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Recap

– Synthesis and automata-theoretic approaches to synthesis

– Reduction to games on graphs (automata)

– Reachability game, safety game, GR(1) game etc.

– Game solving is linear or poly, wrt the size of the game graph
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Recap

– The game graph size?

– LTLf synthesis, explicit DFA 2EXP number of states

– |φ| = 10, #states = 22
10

– Symbolic techniques, compact representation and reasoning
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Outline

– Symbolic DFA representation

– Monolithic representation

– Partitioned representation

– Symbolic synthesis techniques

– Symbolic LTLf synthesis, reachability game 1

– Binary Decision Diagram (BDD)

1Zhu et al.: Symbolic LTLf Synthesis.
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Explicit DFA Representation

Explicit DFA as a tuple D = {P ,S , s0, δ,F}

– P a set of propositions

– S a set of states

– s0 initial state

– δ : S × 2P → S transition function

– F a set of accepting states
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Explicit DFA Representation

s0start

s1

s2

s3

i ↔
o

i ̸↔
o

i ∧ o

¬o

¬i ∧ o true

o

¬o

– P = {i , o}

– S = {s0, s1, s2, s3}

– s0 initial state

– δ : S × 2P → S
– δ(s1,¬i ∧ o) = s2

– F = {s2, s3}
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From Explicit DFA to Symbolic DFA

– D = {P ,S , s0, δ,F}

– State space S

– Answer queries:

– Which state is the initial state?

– Is s an accepting states?

– Consider current state s and transition label α, what is the successor state?

– ...
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From Explicit DFA to Symbolic DFA

– Explicit DFA: D = {P ,S , s0, δ,F}

– Symbolic DFA: Maintain the information as in the explicit DFA

– State space S

– Answer queries: initial state? accepting state? successor state?
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Monolithic Representation – State Space

– S = {s0, s1, s2, s3}

– Binary state encoding Z = {z0, z1}

State Interpretation Z

s0 z0 = 0, z1 = 0

s1 z0 = 0, z1 = 1

s2 z0 = 1, z1 = 0

s3 z0 = 1, z1 = 1

– EXP less number of variables
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Monolithic Representation – Initial and Accepting States

– S = {s0, s1, s2, s3}

– Initial state

– Accepting states

– F is an explicit set, not succinct enough
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Symbolic Encoding of A Set of States

– Queries related to the set of accepting states

– F : Is s an accepting state? Answers: Yes, No

– Boolean formula f over Z : Is interpretation Z ∈ 2Z a model of f ? Answers:
true, false

– Encode F as a Boolean formula f over Z , more succinct than an explicit set
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Symbolic Encoding of A Set of States

– Every state s ∈ S as a Boolean formula only satisfied by the corresponding
interpretation Z ∈ 2Z

– Through conjunction, refers to a certain state

State Interpretation Z Boolean formula

s0 z0 = 0, z1 = 0 ¬z0 ∧ ¬z1
s1 z0 = 0, z1 = 1 ¬z0 ∧ z1
s2 z0 = 1, z1 = 0 z0 ∧ ¬z1
s3 z0 = 1, z1 = 1 z0 ∧ z1
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Symbolic Encoding of A Set of States

– A set of states is a disjunction on the conjunctions

– This disjunction refers to a certain set of states

– Initial state ι = ¬z0 ∧ ¬z1︸ ︷︷ ︸
s0(00)

– Accepting states f = (¬z0 ∧ z1)︸ ︷︷ ︸
s1(01)

∨ (z0 ∧ z1)︸ ︷︷ ︸
s3(11)
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Symbolic Transition Function

– State variables Z = {z0, z1}

– Transition function δ(s, α) = s ′

– Boolean formula η only evaluates to true or false

– How to use Boolean formula to encode transition function?

– Monolithic representation

– Partitioned representation
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Monolithic Representation

– What does a transition function do?

Given: Current state s, transition condition α

Return: Successor state s ′

– What about the following?

Given: Interpretation Z , transition condition α, interpretation Z ′

Return: Is (Z , α,Z ′) a correct transition? Yes, No
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Monolithic Transition Function

Given: Interpretation Z , transition condition α, interpretation Z ′

Return: Is (Z , α,Z ′) a correct transition? Yes, No

– Introduce prime variables Z ′ = {z ′ | z ∈ Z} to differentiate current and successor

– Transition function as Boolean formula η over Z ∪ P ∪ Z ′

– Evaluates as true only for correct transitions
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Monolithic Transition Function

Each transition as a conjunction of the corresponding interpretation

– δ(s1,¬o) = s3

– ¬z0 ∧ z1︸ ︷︷ ︸
s1

∧¬o ∧ z ′0 ∧ z ′1︸ ︷︷ ︸
s3
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Monolithic Transition Function

η : disjunction of conjunctions

η =
∨
(Z ∧ α ∧ Z ′)
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Example of Monolithic Representation

s0start

s1

s2

s3

i ↔
o

i ̸↔
o

i ∧ o

¬o

¬i ∧ o true

o

¬o

Symbolic Dm = (P ,Z ,Z ′, ι, η, f )
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Example of Monolithic Representation

s0start

s1

s2

s3

i ↔
o

i ̸↔
o

i ∧ o

¬o

¬i ∧ o true

o

¬o

– Z = {z0, z1}

– Z ′ = {z ′0, z ′1}
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s1

s2

s3

i ↔
o

i ̸↔
o

i ∧ o

¬o

¬i ∧ o true

o

¬o

Each transition as a conjunction

– (s1, i ∧ o) → s1

– ¬z0 ∧ z1︸ ︷︷ ︸
s1

∧i ∧ o ∧ ¬z ′0 ∧ z ′1︸ ︷︷ ︸
s1
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Monolithic Representation

Dm = {P ,Z ,Z ′, ι, η, f }

– P a set of propositions

– Z a set of state variables, Z ′ prime state variables

– ι Boolean formula over Z denoting the initial state

– η Boolean formula over Z ∪ P ∪ Z ′ representing the transition function

– f Boolean formula over Z representing the set of accepting states
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Symbolic DFA Representation

– Monolithic representation

– Straightforward, primed variables

– Partitioned representation

– Model Checking

– LTLf synthesis
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Partitioned Representation

Dp = {P ,Z , ι, η, f }

– P a set of propositions

– Z a set of state variables

– ι Boolean formula over Z denoting the initial state

– η transition function in a partitioned way

– f Boolean formula over Z representing the set of accepting states
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Partitioned Transition Function

Given: Current state s, transition condition σ

Return: Successor state s ′

– Every state s as interpretation over Z

– State s1 corresponds to z0 = 0, z1 = 1

– Partition the computation of successor state
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Partitioned Transition Function

Partition the computation of successor state s ′

– compute the value of z ∈ Z one after another

η = {ηz0 , ηz1 , . . .}, |η| = |Z |

– ηzi Boolean formula over Z ∪ P

– ηzi (Z , σ) evaluates to true iff zi = 1 in the corresponding successor state of
outgoing edge (Z , σ)
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Partitioned Transition Function

η = {ηz0 , ηz1 , . . .}, |η| = |Z |

– ηzi : disjunction of conjunctions

– every conjunction, an outgoing edge (Z , σ), which makes zi = 1 in the
corresponding successor state
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Example of Partitioned Transition Function

s0start

s1

s2

s3

i ↔
o

i ̸↔
o

i ∧ o

¬o

¬i ∧ o true

o

¬o

Z = {z0, z1}

– (¬z0, z1︸ ︷︷ ︸
s1(01)

,¬p, q) → z0,¬z1︸ ︷︷ ︸
s2(10)

– ηz0(¬z0, z1,¬i , o) evaluates to true
ηz1(¬z0, z1,¬i , o) evaluates to false
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, i , o) → ¬z0, z1︸ ︷︷ ︸
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i ̸↔
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i ∧ o
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o
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– (z0, z1︸ ︷︷ ︸
s3(11)

, true) → z0, z1︸ ︷︷ ︸
s3(11)

– ηz0(z0, z1, true) evaluates to true
ηz1(z0, z1, true) evaluates to true
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Example of Partitioned Transition Function

s0start

s1

s2

s3

i ↔
o

i ̸↔
o

i ∧ o

¬o

¬i ∧ o true

o

¬o

– ηz0(¬z0, z1,¬i , o) evaluates to true
ηz1(¬z0, z1,¬i , o) evaluates to false

– ηz0(¬z0, z1, i , o) evaluates to false
ηz1(¬z0, z1, i , o) evaluates to true

– ηz0(z0, z1, true) evaluates to true
ηz1(z0, z1, true) evaluates to true

– . . .
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– ηz0(¬z0, z1,¬i , o) evaluates to true

– ηz0(z0, z1, true) evaluates to true

– . . .

ηz0 =
(¬z0∧z1∧¬i∧o)∨(z0∧z1∧true)∨ . . .
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Partitioned Representation

Dp = {P ,Z , ι, η, f }

– P a set of propositions

– Z a set of state variables

– ι Boolean formula over Z denoting the initial state

– η = {ηz | z ∈ Z} a sequence of Boolean formulas over Z ∪ P encoding the
transition function

– f Boolean formula over Z representing the set of accepting states
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Symbolic Representation

Explicit Monolithic Partitioned

Props P P P
States |S | = n |Z | = |Z ′| = logn |Z | = logn
Init. s0 ι = ¬z0 ∧ ¬z1 ι = ¬z0 ∧ ¬z1
Acc. F f =

∨
∧ f =

∨
∧

Transition δ : S × 2P → S η(Z ∪ P ∪ Z ′) η = {ηz(Z ∪ P) | z ∈ Z}
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Symbolic Synthesis

– Synthesis as two-player games

– LTLf synthesis, reachability games

– Synthesis under LTL specifications, parity games

– Two-player games

– Fixpoint computation on game arena

– Symbolic fixpoint computation
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Recap on LTLf Synthesis

LTLf synthesis

– Reachability game on DFA, agent o and environment i

– Agn: visit accepting states
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Recap on LTLf Synthesis

Algorithm 1 Reachability game on DFA Dp = (I ,O,S , s0, δ,F)

1: Win := F
2: while Win ̸= Win ∪ forceag (Win) do
3: Win := Win ∪ forceag (Win)
4: end while
5: return Win

forceag (Win) = {s | ∃O∀I δ(s, I ∪ O ∈ Win)}

– O a winning output of state s
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Recap on LTLf Synthesis

s0start

s1

s2

s3

i ↔
o

i ̸↔
o

i ∧ o

¬o

¬i ∧ o ⊤

o

¬o

W0 = {s3}, accepting states
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– W0 = {s3}

– There exists o, for every i

W1 = {s3, s1, s2}
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– W0 = {s3}

– W1 = {s3, s1, s2}

– W2 = {s3, s1, s2, s0}
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– W0 = {s3}

– W1 = {s3, s1, s2}

– W2 = {s3, s1, s2, s0}

– W3 = {s3, s1, s2, s0}

– W3 = W2, fixpoint
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Recap on LTLf Synthesis

s0start

s1

s2

s3

i ↔
o

i ̸↔
o

i ∧ o

¬o

¬i ∧ o ⊤

o

¬o

– s0 ∈ W = {s3, s1, s2, s0}

– Realizable

– Winning strategy as a transducer
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Recap on LTLf Synthesis

Winning strategy as an explicit transducer T = (2I , 2O,Win, s0, ϱ, ω)

– Win ⊆ S is the set of winning states

– ω : Win → 2O is the output function such that ω(s) is a winning output of s
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Recap on LTLf Synthesis

Winning strategy ω : Win → 2O

– ω(s0) = o

– ω(s1) = ¬o
s0start

s1

s2

s3

i ↔
o

i ̸↔
o

i ∧ o

¬o

¬i ∧ o true

o

¬o
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Symbolic LTLf Synthesis

Reachability game on symbolic DFA Dp = (I ,O,Z , ι, η, f )

– A Boolean formula w over Z for winning states

– A Boolean formula t over Z ∪O for (winning state, winning output) pairs
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Symbolic LTLf Synthesis

Reachability game on symbolic DFA Dp = (I ,O,Z , ι, η, f )

– w0 = f every accepting state is a winning state

– t0 = f the agent can do anything (true) after reaching accepting states
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Symbolic LTLf Synthesis

Reachability game on symbolic DFA Dp = (I ,O,Z , ι, η, f )

– ti+1 = ti ∨ (¬wi ∧ ∀I .wi (η))

– wi+1 = ∃O.ti+1
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Symbolic LTLf Synthesis

ti+1 = ti ∨ (¬wi ∧ ∀I .wi (η))

– (Z ,O) satisfies ti

– Z was not yet a winning state, and for every I we can move from Z to an
already-identified winning state
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Symbolic LTLf Synthesis

wi+1 = ∃O.ti+1

– Z satisfies wi

– Z was not yet a winning state, and there exists O such that for every I we can
move from Z to an already-identified winning state
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Symbolic LTLf Synthesis

Why not the following?

– wi+1 = wi ∨ (¬wi ∧ ∃O.∀I .wi (η))

Compute winning states ,

Construct transducer /
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Symbolic LTLf Synthesis

Reachability game on symbolic DFA Dp = (I ,O,Z , ι, η, f )

– wi+1 ≡ wi , fixpoint w∞

Zhu (University of Oxford) Game-Theoretic Approach ESSAI-24 27 / 47



Symbolic LTLf Synthesis – Abstract Winning Strategy

Explicit finite-state transducer T = (2I , 2O,Win, s0, ϱ, ω)

– Win ⊆ S is the set of winning states

– ω : Win → 2O is the output function such that ω(s) is a winning output of s
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Symbolic LTLf Synthesis – Abstract Winning Strategy

Function ω : Win → 2O

– Input: winning state s

– Output: winning output O of s
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Symbolic LTLf Synthesis – Abstract Winning Strategy

Function ω : Win → 2O

– Input: winning state s

– Output: winning output O of s

We have Boolean formula t over Z ∪O

– (Z ∪ O) |= t iff Z is a winning state and O is a winning output of Z
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Symbolic LTLf Synthesis – Abstract Winning Strategy

A function τ : 2Z → 2O

– Input: winning state Z

– Output: winning output O of Z
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Symbolic LTLf Synthesis – Abstract Winning Strategy

Boolean synthesis procedure

Given: two disjoint proposition sets Z , O of input and output variables,
respectively, and a Boolean formula t over Z ∪O

Return: a function τ : 2Z → 2O

– for every Z ∈ 2Z , if there exists O ∈ 2O such that Z ∪ O |= t, then
Z ∪ τ(Z ) |= t
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Symbolic LTLf Synthesis – Abstract Winning Strategy

t over Z ∪O as the input formula to a Boolean synthesis procedure

– function τ : 2Z → 2O
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Symbolic Synthesis Techniques

– Symbolic least-fixpoint computation

– Abstract winning strategy via Boolean synthesis

– Extend to great-fixpoint, nested-fixpoint computation in different synthesis
settings
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Symbolic Synthesis Techniques in Practice

– Symbolic LTLf synthesis

– Binary Decision Diagrams (BDDs)
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Why BDD?

– They can be made canonical

– They can be very compact for many applications

– Various computations can be converted to suitable operations on BDD
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Binary Decision Diagram: Example

– Directed graph representing Boolean functions

– non-terminal node (circle), terminal node (square)

i

o o

z z z z

1 0 1 0 0 0 0 1
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Binary Decision Diagram: Example

– non-terminal node (circle), marked with variables i , o, z

– terminal node (square), marked with values 0, 1

i

o o

z z z z

1 0 1 0 0 0 0 1
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Binary Decision Diagram: Example

– solid line: high(v), variable assigned as true

– dashed line: low(v), variable assigned as false

i

o o

z z z z

1 0 1 0 0 0 0 1
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Example of Boolean Formula Represented in BDDs

– f = (i ∧ o ∧ z) ∨ (¬i ∧ ¬o)

– Given: A model ¬i , o, z
Evaluation: false(0)

– Given: A model i , o, z
Evaluation: true(1)
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Example of Boolean Formula Represented in BDDs

– f = (i ∧ o ∧ z) ∨ (¬i ∧ ¬o)

– Interpretation ¬i , o, z

i
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z z z z

1 0 1 0 0 0 0 1
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Example of Boolean Formula Represented in BDDs

– f = (i ∧ o ∧ z) ∨ (¬i ∧ ¬o)

– Interpretation ¬i , o, z
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Boolean Formula Represented in BDDs

– BDD is able to represent a Boolean formula

– BDD: Compact representation

– Elimination rule

– Isomorphism rule
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Elimination Rule

Elimination rule: If low(v) = high(v) = w , eliminate v and redirect all incoming
edges to v to node w .

i
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z z z z

1 0 1 0 0 0 0 1
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Elimination Rule

Elimination rule: If low(v) = high(v) = w , eliminate v and redirect all incoming
edges to v to node w .
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Isomorphism Rule

Isomorphism rule:

If v ̸= w are roots of isomorphic subtrees, remove v , and redirect all incoming
edges to v to node w .

Combine all 0/1-leaves, redirect all incoming edges.

i

o o

z z z z

1 0 1 0 0 0 0 1
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Isomorphism Rule

Isomorphism rule:

If v ̸= w are roots of isomorphic subtrees, remove v , and redirect all incoming
edges to v to node w .

Combine all 0/1-leaves, redirect all incoming edges.
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1 0 0 0 0 1
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Binary Decision Diagram: Reduced

i

o

z z

0 1
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Binary Decision Diagram: Variable Ordering

BDD size: #nodes.
BDD size highly depends on the variable ordering.
f =
(x1∧x2∧y1∧y2)∨(¬x1∧x2∧¬y1∧y2)∨(x1∧¬x2∧y1∧¬y2)∨(¬x1∧¬x2∧¬y1∧¬y2).

Different variable ordering
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Binary Decision Diagram: Canonicity

– Canonicity: variable ordering

– BDDs are canonical with a fixed variable ordering

– Canonicity checking takes constant time

– Example:

– Given: Boolean formulas f and g

– Answer: Whether f ≡ g?

– How: Construct Bf and Bg , Bf ≡ Bg , constant time
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BDD Libraries

– Buddy, CUDD, etc.

– Rich API functions for manipulating BDDs, elimination rules and isomorphism
rules are applied automatically

– Logic operations on BDDs, conjunction, disjunction, quantifier elimination etc.
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BDD Libraries

– Buddy, CUDD, etc.

– Rich API functions for manipulating BDDs, elimination rules and isomorphism
rules are applied automatically

– Logic operations on BDDs, conjunction, disjunction, quantifier elimination etc.
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Symbolic LTLf Synthesis using BDDs

– Symbolic DFA represented in BDDs

– Reachability games in BDDs
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Symbolic DFA Represented in BDDs

Dp = {I ,O,Z , ι, η, f }

– I ,O environment and agent variables

– Z

– ι

– η

– f
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Symbolic DFA Represented in BDDs

Dp = {I ,O,Z , ι, η, f }

– I ,O BDD variables of the environment and the agent
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– η

– f
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Symbolic DFA Represented in BDDs

Dp = {I ,O,Z , ι, η, f }

– I ,O BDD variables of the environment and the agent

– Z BDD variables

– ι Boolean formula over Z denoting the initial state
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Symbolic DFA Represented in BDDs

Dp = {I ,O,Z , ι, η, f }

– I ,O BDD variables of the environment and the agent

– Z BDD variables

– ι BDD Bι over Z denoting the initial state

– η = {ηz | z ∈ Z} a sequence of Boolean formulas over Z ∪ P encoding the
transition function

– f
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Symbolic DFA Represented in BDDs

Dp = {I ,O,Z , ι, η, f }

– I ,O BDD variables of the environment and the agent

– Z BDD variables

– ι BDD Bι over Z denoting the initial state

– η a sequence of BDDs over Z ∪ P encoding the transition function

– f BDD Bf over Z representing the set of accepting states
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Example of Partitioned Transition Function in BDDs

i

o

z0 z0

z1

0 1

BDD of ηz0

x

i o

z0

z1 z1

0 1

BDD of ηz1
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Reachability Games in BDDs

Reachability game on symbolic DFA Dp = (X ,Y ,Z ,Bι, η,Bf ) in BDDs

– Bw0 = Bf

– Bt0 = Bf
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Reachability Games in BDDs

ti+1 = ti ∨ (¬wi ∧ ∀I .wi (η))

– η = {ηz | z ∈ Z}

i

o

z0 z0

z1

0 1

BDD of ηz0

i

o o

z0

z1 z1

0 1

BDD of ηz1
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Reachability Games in BDDs

ti+1 = ti ∨ (¬wi ∧ ∀I .wi (η))

– Bwi

z0

z1

0 1
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Reachability Games in BDDs

ti+1 = ti ∨ (¬wi ∧ ∀I .wi (η))

– wi (η) transitions leading to
states in wi

BDD Compose
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Reachability Games in BDDs

ti+1 = ti ∨ (¬wi ∧ ∀I .wi (η))

– Universal Quantification
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Reachability Games in BDDs

ti+1 = ti ∨ (¬wi ∧ ∀I .wi (η))

– Conjunction, Negation, and Disjunction
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Reachability Games in BDDs

wi+1 = ∃O.ti+1

– Existential Quantification
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Reachability Games in BDDs

Fixpoint check wi+1 ≡ wi

– Equivalence check, constant time
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Reachability Games in BDDs

Strategy abstraction τ : 2Z → 2O

– SolveEqn
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Take Aways

– Symbolic synthesis techniques

– LTLf synthesis with partitioned representation in BDDs

Future directions to explore:

– Symbolic synthesis with monolithic representation?

– Using SAT instead of BDD?
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Game-Theoretic Approach to Planning and Synthesis

1- Introduction to Planning and Synthesis (Giuseppe Perelli)

2- Planning with temporally extended goals (Giuseppe Perelli)

3- LTLf synthesis under LTL specifications (Antonio Di Stasio)

4- Notable cases of LTLf synthesis under LTL specifications (Shufang Zhu)

5- Symbolic Synthesis (Shufang Zhu)
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