Game-Theoretic Approach to Temporal Synthesis Notable Cases of LTL_f Synthesis under LTL Specifications

Antonio Di Stasio Giuseppe Perelli Shufang Zhu

2nd European Summer School on Artificial Intelligence Athens (Greece) 15-19 July 2024

Recap - Lecture 1: Introduction to Games, Temporal Logic specifications

- Two-player games, playing adversarially
 - Reachability, Safety, Büchi, Parity
- Temporal logic specifications
 - LTL, LTL_f , LDL_f

- Automata and temporal logics to automata
 - LTL_f and DFA, LTL and Büchi automata, parity automata
- Synthesis, automata-theoretic approaches to synthesis
 - LTL_{f} synthesis as reachability game on a DFA

- Markovian domain: planning domain, actions only depend on the current state
- Non-Markovian domain: actions also depend on history, safety properties
- Considering also liveness: Linear Temporal Logic (LTL)
- LTL_f synthesis under LTL environment specifications
 - Agent goal $\mathrm{LTL}_f \ arphi$, Environment specification $\mathrm{LTL} \ \mathcal{E}$
 - Reduction to implication $\mathcal{E} \to \varphi$
 - Two-stage technique, parity game

Notable cases of LTL_f synthesis under environment specifications

- Diminish the difficulty of constructing the arena from the environment specification
- No reduction to parity game
- Possibly no reduction to implication

– LTL_f synthesis under Environment safety specifications

- LTL_f synthesis under Environment safety specifications
- Enrich environment specification, safety and

Outline

- LTL_{f} synthesis under Environment safety specifications
- Enrich environment specification, safety and
 - Simple Fairness $^{\rm 1}$

 $^{^1\}mathsf{Zhu}$ et al.: $\mathrm{LTL}_{\mathrm{f}}$ Synthesis with Fairness and Stability Assumptions.

- LTL_{f} synthesis under Environment safety specifications
- Enrich environment specification, safety and

- Simple Stability ¹

 $^{^1\}mathsf{Zhu}$ et al.: $\mathrm{LTL}_{\mathrm{f}}$ Synthesis with Fairness and Stability Assumptions.

- LTL_{f} synthesis under Environment safety specifications
- Enrich environment specification, safety and

– Generalized Reactivity (1) $^{\rm 1}$

¹De Giacomo et al.: Finite-Trace and Generalized-Reactivity Specifications in Temporal Synthesis.

- LTL_{f} synthesis under Environment safety specifications
- Enrich environment specification, safety and
 - Simple Fairness
 - Simple Stability
 - Generalized Reactivity (1)
- LTL_{f} synthesis under Environment **safety** specifications, without reduction to implication

$\mathrm{LTL}_{\mathit{f}}$ synthesis under Environment safety specifications

Environment stays in expected boundaries

Environment stays in expected boundaries

- Initial state of the environment
 - The block is on the table, and the robot's grasper is empty

Environment stays in expected boundaries

- Initial state of the environment
 - The block is on the table, and the robot's grasper is empty
- How the environment changes with respect to agent actions
 - Whenever the robot picks up the block, the block is in the robot's grasper

– PDDL, planning domain

- Logic specification language
 - Safety fragment of $\mathrm{LTL},$ disallowing $\mathcal U$ operator
 - $G(Oblock_in_grasper \land O\neg block_on_table \leftrightarrow pick_up)$

- Deterministic Safety Automata (DSA)

- Deterministic Safety Automata (DSA), tuple $\mathcal{D} = (2^{\mathcal{P}}, \mathcal{S}, s_0, \delta)$, where
 - $2^{\mathcal{P}}$ is the alphabet
 - S is a finite set of states
 - s_0 is the initial state
 - $\delta: \mathcal{S} \times 2^{\mathcal{P}} \mapsto \mathcal{S}$ is the transition function

• $2^{\mathcal{P}} = 2^{\{i,o\}}$

•
$$2^{\mathcal{P}} = 2^{\{i,o\}}$$

•
$$\mathcal{S} = \{s_0, s_1, s_2\}$$

•
$$2^{\mathcal{P}} = 2^{\{i,o\}}$$

•
$$\mathcal{S} = \{s_0, s_1, s_2\}$$

•
$$\delta: \mathcal{S} \times 2^{\mathcal{P}} \mapsto \mathcal{S}$$

 $\pi \in \mathcal{L}(\mathcal{D})$ if the run *r* of \mathcal{D} on π is infinite

Example: $\pi = (i \land o)^{\omega}$, $r = s_0(s_1)^{\omega}$

- Logic specification language
 - Safety fragment of $\mathrm{LTL},$ disallowing $\mathcal U$ operator
 - Restriction on writing formulas
 - LTL_f formulas, no restrictions on syntax, alternative semantics interpretation

- interpreted on infinite traces
- once violated, exists a finite prefix that breaks the specification

- interpreted on infinite traces
- once violated, exists a finite prefix that breaks the specification

Safety specification (alternative view):

- interpreted on infinite traces
- once hold, all finite prefixes are good

- specifications that hold for all finite prefixes of an infinite trace

- specifications that hold for all finite prefixes of an infinite trace
- utilize $\mathrm{LTL}_{\mathrm{f}}$ to specify expected property on finite traces

 $\mathrm{LTL}_{\mathit{f}}$ to specify safety specifications

- Safety specifications: all finite prefixes of an infinite trace are "good"
- "good": specified in LTL_f
- Alternative notion of satisfaction that interprets an LTL_f formula over all finite prefixes of an infinite trace

Definition

An infinite trace π satisfies an LTL_f formula φ on *all prefixes*, denoted $\pi \models_{\forall} \varphi$, if every non-empty finite prefix of π satisfies φ . That is, $\pi^k = \pi_1, \ldots, \pi_k \models \varphi$, for every $1 \le k \le |\pi|$.¹

¹De Giacomo et al.: Finite-Trace and Generalized-Reactivity Specifications in Temporal Synthesis.

Theorem

Every first-order safety specification can be expressed as an ${\rm LTL}_{\rm f}$ formula on all prefixes. 1

¹De Giacomo et al.: Finite-Trace and Generalized-Reactivity Specifications in Temporal Synthesis.

Reasoning on LTL_f specifying safety specifications as reasoning on automata

- **Given:** LTL_f formula φ specifying safety specifications
- **Obtain:** The corresponding DSA \mathcal{D} such that

 $\mathcal{L}(\mathcal{D}) = \{\pi \mid \pi^k = \pi_1, \dots, \pi_k \models \varphi, \text{ for every } 1 \le k \le |\pi|\}$

Given: LTL_f formula φ specifying safety properties

- (i) Construct the DFA $\mathcal{A}=(2^{\mathcal{P}},\mathcal{S},\textit{s}_{0},\delta,\mathcal{F})$ of φ
- (ii) **Obtain** the DSA as $\mathcal{D} = (2^{\mathcal{P}}, \mathcal{S}', s_0, \delta')$
 - (a) remove all non-accepting states
 - (b) remove all the transitions leading to non-accepting states
 - all prefixes should satisfy arphi, the run goes through accepting states ${\cal F}$

Given: LTL_f formula φ specifying safety properties

- (i) Construct the DFA $\mathcal{A}=(2^{\mathcal{P}},\mathcal{S},\textit{s}_{0},\delta,\mathcal{F})$ of φ
- (ii) **Obtain** the DSA as $\mathcal{D} = (2^{\mathcal{P}}, \mathcal{S}', \textbf{s}_0, \delta')$

$$\begin{array}{l} - \ \mathcal{S}' = \mathcal{F} \\ - \ \delta'(s, \alpha) = \begin{cases} \delta(s, \alpha) & \text{if } s \in \mathcal{F} \\ \bot & \text{otherwise} \end{cases} \end{array}$$

DSA Construction of Safety Specification in LTL_f Formulas

DSA Construction of Safety Specification in LTL_f Formulas

LTL_f Synthesis under Environment Safety Specifications

Mars image from ESA_OSIRIS, shelter image from "A Moon Base With Active Radiation Shielding" Caldera et al. 2018.

The robot is sent to clean the dust in lab

- Environment: the status of the lab (including the robot) stays in safe boundaries
- Agent: clean the lab and leave

- Environment: the status of the lab (including the robot) stays in safe boundaries

 Environment: the status of the lab (including the robot) stays in safe boundaries Dust, RobotOut

- Environment: the status of the lab (including the robot) stays in safe boundaries Dust, RobotOut
- Agent: clean the lab and leave

- Environment: the status of the lab (including the robot) stays in safe boundaries Dust, RobotOut
- Agent: clean the lab and leave get_out, clean_dust

Essential fragments of the environment safety specification \mathcal{E}_s :

There is *Dust* in the lab, and the robot is inside

 $\neg \textit{RobotOut} \land \textit{Dust}$

If robot *clean_dust*, then *Dust* is removed

 $\Box((\mathit{clean_dust}) \rightarrow (\mathit{O}(\neg \mathit{RobotOut} \land \neg \mathit{Dust})))$

If the robot moves out, then the robot is out

 \Box (get_out \rightarrow *ORobotOut*)

Zhu (University of Oxford)

Agent goal \mathcal{G} :

 $(RobotOut \land \neg Dust)$

Given:

```
Environment safety specification \mathcal{E}_s Agent goal \varphi
```

Obtain:

Agent strategy $\sigma_{ag}:(2^{\mathcal{X}})^+ \rightarrow 2^{\mathcal{Y}}$

 $\forall \sigma_{env} \ \rhd \mathcal{E}_s, trace(\sigma_{ag}, \sigma_{env})^k \models \varphi \text{ for some } k \in \mathbb{N}.$

Agent task φ under Environment safety specification \mathcal{E}_s

as

Implication $\mathcal{E}_s
ightarrow \varphi$

 $\forall \sigma_{env} \text{ IF } trace(\sigma_{ag}, \sigma_{env}) \models_{\forall} \mathcal{E}_s \text{ THEN } trace(\sigma_{ag}, \sigma_{env})^k \models \varphi \text{ for some } k \in \mathbb{N}$

 $\forall \sigma_{env} \text{ IF } trace(\sigma_{ag}, \sigma_{env}) \models_{\forall} \mathcal{E}_s \text{ THEN } trace(\sigma_{ag}, \sigma_{env})^k \models \varphi \text{ for some } k \in \mathbb{N}$ $\Rightarrow \forall \sigma_{env} \text{ NEG } trace(\sigma_{ag}, \sigma_{env}) \models_{\forall} \mathcal{E}_s \text{ OR } trace(\sigma_{ag}, \sigma_{env})^k \models \varphi \text{ for some } k \in \mathbb{N}$

 $\forall \sigma_{env} \text{ IF } trace(\sigma_{ag}, \sigma_{env}) \models_{\forall} \mathcal{E}_{s} \text{ THEN } trace(\sigma_{ag}, \sigma_{env})^{k} \models \varphi \text{ for some } k \in \mathbb{N}$ $\Rightarrow \forall \sigma_{env} \text{ NEG } trace(\sigma_{ag}, \sigma_{env}) \models_{\forall} \mathcal{E}_{s} \text{ OR } trace(\sigma_{ag}, \sigma_{env})^{k} \models \varphi \text{ for some } k \in \mathbb{N}$ $\Rightarrow \forall \sigma_{env} \text{ NEG } trace(\sigma_{ag}, \sigma_{env}) \models_{\forall} \mathcal{E}_{s} \text{ OR } trace(\sigma_{ag}, \sigma_{env})^{k} \models \varphi \text{ for some } k \in \mathbb{N}$

 $\forall \sigma_{env} \text{ IF } trace(\sigma_{ag}, \sigma_{env}) \models_{\forall} \mathcal{E}_{s} \text{ THEN } trace(\sigma_{ag}, \sigma_{env})^{k} \models \varphi \text{ for some } k \in \mathbb{N}$ $\Rightarrow \forall \sigma_{env} \text{ NEG } trace(\sigma_{ag}, \sigma_{env}) \models_{\forall} \mathcal{E}_{s} \text{ OR } trace(\sigma_{ag}, \sigma_{env})^{k} \models \varphi \text{ for some } k \in \mathbb{N}$ $\Rightarrow \forall \sigma_{env} \text{ NEG } trace(\sigma_{ag}, \sigma_{env}) \models_{\forall} \mathcal{E}_{s} \text{ OR } trace(\sigma_{ag}, \sigma_{env})^{k} \models \varphi \text{ for some } k \in \mathbb{N}$ $\Rightarrow \forall \sigma_{env} \text{ trace}(\sigma_{ag}, \sigma_{env})^{k} \models \neg \mathcal{E}_{s} \text{ OR } trace(\sigma_{ag}, \sigma_{env})^{k} \models \varphi \text{ for some } k \in \mathbb{N}$

 $\forall \sigma_{env} \text{ IF } trace(\sigma_{ag}, \sigma_{env}) \models \forall \mathcal{E}_s \text{ THEN } trace(\sigma_{ag}, \sigma_{env})^k \models \varphi \text{ for some } k \in \mathbb{N}$ $\Rightarrow \forall \sigma_{env} \text{ NEG } trace(\sigma_{ag}, \sigma_{env}) \models \forall \mathcal{E}_s \text{ OR } trace(\sigma_{ag}, \sigma_{env})^k \models \varphi \text{ for some } k \in \mathbb{N}$ $\Rightarrow \forall \sigma_{env} \text{ NEG } trace(\sigma_{ag}, \sigma_{env}) \models \forall \mathcal{E}_s \text{ OR } trace(\sigma_{ag}, \sigma_{env})^k \models \varphi \text{ for some } k \in \mathbb{N}$ $\Rightarrow \forall \sigma_{env} \ trace(\sigma_{ag}, \sigma_{env})^k \models \neg \mathcal{E}_s \text{ OR } trace(\sigma_{ag}, \sigma_{env})^k \models \varphi \text{ for some } k \in \mathbb{N}$ $\Rightarrow \forall \sigma_{env} \ trace(\sigma_{ag}, \sigma_{env})^k \models \neg \mathcal{E}_s \lor \varphi \text{ for some } k \in \mathbb{N}$

 $\forall \sigma_{env} \text{ IF } trace(\sigma_{ag}, \sigma_{env}) \models_{\forall} \mathcal{E}_s \text{ THEN } trace(\sigma_{ag}, \sigma_{env})^k \models \varphi \text{ for some } k \in \mathbb{N}$ $\Rightarrow \forall \sigma_{env}$ **NEG** trace $(\sigma_{ag}, \sigma_{env}) \models_{\forall} \mathcal{E}_s$ **OR** trace $(\sigma_{ag}, \sigma_{env})^k \models \varphi$ for some $k \in \mathbb{N}$ $\Rightarrow \forall \sigma_{env} \text{ NEG } trace(\sigma_{ag}, \sigma_{env}) \models_{\forall} \mathcal{E}_s \text{ OR } trace(\sigma_{ag}, \sigma_{env})^k \models \varphi \text{ for some } k \in \mathbb{N}$ $\Rightarrow \forall \sigma_{env} trace(\sigma_{ag}, \sigma_{env})^k \models \neg \mathcal{E}_s \text{ OR } trace(\sigma_{ag}, \sigma_{env})^k \models \varphi \text{ for some } k \in \mathbb{N}$ $\Rightarrow \forall \sigma_{env} trace(\sigma_{a\sigma}, \sigma_{env})^k \models \neg \mathcal{E}_s \lor \varphi \text{ for some } k \in \mathbb{N}$ \Rightarrow Synthesis of LTL_f formula ($\neg \mathcal{E}_{s} \lor \varphi$)

Algorithm for LTL_{f} synthesis under Environment safety specifications

- 1. Given task φ (LTL_f), env safety specification \mathcal{E}_s (LTL_f)
- 2. Obtain LTL_f formula $\neg \mathcal{E}_s \lor \varphi$

Algorithm for LTL_f synthesis

- 1. Given LTL_f formula
- 2. Compute corresponding DFA (double-exponential)
- 3. Synthesize winning strategy for reachability game (linear)
- 4. Return strategy

LTL_f Synthesis Under Environment Safety and Fairness Specifications

Simple Fairness: certain environment behavior occurs infinitely often

Simple Fairness: certain environment behavior occurs infinitely often

- LTL-definable

Simple Fairness: certain environment behavior occurs infinitely often

- LTL-definable
- $\Box \Diamond \alpha$: Boolean formula α holds infinitely often, α over env vars \mathcal{I}

- Initial state of the lab

- Initial state of the lab
- How the Dust and Robot_Out change with respect to agent actions

- Initial state of the lab
- How the Dust and Robot_Out change with respect to agent actions

Simple Environment Fairness:

- Initial state of the lab
- How the Dust and Robot_Out change with respect to agent actions

Simple Environment Fairness:

- $\Box \Diamond \neg Dust$: Dust cleaned by the lab manager infinitely often

Given:

Environment safety specification \mathcal{E}_s , Environment fairness specification \mathcal{E}_f Agent goal φ

Obtain:

Agent strategy $\sigma_{ag}:(2^{\mathcal{X}})^+ \rightarrow 2^{\mathcal{Y}}$

 $\forall \sigma_{env} \ \triangleright \mathcal{E}_s \land \mathcal{E}_f, trace(\sigma_{ag}, \sigma_{env})^k \models \varphi \text{ for some } k \in \mathbb{N}.$

Agent task φ under Environment specification $\mathcal{E}_{s} \wedge \mathcal{E}_{f}$

as

Implication $\mathcal{E}_{s} \wedge \mathcal{E}_{f} \rightarrow \varphi$

Agent task φ under Environment specification $\mathcal{E}_{s} \wedge \mathcal{E}_{f}$

as

Implication $\mathcal{E}_{s} \wedge \mathcal{E}_{f} \rightarrow \varphi$

 $\Rightarrow \mathcal{E}_f \to (\neg \mathcal{E}_s \lor \varphi)$

Agent task φ under Environment specification $\mathcal{E}_{s} \wedge \mathcal{E}_{f}$

as

Implication $\mathcal{E}_{s} \wedge \mathcal{E}_{f} \rightarrow \varphi$

 $\Rightarrow \mathcal{E}_f \rightarrow (\neg \mathcal{E}_s \lor \varphi)$

 $\Rightarrow \mathcal{E}_f \rightarrow \varphi'$

$\begin{array}{c} \text{IF} \underbrace{\textit{environment fairness}}_{\text{LTL } \Box \diamond (\alpha)} \text{THEN} \underbrace{\textit{agent goal } \varphi'}_{\text{LTL}_f} \end{array}$

Agent: $trace(\sigma_{ag}, \sigma_{env})$ satisfies either

$\begin{array}{c} \text{IF} \underbrace{\textit{environment fairness}}_{\text{LTL } \Box \diamond(\alpha)} \text{THEN} \underbrace{\textit{agent goal } \varphi'}_{\text{LTL}_{f}} \end{array}$

Agent: $trace(\sigma_{ag}, \sigma_{env})$ satisfies either

– Fairness $\Box \Diamond (\alpha)$ fails

$\begin{array}{c} \text{IF} \underbrace{\textit{environment fairness}}_{\text{LTL } \Box \diamond(\alpha)} \text{THEN} \underbrace{\textit{agent goal } \varphi'}_{\text{LTL}_{f}} \end{array}$

Agent: $trace(\sigma_{ag}, \sigma_{env})$ satisfies either

- Fairness $\Box \Diamond (\alpha)$ fails
- arphi' holds, reaching accepting states of \mathcal{A}'_{arphi}

$\begin{array}{c} \text{IF} \underbrace{\textit{environment fairness}}_{\text{LTL } \Box \diamond (\alpha)} \text{THEN} \underbrace{\textit{agent goal } \varphi'}_{\text{LTL}_{f}} \end{array}$

Environment: $trace(\sigma_{ag}, \sigma_{env})$ satisfies both

$\begin{array}{c} \text{IF} \underbrace{\textit{environment fairness}}_{\text{LTL } \Box \diamond(\alpha)} \text{THEN} \underbrace{\textit{agent goal } \varphi'}_{\text{LTL}_{f}} \end{array}$

Environment: $trace(\sigma_{ag}, \sigma_{env})$ satisfies both

- Fairness $\Box \diamondsuit(\alpha)$ holds

$\begin{array}{c} \text{IF} \underbrace{\textit{environment fairness}}_{\text{LTL } \Box \diamond(\alpha)} \text{THEN} \underbrace{\textit{agent goal } \varphi'}_{\text{LTL}_{f}} \end{array}$

Environment: $trace(\sigma_{ag}, \sigma_{env})$ satisfies both

- − Fairness $\Box \Diamond (\alpha)$ holds
- φ' fails, never visiting accepting states of \mathcal{A}_{φ}

Environment: $trace(\sigma_{ag}, \sigma_{env})$ satisfies both

– Fairness $\Box \diamondsuit (\alpha)$ holds: Büchi game condition

Environment: $trace(\sigma_{ag}, \sigma_{env})$ satisfies both

- Fairness $\Box \diamondsuit (\alpha)$ holds: Büchi game condition
- φ' fails, never visiting accepting states of \mathcal{A}_{φ} : Safety game condition

- Büchi game condition (recurrent reachability)

 $\mathsf{Buchi}(\mathcal{T}) = \nu \mathcal{Y}.(\mu \mathcal{Z}.\mathsf{force}_e(\underline{\delta}(s, l \cup O) \in (\mathcal{T} \cap \mathcal{Y}) \lor \underline{\delta}(s, l \cup O) \in \mathcal{Z}))$

- Büchi game condition (recurrent reachability)

 $\mathsf{Buchi}(\mathcal{T}) = \nu \mathcal{Y}.(\mu \mathcal{Z}.\mathsf{force}_e(\underline{\delta}(s, l \cup O) \in (\mathcal{T} \cap \mathcal{Y}) \lor \underline{\delta}(s, l \cup O) \in \mathcal{Z}))$

- Safety game condition

 $\mathsf{Safe}(S) = \nu \mathcal{Y}.(\mathsf{force}_e(\delta(s, I \cup O) \in S \cap \mathcal{Y}))$

Environment

- Büchi condition and Safety condition

 $\begin{aligned} \mathsf{Buchi}(\alpha) &= \nu \mathcal{Y}.(\mu \mathcal{Z}.\mathsf{force}_{\mathsf{e}}(\underline{I \models \alpha \land \delta(s, I \cup O) \in \mathcal{Y}} \lor \underline{\delta(s, I \cup O) \in \mathcal{Z}}))\\ \mathsf{Safe}(S) &= \nu \mathcal{Y}.(\mathsf{force}_{\mathsf{e}}(\delta(s, I \cup O) \in S \cap \mathcal{Y})) \end{aligned}$

- Büchi-Safety condition Buchi-Safe(α , S) =

 $\nu \mathcal{Y}.(\mu \mathcal{Z}.\mathsf{force}_e(\underline{I \models \alpha \land \delta(s, I \cup O) \in (\mathcal{Y} \cap S)} \lor \underline{\delta(s, I \cup O) \in (\mathcal{Z} \cap S)}))$

Environment

- Büchi-Safety condition

 $\nu \mathcal{Y}.(\mu \mathcal{Z}.\mathsf{force}_e(\underline{I \models \alpha \land \delta(s, I \cup O) \in (\mathcal{Y} \cap S)} \lor \underline{\delta(s, I \cup O) \in (\mathcal{Z} \cap S)}))$

Agent

- Negate Büchi-Safety condition

 $\mu \mathcal{Y}.(\nu \mathcal{Z}.\mathsf{force}_{\mathsf{ag}}(\underline{I \models \neg \alpha \lor \delta(s, I \cup O) \in (\mathcal{Y} \cup \overline{S}))} \land \underline{\delta(s, I \cup O) \in (\mathcal{Z} \cup \overline{S})}))$

force_e : $\forall O \exists I$, force_{ag} : $\exists O \forall I$, $\overline{S} = \mathcal{F}$, accepting states of DFA $\mathcal{A}_{\varphi'}$

Realizability

 $- \ \textit{s}_0 \in \mathcal{Y}_\infty$

Abstract strategy

- Assume $\mathcal{Z} = \mathcal{Y}_{\infty}$
- for $s \in \mathcal{Y}_{i+1} ackslash \mathcal{Y}_i$, set O to be

 $\forall I(\underline{I \models \neg \alpha \lor \delta(s, I \cup O) \in (\mathcal{Y}_i \cup \mathcal{F})} \land \underline{\delta(s, I \cup O) \in (\mathcal{Y}_\infty \cup \mathcal{F})})$

LTL_f Synthesis Under Environment Safety and Fairness Specifications

- 1. Given task φ (LTL_f), env safety spec. \mathcal{E}_s (LTL_f), env fairness spec. \mathcal{E}_f (LTL)
- 2. Obtain new task $\varphi' = \neg \mathcal{E}_s \lor \varphi$ (LTL_f)
- 3. Compute corresponding DFA of φ' (double-exponential)
- 4. Synthesize winning strategy for Neg Büchi-Safety game (quadratic)
- 5. Return strategy

LTL_f Synthesis Under Environment Safety and Stability Specifications

Simple Stability: certain environment behavior eventually occurs forever

Simple Stability: certain environment behavior eventually occurs forever

- LTL-definable

Simple Stability: certain environment behavior eventually occurs forever

- LTL-definable
- $\Diamond \Box \alpha$: Boolean formula α eventually holds forever, α over env vars $\mathcal I$

Given:

Environment safety specification \mathcal{E}_s , Environment stability specification \mathcal{E}_{st} Agent goal φ

Obtain:

Agent strategy $\sigma_{ag}:(2^{\mathcal{X}})^+ \to 2^{\mathcal{Y}}$

 $\forall \sigma_{env} \ \triangleright \mathcal{E}_s \land \mathcal{E}_{st}, trace(\sigma_{ag}, \sigma_{env})^k \models \varphi \text{ for some } k \in \mathbb{N}.$

Agent task φ under Environment specification $\mathcal{E}_s \wedge \mathcal{E}_{st}$

as

Implication $\mathcal{E}_{st} \to (\neg \mathcal{E}_s \lor \varphi)$

Agent task φ under Environment specification $\mathcal{E}_s \wedge \mathcal{E}_{st}$

as

Implication $\mathcal{E}_{st} \to (\neg \mathcal{E}_s \lor \varphi)$

 $\Rightarrow \mathcal{E}_{st} \rightarrow \varphi'$

Environment: $trace(\sigma_{ag}, \sigma_{env})$ satisfies both

- Stability $\Diamond \square(\alpha)$ holds: coBüchi game condition

Environment: $trace(\sigma_{ag}, \sigma_{env})$ satisfies both

- Stability $\Diamond \square(\alpha)$ holds: coBüchi game condition
- φ' fails, never visiting accepting states of \mathcal{A}'_{φ} : Safety game condition

- coBüchi game condition (reach and stay)

 $\mathsf{coBuchi}(\mathcal{T}) = \mu \mathcal{Y}.(\nu \mathcal{Z}.\mathsf{force}_e(\delta(s, I \cup O) \in (\mathcal{T} \cup \mathcal{Y}) \land \delta(s, I \cup O) \in \mathcal{Z}))$

- coBüchi game condition (reach and stay)

 $\mathsf{coBuchi}(\mathcal{T}) = \mu \mathcal{Y}.(\nu \mathcal{Z}.\mathsf{force}_e(\delta(s, I \cup O) \in (\mathcal{T} \cup \mathcal{Y}) \land \delta(s, I \cup O) \in \mathcal{Z}))$

- Safety game condition

 $\mathsf{Safe}(S) = \nu \mathcal{Y}.(\mathsf{force}_e(\delta(s, I \cup O) \in S \cap \mathcal{Y}))$

Environment

- coBüchi condition and Safety condition

 $coBuchi(\alpha) = \mu \mathcal{Y}.(\nu \mathcal{Z}.force_e(I \models \alpha \lor \delta(s, I \cup O) \in \mathcal{Y} \land \underline{\delta(s, I \cup O) \in \mathcal{Z}}))$ Safe(S) = $\nu \mathcal{Y}.(force_e(\delta(s, I \cup O) \in S \cap \mathcal{Y}))$

- coBüchi-Safety condition coBuchi-Safe(α , S) =

 $\mu \mathcal{Y}.(\nu \mathcal{Z}.\mathsf{force}_e(\underline{I \models \alpha \lor \delta(s, I \cup O) \in (\mathcal{Y} \cap S)} \land \underline{\delta(s, I \cup O) \in (\mathcal{Z} \cap S)}))$

force_e : $\forall O \exists I$, since agent moves first

Zhu (University of Oxford)

Environment

- coBüchi-Safety condition coBuchi-Safe(α , S) =

 $\mu \mathcal{Y}.(\nu \mathcal{Z}.\mathsf{force}_e(I \models \alpha \lor \delta(s, I \cup O) \in (\mathcal{Y} \cap S) \land \overline{\delta(s, I \cup O)} \in (\mathcal{Z} \cap S)))$

Agent

- Negate coBüchi-Safety condition

 $\nu \mathcal{Y}.(\mu \mathcal{Z}.\mathsf{force}_{\mathsf{ag}}(\underline{I} \models \neg \alpha \land \delta(s, I \cup O) \in (\mathcal{Y} \cup \overline{S}) \lor \underline{\delta(s, I \cup O)} \in (\mathcal{Z} \cup \overline{S})))$

force_e : $\forall O \exists I$, force_{ag} : $\exists O \forall I$, $\overline{S} = \mathcal{F}$ accepting states of $\mathcal{A}_{\varphi'}$

LTL_f Synthesis Under Environment Safety and Stability Specifications

- 1. Given task φ (LTL_f), env safety spec. \mathcal{E}_s (LTL_f), env stability spec. \mathcal{E}_{st} (LTL)
- 2. Obtain new task $\varphi' = \neg \mathcal{E}_s \lor \varphi$ (LTL_f)
- 3. Compute corresponding DFA of φ' (double-exponential)
- 4. Synthesize winning strategy for Neg coBüchi-Safety game (quadratic)
- 5. Return strategy

LTL_f Synthesis Under Environment Safety and GR(1) Specifications

Generalized Reactivity (1), GR(1)

- powerful notion of fairness specification

$$\mathcal{E}_{gr} = \bigwedge_{i=1}^m \Box \Diamond \mathcal{J}_i o \bigwedge_{j=1}^n \Box \Diamond \mathcal{K}_j$$

 ${\mathcal J}$ and ${\mathcal K}$ are propositional formulas on ${\mathcal I}\cup {\mathcal O}$

Recall: Simple fairness $(\Box \diamond \alpha)$ and stability $(\diamond \Box \alpha)$, α propositional formula over env vars \mathcal{I}

- Initial state

- Initial state
- Environment change wrt agent actions Dust, Robot_Out

- Initial state
- Environment change wrt agent actions Dust, Robot_Out, and Robot_Wait

- Initial state
- Environment change wrt agent actions Dust, Robot_Out, and Robot_Wait

Environment GR(1):

 $- \ \Box \diamondsuit \textit{Robot}_{-}\textit{Wait} \rightarrow \Box \diamondsuit \neg \textit{Dust}$

Given:

Environment safety specification \mathcal{E}_{s} , Environment GR(1) specification \mathcal{E}_{gr} Agent goal φ

Obtain:

Agent strategy $\sigma_{ag}:(2^{\mathcal{X}})^+ \to 2^{\mathcal{Y}}$

 $\forall \sigma_{env} \mathrel{\triangleright} \mathcal{E}_s \land \mathcal{E}_{gr}, trace(\sigma_{ag}, \sigma_{env})^k \models \varphi \text{ for some } k \in \mathbb{N}.$

Agent task φ under Environment specification $\mathcal{E}_s \wedge \mathcal{E}_{gr}$

as

Implication $\Rightarrow \mathcal{E}_{gr} \rightarrow \varphi'$

Agent task φ under Environment specification $\mathcal{E}_s \wedge \mathcal{E}_{gr}$

as

Implication $\Rightarrow \mathcal{E}_{gr} \rightarrow \varphi'$

Environment: GR(1)-Safety

Agent: Negate "GR(1)-Safety"

Synthesis Technique

Agent task φ under Environment specification $\mathcal{E}_s \wedge \mathcal{E}_{gr}$

as

Implication $\Rightarrow \mathcal{E}_{gr} \rightarrow \varphi'$

Environment: GR(1)-Safety

Agent: Negate "GR(1)-Safety"

$$\mathcal{E}_{gr} = \bigwedge_{i=1}^{m} \Box \Diamond \mathcal{J}_i \to \bigwedge_{j=1}^{n} \Box \Diamond \mathcal{K}_j$$

How to solve Negate "GR(1)-Safety"? \otimes

Synthesis Technique

Agent task φ under Environment specification $\mathcal{E}_s \wedge \mathcal{E}_{gr}$

as

Implication $\Rightarrow \mathcal{E}_{gr} \rightarrow \varphi'$

Environment: GR(1)-Safety

Agent: Negate "GR(1)-Safety"

$$\mathcal{E}_{gr} = \bigwedge_{i=1}^m \Box \Diamond \mathcal{J}_i o \bigwedge_{j=1}^n \Box \Diamond \mathcal{K}_j$$

GR(1) game, novel approaches \bigcirc
Synthesis Technique

 $\mathsf{GR}(1) \text{ game } \mathcal{G} = \langle \mathcal{V}, \mathcal{P}_0, \mathcal{P}_1, \theta_0, \theta_1, \rho_0, \rho_1, \psi \rangle$

- $\mathcal{V}=\mathcal{P}_0\cup\mathcal{P}_1$ state space
- θ_1 Boolean formula over \mathcal{P}_1 initial of Player-1, θ_0 Boolean formula over \mathcal{V} initial state of Player-0
- ρ_1 Boolean formula over $\mathcal{V} \cup \mathcal{P}'_1$ transitions of Player-1, ρ_0 Boolean formula over $\mathcal{V} \cup \mathcal{P}'_1 \cup \mathcal{P}'_0$ transitions of Player-0
- Winning condition GR(1) formula ψ

Player-1 wins by violating $\psi,$ or Player-0 cannot continue; Otherwise, Player-0 wins

Synthesis Technique

Zhu (University of Oxford)

- Advanced techniques to solve GR(1) game
- Efficient implementation reduces from cubic time to quadratic time $O(m \cdot n \cdot |N|^2)$

Utilize GR(1) game solver to deal with LTL_f synthesis under GR(1) specifications

 $\mathcal{G} = \langle \mathcal{V}, \mathcal{P}_0, \mathcal{P}_1, \theta_0, \theta_1, \rho_0, \rho_1, \psi \rangle$ (Player-1 moves first)

- \mathcal{P}_0 of Player-0, \mathcal{P}_1 of Player-1
- $ho_0,
 ho_1$ encodes possible moves of both players
- Player-1 wins by violating ψ or Player-0 not being able to continue

Synthesis of implication $\Rightarrow \mathcal{E}_{gr} \rightarrow arphi'$

– Agent wins by violating $\mathcal{E}_{gr},$ or visiting \mathcal{F} of $\mathcal{D}_{\varphi'}$

 $\mathcal{G} = \langle \mathcal{V}, \mathcal{P}_0, \mathcal{P}_1, \theta_0, \theta_1, \rho_0, \rho_1, \psi \rangle$ (Player-1 moves first)

- \mathcal{P}_0 of Player-0, \mathcal{P}_1 of Player-1
- $ho_0,
 ho_1$ encodes possible moves of both players
- Player-1 wins by violating ψ or Player-0 not being able to continue

Synthesis of implication $\Rightarrow \mathcal{E}_{gr} \rightarrow arphi'$

– Agent wins by violating \mathcal{E}_{gr} , or visiting \mathcal{F} of $\mathcal{D}_{\varphi'}$

Synthesis Technique

Player-1 wins by violating \mathcal{E}_{gr} , or visiting \mathcal{F} of $\mathcal{D}_{\varphi'}$ (not able to continue)

Define GR(1) game $\mathcal{G} = \langle \mathcal{V}, \mathcal{P}_0, \mathcal{P}_1, \theta_0, \theta_1, \rho_0, \rho_1, \psi \rangle$

–
$$\mathcal{V}=\mathcal{I}\cup\mathcal{O}\cup\mathcal{S}$$
, $\mathcal{P}_1=\mathcal{O}$, and $\mathcal{P}_0=\mathcal{I}\cup\mathcal{S}$

- $\theta_1 = op$, and $heta_0$ formula satisfied by $V \in 2^{\mathcal{V}}$ iff $V \mid_{\mathcal{S}} = s_0$

- $\rho_1 = \top$, and ρ_0 formula satisfied by $(V \cup V') \in 2^{\mathcal{V} \cup \mathcal{V}'}$ iff $\delta(V \mid_{\mathcal{S}}, V' \mid_{\mathcal{I}' \cup \mathcal{O}'}) = V' \mid_{\mathcal{S}'}$ and $V' \mid_{\mathcal{S}'} \notin \mathcal{F}$

 $-\psi = \mathcal{E}_{gr}$

DFA of φ' is $\mathcal{A}_{\varphi'} = (\mathcal{I}, \mathcal{O}, \mathcal{S}, s_0, \delta, \mathcal{F})$

Existing GR(1) game solvers²

- Realizability
- Abstract strategy for Player-1

²E.g., **Slugs** (https://github.com/VerifiableRobotics/slugs) Zhu (University of Oxford) Game-Theoretic Approach

LTL_{f} Synthesis Under Environment Safety and GR(1) Specifications

- 1. Given task φ (LTL_f), env safety spec. \mathcal{E}_s (LTL_f), env GR(1) spec. \mathcal{E}_{gr} (LTL)
- 2. Obtain new task $\varphi' = \neg \mathcal{E}_s \lor \varphi$ (LTL_f)
- 3. Compute corresponding DFA of φ' (double-exponential)
- 4. Construct GR(1) game (linear)
- 5. Synthesize winning strategy for Player-1 in GR(1) game (quadratic)
- 6. Return strategy

LTL_{f} Synthesis Under Environment Safety Specifications: No reduction to implication

Formal Definition

Given:

Environment safety specification \mathcal{E}_{s} Agent goal φ

Obtain:

Agent strategy $\sigma_{ag}: (2^{\mathcal{X}})^+ \to 2^{\mathcal{Y}}$

 $\forall \sigma_{env} \ \rhd \mathcal{E}_s, trace(\sigma_{ag}, \sigma_{env})^k \models \varphi \text{ for some } k \in \mathbb{N}.$

Key step: How to abstract $\{\sigma_{env} \mid \sigma_{env} \triangleright \mathcal{E}_s\}$?

Definition

Let $\mathcal{P} = \langle \mathcal{X}, \mathcal{Y}, \varphi \rangle$ be a synthesis problem, the maximally permissive strategy of φ is $MaxSet(\varphi) = \{\sigma_{ag} \mid \sigma_{ag} \triangleright \varphi\}.^3$

 $^{^3\}mathsf{Zhu}$ and De Giacomo: Synthesis of Maximally Permissive Strategies for LTL_f Specifications

- Deterministic: $\sigma: (2^{\mathcal{I}\cup\mathcal{O}})^* \times 2^{\mathcal{I}} \to 2^{\mathcal{O}}$, returns a single agent action
- Nondeterministic: $\Pi : (2^{\mathcal{I} \cup \mathcal{O}})^* \times 2^{\mathcal{I}} \to 2^{2^{\mathcal{O}}}$, returns a set of agent actions to choose from nondeterministically

Every nondeterministic strategy Π captures a set of deterministic strategies σ

Theorem

Safety specifications admit a nondeterministic strategy Π that captures the maximally permissive strategy.⁴

Let's construct Π_{env} that captures $\{\sigma_{env} \mid \sigma_{env} \succ \mathcal{E}_s\} \odot$

⁴Bernet et al.: Permissive strategies: from parity games to safety games

- Construct the corresponding DSA $\mathcal{D} = (\mathcal{I}, \mathcal{O}, \mathcal{S}, \textbf{s}_{0}, \delta)$
- Solve a safety game on \mathcal{D} , considering the environment as Player-0
- Obtain the winning region Win of Player-0

Attention: Agent moves first here!

 $\Pi_{env} \text{ capturing } \{\sigma_{env} \mid \sigma_{env} \succ \mathcal{E}_s\}, \text{ a transducer } \mathcal{T} = (\mathcal{I}, \mathcal{O}, \text{Win}, s_0, \varrho, \omega)$

- Win: Player-0 winning states

 $\begin{array}{l} - \ \omega : \mathrm{Win} \times 2^{\mathcal{O}} \to 2^{(2^{\mathcal{I}})} \text{ is the output function such that} \\ \omega(s, \mathcal{O}) = \begin{cases} \{I \mid \delta(s, I \cup \mathcal{O}) \in \mathrm{Win}\} & \text{ if } s \in \mathrm{Win}, \\ \emptyset & \text{ otherwise.} \end{cases} \end{array}$

- ϱ : Win $\times 2^{\mathcal{O}} \to 2^{\text{Win}}$ is the transition function such that $\varrho(s, \mathcal{O}) = \{s' \mid s' = \delta(s, I \cup \mathcal{O}) \text{ and } I \in \omega(s, \mathcal{O})\}$

Attention: Agent moves first here!

 $\Pi_{env} \text{ capturing } \{\sigma_{env} \mid \sigma_{env} \triangleright \mathcal{E}_s\}, \text{ a transducer } \mathcal{T} = (\mathcal{I}, \mathcal{O}, \text{Win}, s_0, \varrho, \omega)$

- Win: Player-0 winning states
- $\begin{array}{l} \ \omega : \mathrm{Win} \times 2^{\mathcal{O}} \to 2^{(2^{\mathcal{I}})} \text{ is the output function such that} \\ \omega(s, \mathcal{O}) = \begin{cases} \{I \mid \delta(s, I \cup \mathcal{O}) \in \mathrm{Win}\} & \text{ if } s \in \mathrm{Win}, \\ \emptyset & \text{ otherwise.} \end{cases} \end{cases}$
- ϱ : Win $\times 2^{\mathcal{O}} \to 2^{\text{Win}}$ is the transition function such that $\varrho(s, \mathcal{O}) = \{s' \mid s' = \delta(s, I \cup \mathcal{O}) \text{ and } I \in \omega(s, \mathcal{O})\}$

Minimize \mathcal{T} to speed up the subsequent computation \odot

 \mathcal{T} representing $\sigma_{env} \triangleright \mathcal{E}_s$, and agent goal φ

Agent strategy $\sigma_{ag}:(2^{\mathcal{X}})^+ \to 2^{\mathcal{Y}}$

 $\forall \sigma_{env} \triangleright \mathcal{E}_s, trace(\sigma_{ag}, \sigma_{env})^k \models \varphi \text{ for some } k \in \mathbb{N}.$

- Intersection of \mathcal{T} and DFA \mathcal{A}_{arphi}
- Reachability game

LTL_f Synthesis Under Environment Safety Specifications (Direct)

- 1. Given task φ (LTL_f), env safety spec. \mathcal{E}_s (LTL_f)
- 2. Construct DSA \mathcal{D} of \mathcal{E}_s (double-exponential)
- 3. Construct the MaxSet $\mathcal{T}_{\mathcal{E}_s}$ (linear)
- 4. Compute corresponding DFA \mathcal{A}_{φ} of φ (double-exponential)
- 5. Intersection of \mathcal{T} and \mathcal{A}_{φ} (poly)
- 6. Synthesize winning strategy for reachability game (linear)
- 7. Return strategy

Take Aways

- Notable cases of $\mathrm{LTL}_{\mathit{f}}$ synthesis under Environment specifications
 - Safety, Safety & Fairness, Safety & Stability, Safety & GR(1)

 $^5\mathsf{Zhu}$ and De Giacomo: Synthesis of Maximally Permissive Strategies for LTL_f Specifications.

Take Aways

– Notable cases of $\mathrm{LTL}_{\mathit{f}}$ synthesis under Environment specifications

- Safety, Safety & Fairness, Safety & Stability, Safety & GR(1)

Directions to explore:

 $^5\mathsf{Zhu}$ and De Giacomo: Synthesis of Maximally Permissive Strategies for LTL_f Specifications.

– Notable cases of $\mathrm{LTL}_{\mathit{f}}$ synthesis under Environment specifications

- Safety, Safety & Fairness, Safety & Stability, Safety & GR(1)

Directions to explore:

- MaxSet of other environment specification fragments?

⁵Zhu and De Giacomo: Synthesis of Maximally Permissive Strategies for LTL_f Specifications.

– Notable cases of $\mathrm{LTL}_{\mathit{f}}$ synthesis under Environment specifications

- Safety, Safety & Fairness, Safety & Stability, Safety & GR(1)

Directions to explore:

- MaxSet of other environment specification fragments?
 - ${\rm LTL}_f$ specification, two nondeterministic strategies to capture MaxSet 5

 $^{^{5}}$ Zhu and De Giacomo: Synthesis of Maximally Permissive Strategies for LTL_{f} Specifications.

– Notable cases of $\mathrm{LTL}_{\mathit{f}}$ synthesis under Environment specifications

- Safety, Safety & Fairness, Safety & Stability, Safety & GR(1)

Directions to explore:

- MaxSet of other environment specification fragments?
 - LTL_f specification, two nondeterministic strategies to capture MaxSet ⁵
 - What about Fairness? Stability? GR(1)?

 $^{^5\}mathsf{Zhu}$ and De Giacomo: Synthesis of Maximally Permissive Strategies for $\mathrm{LTL}_{\it f}$ Specifications.