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Agents in Computer Science

Agents are powerful models in many areas of Computer Science.

Three characteristics

– Capabilities: actions and constraints

– Knowledge: information about environment

– Goal: specification of a task/objective to fulfill

Appears in many areas

Robotics

Software Engineering

Process Management

Knowledge Representation

Planning

Multi-Agent Systems

Sequential decision making

Reinforcement learning
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Reactive Controller Programming

Process

f : I ∗ → O
i o

Function f sends outputs according to the history of inputs.

Abadi, Lamport, Wolper - Realizable and Unrealizable Specifications of Reactive
Systems. - ICALP’89

– Adhere to capabilities: actions always fulfill
constraints

– Depend on knowledge: react on the stream of
inputs

– Fulfill the specification

An agent satisfying these properties is correct.

Temporal specification setting

f ⇝ Tf =⟨Q, I ,O, δ, τ⟩

Finite-state machines are expressive
enough to implement agents cor-
rectly in a large class of temporal
specifications.
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Reactive Synthesis

Instead of writing programs, we write specifications and run an automatic synthesis
procedure that in turns produces the program.

Reactive Synthesis

– Self-programming mechanism.

– Specifying a problem is usually simpler than solving it.

– Aim: correct-by-construction.

Pnueli and Rosner - On the Synthesis of a Reactive Module. - POPL’89

Finkbeiner - Synthesis of Reactive Systems. - DSSE’16
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Game-Theoretic Approach

Synthesis problems as games

Agent vs environment ⇐⇒ Two-Player Game
Temporal specification ⇐⇒ Winning Condition
Correct program ⇐⇒ Winning Strategy

Solving synthesis = winning a game

Synthesizing a correct program reduces to winning a suitably defined formal game.
Solution techniques: Logic, Games, and Automata.
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No playing around: game theory is serious business!

Image credits: Martin Zimmerman

▷ It’s fun!

▷ Model reactive systems

▷ Solve synthesis problems

▷ Evaluate logic formulas
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Examples of games

Synthesis

Image credits: ltlf2dfa.diag.uniroma1.it
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Classification of games

� Players

– 1 player;
– 2 players;
– multi-players.

� Interaction

– Turn-based;
– Concurrent.

� Information

– Perfect;
– Imperfect.

� Nature

– Deterministic;

– Stochastic.

� Objective

– Reachability;

– Safety;

– Büchi;

– co-Büchi;

– Parity, Rabin, Streett, Muller, . . .

Today

2-player turn-based perfect information games.
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2-player turn-based games

v0 v1 v2

v3 v4 v5

v6 v7 v8

A Game is played over a (finite) graph
(V,E ), whose vertexes are under the con-
trol of the two players V = V0 ∪V1.

A token moves along the vertexes and sent
to a successor by the controlling player.

The outcome or play is an infinite sequence
of vertexes in the graph.

A winning condition/objective is a subset
Obj ⊆ Vω of plays that Player 0 wants to
occur.

Sample play

π = v0 · v1 · v2 · v5 · v7 · . . . ∈ Vω
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Modelling tic tac toe
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Human games modelled as 2-player turn-based games

Tic-Tac-Toe is played on
a 3× 3 grid. Two players
place their placeholders in
turn on a free square.
The first to place three of
its own placeholders
aligned wins.

X X

O

# vertexes ≈ 9! ∼ 105

Lasker vs Thomas 1912: White to move and mate in 7
8rm0Z0skZ
7obopl0op
60o0Zpa0Z
5Z0Z0M0ZQ
40Z0ONZ0Z
3Z0ZBZ0Z0
2POPZ0OPO
1S0Z0J0ZR

a b c d e f g h

# vertexes ≈ 1043 − 1050 (Shannon, 1950)
# edges ≈ 10123 (Allis, 1994)
# possible different games ≈ 1010

50

Size of 5-pieces tablebase: 7GB
Size of 6-pieces tablebase: 1,2TB
Size of 7-pieces tablebase: 140TB (“Deep Thinking”,
Kasparov, 2017)
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Type of objectives

For a subset of the vertexes T ⊆ V:

– Reachability: visit T at least once.
Reach(T ) = {π ∈ Vω : ∃i ∈ N, π[i ] ∈ T}

– Safety: stay in T forever.
Safe(T ) = {π ∈ Vω : ∀i ∈ N, π[i ] ∈ T}

– Büchi: visit T infinitely often.
Buchi(T ) = {π ∈ Vω : ∀j ∈ N,∃i > j , π[i ] ∈ T}

– co-Büchi: reach and stay in T forever.
coBuchi(T ) = {π ∈ Vω : ∃j ∈ N,∀i > j , π[i ] ∈ T}

– Parity, Rabin, Streett, Muller, LTL, . . .

Question: what if we have more “alternations” of existential and universal quantifiers?
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Strategies and consistent plays

Strategies

A strategy maps partial outcomes (i.e., finite sequences of vertexes) into successors and
it is of the form

� σ0 : V
∗ ·V0 → V Player 0 strategy

� σ1 : V
∗ ·V1 → V Player 1 strategy

Consistent plays

Strategies “restricts” the game only to those plays π that are consistent with σ0, that
is such that:

π[i + 1] = σ0(π[0] · π[1] · . . . · π[i ])

For each σ0, σ1, there is only one consistent play π(v , σ0, σ1) starting from v .
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Solving Games

Winning strategies

A strategy σ0 is winning for Player 0 in v if every consistent path π starting from v
belongs to Obj. (Winning set Win0 ⊆ V )

A strategy σ1 is winning for Player 1 in v if every consistent path π starting from v
does not belong to Obj. (Losing set Win1 ⊆ V )

Solving a game

The solution of a game G is the set Win0 of vertexes that are winning for Player 0,
altogether with a winning strategy σ0.

Warning! While Win0 ∩Win1 = ∅, it is not always the case that V = Win0 ∪Win1.
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A reachability game

Consider again the arena below and let T = {v4, v5} (the double bordered nodes).

v0 v1 v2

v3 v4 v5

v6 v7 v8

What is the winning set of G?
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Solving Reachability Games

Consider the function force0 defined as follows:

force0(X ) = {v ∈ V0 : E (v) ∩ X ̸= ∅} ∪ {v ∈ V1 : E (v) ⊆ X}

Player 0 has a move to enter the region X ;

Player 1 cannot avoid to enter the region X .

The function computes the vertexes from which Player 0 can enforce the token to
move in the subset X of vertexes.
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Inductive reasoning

Constrained problem

Reachn(T ) := “Player 0 can reach T in at most n moves”.

n = 0: T I have to be in T already.
Reach0(T ) = T

n > 0: either I am or can force to a vertex winning in at most n − 1 moves.
Reachn(T ) = Reachn−1(T ) ∪ force0(Reach

n−1(T ))

Solving reachability

Win0(G) = Reach(T ) := “Player 0 can reach T in at most n moves”.

Reach(T ) = Reach0(T ) ∪ Reach1(T ) ∪ . . . ∪ Reachn(T ) ∪ . . .
Reach0(T ) ⊆ Reach1(T ) ⊆ . . . ⊆ Reachn(T ) ⊆ . . .

Fix-point calculation µX .(T ∪ force0(X ))
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Reachability Game Algorithm

Algorithm 1 Reachability game

1: Winold := T
2: Win := Winold ∪ force0(Winold)
3: while Win ̸= Winold do
4: Winold := Win
5: Win := Win ∪ force0(Win)
6: end while
7: return Win
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Sample Execution

v0 v1 v2

v3 v4 v5

v6 v7 v8
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Memoryless strategies

Memoryless strategy

A strategy σ0 is memoryless if it is of the form

σ0 :HHV∗·V0 → V

that is, at every vertex v , the next move does not depend on the past history (and thus
it is always the same).

Theorem (Memoryless)

If v ∈ Win0, then there exists a memoryless strategy σ0 that is winning from v .
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Determinacy

v0 v1 v2

v3 v4 v5

v6 v7 v8

It holds that Win0 ∪Win1 = V. When this is the case, we say that the game is
determined.

Theorem (determinacy)

Every 2-player turn-based reachability game is determined.
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Safety games

Consider an arena A = (V,E ,V0,V1) and a safety game G = (A, Safe(T )).
Define the dual arena A = (V,E ,V1,V0) and the reachability game
G = (A,Reach(V \ T ))

Exercise - Prove that:

Win0(G) = Win1(G);
Win1(G) = Win0(G).

Theorem

We can solve safety games by solving the dual reachability game and complement the
solution.
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Direct approach

Problem

Safen(T ) := “Player 0 can stay in T for at least n moves.”

For n = 0: I have to be in T already. Safe0(T ) = T

For n > 0: I must stay in T and move to a vertex from which I can force to stay
in T for n − 1 more times. Safen(T ) = T ∩ force0(Safe

n−1(T ))

Solving safety

Win0(G) = Safe(T ) := “Player 0 can stay in T forever”.

Win0(G) = Safe(T ) = Safe0(T ) ∩ Safe1(T ) ∩ . . . ∩ Safen(T ) ∩ . . .
Safe0(T ) ⊇ Safe1(T ) ⊇ . . . ⊇ Safen(T ) ⊇ . . .

Fix-point calculation νY.(T ∩ force0(Y))
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Safety Game Algorithm

Algorithm 2 Safety game

1: Winold := T
2: Win := Winold ∩ force0(Winold)
3: while Win ̸= Winold do
4: Winold := Win
5: Win := Win ∩ force0(Win)
6: end while
7: return Win
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Büchi and co-Büchi

Question: How do we solve Büchi and co-Büchi games?

Hint: Think of suitably combining Reachability and Safety conditions.

Perelli (Sapienza University of Rome) Game-Theoretic Approach ESSAI-24 29 / 50



Büchi games

Problem

Buchin(T ) := “Player 0 can visit T at least n times.”

For n = 1: I have to reach T at least once. Buchi1(T ) = Reach(T )

For n > 1: I have to reach a vertex in T from which I can force to visit T for n− 1
more times. Buchin(T ) = Reach(T ∩ force0(Buchi

n−1(T )))

Solving Büchi

Win0(G) = Buchi(T ) := “Player 0 can visit T as much as they wants”.

Win0(G) = Buchi(T ) = Buchi1(T ) ∩ Buchi2(T ) ∩ . . . ∩ Buchin(T ) ∩ . . .
Buchi1(T ) ⊆ Buchi2(T ) ⊆ . . . ⊆ Buchin(T ) ⊆ . . .

Fix-point calculation νX .(µY.((T ∧ force0(X )) ∨ force0(Y)))
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Büchi games

Problem

Buchin(T ) := “Player 0 can visit T at least n times.”

For n = 1: I have to reach T at least once. Buchi1(T ) = Reach(T )

For n > 1: I have to reach a vertex in T from which I can force to visit T for n− 1
more times.

Buchin(T ) = Reach(T ∩ force0(Buchi
n−1(T )))

Solving Büchi
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co-Büchi games

Consider an arena A = (V,E ,V0,V1) and a co-Büchi game G = (A, coBuchi(T )).
Define the dual arena A = (V,E ,V1,V0) and the Büchi game G = (A,Buchi(V \ T ))

Exercise - Prove that:

Win0(G) = Win1(G);
Win1(G) = Win0(G).

Theorem

We can solve co-Büchi games by solving the dual Büchi game and complement the
solution.

Fix-point calculation µX .(νY.((T ∨ force0(X )) ∧ force0(Y)))
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Recap

Reachability: 3T Reach(T ) = µX .(T ∪ force0(X ))

Safety: 2T Safe(T ) = νY.(T ∩ force0(Y))

Büchi: 23T Buchi(T ) = νX .(µY.((T ∧ force0(X )) ∨ force0(Y)))

co-Büchi: 32T coBuchi(T ) = µX .(νY.((T ∨ force0(X )) ∧ force0(Y)))

Perelli (Sapienza University of Rome) Game-Theoretic Approach ESSAI-24 32 / 50



Parity Games

4 0 3

1 2

6 6 3

Every vertex is colored with an natural num-
ber. c : V → N

The play produces an infinite sequence of
numbers, aka colors.

Player 0 wins if the highest color occurring
infinitely many times is even.
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The complexity of solving Parity Games

Theorem

For a given parity game G, computing the winning regions Win0(G) and Win1(G) can
be done in NP ∩ coNP.

– Determining the right complexity of solving parity games is a long-standing open
problem, that has fascinated researchers for more than three decades.

– It has generated a lot of work and it can be considered as a research topic by
itself!

– The importance of parity games, especially in connection with Synthesis, has spurred
the CS community to come up with different approaches for practical efficiency.
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Solving Parity Games

G
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Reach0(Cmax)
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Solving Parity Games

G

B ⊆ Win1(G)

solve(G \ B)
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Parity Game (Zielonka’s) Algorithm

Algorithm 3 Parity game

1: p maximal priority in G
2: if p = 0 then
3: return Win0 = V ; Win1 = ∅
4: end if
5: Cmax = c−1(p) // nodes in G with highest priority
6: i = p mod 2 // setting “perspective”
7: A = Reachi (Cmax)
8: (Win′0,Win′1) = solve(G \ A)
9: if Win′1−i = ∅ then

10: return Wini = V ; Win1−i = ∅
11: end if
12: B = Reach1−i (Win′1)
13: (Win′′0,Win′′1) = solve(G \ B)
14: return Wini = Win′′i ; Win′′1−i ∪ B
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Linear Temporal Logic (LTL)

A standard language for talking about infinite state sequences.

Amir Pnueli - The Temporal Logic of Programs. - FOCS’77

⊤ truth constant

p primitive propositions

¬ϕ classical negation

ϕ ∨ ψ classical disjunction

ϕ ∧ ψ classical conjunction

⃝ϕ in the next state. . .

3ϕ will eventually be the case

2ϕ is always the case

ϕUψ ϕ until ψ

ϕRψ ϕ release ψ

Minimal syntax
φ := p | ¬φ | φ ∧ φ | ⃝φ | φUφ
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Alternative syntax in the literature

you may encounter the following notations:

Xφ : ⃝φ
Fφ : 3φ
Gφ : 2φ

past operators are possible (though not strictly necessary)
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Semantics of LTL

⃝φ
0

φ

1 2 i k

3φ
0 1 2 i

φ

k

2φ
φ

0

φ

1

φ

2

φ

i

φ

k

φ

φUψ
φ

0

φ

1

φ

2

φ

i

ψ

k

LTL formulas are evaluated on infinite traces, that is, obtained from an infinite path.

The language defined by an LTL formula φ is L(φ) = {w ∈ Σω : w |= φ}.
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Example LTL formulae

3degree

eventually I will graduate

Perelli (Sapienza University of Rome) Game-Theoretic Approach ESSAI-24 40 / 50



Example LTL formulae

2¬crash

the plane will never crash
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Example LTL formulae

23eatPizza

I will eat pizza infinitely often (but only in Napoli)
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I will eat pizza infinitely often

(but only in Napoli)
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Example LTL formulae

23eatPizza

I will eat pizza infinitely often (but only in Napoli)
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Example LTL formulae

32happy

... and they lived happily ever after.
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32happy

... and they lived happily ever after.
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Example LTL formulae

(¬friends)UyouApologise

we are not friends until you apologise
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Expansion laws

Describe temporal modalities recursively

- φUψ ≡ ψ ∨ (φ ∧⃝φUψ) φUψ is a “solution” of Ψ = ψ ∨ (φ ∧⃝Ψ)

- 3ψ ≡ ψ ∨⃝3ψ 3ψ is a solution of Ψ = ψ ∨⃝Ψ

- also 2ψ ≡ ¬3¬ψ ≡ ψ ∧⃝2ψ 2ψ is a solution of Ψ = ψ ∧⃝Ψ
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Release operator and PNF

Define the Release operator R in a way that the following holds:

φRψ ≡ ¬(¬φU¬ψ)
it also holds that
φUψ ≡ ¬(¬φR¬ψ) (Release is dual of Until)

PNF

Positive Normal Form for LTL: for a ∈ AP

φ ::= true | false | a | ¬a | φ ∧ φ | φ ∨ φ | ⃝φ | φUφ | φRφ

Theorem

Each LTL formula φ admits an equivalent in PNF sometimes denoted pnf(φ)
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LTLf : LTL over finite traces

LTLf

φ ::= A | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | ⃝φ | φ1Uφ2 |  φ | 3φ | 2φ | Last

A: atomic propositions

¬φ, φ1 ∧ φ2: boolean connectives

⃝φ: “next step exists and at next step (of the trace) φ holds”

φ1Uφ2:“eventually φ2 holds, and φ1 holds until φ2 does”

 φ .
= ¬⃝¬φ: “if next step exists then at next step φ holds” (weak next)

3φ
.
= ⊤Uφ: “φ will eventually hold”

2φ
.
= ¬3¬φ: “from current till last instant φ will always hold”

Last
.
= ¬⃝⊤: denotes last instant of trace.

Perelli (Sapienza University of Rome) Game-Theoretic Approach ESSAI-24 47 / 50



LTLf semantics difference with LTL

– 3degree

– 2¬crash
– 23eatPizza

– 32happy

– (¬friends)UyouApologise
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ldlf : linear dynamic logic over finite traces

ldlf

φ ::= ϕ | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | ⟨ρ⟩φ | [ρ]φ
ρ ::= ϕ | φ? | ρ1 + ρ2 | ρ1; ρ2 | ρ∗

ϕ: propositional formula on current state/instant

¬φ, φ1 ∧ φ2: boolean connectives

ρ is a regular expression on propositional formulas

⟨ρ⟩φ: exists an “execution” of re ρ that ends with φ holding

[ρ]φ: all “executions” of re ρ (along the trace!) end with φ holding
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ldlf : linear dynamic logic on finite traces

Example

All coffee requests from person p will eventually be served:

[true∗](requestp ⊃ ⟨true∗⟩coffeep)

Every time the robot opens door d it closes it immediately after:

[true∗]([openDoord ]closeDoord)

Before entering restricted area a the robot must have permission for a:

⟨(¬inAreaa∗; getPermissiona;¬inAreaa
∗; inAreaa)

∗;¬inAreaa∗⟩end

Note that the first two properties (not the third one) can be expressed also in LTLf :

2(requestp ⊃ 3coffeep) 2(openDoord ⊃ #closeDoord)
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