LTL_f Synthesis Under Environment Specifications Game-Theoretic Approach to Temporal Synthesis

Antonio Di Stasio

University of Oxford (joining City, University of London in August)

European Summer School on Artificial Intelligence Athens, 15 - 19 July, 2024

Reactive Synthesis

Basic Idea: "Mechanical translation of human-understandable task specifications to a program that is known to meet the specifications." [Vardi - The Siren Song of Temporal Synthesis 2018]

Given a specification φ over input (fluents) F, controlled by the environment, and outputs (actions) A, controlled by agent, expressed in:

LTL (Pnueli 1977) or LTL_f (De Giacomo, Vardi 2013)

Syntax:

 $\varphi ::= a \mid \varphi \land \varphi \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi \mathcal{U} \varphi \mid \diamondsuit \varphi \mid \Box \varphi$

Semantic:

A trace trace is an infinite (LTL) or finite (LTL_f) sequence over F and A. We write trace $\models \varphi$ to mean that τ satisfies φ .

Reactive Synthesis

Agent and Environment Strategies, and Traces

For an agent strategy $\sigma_{ag}: F^* \to A$ and an environment strategy $\sigma_{env}: A^+ \to F$, the trace

 $trace(\sigma_{aq}, \sigma_{env}) = (A_1 \cup F_1), (A_2 \cup F_2) \dots \in (2^{F \cup A})^{\omega}$

denotes the unique trace induced by both σ_{ag} and σ_{env} .

Synthesis Problem (Church, 1962)

Given an LTL / LTLf task Goal for the agent,

Find agent strategy σ_{ag} such that $\forall \sigma_{env}$. $trace(\sigma_{ag}, \sigma_{env}) \models Goal$

${\rm LTL} \ Synthesis$

Algorithm for LTL synthesis

Given LTL formula φ

- 1: Compute corresponding NBA (exponential)
- 2: Determinize NBA into DPA (exp in states, poly in priorities)
- 3: Synthesize winning strategy for Parity Game (poly in states, exp in priorities)

Complexity

LTL synthesis is **2EXPTIME-complete**

Tools

- Spot^a: a platform for LTL and ω -automata manipulation.
- Strix^b: So far, the best tool for solving LTL synthesis.

^ahttps://spot.ire.epita.fr/ ^bhttps://strix.model.in.tum.de/

LTL_f Synthesis

Algorithm for LTL_f synthesis

Given LTL $_f$ formula φ

- 1: Compute corresponding NFA (exponential)
- 2: Determinize NFA to DFA (exponential)
- 3: Synthesize winning strategy for DFA game (linear)

Complexity

 LTL_f synthesis is 2EXPTIME-complete

Tools

- ^altlf2dfaa: a tool for traslating ltlf into DFA.
- Syft, Lysa, Lydia, Cynthiab, etc.

^ahttp://ltlf2dfa.diag.uniroma1.it/

Finite (Unbounded) Horizon in AI

Artificial Intelligence and in particular the Knowledge Representation and Planning community well aware of temporal logics since a long time.

- Temporally extended goals [BacchusKabanza96] infinite/finite
- Temporal constraints on trajectories [GereviniHslumLongSaettiDimopoulos09 PDDL3.0 2009] finite
- Declarative control knowledge on trajectories [BaierMcIIraith06] finite
- Procedural control knowledge on trajectories [BaierFrizMcIlraith07] finite
- Temporal specification in planning domains [CalvaneseDeGiacomoVardi02] infinite
- Planning via model checking infinite

Branching time (CTL) [CimattiGiunchigliaGiunchigliaTraverso97] Linear time (LTL) [DeGiacomoVardi99]

Foundations borrowed from temporal logics studied in CS, in particular: Linear Temporal Logic (LTL) [Pnueli77].

However:

Often, LTL is interpreted on finite trajectories/traces.

We should consider for finite traces specifications

We are interested in building

AI Agents

Linear temporal logics on finite traces are a fantastic tool for this enterprise, because it gives computational concreteness to the famous Logics-Automata-Games triangle from Formal Methods:

Agent Tasks terminate: Use LTL_f

- Because it is the agent that is planning/reasoning.
- If the task would not terminate, the agent would be stuck into doing the same task forever.
- We want to focus on autonomous intelligent agents that (1) get a task, (2) reason/plan autonomously to solve it, (3) execute the plan, (4) get another task, and so on.

Synthesis with a Model of the World

Planning in nondeterministic domains

Domain

- Planning consider the agent acting in a (nondeterministic) domain
- The domain is a model of how the world (i.e. the environment) works
- That is, it is a specification of the possible environment strategies

Nondeterministic domain

- $\mathcal{D} = (2^{\mathcal{F}}, \mathcal{A}, s_0, \delta, \alpha)$ where:
 - *F* <u>fluents</u> (atomic propositions)
 - *A* <u>actions</u> (atomic symbols)
 - $2^{\mathcal{F}}$ set of states
 - s₀ initial state (initial assignment to fluents)
 - $\alpha(s) \subseteq \mathcal{A}$ represents <u>action preconditions</u>
 - $\delta(s, a, s')$ with $a \in \alpha(s)$ represents action effects.

Traces of D

Given a nondeterministic domain $D = (2^F, A, s_0, \alpha, \delta)$:

Traces

- A D trace $s_0, a_1, s_1, \ldots, s_n$ induces a corresponding LTL-trace:
 - If we pair action and the resulting state: $(dummy, s_0), (a_1, s_1), \ldots, (a_n, s_n)$, where dummy is a dummy starting action.
 - if we pair state and the next action: $(s_0, a_1), (s_1, a_2), \ldots, (s_{n-1}, a_n), (s_n, dummy)$, where dummy is a dummy ending action.

The way we pair actions and states changes how we specify properties in LTL:

- If we pair action and the resulting state, we write: $\Box(arphi_1 o \bigcirc (a o arphi_2))$
- If we pair state and the next action, we write: $\Box((\varphi_1 \land a) \to \bigcirc \varphi_2)$

Domain as a specification of the environment

 $[[Dom]] = \{\sigma_{env} | \sigma_{env} \text{ compliant with } Dom\}$

Planning in nondeterministic domains

Given an task *Goal* for the agent, and a domain *Dom* modeling the environment

Find agent behavior σ_{ag} such that $\forall \sigma_{env} \in [[Dom]].trace(\sigma_{ag}\sigma_{env}) \models Goal$

Which kinds of environment assumptions can the agent make?

For example let the assumption be formed by $Env_1 \wedge Env_2$ where:

 Env_1 is the LTL formula expressing the dynamics of the environment (as a planning domain):

 Env_2 is the LTL formula expressing some fairness over nondeterministic effects, e.g.,

 $\Box \diamondsuit shoot \to \diamondsuit \neg a$

Let Goal be an LTL_f formula which expresses an agent task, e.g.,

Which kinds of environment assumptions can the agent make?

For example let the assumption be formed by $Env_1 \wedge Env_2$ where:

 Env_1 is the LTL formula expressing the dynamics of the environment (as a planning domain):

 Env_2 is the LTL formula expressing some fairness over nondeterministic effects, e.g.,

 $\Box \diamondsuit shoot \to \diamondsuit \neg a$

Let Goal be an LTL_f formula which expresses an agent task, e.g.,

Which kinds of environment assumptions can the agent make?

For example let the assumption be formed by $Env_1 \wedge Env_2$ where:

 Env_1 is the LTL formula expressing the dynamics of the environment (as a planning domain):

 Env_2 is the LTL formula expressing some fairness over nondeterministic effects, e.g.,

 $\Box \diamondsuit shoot \to \diamondsuit \neg a$

Let Goal be an LTL_f formula which expresses an agent task, e.g.,

Definition

A safety property is a property which specifies that some (bad) behavior will never occur.

Examples:

"always at most one process is in its critical section"

"money can only be withdrawn once a correct PIN has been provided"

Important property

Any infinite trace violating the property has a finite prefix that is "bad";

... two processes are in the critical section ...

.. in which money is withdrawn without issuing a PIN before..

Usually: $\Box \neg \dots$

Let $P \subseteq \Sigma^{\omega}$ be a property over Σ .

Definition

P is a safety property if there exists a language of finite words $L \subseteq \Sigma^*$ such that for every $w \in P$ all finite prefixes of w belong to L.

Safety Properties in LTL_f

Safety properties are properties on infinite traces, but if they can be broken at all, they can be broken with a finite prefix. This allows for capturing safety environment specification in LTL_f .

Planning Domains as Safety Properties

 $\square(arphi_1 o \bigcirc (a o arphi_2))$

Fully observable nondeterministic planning domains can be seen as safety properties in LTL/LTL_f : the environment forever reacts to actions as specified by the planning domain.

Synthesis with a Model of the World

Environments Specifications as LTL formulas

A natural generalization is to consider general environment specifications expressed as arbitrary LTL formulas.

[DeGiacomoDiStasioVardiZhuKR2020]

Specifying possible environment specifications in LTL/LTL_f

Environment specifications in LTL/LTL_f

Let Env be an LTL/LTL f formula over F and A.

$$[[Env]] = \{\sigma_{env} | \forall \sigma_{ag}.trace(\sigma_{ag}, \sigma_{env}) \models Env\}$$

i.e Env denotes all environment strategies that play according to the specification whatever is the agent strategy.

Synthesis under environment specifications in LTL/LTL_f

Given an LTL/LTL_f task Task for the agent, and an LTL/LTL_f environment specification Env:

Find agent strategy σ_{ag} such that $\forall \sigma_{env} \in [[Env]].trace(\sigma_{ag}, \sigma_{env}) \models Goal$

Environment specifications in LTL/LTL_f

Consistent environment specifications

Is any LTL/LTL_f formula a valid environment specification? No, Env needs to be "consistent"!:

 $[[Env]] \neq \emptyset \qquad \qquad \text{i.e. } \exists \sigma_e. \forall \sigma_{ag}. trace(\sigma_{ag}, \sigma_e) \models Env$

Synthesis Under Environment Specifications

Environment Specifications

Let Env be an LTL/LTL_f formula over $F \cup A$. $[[Env]] = \{\sigma_{env} | \sigma_{env} \text{ satisfies } Env \text{ whatever is the agent strategy}\}$

Synthesis under environment specifications in LTL/LTL_f

Given an LTL/ LTL_f task *Goal* for the agent, and an LTL/LTL_f environment specification *Env*: Find agent strategy σ_{ag} such that $\forall \sigma_{env} \in [[Env]].trace(\sigma_{ag}, \sigma_{env}) \models Goal$

Theorem [AminofDeGiacomoMuranoRubinICAPS2019]

To find agent strategy realizing Goal under the environment specification Env, we can use standard LTL/LTL f synthesis for

 $Env \rightarrow Goal$

Understanding why the reduction works is not immediate.

After all we are moving from a problem of the form:

1- Find agent strategy σ_{ag} such that $\forall \sigma_{env} \in [[Env]].trace(\sigma_{ag}, \sigma_{env}) \models Goal$

to a problem of the form:

2- Find agent strategy σ_{ag} such that $\forall \sigma_{env}.trace(\sigma_{ag}, \sigma_{env}) \models Env \rightarrow Goal$

Understanding why the reduction works is not immediate.

After all we are moving from a problem of the form:

1- Find agent strategy σ_{ag} such that $\forall \sigma_{env} \in [[Env]].trace(\sigma_{ag}, \sigma_{env}) \models Goal$

to a problem of the form:

2- Find agent strategy σ_{ag} such that $\forall \sigma_{env}.trace(\sigma_{ag}, \sigma_{env}) \models Env \rightarrow Goal$

In fact, one direction does hold on a strategy-by-strategy basis:

Theorem 1

Let Env be an LTL environment specification and Goal an LTL goal. Then every agent strategy that realizes $Env \rightarrow Goal$ also realizes Goal under environment specification Env.

Proof

• Let σ_{ag} be an agent strategy that realizes $Env \rightarrow Goal$, i.e., every trace induced by σ_{ag} satisfies $Env \rightarrow Goal$. • To show that σ_{ag} realizes Goal under the environment specification Env, let σ_{env} be an environment strategy realizing Env.

• We have that the trace $trace(\sigma_{ag}, \sigma_{env})$ induced by both strategies satisfies Goal.

However, the converse does not hold:

Theorem 2

It is not the case that, for every LTL environment specification Env and LTL goal Goal, every agent strategy that realizes Goal under the environment specification Env also realizes $Env \rightarrow Goal$.

Proof

• Let $A = \{a\}$ and $F = \{f\}$, and let $Env = f \rightarrow a$ and $Goal = f \rightarrow \neg a$.

• First note that Env is a consistent LTL environment specification. Moreover, every environment strategy enforcing Env begins by playing $\neg f$.

• Every agent strategy realizes *Goal* under the environment specification *Env*.

• However, not every agent strategy realizes $Env \rightarrow Goal$ (eg., the agent plays a in its first turn and the environment plays f).

Although the converse does not hold, the two problems are inter-reducible:

Theorem 3

Suppose Env is an LTL environment specification. The following are equivalent:

1. There is an agent strategy realizing Env
ightarrow Goal, i.e.,

 $\exists \sigma_{ag} \forall \sigma_{env}.trace(\sigma_{ag},\sigma_{env}) \models Env \rightarrow Goal$

2. There is an agent strategy realizing Goal under environment specification Env, i.e.,

 $\exists \sigma_{ag} \forall \sigma_{env} \in [[Env]].trace(\sigma_{ag}, \sigma_{env}) \models Goal$

Proof: $1 \rightarrow 2$

Theorem 2 gives us $1 \rightarrow 2$.

Proof: $2 \rightarrow 1$

• Suppose 1 does not hold, i.e., the agent does not have a strategy to realize $Env \rightarrow Goal$.

• [Martin 1975] The environment has a strategy to realize $\neg(Env \rightarrow Goal)$, i.e., $\exists \sigma_{env} \forall \sigma_{ag}.trace(\sigma_{ag}, \sigma_{env}) \models Env \land \neg Goal$, i.e., σ_{env} realizes Env.

• Suppose that 2 holds and take σ_{ag} realizing *Goal* under environment specification *Env*. Then by definition of realizability under environment specifications and using the fact that σ_{env} realizes *Env*, we have that $trace(\sigma_{ag}, \sigma_{env}) \models Goal$.

• On the other hand, we have already seen that $trace(\sigma_{ag}, \sigma_{env}) \models \neg Goal$, a contradiction.

LTL_f Synthesis Under LTL Environment Specifications

LTLf Synthesis Under LTL Environment Specifications

For example let the assumption be formed by $Env_1 \wedge Env_2$ where:

 Env_1 is the LTL formula expressing the dynamics of the environment (as a planning domain):

 Env_2 is the LTL formula expressing some fairness over nondeterministic effects, e.g.,

 $\Box \diamondsuit shoot \to \diamondsuit \neg a$

Let Goal be an LTL $_f$ formula which expresses an agent task, e.g.,

Solve the synthesis problem for

 $Env_1 \wedge Env_2 \rightarrow Goal$

Naive Solution

Translate to LTL and then do standard LTL synthesis for $Env_1 \wedge Env_2 \rightarrow Goal$.

... but we can exploit the simplicity of dealing with LTL_f given:

Solve the synthesis problem for

 $Env_1 \wedge Env_2 \rightarrow Goal$

Naive Solution

Translate to LTL and then do standard LTL synthesis for $Env_1 \wedge Env_2 \rightarrow Goal$.

... but we can exploit the simplicity of dealing with LTL_f given:

Solve the synthesis problem for

 $Env_1 \wedge Env_2 \rightarrow Goal$

Naive Solution

Translate to LTL and then do standard LTL synthesis for $Env_1 \wedge Env_2 \rightarrow Goal$.

... but we can exploit the simplicity of dealing with LTL_f given:

Solve the synthesis problem for

 $Env_1 \wedge Env_2 \rightarrow Goal$

Naive Solution

Translate to LTL and then do standard LTL synthesis for $Env_1 \wedge Env_2 \rightarrow Goal$.

... but we can exploit the simplicity of dealing with LTL_f given:

• Env_1 : LTL

Problem

Solve the synthesis problem for

 $Env_1 \wedge Env_2 \rightarrow Goal$

Naive Solution

Translate to LTL and then do standard LTL synthesis for $Env_1 \wedge Env_2 \rightarrow Goal$.

... but we can exploit the simplicity of dealing with LTL_f given:

• $Env_1: \xrightarrow{\text{LTL}} \to \text{LTL}_f$

Problem

Solve the synthesis problem for

 $Env_1 \wedge Env_2 \rightarrow Goal$

Naive Solution

Translate to LTL and then do standard LTL synthesis for $Env_1 \wedge Env_2 \rightarrow Goal$.

 \ldots but we can exploit the simplicity of dealing with ${\rm LTL}_{\it f}$ given:

```
• Env_1: \xrightarrow{\text{LTL}} \rightarrow \text{LTL}_f
```

• Env_2 : LTL

Problem

Solve the synthesis problem for

 $Env_1 \wedge Env_2 \rightarrow Goal$

Naive Solution

Translate to LTL and then do standard LTL synthesis for $Env_1 \wedge Env_2 \rightarrow Goal$.

... but we can exploit the simplicity of dealing with LTL_f given:

- $Env_1: \xrightarrow{\text{LTL}} \rightarrow \text{LTL}_f$
- Env_2 : LTL
- Goal: LTL_f

 $(Env_1 \land Env_2 \rightarrow Goal) \iff (Env_2 \rightarrow Env_1 \rightarrow Goal) \iff (Env_2 \rightarrow \neg Env_1 \lor Goal)$

where $Goal' = \neg Env_1 \lor Goal$ is expressed in LTL_f and Env_2 in LTL.

Problem

Solve the synthesis problem for

 $Env_2 \rightarrow Goal'$

How can we exploit that Goal' is LTL_f?

Two-stage technique!

 $(Env_1 \land Env_2 \to Goal) \iff (Env_2 \to Env_1 \to Goal) \iff (Env_2 \to \neg Env_1 \lor Goal)$

where $Goal' = \neg Env_1 \lor Goal$ is expressed in LTL_f and Env_2 in LTL.

Problem

Solve the synthesis problem for

 $Env_2 \rightarrow Goal'$

How can we exploit that Goal' is LTL_f?

Fwo-stage technique!

 $(Env_1 \land Env_2 \to Goal) \iff (Env_2 \to Env_1 \to Goal) \iff (Env_2 \to \neg Env_1 \lor Goal)$

where $Goal' = \neg Env_1 \lor Goal$ is expressed in LTL_f and Env_2 in LTL.

Problem

Solve the synthesis problem for

 $Env_2 \rightarrow Goal'$

How can we exploit that Goal' is LTL_f?

Two-stage technique!

 $(Env_1 \land Env_2 \to Goal) \iff (Env_2 \to Env_1 \to Goal) \iff (Env_2 \to \neg Env_1 \lor Goal)$

where $Goal' = \neg Env_1 \lor Goal$ is expressed in LTL_f and Env_2 in LTL.

Problem

Solve the synthesis problem for

$$Env_2 \rightarrow Goal'$$

How can we exploit that Goal' is LTL_f?

Two-stage technique!

1 Stage

- Compute the corresponding DFA \mathcal{A} of $\neg Env_1 \lor Goal$.

- Solve the reachability game for the agent over \mathcal{A} .
- Check whether the initial state is winning for the agent.
- If the initial state is not winning go to Stage 2, otherwise return the agent winning strategy.

- Compute the corresponding DFA \mathcal{A} of $\neg Env_1 \lor Goal$.
- Solve the reachability game for the agent over \mathcal{A} .
- Check whether the initial state is winning for the agent.
- If the initial state is not winning go to Stage 2, otherwise return the agent winning strategy.

- Compute the corresponding DFA \mathcal{A} of $\neg Env_1 \lor Goal$.
- Solve the reachability game for the agent over \mathcal{A} .
- Check whether the initial state is winning for the agent.
- If the initial state is not winning go to Stage 2, otherwise return the agent winning strategy.

- Compute the corresponding DFA \mathcal{A} of $\neg Env_1 \lor Goal$.
- Solve the reachability game for the agent over \mathcal{A} .
- Check whether the initial state is winning for the agent.
- If the initial state is not winning go to Stage 2, otherwise return the agent winning strategy.

- Remove from $\mathcal A$ the agent winning set of Stage 1, say $\mathcal A'.$
- Compute the corresponding DPA \mathcal{B} of Env_2 .
- Do the cartesian product between \mathcal{A}' and \mathcal{B} .
- Solve the parity game for the environment over $\mathcal{A}' \times \mathcal{B}$.
- Check if the initial state is winning for the agent; if not return "Unrealizable".
- Return the agent winning strategy by combing the agent winning strategies in Stage 1 and 2.

- Remove from ${\mathcal A}$ the agent winning set of Stage 1, say ${\mathcal A}'.$
- Compute the corresponding DPA \mathcal{B} of Env_2 .
- Do the cartesian product between \mathcal{A}' and \mathcal{B} .
- Solve the parity game for the environment over $\mathcal{A}' imes \mathcal{B}.$
- Check if the initial state is winning for the agent; if not return "Unrealizable".
- Return the agent winning strategy by combing the agent winning strategies in Stage 1 and 2.

- Remove from ${\mathcal A}$ the agent winning set of Stage 1, say ${\mathcal A}'.$
- Compute the corresponding DPA \mathcal{B} of Env_2 .
- Do the cartesian product between \mathcal{A}' and \mathcal{B} .
- Solve the parity game for the environment over $\mathcal{A}' \times \mathcal{B}$.
- Check if the initial state is winning for the agent; if not return "Unrealizable".
- Return the agent winning strategy by combing the agent winning strategies in Stage 1 and 2.

- Remove from $\mathcal A$ the agent winning set of Stage 1, say $\mathcal A'.$
- Compute the corresponding DPA \mathcal{B} of Env_2 .
- Do the cartesian product between \mathcal{A}' and \mathcal{B} .
- Solve the parity game for the environment over $\mathcal{A}' \times \mathcal{B}$.
- Check if the initial state is winning for the agent; if not return "Unrealizable".
- Return the agent winning strategy by combing the agent winning strategies in Stage 1 and 2.

- Remove from $\mathcal A$ the agent winning set of Stage 1, say $\mathcal A'.$
- Compute the corresponding DPA \mathcal{B} of Env_2 .
- Do the cartesian product between \mathcal{A}' and \mathcal{B} .
- Solve the parity game for the environment over $\mathcal{A}' \times \mathcal{B}$.
- Check if the initial state is winning for the agent; if not return "Unrealizable".
- Return the agent winning strategy by combing the agent winning strategies in Stage 1 and 2.

- Remove from $\mathcal A$ the agent winning set of Stage 1, say $\mathcal A'.$
- Compute the corresponding DPA \mathcal{B} of Env_2 .
- Do the cartesian product between \mathcal{A}' and \mathcal{B} .
- Solve the parity game for the environment over $\mathcal{A}' \times \mathcal{B}$.
- Check if the initial state is winning for the agent; if not return "Unrealizable".
- Return the agent winning strategy by combing the agent winning strategies in Stage 1 and 2.

We have

- implemented the two-stage technique in a new tool called **2SLS**, written in C++, that exploits CUDD package as library for the manipulation of Binary Decisions Diagrams (BDDs);
- compared **2SLS** to a direct reduction to LTL synthesis by employing the LTLf -to-LTL translator **SPOT** and **Strix** (Meyer, Sickert, and Luttenberger 2018) as the LTL synthesis solver;
- compared **2SLS** with FSyft and StSyft (Zhu et al. 2020) in special cases where environment specifications are LTL formulas of the form $\Box \diamond a$ (fairness) and $\diamond \Box a$ (stability), with a propositional.

Experiments on Fairness and Stability

- Given a counter game where the environment chooses whether to increment the counter or not and the agent can choose to grant the request or ignore it;
- The fairness environment specification is $\Box \diamond increment$; the stability environment specification is $\diamond \Box increment$;
- The goal is to get the counter having all bits set to 1.

Figure: LTL_f synthesis under fairness environment specification.

Figure: ${\rm LTL}_f$ synthesis under stability environment specificationmptions.

Experiments of General LTL Environment Specifications

- Given *Goal* as a conjunction of increasing size of random LTL_f formulas of the form $\Box(p_j \rightarrow \Diamond q_j)$ with p_j and q_j propositions under the control of the environment and the agent, respectively;
- Env is a conjunction of formulas of the form $(\Box \diamond p_i \lor \diamond \Box q_i)$, where we start with one conjunct and introduce a new conjunct every 10 conjuncts in Goal.

