec at lacinia est. Duis semper, magna tempor interdum
species of small evergreen tree in the	PAQ	suscipit, ante elit molestie urna, eget
flowering plant family rutaceae.	Dried Lemons, \$3.59/pound	efficitur risus nunc ac elit. noisy site with gibberish
The tree's ellipsoidal yellow fruit is used for	arrest control of the orthogonal	Fusce guis blandit lectus.
culinary and non-culinary purposes	Organic dried lemons from our farm in	Mauris at mauris a turpis tristique lacinia at
throughout the world, primarily for its juice,	California.	nec ante.
which has both culinary and cleaning uses.	Lemons are harvested and sun-dried for	Aenean in scelerisque tellus, a efficitur
The juice of the lemon is about 5% to 6%	maximum flavor.	ipsum.
citric acid, with a ph of around 2.2, giving it	Good in soups and on popcorn.	Integer justo enim, ornare vitae sem non,
a sour taste.	The lamon Citrus Limon (1) Ochook is a	mollis fermentum lectus.
Article	The lemon, Citrus Limon (I.) Osbeck, is a species of small evergreen tree in the	Mauris ultrices nisl at libero porta sodales in ac orci.
Article	flowering plant family rutaceae.	in active.
The origin of the lemon is unknown, though	The tree's ellipsoidal yellow fruit is used for	function Ball(r) {
lemons are thought to have first grown in	culinary and non-culinary purposes	this.radius = r;
Assam (a region in northeast India),	throughout the world, primarily for its juice,	this.area = pi * r ** 2;
northern Burma or China.	which has both culinary and cleaning uses.	this.show = function(){
A genomic study of the lemon indicated it	The juice of the lemon is about 5% to 6%	drawCircle(r);
was a hybrid between bitter orange (sour orange) and citron.	citric acid, with a ph of around 2.2, giving it a sour taste.	

a typical Wikipedia page

The authors of this work hypothesized that one could obtain a more effective pretrained model if the web text could be cleaned in some way.

References

- Pre-training data sources
 - 1. Common Crawl
 - The Common Crawl initiative is a nonprofit organization that conducts large-scale web crawling to create and maintain an openly accessible archive of web content for research and public use. <u>https://commoncrawl.org/</u>
 - A typical dump of common crawl looks as shown in the Figure below.

Common Crawl Web Extracted Text

They came up with some lightweight heuristics that resulting filtered unwanted chunks and retained only valid text chunks shown in the red boxes resulting in a version of commoncrawl called filtered commoncrawl.

References

- Pre-training data sources
 - 1. Common Crawl
 - The Common Crawl initiative is a nonprofit organization that conducts large-scale web crawling to create and maintain an openly accessible archive of web content for research and public use. <u>https://commoncrawl.org/</u>
 - A typical dump of common crawl looks as shown in the Figure below.

Common Crawl Web Extracted Text

Filtering heuristics:

1. remove lines that didn't end in a punctuation.

References

- Pre-training data sources
 - 1. Common Crawl
 - The Common Crawl initiative is a nonprofit organization that conducts large-scale web crawling to create and maintain an openly accessible archive of web content for research and public use. <u>https://commoncrawl.org/</u>
 - A typical dump of common crawl looks as shown in the Figure below.

Common Crawl Web Extracted Text

Filtering heuristics:

2. remove any lines that contain the text Javascript because the authors found websites contained a lot of redundant text which said "activate javascript on your browser"

References

- Pre-training data sources
 - 1. Common Crawl
 - The Common Crawl initiative is a nonprofit organization that conducts large-scale web crawling to create and maintain an openly accessible archive of web content for research and public use. <u>https://commoncrawl.org/</u>
 - A typical dump of common crawl looks as shown in the Figure below.

Common Crawl Web Extracted Text

Filtering heuristics:

3. remove all text with a curly bracket, because a curly bracket often appears in code and not in natural language

References

- Pre-training data sources
 - 1. Common Crawl
 - The Common Crawl initiative is a nonprofit organization that conducts large-scale web crawling to create and maintain an openly accessible archive of web content for research and public use. <u>https://commoncrawl.org/</u>
 - A typical dump of common crawl looks as shown in the Figure below.

Common Crawl Web Extracted Text

Filtering heuristics:

4. also deduplicated the dataset using the method of a sliding window to ensure that a chunk appeared only once in the whole corpus.

References

- Pre-training data sources
 - 1. Common Crawl
 - The Common Crawl initiative is a nonprofit organization that conducts large-scale web crawling to create and maintain an openly accessible archive of web content for research and public use. <u>https://commoncrawl.org/</u>
 - A typical dump of common crawl looks as shown in the Figure below.

Common Crawl Web Extracted Text

Filtering heuristics:

5. finally langdetect was used to retain only sentences in English.

References

- Pre-training data sources \bullet
 - 1. Common Crawl
 - The Common Crawl initiative is a nonprofit organization that conducts large-scale web crawling to create and maintain an openly accessible archive of web content for research and public use. https://commoncrawl.org/
 - A typical dump of common crawl looks as shown in the Figure below.

Common Crawl Web Extracted Text

a typical Wikipedia page

Filtered version of CommonCrawl

comprised roughly 700 GB of English text from terabytes of original data.

References

- Pre-training dataset
 - 1. Colossal Cleaned Crawled Corpus (C4)

TensorFlow Reso	ources - More	Q, Search	Language 👻	GitHub	Sign in
Datasets v1.3.2					
Overview Catalog Guide	API				
Overview					
> Audio					
Image	TensorFlow >	Resources > Datasets v1.3.2	> Catalog ☆	$\triangle \triangle \triangle \downarrow$	7
> Object_detection			N		
Structured	C4 (Ma	anual downloa	ad)		
Summarization					
- Text	Contents 🗸	•			
c4 (manual)	c4/en				
civil_comments	Statistics				
definite_pronoun_resolution	Features				
esnli	Homepage				
gap					
glue					
imdb_reviews	A colossal, cleaned version of Common Crawl's web crawl corpus.				

1. Publicly available on Tensorflow datasets

https://www.tensorflow.org/dataset s/catalog/c4

- 2. Presents a great academic exercise to recreate a cleaned version of the web.
 - a. Common Crawl dataset is publicly available
 - b. The code for the filtering heuristics is publicly available.

Great example of open-source, replicable research accessible in community facilitating LLM developments.

References

• Pre-training Objective

Original text Thank you for inviting me to your party last week. Inputs Thank you <X> me to your party <Y> week. Targets <X> for inviting <Y> last <Z>

Span Corruption in the context of a standard encoderdecoder transformer architecture.

67

References

• T5

The final T5 model is obtained by finetuning the pretrained model on each individual task encoded by the dataset selected. Each finetuning dataset is represented in the text-to-text objective seen earlier.

References

Plan for Part I of III of the Talk

- Browse pre-training datasets for models categorized by their pre-training architectures
 - Decoder-only
 - Encoder-only
 - Encoder-Decoder

Plan for Part I of III of the Talk

- Browse pre-training datasets for models categorized by their pre-training architectures
 - Decoder-only
 - Encoder-only
 - Encoder-Decoder

BERT – Pre-training of deep bidirectional transformers for language understanding

- Key idea
 - Bidirectional Encoder Representations from Transformers (BERT)
 - BERT is for pretraining Transformers Encoder.

References

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018)..

BERT – Pre-training of deep bidirectional transformers for language understanding

- Key idea
 - Bidirectional Encoder Representations from Transformers (BERT)
 - BERT is for pretraining Transformers Encoder.

Two stages:

- 1. pre-training and
- 2. fine-tuning

References

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018)..

BERT – Pre-training of deep bidirectional transformers for language understanding

- Pretraining datasets
 - \circ BooksCorpus
 - A corpus of fiction books from various genres comprising 800M words.
 - English Wikipedia
 - Extracted only the text passages and ignore lists, tables, and headers resulting in 2,500M words.

BERT – Pre-training of deep bidirectional transformers for language understanding

- Pretraining datasets \bullet
 - BooksCorpus Ο
 - A corpus of fiction books from various genres comprising 800M words.
 - English Wikipedia Ο
 - Extracted only the text passages and ignore lists, tables, and headers resulting in 2,500M words.

Image taken from	4	Average context (words)	Format	Source	Training Set Size	Vocabulary Size	State-of-the-a corpus was 1
DeepMind's blog post	1B Word	27	Sentences	News	4.15GB	793К	words.
"A new model and dataset for	Penn Treebank	355	Articles	WSJ News	5.1MB	10К	
long-range memory"	WikiText-103	3.6K	Articles	Wikipedia	515MB	267K	
(link in description)	PG-19	69K	Books	Books	10.9GB	Open vocabulary	

01-1art B

References

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018)...

BERT – Pre-training of deep bidirectional transformers for language understanding

- Evaluations
 - At the time of its release in October 2018, finetuned BERT-large (340M parameters) could outperform both the state-of-the-art models as well as GPT-1.
 - The BERT models were the first breakthrough showing the power of pretraining objectives to obtain strong downstream model performances.

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

References

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018)..

Plan for Part I of II of the Talk

- Browse pre-training datasets for models categorized by their pre-training architectures
 - Decoder-only
 - Encoder-only
 - Encoder-Decoder

- Autoregressive vs. Autoencoder Architectures:
 - Decoder-only models, such as GPT (Generative Pre-trained Transformer) models, are autoregressive, which means they generate text or sequences one token at a time from left to right. This autoregressive nature is well-suited for a wide range of language generation tasks like text completion, generation, and translation.

- Autoregressive vs. Autoencoder Architectures:
 - Decoder-only models, such as GPT (Generative Pre-trained Transformer) models, are autoregressive, which means they generate text or sequences one token at a time from left to right. This autoregressive nature is well-suited for a wide range of language generation tasks like text completion, generation, and translation.
 - Encoder-only models, like BERT (Bidirectional Encoder Representations from Transformers), are designed as autoencoders, focusing on capturing bidirectional contextual embeddings. While this is beneficial for various downstream tasks, <u>it doesn't directly lend itself to text</u> <u>generation tasks like autoregressive models</u>.

- Autoregressive vs. Autoencoder Architectures:
 - Decoder-only models, such as GPT (Generative Pre-trained Transformer) models, are autoregressive, which means they generate text or sequences one token at a time from left to right. This autoregressive nature is well-suited for a wide range of language generation tasks like text completion, generation, and translation.
 - Encoder-only models, like BERT (Bidirectional Encoder Representations from Transformers), are designed as autoencoders, focusing on capturing bidirectional contextual embeddings. While this is beneficial for various downstream tasks, <u>it doesn't directly lend itself to text</u> <u>generation tasks like autoregressive models</u>.

Decoder-only models because of their text-generation objective can perform with more versatility in the case of downstream tasks compared to encoder-only models.

Plan for the Talk

- Browse pre-training datasets for models categorized by their pre-training architectures
 - Decoder-only
 - Encoder-only
 - Encoder-Decoder

Decoder-only Pretraining Architecture: GPT-series

References

1. GPT-1 to GPT-4: The Evolution of AI Language Models https://www.youtube.com/watch?v=dNFC57Bz10c

Decoder-only Pretraining Architecture: GPT-series

References

1. GPT-1 to GPT-4: The Evolution of AI Language Models <u>https://www.youtube.com/watch?v=dNFC57Bz10c</u>

• Key idea

- Application of the **generative pre-training (or decoder) strategy** to produce a general "in a sense" task-agnostic model.
 - generative pre-training of a language model on a diverse corpus of unlabeled text and discriminative fine-tuning on each specific task
 - task-aware input transformations during fine-tuning to achieve effective transfer while requiring minimal changes to the model architecture

- Key idea
 - Specific choice of a pre-training corpus that allowed modeling long-range dependencies

- Pretraining data sources
 - BookCorpus dataset
 - 7000 unique unpublished books from a variety of genres including Adventure, Fantasy, and Romance

- Pretraining data sources
 - BookCorpus dataset
 - 7000 unique unpublished books from a variety of genres including Adventure, Fantasy, and Romance

Image taken from	4	Average context (words)	Format	Source	Training Set Size	Vocabulary Size
DeepMind's blog post	1B Word	27	Sentences	News	4.15GB	793K
"A new model and dataset for	Penn Treebank	355	Articles	WSJ News	5.1MB	10К
long-range memory"	WikiText-103	3.6K	Articles	Wikipedia	515MB	267K
(link in description)	PG-19	69K	Books	Books	10.9GB	Open vocabulary

Shows how the choice of the dataset has an impact on long-range context modeling.

References

- Pretraining data sources
 - BookCorpus dataset
 - 7000 unique unpublished books from a variety of genres including Adventure, Fantasy, and Romance

Image taken from	.	Average context (words)	Format	Source	Training Set Size	Vocabulary Size
DeepMind's blog post	1B Word	27	Sentences	News	4.15GB	793K
"A new model and dataset for	Penn Treebank	355	Articles	WSJ News	5.1MB	10K
long-range memory"	WikiText-103	3.6K	Articles	Wikipedia	515MB	267K
(link in description)	PG-19	69K	Books	Books	10.9GB	Open vocabulary

Previous language models were looking at 1B Word dataset.

References

- Pretraining data sources
 - BookCorpus dataset
 - 7000 unique unpublished books from a variety of genres including Adventure, Fantasy, and Romance

Image taken from	4	Average context (words)	Format	Source	Training Set Size	Vocabulary Size
epMind's blog post	1B Word	27	Sentences	News	4.15GB	793K
A new model and dataset for	Penn Treebank	355	Articles	WSJ News	5.1MB	10K
ong-range memory"	WikiText-103	3.6K	Articles	Wikipedia	515MB	267K
(link in description)	PG-19	69K	Books	Books	10.9GB	Open vocabulary

References

- Pretraining data sources
 - BookCorpus dataset
 - 7000 unique unpublished books from a variety of genres including Adventure, Fantasy, and Romance
 - The Books Corpus reportedly has 20k average words in context and thus the LLM is able to practice long-range dependency modeling resulting in a more effective downstream model.

Image taken from	\oplus	Average context (words)	Format	Source	Training Set Size	Vocabulary Size
DeepMind's blog post	1B Word	27	Sentences	News	4.15GB	793K
"A new model and dataset for	Penn Treebank	355	Articles	WSJ News	5.1MB	10K
long-range memory"	WikiText-103	3.6K	Articles	Wikipedia	515MB	267K
(link in description)	PG-19	69K	Books	Books	10.9GB	Open vocabulary

References

Brown, Tom, et al. "Language models are few-shot learners." Advances in neural information processing systems 33 (2020): 1877-1901.

Zhu, Yukun, et al. "Aligning books and movies: Towards story-like visual explanations by watching movies and reading books." *Proceedings of the IEEE international* 92 *conference on computer vision*. 2015.

- GPT-1: Pretraining and Finetuning
 - Generative Pretraining and Discriminative Finetuning in one pass

References

- GPT-1: Pretraining and Finetuning
 - Generative Pretraining and Discriminative Finetuning together

References

- GPT-1: Pretraining and Finetuning
 - Generative Pretraining and Discriminative Finetuning together

The generative pretraining or the text prediction objective where the next token is predicted given a context,

References

- GPT-1: Pretraining and Finetuning
 - Generative Pretraining and Discriminative Finetuning together

The discriminative finetuning or the classification task objective.

References

- GPT-1: Pretraining and Finetuning
 - Generative Pretraining and Discriminative Finetuning together

 $L_2(\mathcal{C}) = \sum \log P(y|x^1, \dots, x^m).$ $L_1(\mathcal{U}) = \sum_i \log P(u_i | u_{i-k}, \dots, u_{i-1}; \Theta)$ (x,y) $P(y|x^1,\ldots,x^m) = \overset{\text{tr}}{\text{softmax}}(h_l^m W_y).$ $h_0 = UW_e + W_p$ $h_l = \texttt{transformer_block}(h_{l-1}) \forall i \in [1, n]$ $P(u) = \texttt{softmax}(h_n W_e^T)$ Text Task Prediction Classifie Layer Norm **⊕**+ $L_3(\mathcal{C}) = L_2(\mathcal{C}) + \lambda * L_1(\mathcal{C})$ Feed Forward 12x -Layer Norm Masked Multi Self Attention Text & Position Embe

Both objectives are then combined into a joint objective where their parameters are respectively learnt together.

References

- GPT-1: Pretraining and Finetuning
 - Generative Pretraining and Discriminative Finetuning together
 - In the input data, doesn't the classification task need to be represented different than the pretraining task?

- GPT-1: Pretraining and Finetuning
 - Generative Pretraining and Discriminative Finetuning together
 - In the input data, doesn't the classification task need to be represented different than the pretraining task?
 - This is thus a specific contribution of the paper, where the classification tasks are modeled specifically such that they are also a seamless representation of a text generation task.

- GPT-1: Pretraining and Finetuning
 - Generative Pretraining and Discriminative Finetuning together
 - In the input data, doesn't the classification task need to be represented different than the pretraining task?
 - This is thus a specific contribution of the paper, where the classification tasks are modeled specifically such that they are also a seamless representation of a text generation task.

	Text Task Prediction Classifier	Classification	Start	Text	Extract	+ Transform	ner +	Linear
	Layer Norm	Entailment	Start	Premise	Delim	Hypothesis	Extract	+ Transformer + Linear
	Feed Forward	Similarity	Start	Text 1	Delim	Text 2	Extract	+ Transformer ++ Linear
12x —	Layer Norm	1	Start	Text 2	Delim	Text 1	Extract	+ Transformer
	Masked Multi	1	Start	Context	Delim	Answer 1	Extract	- Transformer - Linear
	Self Attention	Multiple Choice	Start	Context	Delim	Answer 2	Extract	- Transformer - Linear
	Text & Position Embed	1	Start	Context	Delim	Answer N	Extract	+ Transformer + Linear

References

- GPT-1: Pretraining and Finetuning
 - Generative Pretraining and Discriminative Finetuning together
 - In the input data, doesn't the classification task need to be represented different than the pretraining task?
 - This is thus a specific contribution of the paper, where the classification tasks are modeled specifically such that they are also a seamless representation of a text generation task.

Special structured tokens such as the dollar sign or delimiters are indicators of the classification tasks. Otherwise the model reads the input as a generation task.

References

- GPT-1: Pretraining and Finetuning
 - Generative Pretraining and Discriminative Finetuning together
 - In the input data, doesn't the classification task need to be represented different than the pretraining task?
 - This is thus a specific contribution of the paper, where the classification tasks are modeled specifically such that they are also a seamless representation of a text generation task.

By utilizing taskspecific input adaptations, the pretraining model still processes the structured text input as a <u>single</u> <u>contiguous</u> <u>sequence of</u> tokens.

References

• Key idea

- Key idea
 - Bigger is better!
 - One of the seminal works that demonstrate that language models begin to learn tasks like question answering, machine translation, reading comprehension, and summarization without any explicit supervision when trained on a large-scale—in the order of millions—generic dataset of web pages.

- Pretraining data sources
 - \circ Some notes
 - Up until this point, most prior work trained language models on a single domain of text, such as news articles, Wikipedia, or fiction books.

- Pretraining data sources
 - \circ Some notes
 - Up until this point, most prior work trained language models on a single domain of text, such as news articles, Wikipedia, or fiction books.
 - The GPT-2 work is one the seminal works to explore a large-scale dataset of a generic nature as <u>web pages</u>.
 - This set the precedent for almost all following work on LLMs that have all relied on web pages.

- Pretraining data sources
 - Web pages
 - Requirements:
 - There is a lot of messy data on the web, how to retrieve web links that point to legitimate web pages?

- Pretraining data sources
 - Web pages
 - Created a web scrape that emphasized web page or document quality per the following strategy:
 - Only scrape web pages curated by humans
 - To do this manually would be forbidding
 - Instead they looked at upvoted reddit posts (maximum 3 karma) with web links and scraped the text from only those web links.

- Pretraining dataset
 - 1. WebText corpus
 - Contains slightly over 8 million documents for a total of 40 GB of text

- Pretraining GPT-2
 - Only generative pretraining applied

- Pretraining GPT-2
 - Only generative pretraining applied

- Pretraining GPT-2
 - Only generative pretraining applied

GPT-2 has 10x more parameters than GPT-1

References Radford, Alec, et al. "Language models are unsupervised multitask learners." *OpenAl blog* 1.8 (2019): 9.

GPT-2 – Language Models are Unsupervised Multitask Learners

- Pretraining GPT-2
 - Only generative pretraining applied

No finetuning in GPT-2

- While GPT-1 was finetuned for downstream tasks, there is no finetuning in GPT-2

References Radford, Alec, et al. "Language models are unsupervised multitask learners." *OpenAl blog* 1.8 (2019): 9.

114

GPT-2 – Language Models are Unsupervised Multitask Learners

- Pretraining GPT-2
 - Only generative pretraining applied

Thus GPT-2 is a pure language model.

- How can it perform multiple tasks?

- Pretraining GPT-2
 - Only generative pretraining applied
 - How can GPT-2 work on multiple tasks without fine tuning?

GPT-1	GPT-2
P(output input)	P(output input , task)

- Pretraining GPT-2
 - Only generative pretraining applied
 - How can GPT-2 work on multiple tasks without fine tuning?

- Language modeling objective in GPT-1 emphasizes maximizing the probability of the next token (i.e. output) given the input. To learn tasks, GPT-1 is further fine tuned.

- Pretraining GPT-2
 - Only generative pretraining applied
 - How can GPT-2 work on multiple tasks without fine tuning?

- Language modeling objective in GPT-1 emphasizes maximizing the probability of the next token (i.e. output) given the input. To learn tasks, GPT-1 is further fine tuned.
- In contrast, the language modeling objective in GPT-2 works on maximizing the probability of the next token (i.e. output) given input tokens as well as task specific tokens.

References

Radford, Alec, et al. "Language models are unsupervised multitask learners." OpenAl blog 1.8 (2019): 9.

- Pretraining GPT-2
 - Only generative pretraining applied
 - How can GPT-2 work on multiple tasks without fine tuning?
 - P(output | input, task)

References

- Pretraining GPT-2
 - Only generative pretraining applied
 - How can GPT-2 work on multiple tasks without fine tuning?
 - P(output | input, task)

In the first case, the model is expected to interpret the desired task as next token prediction.

References

- Pretraining GPT-2
 - Only generative pretraining applied
 - How can GPT-2 work on multiple tasks without fine tuning?
 - P(output | input, task)

In the second case, the model is expected to interpret the desired task per the natural language specification highlighted in green.

References

Radford, Alec, et al. "Language models are unsupervised multitask learners." OpenAl blog 1.8 (2019): 9.

- Pretraining GPT-2
 - Only generative pretraining applied
 - How can GPT-2 work on multiple tasks without fine tuning?
 - P(output | input, task)

Strategy: unlike GPT-1 there is no task-specific dataset used.

- Pretraining GPT-2
 - Only generative pretraining applied
 - How can GPT-2 work on multiple tasks without fine tuning?
 - P(output | input, task)

Strategy: unlike GPT-1 there is no task-specific dataset used.

Instead the learning is entirely dependent on the patterns in natural language text present in the large-scale dataset of web pages.

- Pretraining GPT-2
 - Only generative pretraining applied
 - How can GPT-2 work on multiple tasks without fine tuning?
 - P(output | input, task)

The screen highlights several examples of the machine translation task encoded in the running text obtained from web pages. "I'm not the cleverest man in the world, but like they say in French: Je ne suis pas un imbecile [I'm not a fool].

In a now-deleted post from Aug. 16, Soheil Eid, Tory candidate in the riding of Joliette, wrote in French: "Mentez mentez, il en restera toujours quelque chose," which translates as, "Lie lie and something will always remain."

"I hate the word 'perfume," Burr says. 'It's somewhat better in French: 'parfum.'

If listened carefully at 29:55, a conversation can be heard between two guys in French: "-Comment on fait pour aller de l'autre coté? -Quel autre coté?", which means "- How do you get to the other side? - What side?".

If this sounds like a bit of a stretch, consider this question in French: As-tu aller au cinéma?, or Did you go to the movies?, which literally translates as Have-you to go to movies/theater?

"Brevet Sans Garantie Du Gouvernement", translated to English: "Patented without government warranty". **Strategy:** unlike GPT-1 there is no task-specific dataset used.

Instead the learning is entirely dependent on the patterns in natural language text present in the large-scale dataset of web pages.

References

• Evaluation

	LAMBADA (PPL)	LAMBADA (ACC)	CBT-CN (ACC)	CBT-NE (ACC)	WikiText2 (PPL)	PTB (PPL)	enwik8 (BPB)	text8 (BPC)	WikiText103 (PPL)	1BW (PPL)
SOTA	99.8	59.23	85.7	82.3	39.14	46.54	0.99	1.08	18.3	21.8
117M	35.13	45.99	87.65	83.4	29.41	65.85	1.16	1.17	37.50	75.20
345M	15.60	55.48	92.35	87.1	22.76	47.33	1.01	1.06	26.37	55.72
762M	10.87	60.12	93.45	88.0	19.93	40.31	0.97	1.02	22.05	44.575
1542M	8.63	63.24	93.30	89.05	18.34	35.76	0.93	0.98	17.48	42.16

• Zero-shot task performance tests

Table 3. Zero-shot results on many datasets. No training or fine-tuning was performed for any of these results. PTB and WikiText-2 results are from (Gong et al., 2018). CBT results are from (Bajgar et al., 2016). LAMBADA accuracy result is from (Hoang et al., 2018) and LAMBADA perplexity result is from (Grave et al., 2016). Other results are from (Dai et al., 2019).

This so-called task agnostic model outperforms the finetuned SOTA on most tasks.

• Evaluation

0

	LAMBADA (PPL)	LAMBADA (ACC)	CBT-CN (ACC)	CBT-NE (ACC)	WikiText2 (PPL)	PTB (PPL)	enwik8 (BPB)	text8 (BPC)	WikiText103 (PPL)	1BW (PPL)
SOTA	99.8	59.23	85.7	82.3	39.14	46.54	0.99	1.08	18.3	21.8
117M	35.13	45.99	87.65	83.4	29.41	65.85	1.16	1.17	37.50	75.20
345M	15.60	55.48	92.35	87.1	22.76	47.33	1.01	1.06	26.37	55.72
762M	10.87	60.12	93.45	88.0	19.93	40.31	0.97	1.02	22.05	44.575
1542M	8.63	63.24	93.30	89.05	18.34	35.76	0.93	0.98	17.48	42.16

Table 3. Zero-shot results on many datasets. No training or fine-tuning was performed for any of these results. PTB and WikiText-2 results are from (Gong et al., 2018). CBT results are from (Bajgar et al., 2016). LAMBADA accuracy result is from (Hoang et al., 2018) and LAMBADA perplexity result is from (Grave et al., 2016). Other results are from (Dai et al., 2019).

Thus they arrive at the finding that "<u>Large</u> <u>Language</u> <u>Models are</u> <u>Unsupervized</u> <u>Multitask</u> <u>Learners</u>"

Zero-shot task performance tests

• Key idea

- Key idea
 - Scaling up language models greatly improves <u>task-agnostic</u>, <u>few-shot performance</u>, sometimes even becoming competitive with prior state-of-the-art fine-tuning approaches.
 - One of the first papers to formally introduce the in-context learning strategy via few-shot demonstrations

- Key idea
 - Scaling up language models greatly improves <u>task-agnostic</u>, <u>few-shot performance</u>, sometimes even becoming competitive with prior state-of-the-art fine-tuning approaches.
 - One of the first papers to formally introduce the in-context learning strategy via few-shot demonstrations
 - Pretraining model architecture is the same as GPT-2. The training dataset size is significantly further increased. Also multiple data genres are introduced.

• Pretraining data sources

- \circ Web pages
 - Colossal Cleaned Common Crawl Dataset consisting of nearly a trillion words.
 - This dataset was introduced in the T5 paper which was a model released after GPT-2.
- Other diverse sources
 - added known high-quality reference corpora to the training mix to augment CommonCrawl and increase its diversity.
 - expanded version of the WebText dataset first introduced in the GPT-2 paper.
 - two internet-based books corpora (Books1 and Books2)
 - English language Wikipedia
 - Wikipedia is classified better in the encyclopedia text genre rather than web pages.

• Pretraining datasets

Dataset	Quantity (tokens)	Weight in training mix	Epochs elapsed when training for 300B tokens
Common Crawl (filtered)	410 billion	60%	0.44
WebText2	19 billion	22%	2.9
Books1	12 billion	8%	1.9
Books2	55 billion	8%	0.43
Wikipedia	3 billion	3%	3.4

Table 2.2: Datasets used to train GPT-3. "Weight in training mix" refers to the fraction of examples during training that are drawn from a given dataset, which we intentionally do not make proportional to the size of the dataset. As a result, when we train for 300 billion tokens, some datasets are seen up to 3.4 times during training while other datasets are seen less than once.

References

• Pretraining datasets

Dataset	Quantity (tokens)	Weight in training mix	Epochs elapsed when training for 300B tokens	Total
Common Crawl (filtered)	410 billion	60%	0.44	available
WebText2	19 billion	22%	2.9	tokens
Books1	12 billion	8%	1.9	
Books2	55 billion	8%	0.43	
Wikipedia	3 billion	3%	3.4	

Table 2.2: Datasets used to train GPT-3. "Weight in training mix" refers to the fraction of examples during training that are drawn from a given dataset, which we intentionally do not make proportional to the size of the dataset. As a result, when we train for 300 billion tokens, some datasets are seen up to 3.4 times during training while other datasets are seen less than once.

References

• Pretraining datasets

Dataset	Quantity (tokens)	Weight in training mix	Epochs elapsed when training for 300B tokens	Percentage
Common Crawl (filtered)	410 billion	60%	0.44	of the total
WebText2	19 billion	22%	2.9	available
Books1	12 billion	8%	1.9	tokens
Books2	55 billion	8%	0.43	sampled.
Wikipedia	3 billion	3%	3.4	

Table 2.2: Datasets used to train GPT-3. "Weight in training mix" refers to the fraction of examples during training that are drawn from a given dataset, which we intentionally do not make proportional to the size of the dataset. As a result, when we train for 300 billion tokens, some datasets are seen up to 3.4 times during training while other datasets are seen less than once.

References

• Pretraining datasets

Dataset	Quantity (tokens)	Weight in training mix	Epochs elapsed when training for 300B tokens	Resulting in
Common Crawl (filtered)	410 billion	60%	0.44	a total of 30 billion token
WebText2	19 billion	22%	2.9	
Books1	12 billion	8%	1.9	used to
Books2	55 billion	8%	0.43	pretrain the
Wikipedia	3 billion	3%	3.4	model.

Table 2.2: Datasets used to train GPT-3. "Weight in training mix" refers to the fraction of examples during training that are drawn from a given dataset, which we intentionally do not make proportional to the size of the dataset. As a result, when we train for 300 billion tokens, some datasets are seen up to 3.4 times during training while other datasets are seen less than once.

References

- **Central thesis of the work:** Is this significantly larger model able to perform a task better, not only when it sees task-specific tokens (like GPT-2), but also successful task examples.
 - This is the seminal work to introduce the concept of in-context learning.

- **Central thesis of the work:** Is this significantly larger model able to perform a task better, not only when it sees task-specific tokens (like GPT-2), but also successful task examples.
 - This is the seminal work to introduce the concept of in-context learning.

Let's take a look at the evaluation settings.

• Evaluation Settings

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

Translate English to French:	task description
cheese =>	prompt

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

Translate English to French:	task description
sea otter => loutre de mer	example
cheese =>	- prompt

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a large corpus of example tasks.

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

References

• Evaluation Settings

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

task description

prompt

Translate English to French:

One-shot

cheese =>

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

Translate English to French:	task description
sea otter => loutre de mer	←— example
cheese =>	← prompt

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a large corpus of example tasks.

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

References

• Evaluation Settings

	model predicts the answer given only a	
les	cription of the task. No gradient update	s are performed.
	Translate English to French:	task description
	franslate English to French.	task description
	cheese =>	$\leftarrow prompt$
	shot ddition to the task description, the mod	el sees a single
In a		
n a exa	ddition to the task description, the mod mple of the task. No gradient updates a	are performed.
n a	ddition to the task description, the mod	
In a exa	ddition to the task description, the mod mple of the task. No gradient updates a	are performed.

The three settings we explore for in-context learning

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

Traditional fine-tuning (not used for GPT-3)

uning

odel is trained via repeated gradient updates using a orpus of example tasks.

References

• Evaluation Settings

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

Translate English to French:	task description
cheese =>	← prompt

One-shot

Few-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

Translate English to French:

peppermint => menthe poivrée
plush girafe => girafe peluche

sea otter => loutre de mer

cheese =>

	Translate English to French:	task description
	sea otter => loutre de mer	←— example
	cheese =>	prompt

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a large corpus of example tasks.

References

Brown, Tom, et al. "Language models are few-shot learners." Advances in neural information processing systems 33 (2020): 1877-1901.

task description

examples

— prompt

• Evaluation Settings

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

 1
 Translate English to French:

 ← task description

 2
 cheese =>

 ← prompt

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

	Translate English to French:	task description
	sea otter => loutre de mer	←— example
	cheese =>	← prompt

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

References

• Evaluated Models

Model Name	$n_{\rm params}$	n _{layers}	$d_{\rm model}$	$n_{\rm heads}$	d_{head}	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	6.0×10^{-4}
GPT-3 Medium	350M	24	1024	16	64	0.5M	$3.0 imes 10^{-4}$
GPT-3 Large	760M	24	1536	16	96	0.5M	$2.5 imes 10^{-4}$
GPT-3 XL	1.3B	24	2048	24	128	1M	$2.0 imes 10^{-4}$
GPT-3 2.7B	2.7B	32	2560	32	80	1M	$1.6 imes 10^{-4}$
GPT-3 6.7B	6.7B	32	4096	32	128	2M	$1.2 imes 10^{-4}$
GPT-3 13B	13.0B	40	5140	40	128	2M	$1.0 imes 10^{-4}$
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	0.6×10^{-4}

Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models which we trained. All models were trained for a total of 300 billion tokens.

References

Evaluated Models

	Model Name	$n_{\rm params}$	$n_{\rm layers}$	d_{model}	nheads	d_{head}	Batch Size	Learning Rate
	GPT-3 Small	125M	12	768	12	64	0.5M	$6.0 imes10^{-4}$
8 models tested	GPT-3 Medium	350M	24	1024	16	64	0.5M	$3.0 imes 10^{-4}$
at different	GPT-3 Large	760M	24	1536	16	96	0.5M	$2.5 imes 10^{-4}$
parameter sizes	GPT-3 XL	1.3B	24	2048	24	128	1M	$2.0 imes 10^{-4}$
and with	GPT-3 2.7B	2.7B	32	2560	32	80	1M	$1.6 imes 10^{-4}$
different layers	GPT-3 6.7B	6.7B	32	4096	32	128	2M	1.2×10^{-4}
	GPT-3 13B	13.0B	40	5140	40	128	2M	$1.0 imes 10^{-4}$
	GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	0.6×10^{-4}

Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models which we trained. All models were trained for a total of 300 billion tokens.

References

Evaluated Models

	Model Name	$n_{\rm params}$	$n_{\rm layers}$	d_{model}	$n_{\rm heads}$	d_{head}	Batch Size	Learning Rate
	GPT-3 Small	125M	12	768	12	64	0.5M	$6.0 imes 10^{-4}$
	GPT-3 Medium	350M	24	1024	16	64	0.5M	$3.0 imes 10^{-4}$
	GPT-3 Large	760M	24	1536	16	96	0.5M	$2.5 imes 10^{-4}$
	GPT-3 XL	1.3B	24	2048	24	128	1M	$2.0 imes 10^{-4}$
	GPT-3 2.7B	2.7B	32	2560	32	80	1M	$1.6 imes 10^{-4}$
Note: 175B	GPT-3 6.7B	6.7B	32	4096	32	128	2M	$1.2 imes 10^{-4}$
GPT-3 is 100x	GPT-3 13B	13.0B	40	5140	40	128	2M	$1.0 imes 10^{-4}$
large than 1.5B GPT-2	GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	$0.6 imes 10^{-4}$

Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models which we trained. All models were trained for a total of 300 billion tokens.

References

- Evaluation
 - Are large language models indeed few-shot learners?

The three different evaluation settings lend themselves to the central thesis of the paper

References

- Evaluation
 - Are language models indeed few-shot learners?

Aggregate performance over 42 accuracy-denominated benchmarks.

References

- Evaluation
 - Are language models indeed few-shot learners?

Aggregate performance over 42 accuracy-denominated benchmarks. While zero-shot performance improves steadily with model size, few-shot performance increases more rapidly, demonstrating that larger models are more proficient at in-context learning.

References

Takeaways from Decoder-only Pretraining Architecture: GPT-series

- Research trajectory: Bigger seems to be better
 - underlying hypothesis: Larger language models encode more parameters that can be interpreted as actual and diverse representations of human language

References https://en.wikipedia.org/wiki/GPT-J

https://huggingface.co/EleutherAl/gpt-j-6b

- Key idea gist
 - Given a set compute budget, where one cannot obtain a 100B parameter model, can effective LLMs still be produced?
 - Yes! If the underlying pretraining dataset is diverse enough.

References https://en.wikipedia.org/wiki/GPT-J https://huggingface.co/EleutherAl/gpt-j-6b

• Key idea

- GPT-J was trained on a diverse range of internet text called the **Pile corpus** and is known for its ability to generate high-quality text completions and understand a wide variety of prompts.
 - The central idea for subsequent discussion is the open-source Pile corpus that modeled diverse text genres presenting itself as a unique, open-accessible resource for pretraining small-scale LLMs.
- GPT-J gained popularity as an accessible alternative for researchers and developers who want to experiment with LLMs without the high computational costs typically associated with them.

- Key idea
 - *increased training dataset diversity* improves general cross-domain knowledge and downstream generalization capability for LLMss.
 - the Pile is an 825 GiB English text corpus targeted constructed from 22 diverse high-quality subsets both existing and newly constructed—many of which derive from academic or professional sources.

• Data sources

 PubMed Central, ArXiv, GitHub, the FreeLaw Project, Stack Exchange, the US Patent and Trademark Office, PubMed, Ubuntu IRC, HackerNews, YouTube, PhilPapers, and NIH ExPorter. Furthermore, as extensions of original corpora i.e. OpenWebText and BookCorpus datasets, they release OpenWebText2 and BookCorpus2, respectively.

• Data sources

Figure 1: Treemap of Pile components by effective size.

References

• Data sources

• Data sources

References

Gao, Leo, et al. "The pile: An 800gb dataset of diverse text for language modeling." arXiv preprint arXiv:2101.00027 (2020).

state courts

• Data sources

USPTO: background sections of patents granted by the US Patents office.

Phil: OA philosophy publications from an international database maintained by the Center for Digital Philosophy at the University of Western Ontario

The remaining two are still some academic corpora in biomedicine.

References

Gao, Leo, et al. "The pile: An 800gb dataset of diverse text for language modeling." arXiv preprint arXiv:2101.00027 (2020).

state courts

• Data sources

Figure 1: Treemap of Pile components by effective size.

References

• Data sources

Figure 1: Treemap of Pile components by effective size.

References

• Data sources

Figure 1: Treemap of Pile components by effective size.

References

• Data sources

Figure 1: Treemap of Pile components by effective size.

References

Gao, Leo, et al. "The pile: An 800gb dataset of diverse text for language modeling." arXiv preprint arXiv:2101.00027 (2020).

books written by "as of yet

unpublished authors."

• Data sources

References

Data sources

Figure 1: Treemap of Pile components by effective size.

Subtitles: parallel corpus of text gathered from human generated closed captions on YouTube. It is a source of educational content, popular culture, and natural dialog.

References

• Data sources

References

in 21 Euro languages 1996 - 2012.

The Pile: An 800GB Dataset of Diverse Text for Language Modeling

• Data sources

References

Data sources

Figure 1: Treemap of Pile components by effective size.

References

Gao, Leo, et al. "The pile: An 800gb dataset of diverse text for language modeling." arXiv preprint arXiv:2101.00027 (2020).

The dialogue datasets.

Subtitles: parallel corpus of text gathered from human generated closed captions on YouTube. It is a source of educational content. popular culture, and natural dialog.

Ubuntu IRC: publicly available chatlogs of all Ubuntu-related channels on the Freenode IRC chat server. Unique since it models real-time human interactions, which feature a level of spontaneity not typically found in other modes of social media.

EuroParl: parallel corpus of proceedings of the Euro Parliargent in 21 Euro languages 1996 - 2012.

• Data sources

Hacker News: comment trees on user submitted stories on topics in CS and entrepreneurship.

Enron Emails: a valuable corpus commonly used for research about the usage patterns of email.

Composition of the Pile by Category

Figure 1: Treemap of Pile components by effective size.

References

Gao, Leo, et al. "The pile: An 800gb dataset of diverse text for language modeling." arXiv preprint arXiv:2101.00027 (2020).

The dialogue datasets.

Subtitles: parallel corpus of text gathered from human generated closed captions on YouTube. It is a source of educational content, popular culture, and natural dialog.

Ubuntu IRC: publicly available chatlogs of all Ubuntu-related channels on the Freenode IRC chat server. Unique since it models real-time human interactions, which feature a level of spontaneity not typically found in other modes of social media.

EuroParl: parallel corpus of proceedings of the Euro Parlianaent in 21 Euro languages 1996 - 2012.

• Data sources

References

• Data sources overview

Component	Raw Size	Weight	Epochs	Effective Size	Mean Document Size
Pile-CC	227.12 GiB	18.11%	1.0	227.12 GiB	4.33 KiB
PubMed Central	90.27 GiB	14.40%	2.0	180.55 GiB	30.55 KiB
Books3 [†]	100.96 GiB	12.07%	1.5	151.44 GiB	538.36 KiB
OpenWebText2	62.77 GiB	10.01%	2.0	125.54 GiB	3.85 KiB
ArXiv	56.21 GiB	8.96%	2.0	112.42 GiB	46.61 KiB
Github	95.16 GiB	7.59%	1.0	95.16 GiB	5.25 KiB
FreeLaw	51.15 GiB	6.12%	1.5	76.73 GiB	15.06 KiB
Stack Exchange	32.20 GiB	5.13%	2.0	64.39 GiB	2.16 KiB
USPTO Backgrounds	22.90 GiB	3.65%	2.0	45.81 GiB	4.08 KiB
PubMed Abstracts	19.26 GiB	3.07%	2.0	38.53 GiB	1.30 KiB
Gutenberg (PG-19) [†]	10.88 GiB	2.17%	2.5	27.19 GiB	398.73 KiB
OpenSubtitles [†]	12.98 GiB	1.55%	1.5	19.47 GiB	30.48 KiB
Wikipedia (en) [†]	6.38 GiB	1.53%	3.0	19.13 GiB	1.11 KiB
DM Mathematics [†]	7.75 GiB	1.24%	2.0	15.49 GiB	8.00 KiB
Ubuntu IRC	5.52 GiB	0.88%	2.0	11.03 GiB	545.48 KiB
BookCorpus2	6.30 GiB	0.75%	1.5	9.45 GiB	369.87 KiB
EuroParl [†]	4.59 GiB	0.73%	2.0	9.17 GiB	68.87 KiB
HackerNews	3.90 GiB	0.62%	2.0	7.80 GiB	4.92 KiB
YoutubeSubtitles	3.73 GiB	0.60%	2.0	7.47 GiB	22.55 KiB
PhilPapers	2.38 GiB	0.38%	2.0	4.76 GiB	73.37 KiB
NIH ExPorter	1.89 GiB	0.30%	2.0	3.79 GiB	2.11 KiB
Enron Emails [†]	0.88 GiB	0.14%	2.0	1.76 GiB	1.78 KiB
The Pile	825.18 GiB			1254.20 GiB	5.91 KiB

Link to the dataset: https://pile.eleuther.ai/

References

• Key idea

- Given a set compute budget, where one cannot obtain a 100B parameter model, can effective LLMs still be produced?
 - Yes! If the underlying pretraining dataset is diverse enough.
- A brief discussion of results:

References https://en.wikipedia.org/wiki/GPT-J https://huggingface.co/EleutherAl/gpt-j-6b

• Key idea

- Given a set compute budget, where one cannot obtain a 100B parameter model, can effective LLMs still be produced?
 - Yes! If the underlying pretraining dataset is diverse enough.
- A brief discussion of results:
 - When neither is fine-tuned, GPT-J-6B performs almost as well as the 6.7 billion parameter GPT-3 (Curie) on a variety of tasks. It even outperforms the 175 billion parameter GPT-3 (Davinci) on code generation tasks. With fine-tuning, it outperforms an untuned GPT-3 (Davinci) on a number of tasks.

• Key idea

- given two existing lines of thought: on the one hand, is bigger better? and on the other hand, for a given compute budget, are smaller models optimally trained on more data better?
 - on a given inference budget say distributed in the range of 7B, 13B, 33B, and 65B, how to obtain the optimal model? for the given inference budget, train on more tokens than typically used. In other words, their hypothesis tests if a smaller model (given inference budget but trained on more tokens) can outperform a larger model.
 - LLaMA-13B outperforms 10x larger GPT-3 (175B) on most benchmarks, and LLaMA-65B is competitive with the best models, Chinchilla-70B and PaLM-540B
 - specifically, surpassing all preceding models, LLaMA is trained on 1.4T tokens.

• Key idea

- given two existing lines of thought: on the one hand, is bigger better? and on the other hand, for a given compute budget, are smaller models optimally trained on more data better?
 - on a given inference budget say distributed in the range of 7B, 13B, 33B, and 65B, how to obtain the optimal model? for the given inference budget, train on more tokens than typically used. In other words, their hypothesis tests if a smaller model (given inference budget but trained on more tokens) can outperform a larger model.
 - LLaMA-13B outperforms 10x larger GPT-3 (175B) on most benchmarks, and LLaMA-65B is competitive with the best models, Chinchilla-70B and PaLM-540B
 - specifically, surpassing all preceding models, LLaMA is trained on 1.4T tokens.
- show that it is possible to train state-of-the-art models using publicly available datasets exclusively, without resorting to proprietary and inaccessible datasets.
 - The best models at the time i.e. GPT-3, Chinchilla, or PaLM were trained on proprietary datasets.

References

Touvron, Hugo, et al. "Llama: Open and efficient foundation language models." arXiv preprint arXiv:2302.13971 (2023).

- Pretraining data sources
 - Web pages
 - English CommonCrawl

- \circ Web pages
 - English CommonCrawl
 - processed by the CCNet pipeline

• CCNet: Processing Pipeline used for English CommonCrawl

References

- CCNet: Processing Pipeline used for English CommonCrawl
 - 1. Deduplication
 - i. normalization lowercase all characters, replace numbers by a placeholder (i.e. 0) and remove all Unicode punctuation and
 - ii. hashing for deduplication dividing the data into smaller shards, assigning a unique code to each paragraph in each shard using SHA-1 hashing, and then comparing these codes to identify and eliminate duplicates.
 - Other than removing web copies, this step gets rid of a lot boilerplate such as navigation menus, cookie warnings and contact information. It also removes significant amount of English content from non-English webpages. This makes the subsequent language identification step more robust.

References

- CCNet: Processing Pipeline used for English CommonCrawl
 - 1. Deduplication
 - i. normalization lowercase all characters, replace numbers by a placeholder (i.e. 0) and remove all Unicode punctuation and
 - ii. hashing for deduplication dividing the data into smaller shards, assigning a unique code to each paragraph in each shard using SHA-1 hashing, and then comparing these codes to identify and eliminate duplicates.
 - Other than removing web copies, this step gets rid of a lot boilerplate such as navigation menus, cookie warnings and contact information. It also removes significant amount of English content from non-English webpages. This makes the subsequent language identification step more robust.
 - 2. Language identification split the data per language using the language classifier from fastText.

References

- CCNet: Processing Pipeline used for English CommonCrawl
 - 1. Deduplication
 - i. normalization lowercase all characters, replace numbers by a placeholder (i.e. 0) and remove all Unicode punctuation and
 - ii. hashing for deduplication dividing the data into smaller shards, assigning a unique code to each paragraph in each shard using SHA-1 hashing, and then comparing these codes to identify and eliminate duplicates.
 - Other than removing web copies, this step gets rid of a lot boilerplate such as navigation menus, cookie warnings and contact information. It also removes significant amount of English content from non-English webpages. This makes the subsequent language identification step more robust.
 - 2. Language identification split the data per language using the language classifier from fastText.
 - N-gram Language model categorize texts as high, medium, and low quality based on perplexity computations with Wikipedia texts. However this was not applied in their evaluations because they deemed text different from Wikipedia which was cast as low quality based on their language model could still be useful.

References

TIB

LLaMA: Open and Efficient Foundation Language Models

- <u>Results</u> CCNet: Processing Pipeline used for English CommonCrawl
 - On the Feb 2019 snapshot of CommonCrawl, the application of CCNet produced 3.2TB of compressed documents in 174 languages.

References

- <u>Results</u> CCNet: Processing Pipeline used for English CommonCrawl
 - On the Feb 2019 snapshot of CommonCrawl, the application of CCNet produced 3.2TB of compressed documents in 174 languages.
 - In terms of tokens, using the SentencePiece tokenizer, the <u>3 largest languages were English (en) with 532B</u> tokens, Russian (ru) with 101B tokens and Chinese (zh) with 92B tokens. 11 languages with more than 10B tokens, and 27 languages with more than 1B tokens.

- <u>Results</u> CCNet: Processing Pipeline used for English CommonCrawl
 - On the Feb 2019 snapshot of CommonCrawl, the application of CCNet produced 3.2TB of compressed documents in 174 languages.
 - In terms of tokens, using the SentencePiece tokenizer, the <u>3 largest languages were English (en) with 532B</u> tokens, Russian (ru) with 101B tokens and Chinese (zh) with 92B tokens. 11 languages with more than 10B tokens, and 27 languages with more than 1B tokens.
 - In terms of documents, the <u>3 largest languages were English (en) with 706M documents, Russian (ru) with 167M</u> and German (de) with 105M. 12 languages had more than 10M documents and 29 languages had more than 1M documents.

References

- <u>Results</u> CCNet: Processing Pipeline used for English CommonCrawl
 - On the Feb 2019 snapshot of CommonCrawl, the application of CCNet produced 3.2TB of compressed documents in 174 languages.
 - In terms of tokens, using the SentencePiece tokenizer, the <u>3 largest languages were English (en) with 532B</u> tokens, Russian (ru) with 101B tokens and Chinese (zh) with 92B tokens.
 11 languages with more than 10B tokens, and 27 languages with more than 1B tokens.
 - In terms of documents, the <u>3 largest languages were English (en) with 706M documents, Russian (ru) with 167M</u> and German (de) with 105M. 12 languages had more than 10M documents and 29 languages had more than 1M documents.
 - As a side-note, Common Crawl is also a good source for lower resource languages. E.g., Afrikaans (af), Gujarati (gu), Khmer (km) and Burmese (my) contains respectively 160MB, 190MB, 154MB and 440MB of data.

References

- \circ Web pages
 - English CommonCrawl: from 2017 to 2020
 - processed by the CCNet pipeline

- \circ Web pages
 - English CommonCrawl: from 2017 to 2020
 - processed by the CCNet pipeline, selected only the English subset
 - additionally, web pages not used as references in Wikipedia were filtered out

- \circ Web pages
 - English CommonCrawl: from 2017 to 2020
 - processed by the CCNet pipeline, selected only the high-quality English subset
 - additionally, web pages not used as references in Wikipedia were filtered out
 - Colossal Cleaned Common Crawl (C4) Dataset consisting of nearly a trillion words.
 - this dataset was introduced in the T5 paper which was a model released after GPT-2.
 - including diverse **pre-processed** Common Crawl improved performance; C4 preprocessing mostly relies on heuristics such as presence of punctuation marks or the number of words and sentences in a webpage.

• Pretraining data sources

- \circ Web pages
 - English CommonCrawl: from 2017 to 2020
 - processed by the CCNet pipeline
 - additionally, web pages not used as references in Wikipedia were filtered out
 - Colossal Cleaned Common Crawl (C4) Dataset consisting of nearly a trillion words.
 - this dataset was introduced in the T5 paper which was a model released after GPT-2.
 - including diverse **pre-processed** Common Crawl improved performance; C4 preprocessing mostly relies on heuristics such as presence of punctuation marks or the number of words and sentences in a webpage.
- \circ Other diverse sources
 - Code Github projects distributed under the Apache, BSD and MIT licenses. Additionally filtered low quality files with heuristics based on the line length or proportion of alphanumeric characters, etc.
 - Encyclopedia Wikipedia dumps from Jun-Aug 2022 covering 20 languages, which use either the Latin or Cyrillic scripts: bg, ca, cs, da, de, en, es, fr, hr, hu, it, nl, pl, pt, ro, ru, sl, sr, sv, uk
 - Books Gutenberg and Books3
 - Gutenberg Project contains books that are in the public domain.
 - Books3 section of The Pile publicly available dataset
 - Scholarly articles from arXiv from the raw Latex files
 - QA corpus StackExchange QA covering diverse domains from CS to Chemistry.

References

Touvron Hugo, et al. "I lowe: Open and efficient foundation longuage models." arViv proprint arViv:2202.12071 (2022)

• Pretraining datasets

Dataset	Sampling prop.	Epochs	Disk size
CommonCrawl	67.0%	1.10	3.3 TB
C4	15.0%	1.06	783 GB
Github	4.5%	0.64	328 GB
Wikipedia	4.5%	2.45	83 GB
Books	4.5%	2.23	85 GB
ArXiv	2.5%	1.06	92 GB
StackExchange	2.0%	1.03	78 GB

• Pretraining datasets

Dataset	Sampling prop.	Epochs	Disk size
CommonCraw	l 67.0%	1.10	3.3 TB
C4	15.0%	1.06	783 GB
Github	4.5%	0.64	328 GB
Wikipedia	4.5%	2.45	83 GB
Books	4.5%	2.23	85 GB
ArXiv	2.5%	1.06	92 GB
StackExchange	2.0%	1.03	78 GB

Entire training dataset consists of roughly 1T tokens after tokenization using the Byte Pair Encoding (BPE) algorithm.

• Pretraining datasets

Dataset	Sampling prop.	Epochs	Disk size
CommonCraw	67.0%	1.10	3.3 TB
C4	15.0%	1.06	783 GB
Github	4.5%	0.64	328 GB
Wikipedia	4.5%	2.45	83 GB
Books	4.5%	2.23	85 GB
ArXiv	2.5%	1.06	92 GB
StackExchange	2.0%	1.03	78 GB
			1

For most of the training data, each token is used only once during training.

References

• Pretraining datasets

Dataset	Sampling prop.	Epochs	Disk size
CommonCraw	67.0%	1.10	3.3 TB
C4	15.0%	1.06	783 GB
Github	4.5%	0.64	328 GB
Wikipedia	4.5%	2.45	83 GB
Books	4.5%	2.23	85 GB
ArXiv	2.5%	1.06	92 GB
StackExchange	2.0%	1.03	78 GB

For most of the training data, each token is used only once during training. The Wikipedia and Books corpora are the exceptions over which roughly 2 epochs are performed.

- Evaluations
 - Has training on more tokens helped? Furthermore, is it possible to obtain high-performing models on only open source datasets?

• Evaluations

 Has training on more tokens helped? Furthermore, is it possible to obtain high-performing models on only open source datasets?

		BoolQ	PIQA	SIQA	HellaSwag	WinoGrande	ARC-e	ARC-c	OBQA
GPT-3	175B	60.5	81.0	-	78.9	70.2	68.8	51.4	57.6
Gopher	280B	79.3	81.8	50.6	79.2	70.1	-	-	
Chinchilla	70B	83.7	81.8	51.3	80.8	74.9	-	-	-
PaLM	62B	84.8	80.5		79.7	77.0	75.2	52.5	50.4
PaLM-cont	62B	83.9	81.4	120	80.6	77.0	2	-	-
PaLM	540B	88.0	82.3	-	83.4	81.1	76.6	53.0	53.4
	7B	76.5	79.8	48.9	76.1	70.1	72.8	47.6	57.2
11.14	13B	78.1	80.1	50.4	79.2	73.0	74.8	52.7	56.4
LLaMA	33B	83.1	82.3	50.4	82.8	76.0	80.0	57.8	58.6
	65B	85.3	82.8	52.3	84.2	77.0	78.9	56.0	60.2

Table 3: Zero-shot performance on Common Sense Reasoning tasks.

References

• Evaluations

 Has training on more tokens helped? Furthermore, is it possible to obtain high-performing models on only open source datasets?

		BoolQ	PIQA	SIQA	HellaSwag	WinoGrande	ARC-e	ARC-c	OBQA
GPT-3	175B	60.5	81.0	-	78.9	70.2	68.8	51.4	57.6
Gopher	280B	79.3	81.8	50.6	79.2	70.1	-	-	-
Chinchilla	70B	83.7	81.8	51.3	80.8	74.9	-	-	-
PaLM	62B	84.8	80.5		79.7	77.0	75.2	52.5	50.4
PaLM-cont	62B	83.9	81.4	-	80.6	77.0	2	-	-
PaLM	540B	88.0	82.3	-	83.4	81.1	76.6	53.0	53.4
	7B	76.5	79.8	48.9	76.1	70.1	72.8	47.6	57.2
LLaMA	13B	78.1	80.1	50.4	79.2	73.0	74.8	52.7	56.4
	33B	83.1	82.3	50.4	82.8	76.0	80.0	57.8	58.6
	65B	85.3	82.8	52.3	84.2	77.0	78.9	56.0	60.2

Table 3: Zero-shot performance on Common Sense Reasoning tasks.

LLaMA 13B outperforms GPT-3 175B on most datasets.

References

• Evaluations

 Has training on more tokens helped? Furthermore, is it possible to obtain high-performing models on only open source datasets?

		BoolQ	PIQA	SIQA	HellaSwag	WinoGrande	ARC-e	ARC-c	OBQA
GPT-3	175B	60.5	81.0	-	78.9	70.2	68.8	51.4	57.6
Gopher	280B	79.3	81.8	50.6	79.2	70.1	-		
Chinchilla	70B	83.7	81.8	51.3	80.8	74.9	-	-	-
PaLM	62B	84.8	80.5		79.7	77.0	75.2	52.5	50.4
PaLM-cont	62B	83.9	81.4	-	80.6	77.0	2	-	-
PaLM	540B	88.0	82.3	-	83.4	81.1	76.6	53.0	53.4
	7B	76.5	79.8	48.9	76.1	70.1	72.8	47.6	57.2
II MA	13B	78.1	80.1	50.4	79.2	73.0	74.8	52.7	56.4
LLaMA	33B	83.1	82.3	50.4	82.8	76.0	80.0	57.8	58.6
	65B	85.3	82.8	52.3	84.2	77.0	78.9	56.0	60.2

Table 3: Zero-shot performance on Common Sense Reasoning tasks.

The largest model is better than Chinchilla and 10x larger PaLM 540B on most datasets.

References

- Key idea
 - Falcon LLM **places further emphasis on the pre-training dataset quality** to obtain a more effective downstream model.
 - It employs a custom data pipeline and codebase specifically tailored to extract high-quality content from the web. This custom pipeline allows Falcon LLM to curate and process data from diverse online sources, ensuring it is exposed to a wide range of relevant information during the training phase. By extracting high-quality content, Falcon LLM aims to enhance the accuracy and richness of the language generated by the model.

- Key idea
 - Falcon LLM **places further emphasis on the pre-training dataset quality** to obtain a more effective downstream model.
 - It employs a custom data pipeline and codebase specifically tailored to extract highquality content from the web. This custom pipeline allows Falcon LLM to curate and process data from diverse online sources, ensuring it is exposed to a wide range of relevant information during the training phase. By extracting high-quality content, Falcon LLM aims to enhance the accuracy and richness of the language generated by the model.
 - Also, Falcon is trained on trillions of tokens of text compared to GPT-3's billions.
 - Ultimately GPT-4 will compete on the size of the training set. However, the largest Falcon model was a more compact 40B parameter model, while GPT-4 is said to have trillions of parameters.

- Key idea
 - Falcon LLM places further emphasis on the pre-training dataset quality to obtain a more effective downstream model.
 - It employs a custom data pipeline and codebase specifically tailored to extract highquality content from the web. This custom pipeline allows Falcon LLM to curate and process data from diverse online sources, ensuring it is exposed to a wide range of relevant information during the training phase. By extracting high-quality content, Falcon LLM aims to enhance the accuracy and richness of the language generated by the model.
 - Also, Falcon is trained on trillions of tokens of text compared to GPT-3's billions.
 - Ultimately GPT-4 will compete on the size of the training set. However, the largest Falcon model was a more compact 40B parameter model, while GPT-4 is said to have trillions of parameters.
 - Falcon models support democratized access to LLMs: they are all available under the Apache 2.0 license, while the GPT models are all closed-sourced.
 - Variants of Falcon models released such as Falcon-Instruct or Falcon-Chat

• At the time of its release, i.e. May 2023, finetuned Falcon model beat all other models such as LLaMA-1 or GPT-3 and was the state-of-the-art on the HuggingFace leaderboard.

 As noted before, the key ingredient for the high quality of the Falcon models is their training data, predominantly based (>80%) on RefinedWeb — a novel massive web dataset based on CommonCrawl.

 As noted before, the key ingredient for the high quality of the Falcon models is their training data, predominantly based (>80%) on RefinedWeb — a novel massive web dataset based on CommonCrawl.

So what is this RefinedWeb corpus? Let's take a closer look next.

- What is Refined Web?
 - LLMs are trained on a mixture of filtered web data and curated "high-quality" corpora, such as social media conversations, books, or technical papers.

References

- What is Refined Web?
 - LLMs are trained on a mixture of filtered web data and curated "high-quality" corpora, such as social media conversations, books, or technical papers.

Dataset	Size	Availability	Web	CC Processing	Deduplication			
			MASSIV	E WEB DATASETS				
C4 OSCAR-21.09 OSCAR-22.01	$\sim 360 \text{GT}$ $\sim 370 \text{GT}$ $\sim 283 \text{GT}$	Public Public Public	100% 100% 100%	Rules + NSFW words blocklist Built at the line-level Line-level rules + optional rules & NSFW URL blocklist	Exact: spans of 3 sentences Exact: per line ($\sim 55\%$ removed) Exact: per line (optional, not used for results in this paper)			
	CURATED DATASETS							
GPT-3	300 GT	Private	60%	Content filter trained on known high-quality sources	Fuzzy: MinHash ($\sim 10\%$ removed)			
▼ The Pile	$\sim 340 {\rm GT}$	Public	18%	jusText for extraction, con- tent filter trained on curated data	Fuzzy: MinHash ($\sim 26\%$ removed)			
★ PaLM	780GT	Private	27%	Filter trained on HQ data	Unknown			
				OURS				
• REFINEDWEB	$\sim 5,000 {\rm GT}$	Public (600GT)	100%	trafilatura for text extrac- tion, document and line-level rules, NSFW URL blocklist	Exact & fuzzy: exact sub- string+MinHash ($\sim 50\%$ removed)			

Table 1. **• REFINEDWEB** improves on existing English pretraining datasets for large language models by combining extensive filtering with stringent deduplication at unprecedented scale. For additional details, see the full version in Table 12 of Appendix E3.

References

- What is Refined Web?
 - LLMs are trained on a mixture of filtered web data and curated "high-quality" corpora, such as social media conversations, books, or technical papers.

Table 1. REFINEDWEB improves on existing English pretraining datasets for large language models by combining extensive
filtering with stringent deduplication at unprecedented scale. For additional details, see the full version in Table 12 of Appendix E3.

Dataset	Size	Availability	Web	CC Processing	Deduplication
			MASSIV	E WEB DATASETS	
C4 OSCAR-21.09 OSCAR-22.01	$\begin{array}{l} \sim 360 \mathrm{GT} \\ \sim 370 \mathrm{GT} \\ \sim 283 \mathrm{GT} \end{array}$	Public Public Public	$100\% \\ 100\% \\ 100\%$	Rules + NSFW words blocklist Built at the line-level Line-level rules + optional rules & NSFW URL blocklist	Exact: spans of 3 sentences Exact: per line ($\sim 55\%$ removed) Exact: per line (optional, not used for results in this paper)
			CURA	TED DATASETS	
GPT-3	300GT	Private	60%	Content filter trained on known high-quality sources	Fuzzy: MinHash ($\sim 10\%$ removed)
▼ The Pile	$\sim 340 {\rm GT}$	Public	18%	jusText for extraction, con- tent filter trained on curated data	Fuzzy: MinHash ($\sim 26\%$ removed)
★ PaLM	780GT	Private	27%	Filter trained on HQ data	Unknown
				OURS	
• REFINEDWEB	$\sim 5,000 {\rm GT}$	Public (600GT)	100%	trafilatura for text extrac- tion, document and line-level rules, NSFW URL blocklist	Exact & fuzzy: exact sub string+MinHash ($\sim 50\%$ removed)

References

- What is Refined Web?
 - LLMs are trained on a mixture of filtered web data and curated "high-quality" corpora, such as social media conversations, books, or technical papers.

Table 1. • REFINEDWEB improves on existing English pretraining datasets for large language models by combining extensive
filtering with stringent deduplication at unprecedented scale. For additional details, see the full version in Table 12 of Appendix F.3.

Dataset	Size	Availability	Web	CC Processing	Deduplication
			MASSIV	VE WEB DATASETS	
C4	$\sim 360 \text{GT}$	Public	100%	Rules + NSFW words blocklist	Exact: spans of 3 sentences
OSCAR-21.09 OSCAR-22.01	$\sim 370 \text{GT}$ $\sim 283 \text{GT}$	Public Public	$100\% \\ 100\%$	Built at the line-level Line-level rules + optional rules & NSFW URL blocklist	Exact: per line ($\sim 55\%$ removed) Exact: per line (optional, not used for results in this paper)
			CUR	ATED DATASETS	
GPT-3	300GT	Private	60%	Content filter trained on known high-quality sources	Fuzzy: MinHash ($\sim 10\%$ removed)
▼ The Pile	$\sim 340 {\rm GT}$	Public	18%	jusText for extraction, con- tent filter trained on curated data	Fuzzy: MinHash ($\sim 26\%$ removed)
★ PaLM	780GT	Private	27%	Filter trained on HQ data	Unknown
				OURS	
•REFINEDWEB	$\sim 5,000 {\rm GT}$	Public (600GT)	100%	trafilatura for text extrac- tion, document and line-level rules, NSFW URL blocklist	Exact & fuzzy: exact sub- string+MinHash (~ 50% removed)

References

- What is Refined Web?
 - LLMs are trained on a mixture of filtered web data and curated "high-quality" corpora, such as social media conversations, books, or technical papers.

Dataset	Size	Availability	Web	CC Processing	Deduplication		
MASSIVE WEB DATASETS							
C4 OSCAR-21.09 OSCAR-22.01	$\sim 360 \text{GT}$ $\sim 370 \text{GT}$ $\sim 283 \text{GT}$	Public Public Public	100% 100% 100%	Rules + NSFW words blocklist Built at the line-level Line-level rules + optional rules & NSFW URL blocklist	Exact: spans of 3 sentences Exact: per line ($\sim 55\%$ removed) Exact: per line (optional, not used for results in this paper)		
CURATED DATASETS							
GPT-3	300GT	Private	60%	Content filter trained on known high-quality sources	Fuzzy: MinHash ($\sim 10\%$ removed)		
▼ The Pile	$\sim 340 {\rm GT}$	Public	18%	jusText for extraction, con- tent filter trained on curated data	Fuzzy: MinHash ($\sim 26\%$ removed)		
★ PaLM	780GT	Private	27%	Filter trained on HQ data	Unknown		
				OURS			
• REFINEDWEB	$\sim 5,000 {\rm GT}$	Public (600GT)	100%	trafilatura for text extrac- tion, document and line-level rules, NSFW URL blocklist	Exact & fuzzy: exact sub- string+MinHash ($\sim 50\%$ removed)		

Table 1. **• REFINEDWEB** improves on existing English pretraining datasets for large language models by combining extensive filtering with stringent deduplication at unprecedented scale. For additional details, see the full version in Table 12 of Appendix F.3.

References

- What is Refined Web?
 - LLMs are trained on a mixture of filtered web data and curated "high-quality" corpora, such as social media conversations, books, or technical papers.

Dataset	Size	Availability	Web	CC Processing	Deduplication	
		—				
C4 OSCAR-21.09 OSCAR-22.01	$\begin{array}{c} \sim 360 \mathrm{GT} \\ \sim 370 \mathrm{GT} \\ \sim 283 \mathrm{GT} \end{array}$	Public Public Public	100% 100% 100%	Rules + NSFW words blocklist Built at the line-level Line-level rules + optional rules & NSFW URL blocklist	Exact: spans of 3 sentences Exact: per line ($\sim 55\%$ removed) Exact: per line (optional, not used for results in this paper)	The closest to RefinedWeb is the C4 dataset which
			CURA	ATED DATASETS		
GPT-3	300GT	Private	60%	Content filter trained on known high-quality sources	Fuzzy: MinHash ($\sim 10\%$ removed)	was introduced in the context of T5.
▼ The Pile	$\sim 340 {\rm GT}$	Public	18%	jusText for extraction, con- tent filter trained on curated data	Fuzzy: MinHash ($\sim 26\%$ removed)	THE CONTEXT OF 13.
★ PaLM	780GT	Private	27%	Filter trained on HQ data	Unknown	
				OURS		
● REFINEDWEB	$\sim 5,000 {\rm GT}$	Public (600GT)	100%	trafilatura for text extrac- tion, document and line-level rules, NSFW URL blocklist	Exact & fuzzy: exact sub- string+MinHash ($\sim 50\%$ removed)	

Table 1. **• REFINEDWEB** improves on existing English pretraining datasets for large language models by combining extensive filtering with stringent deduplication at unprecedented scale. For additional details, see the full version in Table 12 of Appendix F.3.

References

- What is Refined Web?
 - LLMs are trained on a mixture of filtered web data and curated "high-quality" corpora, such as social media conversations, books, or technical papers.

Dataset	Size	Availability	Web	CC Processing	Deduplication		
MASSIVE WEB DATASETS							
C4 OSCAR-21.09 OSCAR-22.01		Public Public Public	100% 100% 100%	Rules + NSFW words blocklist Built at the line-level Line-level rules + optional rules & NSFW URL blocklist	Exact: spans of 3 sentences Exact: per line ($\sim 55\%$ removed) Exact: per line (optional, not used for results in this paper)		
CURATED DATASETS							
GPT-3	300GT	Private	60%	Content filter trained on known high-quality sources	Fuzzy: MinHash ($\sim 10\%$ removed)		
▼ The Pile	$\sim 340 {\rm GT}$	Public	18%	jusText for extraction, con- tent filter trained on curated data	Fuzzy: MinHash (~ 26% removed)		
★ PaLM	780GT	Private	27%	Filter trained on HQ data	Unknown		
OURS							
• REFINEDWER	$\sim 5,000 { m GT}$	Public (600GT)	100%	trafilatura for text extrac- tion, document and line-level rules, NSFW URL blocklist	Exact & fuzzy: exact sub- string+MinHash ($\sim 50\%$ removed)		

Table 1. **• REFINEDWEB** improves on existing English pretraining datasets for large language models by combining extensive filtering with stringent deduplication at unprecedented scale. For additional details, see the full version in Table 12 of Appendix E.3.

RefinedWeb goes beyond C4 in the size of the resulting dataset measured in giga tokens.

References

- What is Refined Web?
 - LLMs are trained on a mixture of filtered web data and curated "high-quality" corpora, such as social media conversations, books, or technical papers.

Dataset	Size	Availability	Web	CC Processing	Deduplication		
MASSIVE WEB DATASETS							
C4 OSCAR-21.09 OSCAR-22.01	$\begin{array}{l} \sim 360 \mathrm{GT} \\ \sim 370 \mathrm{GT} \\ \sim 283 \mathrm{GT} \end{array}$	Public Public Public	100% 100% 100%	Rules + NSFW words blocklist Built at the line-level Line-level rules + optional rules & NSFW URL blocklist	Exact: spans of 3 sentences Exact: per line ($\sim 55\%$ removed) Exact: per line (optional, not used for results in this paper)		
CURATED DATASETS							
GPT-3	300GT	Private	60%	Content filter trained on known high-quality sources	Fuzzy: MinHash ($\sim 10\%$ removed)		
▼ The Pile	$\sim 340 {\rm GT}$	Public	18%	jusText for extraction, con- tent filter trained on curated data	Fuzzy: MinHash ($\sim 26\%$ removed)		
★ PaLM	780GT	Private	27%	Filter trained on HQ data	Unknown		
OURS							
• RefinedWeb	$\sim 5,000 {\rm GT}$	Public (600GT)	100%	trafilatura for text extrac- tion, document and line-level rules, NSFW URL blocklist	Exact & fuzzy: exact sub- string+MinHash ($\sim 50\%$ removed)		

Table 1. **• REFINEDWEB** improves on existing English pretraining datasets for large language models by combining extensive filtering with stringent deduplication at unprecedented scale. For additional details, see the full version in Table 12 of Appendix F.3.

References

Penedo, Guilherme, et al. "The RefinedWeb dataset for Falcon LLM: outperforming curated corpora with web data, and web data only." *arXiv preprint arXiv:2306.01116* (2023).

218

- What is Refined Web?
 - LLMs are trained on a mixture of filtered web data and curated "high-quality" corpora, such as social media conversations, books, or technical papers.

Dataset	Size	Availability	Web	CC Processing	Deduplication
			MASSIV	E WEB DATASETS	
C4 OSCAR-21.09 OSCAR-22.01	$\sim 360 \text{GT}$ $\sim 370 \text{GT}$ $\sim 283 \text{GT}$	Public Public Public	100% 100% 100%	Rules + NSFW words blocklist Built at the line-level Line-level rules + optional rules & NSFW URL blocklist	Exact: spans of 3 sentences Exact: per line (~ 55% removed) Exact: per line (optional, not used for results in this paper)
			CURA	ATED DATASETS	
GPT-3	300GT	Private	60%	Content filter trained on known high-quality sources	Fuzzy: MinHash ($\sim 10\%$ removed)
▼ The Pile	$\sim 340 { m GT}$	Public	18%	jusText for extraction, con- tent filter trained on curated data	Fuzzy: MinHash ($\sim 26\%$ removed)
★ PaLM	780GT	Private	27%	Filter trained on HQ data	Unknown
				OURS	
• RefinedWeb	$\sim 5,000 {\rm GT}$	Public (600GT)	100%	trafilatura for text extrac- tion, document and line-level rules, NSFW URL blocklist	Exact & fuzzy: exact sub- string+MinHash ($\sim 50\%$ removed)

Table 1. **• REFINEDWEB** improves on existing English pretraining datasets for large language models by combining extensive filtering with stringent deduplication at unprecedented scale. For additional details, see the full version in Table 12 of Appendix F.3.

RefinedWeb when compared to C4 also implements a more sophisticated web page deduplication strategy.

References

- What is Refined Web?
 - LLMs are trained on a mixture of filtered web data and curated "high-quality" corpora, such as social media conversations, books, or technical papers.
 - Central thesis behind the Falcon model team of researchers to create RefinedWeb was the following:
 - Can properly filtered and deduplicated web data alone lead to powerful models?

- What is Refined Web?
 - LLMs are trained on a mixture of filtered web data and curated "high-quality" corpora, such as social media conversations, books, or technical papers.
 - Central thesis behind the Falcon model team of researchers to create RefinedWeb was the following:
 - Can properly filtered and deduplicated web data alone lead to powerful models?
 - RefinedWeb comprises 5 trillion tokens from CommonCrawl:
 - Publicly released a 600B tokens dataset.

References

- What is Refined Web?
 - LLMs are trained on a mixture of filtered web data and curated "high-quality" corpora, such as social media conversations, books, or technical papers.
 - Central thesis behind the Falcon model team of researchers to create RefinedWeb was the following:
 - Can properly filtered and deduplicated web data alone lead to powerful models?
 - RefinedWeb comprises 5 trillion tokens from CommonCrawl:
 - Publicly released a 600B tokens dataset.

Let's take a look at the scalable data processing pipeline introduced in this work...

References

• Refined Web Scalable and High-Quality Web Text Processing Pipeline

DOCUMENT PREPAR	ATION		FILTERING		DEDUPLICATION	
URL filtering	Text extraction	Language identification	Document-wise filtering	Line-wise filtering	Deduplication	URL deduplication
Aggregated block- list, URL scoring, common HQ sources blocked	From WARC using warcio, trafilatura for extraction	fastText classi- fier from CCNet, thresholding on top language score	In-document repe- tition removal and quality heuristics from MassiveWeb	Remove undesirable lines (call to actions, navigation buttons, social counters, etc.)	Fuzzy deduplication w/ MinHash + exact substring deduplica- tion w/ suffix arrays	Remove URLs revis- ited across Common- Crawl dumps
Appendix G.1	Barbaresi (2021)	Wenzek et al. (2020)	Rae et al. (2021)	Appendix G.2	Lee et al. (2022)	Section 3.3

References

- Refined Web Scalable and High-Quality Web Text Processing Pipeline
 - Three main parts:

DOCUMENT PREPARATION		FILTERING		DEDUPLICATION		
URL filtering	Text extraction	Language identification	Document-wise filtering	Line-wise filtering	Deduplication	URL deduplication
Aggregated block- list, URL scoring, common HQ sources blocked	From WARC using warcio, trafilatura for extraction	fastText classi- fier from CCNet, thresholding on top language score	In-document repe- tition removal and quality heuristics from MassiveWeb	Remove undesirable lines (call to actions, navigation buttons, social counters, etc.)	Fuzzy deduplication w/ MinHash + exact substring deduplica- tion w/ suffix arrays	Remove URLs revis ited across Common Crawl dumps
Appendix G.1	Barbaresi (2021)	Wenzek et al. (2020)	Rae et al. (2021)	Appendix G.2	Lee et al. (2022)	Section 3.3

References

- Refined Web Scalable and High-Quality Web Text Processing Pipeline
 - Three main parts:
 - Document preparation

DOCUMENT PREPARATION			FILTERING		DEDUPLICATION	
URL filtering	Text extraction	Language identification	Document-wise filtering	Line-wise filtering	Deduplication	URL deduplication
Aggregated block- list, URL scoring, common HQ sources blocked	From WARC using warcio, trafilatura for extraction	fastText classi- fier from CCNet, thresholding on top language score	In-document repe- tition removal and quality heuristics from MassiveWeb	Remove undesirable lines (call to actions, navigation buttons, social counters, etc.)	Fuzzy deduplication w/ MinHash + exact substring deduplica- tion w/ suffix arrays	Remove URLs revis ited across Common Crawl dumps
Appendix G.1	Barbaresi (2021)	Wenzek et al. (2020)	Rae et al. (2021)	Appendix G.2	Lee et al. (2022)	Section 3.3

References

- Refined Web Scalable and High-Quality Web Text Processing Pipeline
 - Three main parts:
 - Document preparation
 - Filtering

DOCUMENT PREPARATION		FILTERING		DEDUPLICATION		
URL filtering	Text extraction	Language identification	Document-wise filtering	Line-wise filtering	Deduplication	URL deduplication
Aggregated block- list, URL scoring, common HQ sources blocked	From WARC using warcio, trafilatura for extraction	fastText classi- fier from CCNet, thresholding on top language score	In-document repe- tition removal and quality heuristics from MassiveWeb	Remove undesirable lines (call to actions, navigation buttons, social counters, etc.)	Fuzzy deduplication w/ MinHash + exact substring deduplica- tion w/ suffix arrays	Remove URLs revis ited across Common Crawl dumps
Appendix G.1	Barbaresi (2021)	Wenzek et al. (2020)	Rae et al. (2021)	Appendix G.2	Lee et al. (2022)	Section 3.3

Т

References

- Refined Web Scalable and High-Quality Web Text Processing Pipeline
 - Three main parts:
 - Document preparation
 - Filtering
 - Deduplication

DOCUMENT PREPAR	ATION		FILTERING		DEDUPLICATION	J
URL filtering	Text extraction	Language identification	Document-wise filtering	Line-wise filtering	Deduplication	URL deduplication
Aggregated block- list, URL scoring, common HQ sources blocked	From WARC using warcio, trafilatura for extraction	fastText classi- fier from CCNet, thresholding on top language score	In-document repe- tition removal and quality heuristics from MassiveWeb	Remove undesirable lines (call to actions, navigation buttons, social counters, etc.)	Fuzzy deduplication w/ MinHash + exact substring deduplica- tion w/ suffix arrays	Remove URLs revis- ited across Common- Crawl dumps
Appendix G.1	Barbaresi (2021)	Wenzek et al. (2020)	Rae et al. (2021)	Appendix G.2	Lee et al. (2022)	Section 3.3

References

- Refined Web Scalable and High-Quality Web Text Processing Pipeline
 - Three main parts:
 - Document preparation
 - Filtering
 - Deduplication

DOCUMENT PREPARATION			FILTERING		DEDUPLICATION	
URL filtering	Text extraction	Language identification	Document-wise filtering	Line-wise filtering	Deduplication	URL deduplication
Aggregated block- list, URL scoring, common HQ sources blocked	From WARC using warcio, trafilatura for extraction	fastText classi- fier from CCNet, thresholding on top language score	In-document repe- tition removal and quality heuristics from MassiveWeb	Remove undesirable lines (call to actions, navigation buttons, social counters, etc.)	Fuzzy deduplication w/ MinHash + exact substring deduplica- tion w/ suffix arrays	Remove URLs revis- ited across Common- Crawl dumps
Appendix G.1	Barbaresi (2021)	Wenzek et al. (2020)	Rae et al. (2021)	Appendix G.2	Lee et al. (2022)	Section 3.3

References

- Refined Web Scalable and High-Quality Web Text Processing Pipeline
 - Three main parts:
 - Document preparation
 - Filtering
 - Deduplication

DOCUMENT PREPAR	ATION		FILTERING		DEDUPLICATION	
URL filtering	Text extraction	Language identification	Document-wise filtering	Line-wise filtering	Deduplication	URL deduplication
Aggregated block- list, URL scoring, common HQ sources blocked	From WARC using warcio, trafilatura for extraction	fastText classi- fier from CCNet, thresholding on top language score	In-document repe- tition removal and quality heuristics from MassiveWeb	Remove undesirable lines (call to actions, navigation buttons, social counters, etc.)	Fuzzy deduplication w/ MinHash + exact substring deduplica- tion w/ suffix arrays	Remove URLs revis- ited across Common- Crawl dumps
Appendix G.1	Barbaresi (2021)	Wenzek et al. (2020)	Rae et al. (2021)	Appendix G.2	Lee et al. (2022)	Section 3.3

References

- Refined Web Scalable and High-Quality Web Text Processing Pipeline
 - Three main parts:
 - Document preparation
 - Filtering
 - Deduplication

DOCUMENT PREPAR	ATION		FILTERING		DEDUPLICATION	
URL filtering	Text extraction	Language identification	Document-wise filtering	Line-wise filtering	Deduplication	URL deduplication
Aggregated block- list, URL scoring, common HQ sources blocked	From WARC using warcio, trafilatura for extraction	fastText classi- fier from CCNet, thresholding on top language score	In-document repe- tition removal and quality heuristics from MassiveWeb	Remove undesirable lines (call to actions, navigation buttons, social counters, etc.)	Fuzzy deduplication w/ MinHash + exact substring deduplica- tion w/ suffix arrays	Remove URLs revis- ited across Common- Crawl dumps
Appendix G.1	Barbaresi (2021)	Wenzek et al. (2020)	Rae et al. (2021)	Appendix G.2	Lee et al. (2022)	Section 3.3

References

- Refined Web Scalable and High-Quality Web Text Processing Pipeline
 - Three main parts:
 - Document preparation
 - Filtering
 - Deduplication

DOCUMENT PREPAR	ATION		FILTERING		DEDUPLICATION	
URL filtering	Text extraction	Language identification	Document-wise filtering	Line-wise filtering	Deduplication	URL deduplication
Aggregated block- list, URL scoring, common HQ sources blocked Appendix G.1	From WARC using warcio, trafilatura for extraction Barbaresi (2021)	fastText classi- fier from CCNet, thresholding on top language score Wenzek et al. (2020)	In-document repe- tition removal and quality heuristics from MassiveWeb Rae et al. (2021)	Remove undesirable lines (call to actions, navigation buttons, social counters, etc.) Appendix G.2	Fuzzy deduplication w/ MinHash + exact substring deduplica- tion w/ suffix arrays Lee et al. (2022)	Remove URLs revis- ited across Common- Crawl dumps Section 3.3

References

• Application of the Processing Pipeline – Arriving at RefinedWeb

References

• Application of the Processing Pipeline – Arriving at RefinedWeb

The initial web corpus is reduced by a small proportion after "document preparation." And reduces by 50% after language identification.

References

• Application of the Processing Pipeline – Arriving at RefinedWeb

After the filtering stage, only 23% of the original set of web page text is retained.

References

• Application of the Processing Pipeline – Arriving at RefinedWeb

After the deduplication stage, only 11% of the original set of web page text are retained as the resulting high-quality corpus.

References

- Evaluations
 - Is the RefinedWeb strategy effective? In other words, can an effective LLM be obtained from only heuristics-based pipeline to create a high-quality web dataset?

References

• Evaluations

• The pretrained model was tested on various evaluation datasets in the community.

Tasks	Туре	Random	small	core	main	ext
HellaSwag (Zellers et al., 2019)	Sentence completion	25.0	~	~	~	~
LAMBADA (Paperno et al., 2016)	Sentence completion	0.0		\checkmark	\checkmark	\checkmark
Winogrande (Sakaguchi et al., 2021)	Coreference resolution	50.0	\checkmark	\checkmark	\checkmark	\checkmark
PIQA (Bisk et al., 2020)	Multiple-choice question answering	50.0	\checkmark	\checkmark	\checkmark	\checkmark
ARC (Clark et al., 2018)	Natural language inference	25.0	\checkmark	\checkmark	\checkmark	\checkmark
OpenBookQA (Mihaylov et al., 2018)	Multiple-choice question answering	25.0		\checkmark	\checkmark	\checkmark
BoolQ (Clark et al., 2019)	Multiple-choice question answering	50.0	\checkmark		\checkmark	\checkmark
COPA (Gordon et al., 2012)	Sentence completion	50.0			\checkmark	\checkmark
CB (De Marneffe et al., 2019)	Natural language inference	33.3			\checkmark	\checkmark
RTE (Dagan et al., 2010)	Natural language inference	50.0			\checkmark	\checkmark
ReCoRD (Zhang et al., 2018)	Question answering	0.0			\checkmark	
ANLI (Nie et al., 2019)	Natural language inference	33.3			\checkmark	
LogiQA (Liu et al., 2021)	Multiple-choice question answering	25.0				\checkmark
HeadQA (Vilares & Gómez-Rodríguez, 2019)	Multiple-choice question answering	20.0				\checkmark
MathQA (Amini et al., 2019)	Multiple-choice question answering	20.0				\checkmark
PROST (Aroca-Ouellette et al., 2021)	Paraphrase identification	50.0				\checkmark
PubMedQA (Jin et al., 2019)	Multiple-choice question answering	50.0				\checkmark
SciQ (Welbl et al., 2017)	Multiple-choice question answering	25.0	\checkmark			\checkmark

References

- Evaluations
 - Can an effective LLM be obtained from only heuristics-based pipeline to create a high-quality web dataset?

Plot of averaged evaluation scores versus compute budget.

References

- Evaluations
 - Can an effective LLM be obtained from only heuristics-based pipeline to create a high-quality web dataset?

At similar compute budgets, a model trained purely on RefinedWeb surpases models trained on both Web and highly-curated data. Thus their research question was ascertained.

References

- Evaluations
 - Generalizability of the RefinedWeb web text data processing pipeline
 - The same data processing pipeline was applied to other existing datasets

	MASSIVE WEB	DATASETS		CURATED	OURS
	OSCAR-21.09	OSCAR-22.01	C4	▼ Pile	RefinedWeb
Base	55.0%	52.7%	55.7%	53.4%	52.7%
Filtered	55.4% [+.4]	52.3% [4]	56.2% [+.5]	54.2% [+.8]	54.3% [+1.6]
removal rate	-25.0%	-39.8%	-16.4%	-27.1%	-50.8%
Deduplicated	55.6% [+.6]	55.6% [+2.9]	55.9% [+.2]	54.5% [+1.1]	
removal rate	-10.8%	-60.8%	-7.59%	-45.3%	
Filt.+Dedup.	55.5% [+.5]	55.4% [+2.7]	56.4% [+.7]	55.2% [+1.8]	56.2% [+3.5]
removal rate	-28.2%	-62.2%	-17.9%	-66.0%	-75.4%
				/	

References

- Evaluations
 - Generalizability of the RefinedWeb web text data processing pipeline
 - The same data processing pipeline was applied to other existing datasets
 - Each processing step eliminated a proportion of the data in other datasets

	MASSIVE WEB	DATASETS	CURATED	OURS	
	OSCAR-21.09	OSCAR-22.01	C4	▼ Pile	RefinedWeb
Base	55.0%	52.7%	55.7%	53.4%	52.7%
Filtered	55.4% [+.4]	52.3% [4]	56.2% [+.5]	54.2% [+.8]	54.3% [+1.6]
removal rate	-25.0%	-39.8%	-16.4%	-27.1%	-50.8%
Deduplicated	55.6% [+.6]	55.6% [+2.9]	55.9% [+.2]	54.5% [+1.1]	
removal rate	-10.8%	-60.8%	-7.59%	-45.3%	
Filt.+Dedup.	55.5% [+.5]	55.4% [+2.7]	56.4% [+.7]	55.2% [+1.8]	56.2% [+3.5]
removal rate	-28.2%	-62.2%	-17.9%	-66.0%	-75.4%

References

- Evaluations
 - Generalizability of the RefinedWeb web text data processing pipeline
 - The same data processing pipeline was applied to other existing datasets
 - Each processing step eliminated a proportion of the data in other datasets
 - Furthermore, for the models pretrained on the cleaned datasets by the RefinedWeb pipeline in each stage and across all stages improvements were seen.

	MASSIVE WEB	CURATED	OURS		
	OSCAR-21.09	OSCAR-22.01	C4	▼ Pile	RefinedWeb
Base	55.0%	52.7%	55.7%	53.4%	52.7%
Filtered removal rate	55.4% [+.4]	52.3% [4]	56.2% [+.5]	54.2% [+.8]	54.3% [+1.6]
	-25.0%	-39.8%	-16.4%	-27.1%	-50.8%
Deduplicated	55.6% [+.6]	55.6% [+2.9]	55.9% [+.2]	54.5% [+1.1]	
removal rate	-10.8%	-60.8%	-7.59%	-45.3%	
Filt.+Dedup. removal rate	55.5% [+.5]	55.4% [+2.7]	56.4% [+.7]	55.2% [+1.8]	56.2% [+3.5]
	-28.2%	-62.2%	-17.9%	-66.0%	-75.4%

References

- Evaluations
 - Generalizability of the RefinedWeb web text data processing pipeline
 - The same data processing pipeline was applied to other existing datasets
 - Each processing step eliminated a proportion of the data in other datasets
 - Furthermore, for the models pretrained on the cleaned datasets by the RefinedWeb pipeline in each stage and across all stages improvements were seen.

	MASSIVE WEB		CURATED	OURS	
	OSCAR-21.09	OSCAR-22.01	C4	▼ Pile	RefinedWeb
Base	55.0%	52.7%	55.7%	53.4%	52.7%
Filtered	55.4% [+.4]	52.3% [4]	56.2% [+.5]	54.2% [+.8]	54.3% [+1.6]
removal rate	-25.0%	-39.8%	-16.4%	-27.1%	-50.8%
Deduplicated	55.6% [+.6]	55.6% [+2.9]	55.9% [+.2]	54.5% [+1.1]	
removal rate	-10.8%	-60.8%	-7.59%	-45.3%	
Filt.+Dedup.	55.5% [+.5]	55.4% [+2.7]	56.4% [+.7]	55.2% [+1.8]	56.2% [+3.5]
removal rate	-28.2%	-62.2%	-17.9%	-66.0%	-75.4%

The resulting conclusion is that the quality of the pretraining dataset is critical to downstream LLM performance.

References

- RefinedWeb Summary
 - Stringent filtering and deduplication could result in a 5T tokens web only dataset suitable to produce models competitive with SOTA, even outperforming LLMs trained on curated corpora.
 - Publicly released a 600GT extract of RefinedWeb
 - 968M individual web pages
 - 2.8TB uncompressed data.
 - Used to train Falcon 7B/40B combined with curated corpora.

References

• In the realm of works creating pre-training datasets, the RefinedWeb pipeline can be considered the current state-of-the-art in terms of producing high-quality downstream web page text data.

Datasets for pretraining

Model	Organization	Date	Training data genre	Training data size	# parameters	
GPT-1	OpenAl	Jun 2018	Fiction Books	higher millions	117M	
BERT	Google	Oct 2018	Fiction Books, Encyclopedia		340M	
GPT-2	OpenAl	Mar 2019	Internet		117M, 345M, 762M, 1.5B	
T5	Google	Oct 2019	Internet	34B	60M, 220M, 770M, 3B, 11	
GPT-3	OpenAl	May 2020	Internet w/ encyclopedia, Prose	300B	125M to 175B	
GPT-J-6B	EleutherAl	May 2021	Internet w/ encyclopedia & QA, Academic, Prose, Dialogue, Code, Math	402B	6B	
LLaMA	MetaAl	Feb 2023	Internet w/ encyclopedia & QA, Academic, Prose, Code	1.4 trillion	7B to 65B	
Falcon	TII	May 2023	Internet	in trillions	7B, 40B	

LEIBNIZ-INFORMATIONSZENTRUM TECHNIK UND NATURWISSENSCHAFTEN UNIVERSITÄTSBIBLIOTHEK

Datasets for Pretraining

Jennifer D'Souza

Technische Informationsbibliothek (TIB) Welfengarten 1B // 30167 Hannover

Conclusion: Takeaways

- As shown in the seminal GPT-1 work, the <u>choice of the pretraining corpus should take</u> <u>into consideration the average context length</u> that the pretraining dataset presents to the transformer architecture. Longer is better. This was not the status quo prior to LLMs.
- <u>Bigger doesn't always equal better</u>: researchers have found that ultimately smaller, more optimally trained models outshine their behemoth counterparts and require less energy and fewer resources.
 - Refer to the Chinchilla paper by Hoffman et al. "Training Compute-Optimal Large Language Models" on optimal model size and number of tokens for training a transformer language model under a given compute budget. They find that current large language models are significantly undertrained, a consequence of the recent focus on scaling language models whilst keeping the amount of training data constant.

Conclusion: Takeaways

- As shown in the RefinedWeb work for the Falcon models, <u>the quality of the pretraining</u> <u>data is highly conducive to obtaining effective downstream LLMs</u>. In other words, the performance of LLMs on downstream tasks can be improved by pretraining it on a highquality dataset.
- Effective downstream LLMs also rely on <u>diverse information represented in the</u> <u>pretraining datasets</u>. In this context, web pages work best and are a pretraining data source in almost LLMs.
- Cautionary notes: Self-supervised training on a large corpora of information leads to the model inadvertently learning unsafe content and then sharing it with users. This could be incorrect or misleading medical information and encouraging self-harm. In this context guidelines for safeguards for LLMs are evolving.

Thank you for your attention!

Questions/Discussion

Find the pre-recorded version of this talk on Youtube!

Creative Commons Namensnennung 3.0 Deutschland http://creativecommons.org/licenses/by/3.0/de

Find me on LinkedIn!