Game-Theoretic Approach to Temporal Synthesis Introduction

Antonio Di Stasio **Giuseppe Perelli**¹ Shufang Zhu

2nd European Summer School on Artificial Intelligence Athens (Greece) 15-19 July 2024

¹The realization of this course was partially supported by MUR under the PRIN programme, grant B87G22000450001 (PINPOINT).

Introduction to Games, Temporal Logic specificationsGiuseppeAutomata-Theoretic Approach, SynthesisGiuseppeLTLf Synthesis under Environment SpecificationsAntonioNotable Cases of LTLf Synthesis under LTL Environment SpecificationsShufangSymbolic SynthesisShufang

Related courses at ESSAI

11:00-12:30 - Formal Aspects of Strategic Reasoning and Game Playing11:00-12:30 - Logic-Based Specification and Verification of Multi-Agent Systems

Giuseppe Perelli

Assistant Professor @ Sapienza University of Rome Ph.D. in Computer Science (Background in Mathematics) Main research interests: Formal Methods for Artificial Intelligence

Logics and Games for Multi-Agent Systems Synthesis and Rational Synthesis

Website https://giuseppeperelli.github.io Email: perelli@di.uniroma1.it

Shufang Zhu

Senior Research Associate @ University of Oxford Soon to join University of Liverpool as Lecturer ... Congrats! Main research interests: interdisciplinary knowledge across artificial intelligence (AI) and formal methods (FM) Automated Reasoning Planning Synthesis

Website https://shufang-zhu.github.io/ Email: shufang.zhu@cs.ox.ac.uk

Antonio Di Stasio

Senior Research Associate @ University of Oxford Soon to join City University of London as Lecturer ... Congrats! Main research interests: Game Theory Parity Games Formal Aspects of System Specification, Verification, Synthesis Automated Planning

Website https://antoniodistasio.github.io/ Email: antonio.distasio@cs.ox.ac.uk

Agents in Computer Science

Agents are powerful models in many areas of Computer Science.

Three characteristics

- Capabilities: actions and constraints
- Knowledge: information about environment
- Goal: specification of a task/objective to fulfill

Appears in many areas

Robotics Software Engineering Process Management Knowledge Representation

Planning Multi-Agent Systems Sequential decision making Reinforcement learning

Perelli (Sapienza University of Rome)

Game-Theoretic Approach

Reactive Controller Programming

Function f sends outputs according to the history of inputs.

- Abadi, Lamport, Wolper Realizable and Unrealizable Specifications of Reactive Systems. - ICALP'89
- Adhere to capabilities: actions always fulfill constraints
- Depend on knowledge: react on the stream of inputs
- Fulfill the specification

An agent satisfying these properties is correct.

Temporal specification setting

$$f \rightsquigarrow \mathcal{T}_f = \langle Q, I, O, \delta, \tau \rangle$$

Finite-state machines are expressive enough to implement agents correctly in a large class of temporal specifications.

Reactive Synthesis

- Self-programming mechanism.
- Specifying a problem is usually simpler than solving it.
- Aim: correct-by-construction.

- Pnueli and Rosner On the Synthesis of a Reactive Module. POPL'89
- Finkbeiner Synthesis of Reactive Systems. DSSE'16

Synthesis problems as games

- Agent vs environment Temporal specification Correct program
- ↔ Two-Player Game
 ↔ Winning Condition
 ↔ Winning Strategy

Solving synthesis = winning a game

Synthesizing a correct program reduces to winning a suitably defined formal game. Solution techniques: Logic, Games, and Automata.

No playing around: game theory is serious business!

Image credits: Martin Zimmerman

▷ It's fun!

- ▷ Model reactive systems
- ▷ Solve synthesis problems
- ▷ Evaluate logic formulas

Examples of games

Image credits: ltlf2dfa.diag.uniroma1.it

Classification of games

▷ Players

- 1 player;
- 2 players;
- multi-players.
- \triangleright Interaction
 - Turn-based;
 - Concurrent.
- Information
 - Perfect;
 - Imperfect.

⊳ Nature

- Deterministic;
- Stochastic.
- Objective
 - Reachability;
 - Safety;
 - Büchi;
 - co-Büchi;
 - Parity, Rabin, Streett, Muller, ...

Today

2-player turn-based perfect information games.

A Game is played over a (finite) graph (V, E), whose vertexes are under the control of the two players $V = V_0 \cup V_1$.

A token moves along the vertexes and sent to a successor by the controlling player.

The outcome or play is an infinite sequence of vertexes in the graph.

A winning condition/objective is a subset Obj $\subseteq V^{\omega}$ of plays that Player 0 wants to occur.

A Game is played over a (finite) graph (V, E), whose vertexes are under the control of the two players $V = V_0 \cup V_1$.

A token moves along the vertexes and sent to a successor by the controlling player.

The outcome or play is an infinite sequence of vertexes in the graph.

A winning condition/objective is a subset Obj $\subseteq V^{\omega}$ of plays that Player 0 wants to occur.

Sample play

 $\pi = v_0$

A Game is played over a (finite) graph (V, E), whose vertexes are under the control of the two players $V = V_0 \cup V_1$.

A token moves along the vertexes and sent to a successor by the controlling player.

The outcome or play is an infinite sequence of vertexes in the graph.

A winning condition/objective is a subset Obj $\subseteq V^{\omega}$ of plays that Player 0 wants to occur.

Sample play

 $\pi = v_0 \cdot v_1$

A Game is played over a (finite) graph (V, E), whose vertexes are under the control of the two players $V = V_0 \cup V_1$.

A token moves along the vertexes and sent to a successor by the controlling player.

The outcome or play is an infinite sequence of vertexes in the graph.

A winning condition/objective is a subset Obj $\subseteq V^{\omega}$ of plays that Player 0 wants to occur.

Sample play

 $\pi = v_0 \cdot v_1 \cdot v_2$

A Game is played over a (finite) graph (V, E), whose vertexes are under the control of the two players $V = V_0 \cup V_1$.

A token moves along the vertexes and sent to a successor by the controlling player.

The outcome or play is an infinite sequence of vertexes in the graph.

A winning condition/objective is a subset Obj $\subseteq V^{\omega}$ of plays that Player 0 wants to occur.

Sample play

 $\pi = \mathbf{v}_0 \cdot \mathbf{v}_1 \cdot \mathbf{v}_2 \cdot \mathbf{v}_5$

A Game is played over a (finite) graph (V, E), whose vertexes are under the control of the two players $V = V_0 \cup V_1$.

A token moves along the vertexes and sent to a successor by the controlling player.

The outcome or play is an infinite sequence of vertexes in the graph.

A winning condition/objective is a subset Obj $\subseteq V^{\omega}$ of plays that Player 0 wants to occur.

Sample play

$$\pi = v_0 \cdot v_1 \cdot v_2 \cdot v_5 \cdot v_7 \cdot \ldots \in \mathbf{V}^{\omega}$$

Tic-Tac-Toe is played on a 3×3 grid. Two players place their placeholders in turn on a free square. The first to place three of its own placeholders aligned wins.

 $\#~vertexes \approx 9! \sim 10^5$

.

Tic-Tac-Toe is played on a 3×3 grid. Two players place their placeholders in turn on a free square. The first to place three of its own placeholders aligned wins.

vertexes $\approx 9! \sim 10^5$

	Lasker vs Thomas 1912: White to move and mate in 7
8	
7	
6	
5	
4	
3	鱼
2	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
1	
	abcdefgh
	$\#$ vertexes $pprox 10^{43} - 10^{50}$ (Shannon, 1950)
	$\#$ edges $\approx 10^{123}$ (Allis, 1994)
	$\#$ possible different games $pprox 10^{10^{50}}$
	Size of 5-pieces tablebase: 7GB
	•
	Size of 6-pieces tablebase: 1,2TB
	Size of 7-pieces tablebase: 140TB ("Deep Thinking",
	Kasparov, 2017)

-1010 14/1 . .

For a subset of the vertexes $T \subseteq V$:

For a subset of the vertexes $T \subseteq V$:

– Reachability: visit T at least once.

For a subset of the vertexes $T \subseteq V$:

- Reachability: visit T at least once.

 $\mathsf{Reach}(T) = \{\pi \in \mathcal{V}^{\omega} : \exists i \in \mathbb{N}, \pi[i] \in T\}$

For a subset of the vertexes $T \subseteq V$:

– Reachability: visit T at least once.

 $\operatorname{\mathsf{Reach}}(T) = \{\pi \in \mathrm{V}^{\omega} : \exists i \in \mathbb{N}, \pi[i] \in T\}$

- Safety: stay in T forever.

For a subset of the vertexes $T \subseteq V$:

- Reachability: visit T at least once.

- Safety: stay in T forever.

 $\mathsf{Reach}(T) = \{\pi \in \mathcal{V}^{\omega} : \exists i \in \mathbb{N}, \pi[i] \in T\}$

 $\mathsf{Safe}(T) = \{ \pi \in \mathrm{V}^{\omega} : \forall i \in \mathbb{N}, \pi[i] \in T \}$

- For a subset of the vertexes $T \subseteq V$:
 - Reachability: visit T at least once.

- Safety: stay in T forever.

 $\mathsf{Reach}(T) = \{ \pi \in \mathcal{V}^{\omega} : \exists i \in \mathbb{N}, \pi[i] \in T \}$

 $\mathsf{Safe}(T) = \{\pi \in \mathrm{V}^{\omega} : \forall i \in \mathbb{N}, \pi[i] \in T\}$

- Büchi: visit T infinitely often.

- For a subset of the vertexes $T \subseteq V$:
 - Reachability: visit T at least once.

 $\mathsf{Reach}(T) = \{\pi \in \mathrm{V}^{\omega} : \exists i \in \mathbb{N}, \pi[i] \in T\}$

– Safety: stay in T forever.

 $\mathsf{Safe}(\mathsf{T}) = \{\pi \in \mathrm{V}^{\omega} : \forall i \in \mathbb{N}, \pi[i] \in \mathsf{T}\}$

- Büchi: visit T infinitely often.

 $\mathsf{Buchi}(\mathcal{T}) = \{\pi \in \mathrm{V}^{\omega} : \forall j \in \mathbb{N}, \exists i > j, \pi[i] \in \mathcal{T}\}$

- For a subset of the vertexes $T \subseteq V$:
 - Reachability: visit T at least once.

 $\mathsf{Reach}(T) = \{\pi \in \mathcal{V}^{\omega} : \exists i \in \mathbb{N}, \pi[i] \in T\}$

– Safety: stay in T forever.

 $\mathsf{Safe}(T) = \{ \pi \in \mathrm{V}^{\omega} : \forall i \in \mathbb{N}, \pi[i] \in T \}$

- Büchi: visit T infinitely often.

 $\mathsf{Buchi}(\mathcal{T}) = \{\pi \in \mathrm{V}^{\omega} : \forall j \in \mathbb{N}, \exists i > j, \pi[i] \in \mathcal{T}\}$

- co-Büchi: reach and stay in T forever.

- For a subset of the vertexes $T \subseteq V$:
 - Reachability: visit T at least once.

 $\mathsf{Reach}(T) = \{\pi \in \mathcal{V}^{\omega} : \exists i \in \mathbb{N}, \pi[i] \in T\}$

– Safety: stay in T forever.

 $\mathsf{Safe}(T) = \{\pi \in \mathrm{V}^{\omega} : \forall i \in \mathbb{N}, \pi[i] \in T\}$

- Büchi: visit T infinitely often.

 $\mathsf{Buchi}(\mathcal{T}) = \{\pi \in \mathrm{V}^{\omega} : \forall j \in \mathbb{N}, \exists i > j, \pi[i] \in \mathcal{T}\}$

- co-Büchi: reach and stay in T forever. coBuchi $(T) = \{\pi \in V^{\omega} : \exists j \in \mathbb{N}, \forall i > j, \pi[i] \in T\}$

- For a subset of the vertexes $T \subseteq V$:
 - Reachability: visit T at least once.

 $\mathsf{Reach}(T) = \{\pi \in \mathcal{V}^{\omega} : \exists i \in \mathbb{N}, \pi[i] \in T\}$

– Safety: stay in T forever.

 $\mathsf{Safe}(\mathsf{T}) = \{\pi \in \mathrm{V}^{\omega} : \forall i \in \mathbb{N}, \pi[i] \in \mathsf{T}\}$

- Büchi: visit T infinitely often.

 $\mathsf{Buchi}(\mathcal{T}) = \{\pi \in \mathrm{V}^{\omega} : \forall j \in \mathbb{N}, \exists i > j, \pi[i] \in \mathcal{T}\}$

- co-Büchi: reach and stay in T forever. coBuchi(T) = { $\pi \in V^{\omega} : \exists j \in \mathbb{N}, \forall i > j, \pi[i] \in T$ }

- Parity, Rabin, Streett, Muller, LTL, ...

- For a subset of the vertexes $T \subseteq V$:
 - Reachability: visit T at least once.

 $\mathsf{Reach}(T) = \{\pi \in \mathcal{V}^{\omega} : \exists i \in \mathbb{N}, \pi[i] \in T\}$

- Safety: stay in T forever.

 $\mathsf{Safe}(\mathsf{T}) = \{\pi \in \mathrm{V}^{\omega} : \forall i \in \mathbb{N}, \pi[i] \in \mathsf{T}\}$

- Büchi: visit T infinitely often.

 $\mathsf{Buchi}(\mathcal{T}) = \{\pi \in \mathrm{V}^{\omega} : \forall j \in \mathbb{N}, \exists i > j, \pi[i] \in \mathcal{T}\}$

- co-Büchi: reach and stay in T forever. coBuchi(T) = { $\pi \in V^{\omega} : \exists j \in \mathbb{N}, \forall i > j, \pi[i] \in T$ }

- Parity, Rabin, Streett, Muller, LTL, ...

Question: what if we have more "alternations" of existential and universal quantifiers?

Strategies

A strategy maps partial outcomes (i.e., finite sequences of vertexes) into successors and it is of the form

$ ightarrow \sigma_{0}: \mathbf{V}^{*} \cdot \mathbf{V}_{o} \rightarrow \mathbf{V}$	Player 0 strategy
$\vartriangleright \ \sigma_1: \mathbf{V}^* \cdot \mathbf{V}_1 \to \mathbf{V}$	Player 1 strategy

Consistent plays

Strategies "restricts" the game only to those plays π that are consistent with σ_0 , that is such that:

$$\pi[i+1] = \sigma_0(\pi[0] \cdot \pi[1] \cdot \ldots \cdot \pi[i])$$

For each σ_0, σ_1 , there is only one consistent play $\pi(v, \sigma_0, \sigma_1)$ starting from v.

Winning strategies

A strategy σ_0 is winning for Player 0 in v if every consistent path π starting from v belongs to Obj. (Winning set Win_o \subseteq V)

A strategy σ_1 is winning for Player 1 in v if every consistent path π starting from v does not belong to Obj. (Losing set Win₁ \subseteq V)

Solving a game

The solution of a game G is the set Win_o of vertexes that are winning for Player 0, altogether with a winning strategy σ_0 .

Winning strategies

A strategy σ_0 is winning for Player 0 in v if every consistent path π starting from v belongs to Obj. (Winning set Win_o \subseteq V)

A strategy σ_1 is winning for Player 1 in v if every consistent path π starting from v does not belong to Obj. (Losing set Win₁ \subseteq V)

Solving a game

The solution of a game G is the set Win_o of vertexes that are winning for Player 0, altogether with a winning strategy σ_0 .

Warning! While $Win_0 \cap Win_1 = \emptyset$, it is not always the case that $V = Win_0 \cup Win_1$.

A reachability game

Consider again the arena below and let $T = \{v_4, v_5\}$ (the double bordered nodes).

What is the winning set of \mathcal{G} ?

Consider the function force_o defined as follows:

 $\mathsf{force}_{\mathsf{o}}(X) = \{ v \in \mathcal{V}_{\mathsf{o}} : E(v) \cap X \neq \emptyset \} \cup \{ v \in \mathcal{V}_{\mathsf{i}} : E(v) \subseteq X \}$

Player 0 has a move to enter the region X; Player 1 cannot avoid to enter the region X.

The function computes the vertexes from which Player 0 can enforce the token to move in the subset X of vertexes.

Constrained problem

 $\operatorname{Reach}^n(T) :=$ "Player 0 can reach T in at most n moves".

Constrained problem

Reachⁿ(T) := "Player 0 can reach T in at most n moves".

n = 0: T I have to be in T already.

Constrained problem

Reachⁿ(T) := "Player 0 can reach T in at most n moves".

n = 0: T I have to be in T already.

Constrained problem

Reachⁿ(T) := "Player 0 can reach T in at most n moves".

n = 0: T I have to be in T already.

 $\operatorname{Reach}^{\mathrm{o}}(T) = T$

n > 0: either I am or can force to a vertex winning in at most n - 1 moves.

Constrained problem

Reachⁿ(T) := "Player 0 can reach T in at most n moves".

n = 0: T I have to be in T already.

 $\operatorname{Reach}^{\mathrm{o}}(T) = T$

n > 0: either I am or can force to a vertex winning in at most n - 1 moves. Reachⁿ(T) = Reachⁿ⁻¹(T) \cup force₀(Reachⁿ⁻¹(T))

Constrained problem

Reachⁿ(T) := "Player 0 can reach T in at most n moves".

n = 0: T I have to be in T already.

 $\operatorname{Reach}^{\mathrm{o}}(T) = T$

n > 0: either I am or can force to a vertex winning in at most n - 1 moves. Reachⁿ(T) = Reachⁿ⁻¹(T) \cup force₀(Reachⁿ⁻¹(T))

Solving reachability

 $Win_o(\mathcal{G}) = Reach(\mathcal{T}) :=$ "Player 0 can reach \mathcal{T} in at most *n* moves".

Constrained problem

Reachⁿ(T) := "Player 0 can reach T in at most n moves".

n = 0: T I have to be in T already.

 $\operatorname{Reach}^{\mathrm{o}}(T) = T$

n > 0: either I am or can force to a vertex winning in at most n - 1 moves. Reachⁿ(T) = Reachⁿ⁻¹(T) \cup force₀(Reachⁿ⁻¹(T))

Solving reachability

 $Win_0(\mathcal{G}) = Reach(\mathcal{T}) :=$ "Player 0 can reach \mathcal{T} in at most *n* moves".

 $\operatorname{Reach}(T) = \operatorname{Reach}^{0}(T) \cup \operatorname{Reach}^{1}(T) \cup \ldots \cup \operatorname{Reach}^{n}(T) \cup \ldots$

Constrained problem

Reachⁿ(T) := "Player 0 can reach T in at most n moves".

n = 0: T I have to be in T already.

 $\operatorname{Reach}^{\mathrm{o}}(T) = T$

n > 0: either I am or can force to a vertex winning in at most n - 1 moves. Reachⁿ(T) = Reachⁿ⁻¹(T) \cup force₀(Reachⁿ⁻¹(T))

Solving reachability

 $Win_{o}(\mathcal{G}) = Reach(\mathcal{T}) :=$ "Player 0 can reach \mathcal{T} in at most *n* moves".

```
\mathsf{Reach}(T) = \mathsf{Reach}^{\circ}(T) \cup \mathsf{Reach}^{1}(T) \cup \ldots \cup \mathsf{Reach}^{n}(T) \cup \ldots\mathsf{Reach}^{\circ}(T) \subseteq \mathsf{Reach}^{1}(T) \subseteq \ldots \subseteq \mathsf{Reach}^{n}(T) \subseteq \ldots
```


Constrained problem

Reachⁿ(T) := "Player 0 can reach T in at most n moves".

n = 0: T I have to be in T already.

 $\operatorname{Reach}^{\mathrm{o}}(T) = T$

n > 0: either I am or can force to a vertex winning in at most n - 1 moves. Reachⁿ(T) = Reachⁿ⁻¹(T) \cup force₀(Reachⁿ⁻¹(T))

Solving reachability

 $Win_o(\mathcal{G}) = Reach(\mathcal{T}) :=$ "Player 0 can reach \mathcal{T} in at most *n* moves".

 $\mathsf{Reach}(T) = \mathsf{Reach}^{\circ}(T) \cup \mathsf{Reach}^{1}(T) \cup \ldots \cup \mathsf{Reach}^{n}(T) \cup \ldots$

 $\mathsf{Reach}^{\mathrm{o}}(\mathcal{T}) \subseteq \mathsf{Reach}^{\mathrm{i}}(\mathcal{T}) \subseteq \ldots \subseteq \mathsf{Reach}^{n}(\mathcal{T}) \subseteq \ldots$

Fix-point calculation

Perelli (Sapienza University of Rome)

 $\mu \mathcal{X}.(T \cup \mathsf{force}_{o}(\mathcal{X}))$

FSSAI-24

Algorithm 1 Reachability game

- 1: Win_{old} := T
- 2: Win := Win_{old} \cup force_o(Win_{old})
- 3: while $Win \neq Win_{old}$ do
- 4: $Win_{old} := Win$
- 5: Win := Win \cup force_o(Win)
- 6: end while
- 7: return Win

Memoryless strategy

A strategy σ_0 is memoryless if it is of the form

 $\sigma_0: V : V \to V$

that is, at every vertex v, the next move does not depend on the past history (and thus it is always the same).

Memoryless strategy

A strategy σ_0 is memoryless if it is of the form

 $\sigma_0: V : V \to V$

that is, at every vertex v, the next move does not depend on the past history (and thus it is always the same).

Theorem (Memoryless) If $v \in Win_o$, then there exists a memoryless strategy σ_0 that is winning from v.

Determinacy

It holds that $\mathsf{Win}_0\cup\mathsf{Win}_1=V.$ When this is the case, we say that the game is determined.

Theorem (determinacy)

Every 2-player turn-based reachability game is determined.

Perelli (Sapienza University of Rome)

Game-Theoretic Approach

It holds that $\mathsf{Win}_0\cup\mathsf{Win}_1=V.$ When this is the case, we say that the game is determined.

Theorem (determinacy)

Every 2-player turn-based reachability game is determined.

Perelli (Sapienza University of Rome)

Game-Theoretic Approach

Safety games

Consider an arena $\mathbf{A} = (V, E, V_o, V_1)$ and a safety game $\mathcal{G} = (\mathbf{A}, \mathsf{Safe}(\mathcal{T}))$. Define the dual arena $\overline{\mathbf{A}} = (V, E, V_1, V_0)$ and the reachability game $\overline{\mathcal{G}} = (\overline{\mathbf{A}}, \mathsf{Reach}(V \setminus \mathcal{T}))$

Exercise - Prove that:

```
\operatorname{Win}_{0}(\mathcal{G}) = \operatorname{Win}_{1}(\overline{\mathcal{G}});
\operatorname{Win}_{1}(\mathcal{G}) = \operatorname{Win}_{0}(\overline{\mathcal{G}}).
```

Theorem

We can solve safety games by solving the dual reachability game and complement the solution.

Problem

Safeⁿ(T) := "Player 0 can stay in T for at least n moves."

Problem

Safeⁿ(T) := "Player 0 can stay in T for at least n moves."

For n = 0: I have to be in T already.

Problem

Safeⁿ(T) := "Player 0 can stay in T for at least *n* moves."

For n = 0: I have to be in T already.

 $\mathsf{Safe}^{\mathrm{o}}(\mathsf{T}) = \mathsf{T}$

Problem

Safeⁿ(T) := "Player 0 can stay in T for at least n moves."

For n = 0: I have to be in T already. Safe^o(T) = TFor n > 0: I must stay in T and move to a vertex from which I can force to stay in T for n - 1 more times.

Problem

Safeⁿ(T) := "Player 0 can stay in T for at least n moves."

For n = 0: I have to be in T already. For n > 0: I must stay in T and move to a vertex from which I can force to stay in T for n - 1 more times. Safeⁿ(T) = $T \cap force_0(Safe^{n-1}(T))$

Problem

Safeⁿ(T) := "Player 0 can stay in T for at least n moves."

For n = 0: I have to be in T already. For n > 0: I must stay in T and move to a vertex from which I can force to stay in T for n - 1 more times. Safeⁿ(T) = $T \cap \text{force}_0(\text{Safe}^{n-1}(T))$

Solving safety

 $Win_{o}(\mathcal{G}) = Safe(\mathcal{T}) :=$ "Player 0 can stay in \mathcal{T} forever".

Problem

Safeⁿ(T) := "Player 0 can stay in T for at least n moves."

For n = 0: I have to be in T already. For n > 0: I must stay in T and move to a vertex from which I can force to stay in T for n - 1 more times. Safeⁿ(T) = $T \cap \text{force}_0(\text{Safe}^{n-1}(T))$

Solving safety

 $Win_{o}(\mathcal{G}) = Safe(\mathcal{T}) := "Player 0 can stay in \mathcal{T} forever".$ $Win_{o}(\mathcal{G}) = Safe(\mathcal{T}) = Safe^{o}(\mathcal{T}) \cap Safe^{1}(\mathcal{T}) \cap \ldots \cap Safe^{n}(\mathcal{T}) \cap \ldots$

Problem

Safeⁿ(T) := "Player 0 can stay in T for at least n moves."

For n = 0: I have to be in T already. For n > 0: I must stay in T and move to a vertex from which I can force to stay in T for n - 1 more times. Safeⁿ(T) = $T \cap \text{force}_0(\text{Safe}^{n-1}(T))$

Solving safety

 $Win_{o}(\mathcal{G}) = Safe(T) := "Player 0 can stay in T forever".$ $Win_{o}(\mathcal{G}) = Safe(T) = Safe^{o}(T) \cap Safe^{1}(T) \cap \ldots \cap Safe^{n}(T) \cap \ldots$ $Safe^{o}(T) \supseteq Safe^{1}(T) \supseteq \ldots \supseteq Safe^{n}(T) \supseteq \ldots$

Problem

Safeⁿ(T) := "Player 0 can stay in T for at least n moves."

For n = 0: I have to be in T already. For n > 0: I must stay in T and move to a vertex from which I can force to stay in T for n - 1 more times. Safeⁿ(T) = $T \cap \text{force}_0(\text{Safe}^{n-1}(T))$

Solving safety

Algorithm 2 Safety game

- 1: Win_{old} := T
- 2: Win := Win_{old} \cap force_o(Win_{old})
- 3: while $Win \neq Win_{old}$ do
- 4: $Win_{old} := Win$
- 5: Win := Win \cap force_o(Win)
- 6: end while
- 7: return Win

Question: How do we solve Büchi and co-Büchi games?

Hint: Think of suitably combining Reachability and Safety conditions.

Problem

Buchiⁿ(T) := "Player 0 can visit T at least n times."

Problem

Buchiⁿ(T) := "Player 0 can visit T at least n times."

For n = 1: I have to reach T at least once.

Problem

Buchiⁿ(T) := "Player 0 can visit T at least n times."

For n = 1: I have to reach T at least once.

 $\mathsf{Buchi}^{1}(T) = \mathsf{Reach}(T)$

Problem

Buchiⁿ(T) := "Player 0 can visit T at least n times."

For n = 1: I have to reach T at least once. Buchi¹(T) = Reach(T) For n > 1: I have to reach a vertex in T from which I can force to visit T for n - 1 more times.

Problem

Buchiⁿ(T) := "Player 0 can visit T at least n times."

For n = 1: I have to reach T at least once. For n > 1: I have to reach a vertex in T from which I can force to visit T for n - 1more times. Buchiⁿ(T) = Reach($T \cap \text{force}_0(\text{Buchi}^{n-1}(T))$)

Problem

Buchiⁿ(T) := "Player 0 can visit T at least n times."

For n = 1: I have to reach T at least once. For n > 1: I have to reach a vertex in T from which I can force to visit T for n - 1more times. Buchiⁿ(T) = Reach($T \cap \text{force}_0(\text{Buchi}^{n-1}(T))$)

Solving Büchi

 $Win_o(\mathcal{G}) = Buchi(T) :=$ "Player 0 can visit T as much as they wants".

Problem

Buchiⁿ(T) := "Player 0 can visit T at least n times."

For n = 1: I have to reach T at least once. For n > 1: I have to reach a vertex in T from which I can force to visit T for n - 1more times. Buchiⁿ(T) = Reach($T \cap \text{force}_0(\text{Buchi}^{n-1}(T))$)

Solving Büchi

 $Win_{o}(\mathcal{G}) = Buchi(\mathcal{T}) := "Player 0 can visit \mathcal{T} as much as they wants".$ $Win_{o}(\mathcal{G}) = Buchi(\mathcal{T}) = Buchi^{1}(\mathcal{T}) \cap Buchi^{2}(\mathcal{T}) \cap \ldots \cap Buchi^{n}(\mathcal{T}) \cap \ldots$

Problem

Buchiⁿ(T) := "Player 0 can visit T at least n times."

For n = 1: I have to reach T at least once. For n > 1: I have to reach a vertex in T from which I can force to visit T for n - 1more times. Buchiⁿ(T) = Reach($T \cap \text{force}_0(\text{Buchi}^{n-1}(T))$)

Solving Büchi

 $Win_{o}(\mathcal{G}) = Buchi(\mathcal{T}) := "Player 0 can visit \mathcal{T} as much as they wants".$ $Win_{o}(\mathcal{G}) = Buchi(\mathcal{T}) = Buchi^{1}(\mathcal{T}) \cap Buchi^{2}(\mathcal{T}) \cap \ldots \cap Buchi^{n}(\mathcal{T}) \cap \ldots$ $Buchi^{1}(\mathcal{T}) \subseteq Buchi^{2}(\mathcal{T}) \subseteq \ldots \subseteq Buchi^{n}(\mathcal{T}) \subseteq \ldots$

Problem

Buchiⁿ(T) := "Player 0 can visit T at least n times."

For n = 1: I have to reach T at least once. For n > 1: I have to reach a vertex in T from which I can force to visit T for n - 1more times. Buchiⁿ(T) = Reach($T \cap \text{force}_0(\text{Buchi}^{n-1}(T))$)

Solving Büchi

co-Büchi games

Consider an arena $\mathbf{A} = (V, E, V_0, V_1)$ and a co-Büchi game $\mathcal{G} = (\mathbf{A}, \text{coBuchi}(\mathcal{T}))$. Define the dual arena $\overline{\mathbf{A}} = (V, E, V_1, V_0)$ and the Büchi game $\overline{\mathcal{G}} = (\overline{\mathbf{A}}, \text{Buchi}(V \setminus \mathcal{T}))$

Exercise - Prove that:

 $\operatorname{Win}_{0}(\mathcal{G}) = \operatorname{Win}_{1}(\overline{\mathcal{G}});$ $\operatorname{Win}_{1}(\mathcal{G}) = \operatorname{Win}_{0}(\overline{\mathcal{G}}).$

Theorem

We can solve co-Büchi games by solving the dual Büchi game and complement the solution.

Fix-point calculation

 $\mu \mathcal{X}.(\nu \mathcal{Y}.((\mathcal{T} \lor \mathsf{force}_o(\mathcal{X})) \land \mathsf{force}_o(\mathcal{Y})))$

Reachability: $\diamond T$ Safety: $\Box T$ Büchi: $\Box \diamond T$ co-Büchi: $\diamond \Box T$
$$\begin{split} \mathsf{Reach}(\mathcal{T}) &= \mu \mathcal{X}.(\mathcal{T} \cup \mathsf{force}_{o}(\mathcal{X}))\\ \mathsf{Safe}(\mathcal{T}) &= \nu \mathcal{Y}.(\mathcal{T} \cap \mathsf{force}_{o}(\mathcal{Y}))\\ \mathsf{Buchi}(\mathcal{T}) &= \nu \mathcal{X}.(\mu \mathcal{Y}.((\mathcal{T} \wedge \mathsf{force}_{o}(\mathcal{X})) \lor \mathsf{force}_{o}(\mathcal{Y})))\\ \mathsf{coBuchi}(\mathcal{T}) &= \mu \mathcal{X}.(\nu \mathcal{Y}.((\mathcal{T} \lor \mathsf{force}_{o}(\mathcal{X})) \land \mathsf{force}_{o}(\mathcal{Y}))) \end{split}$$

Every vertex is colored with an natural number. $c: V \rightarrow \mathbb{N}$

The play produces an infinite sequence of numbers, aka colors.

Player 0 wins if the highest color occurring infinitely many times is even.

Theorem

For a given parity game \mathcal{G} , computing the winning regions $Win_0(\mathcal{G})$ and $Win_1(\mathcal{G})$ can be done in $NP \cap coNP$.

- Determining the right complexity of solving parity games is a long-standing open problem, that has fascinated researchers for more than three decades.
- It has generated a lot of work and it can be considered as a research topic by itself!
- The importance of parity games, especially in connection with Synthesis, has spurred the CS community to come up with different approaches for practical efficiency.

Parity Game (Zielonka's) Algorithm

Algorithm 3 Parity game

- 1: p maximal priority in G
- 2: if p = 0 then
- 3: **return** $Win_0 = V$; $Win_1 = \emptyset$

4: end if

- 5: $C_{max} = c^{-1}(p) //$ nodes in \mathcal{G} with highest priority
- 6: $i = p \mod 2 / /$ setting "perspective"

7:
$$A = \operatorname{Reach}_i(C_{max})$$

- 8: $(Win'_0, Win'_1) = solve(\mathcal{G} \setminus A)$
- 9: if $Win'_{1-i} = \emptyset$ then
- 10: **return** $Win_i = V$; $Win_{1-i} = \emptyset$
- 11: end if
- 12: $B = \operatorname{Reach}_{1-i}(\operatorname{Win}'_1)$
- 13: $(Win_0'', Win_1'') = solve(\mathcal{G} \setminus B)$
- 14: return $\operatorname{Win}_i = \operatorname{Win}_i''$; $\operatorname{Win}_{1-i}' \cup B$

A standard language for talking about infinite state sequences.

Amir Pnueli - The Temporal Logic of Programs. - FOCS'77

- \top truth constant
- *p* primitive propositions
- $\neg \phi$ classical negation
- $\phi \lor \psi \qquad \qquad \mathsf{classical\ disjunction}$
- $\phi \wedge \psi \qquad \qquad {\rm classical \ conjunction}$

A standard language for talking about infinite state sequences.

Amir Pnueli - The Temporal Logic of Programs. - FOCS'77

Т	truth constant		
p	primitive propositions		
$\neg \phi$	classical negation		
$\phi \lor \psi$	classical disjunction		
$\phi \wedge \psi$	classical conjunction		

in the next state... will eventually be the case is always the case $\phi U \psi$ ϕ until ψ $\phi \mathsf{R} \psi$ ϕ release ψ

 $)\phi$

 $\Diamond \phi$ $\Box \phi$

A standard language for talking about infinite state sequences.

Amir Pnueli - The Temporal Logic of Programs. - FOCS'77

\top	truth constant	$\bigcirc \phi$	in the next state
p	primitive propositions	$\diamondsuit \phi$	will eventually be the case
$ eg \phi$	classical negation	$\Box \phi$	is always the case
$\phi \lor \psi$	classical disjunction	$\phi U \psi$	ϕ until ψ
$\phi \wedge \psi$	classical conjunction	$\phi R \psi$	ϕ release ψ

 $\begin{array}{l} \mathsf{Minimal syntax} \\ \varphi := \pmb{p} \mid \neg \varphi \mid \varphi \land \varphi \mid \bigcirc \varphi \mid \varphi \mathsf{U} \varphi \end{array}$

you may encounter the following notations:

 $\begin{array}{rrrr} \mathsf{X} \varphi & : & \bigcirc \varphi \\ \mathsf{F} \varphi & : & \diamondsuit \varphi \\ \mathsf{G} \varphi & : & \Box \varphi \end{array}$

past operators are possible (though not strictly necessary)

Semantics of LTL

LTL formulas are evaluated on infinite traces, that is, obtained from an infinite path.

The language defined by an LTL formula φ is $\mathcal{L}(\varphi) = \{ w \in \Sigma^{\omega} : w \models \varphi \}.$

$\Diamond degree$

eventually I will graduate

$\Box \neg crash$

the plane will never crash

$\Box \diamondsuit eatPizza$

$\Box \diamondsuit eatPizza$

I will eat pizza infinitely often

$\Box \diamondsuit eatPizza$

I will eat pizza *infinitely often* (but only in Napoli)

$\Diamond \Box$ happy

$\Diamond \Box$ happy

... and they lived happily ever after.

(¬*friends*)U*youApologise*

$(\neg friends)$ UyouApologise

we are not friends until you apologise

Describe temporal modalities recursively

- $\varphi \mathsf{U} \psi \equiv \psi \lor (\varphi \land \bigcirc \varphi \mathsf{U} \psi) \qquad \qquad \varphi \mathsf{U} \psi \text{ is a "solution" of } \Psi = \psi \lor (\varphi \land \bigcirc \Psi)$
- $\Diamond \psi \equiv \psi \lor \bigcirc \Diamond \psi$

 $\diamondsuit\psi$ is a solution of $\Psi=\psi\veeigcup\Psi$

- also $\Box\psi\equiv\neg\diamondsuit\neg\psi\equiv\psi\wedge\bigcirc\Box\psi$

 $\Box\psi$ is a solution of $\Psi=\psi\wedge \bigcirc \Psi$

Define the Release operator R in a way that the following holds:

 $\varphi \mathsf{R} \psi \equiv \neg (\neg \varphi \mathsf{U} \neg \psi)$ it also holds that $\varphi \mathsf{U} \psi \equiv \neg (\neg \varphi \mathsf{R} \neg \psi)$

(Release is dual of Until)

Define the Release operator R in a way that the following holds:

 $\varphi R \psi \equiv \neg (\neg \varphi U \neg \psi)$ it also holds that

 $\varphi \mathsf{U} \psi \equiv \neg (\neg \varphi \mathsf{R} \neg \psi)$

(Release is dual of Until)

PNF

Positive Normal Form for LTL: for $a \in AP$

 $\varphi ::= \mathsf{true} \mid \mathsf{false} \mid a \mid \neg a \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \bigcirc \varphi \mid \bigcirc \varphi \mid \varphi \mathsf{U}\varphi \mid \varphi \mathsf{R}\varphi$

Define the Release operator R in a way that the following holds:

 $\varphi \mathsf{R}\psi \equiv \neg(\neg \varphi \mathsf{U}\neg \psi)$ it also holds that

 $\varphi \mathsf{U} \psi \equiv \neg (\neg \varphi \mathsf{R} \neg \psi)$

(Release is dual of Until)

PNF

Positive Normal Form for LTL: for $a \in AP$

 $\varphi ::= \mathsf{true} \mid \mathsf{false} \mid a \mid \neg a \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \bigcirc \varphi \mid \varphi \mathsf{U}\varphi \mid \varphi \mathsf{R}\varphi$

Theorem

Each LTL formula φ admits an equivalent in PNF sometimes denoted pnf(φ)

LTLf

 $\varphi ::= A \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \bigcirc \varphi \mid \varphi \varphi_1 \mathsf{U} \varphi_2 \mid \bullet \varphi \mid \diamond \varphi \mid \Box \varphi \mid \mathsf{Last}$

A: **atomic** propositions

 $\neg \varphi$, $\varphi_1 \land \varphi_2$: **boolean** connectives

 $\bigcirc \varphi$: "next step exists and at next step (of the trace) φ holds" $\varphi_1 \cup \varphi_2$: "eventually φ_2 holds, and φ_1 holds until φ_2 does" $\bullet \varphi \doteq \neg \bigcirc \neg \varphi$: "if next step exists then at next step φ holds" (weak next) $\diamond \varphi \doteq \top \cup \varphi$: " φ will eventually hold" $\Box \varphi \doteq \neg \Diamond \neg \varphi$: "from current till last instant φ will always hold"

Last $\doteq \neg \bigcirc \top$: denotes **last** instant of trace.

- $\diamond degree$
- $\Box \neg crash$
- $\Box \Diamond eatPizza$
- $\Diamond \Box$ happy
- (¬friends)UyouApologise

LDL_f

$$\begin{split} \varphi ::= \phi \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \langle \rho \rangle \varphi \mid [\rho] \varphi \\ \rho ::= \phi \mid \varphi? \mid \rho_1 + \rho_2 \mid \rho_1; \rho_2 \mid \rho^* \end{split}$$

 ϕ : propositional formula on current state/instant $\neg \varphi, \varphi_1 \land \varphi_2$: boolean connectives ρ is a regular expression on propositional formulas $\langle \rho \rangle \varphi$: exists an "execution" of RE ρ that ends with φ holding $[\rho] \varphi$: all "executions" of RE ρ (along the trace!) end with φ holding

Example

All coffee requests from person p will eventually be served:

```
[\texttt{true}^*](\texttt{request}_p \supset \langle \texttt{true}^* \rangle \texttt{coffee}_p)
```

Every time the robot opens door d it closes it immediately after:

[true*]([openDoor_d]closeDoor_d)

Before entering restricted area a the robot must have permission for a:

 $\langle (\neg inArea_a^*; getPermission_a; \neg inArea_a^*; inArea_a)^*; \neg inArea_a^* \rangle$ end

Note that the first two properties (not the third one) can be expressed also in LTL_f :

 $\Box(request_p \supset \diamond coffee_p) \qquad \Box(openDoor_d \supset \bigcirc closeDoor_d)$