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Strategic Reasoning with Quantitative Goals

Boolean verification
▶ Either the system satisfies a logic specification or it does not
▶ cleanRiver is either true or false in a given state

Quantitative verification
▶ Assessing the quality of Multi-Agent Systems (MAS)
▶ Levels of quality represented with weights
▶ cleanRiver may be partially true in a state
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Quantitative Logics for MAS

Logics with quantitative satisfaction

Goals are expressed as a fuzzy temporal constraint:
▶ Boolean satisfaction ⇝ quantitative satisfaction;
▶ Specification language ⇝ LTL[F ]1, ATL∗[F ]/ATL[F ]2, SL[F ]3

▶ System model ⇝ Weighted Game Structure.

1Almagor, Boker, and Kupferman (2016). “Formally Reasoning about Quality”. In: Journal of the ACM
2Jamroga, Mittelmann, Murano, and Perelli (2024). “Playing Quantitative Games Against an Authority: On

the Module Checking Problem”. In: AAMAS 2024
3Bouyer, Kupferman, Markey, Maubert, Murano, and Perelli (2019). “Reasoning about Quality and

Fuzziness of Strategic Behaviours”. In: IJCAI
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Concurrent Game Structures (CGS)

A CGS is a tuple G = (Ap,Ag,Ac,V , d , o, ℓ), where:

Ap propositions (relevant facts)

Ag agents

Ac agents’ actions

V states

d : Ag× V → 2Ac available actions

o : V ×AcAg → V transition function

ℓ : V → 2Ap labelling function
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Weighted CGS (wCGS)

A wCGS is a tuple G = (Ap,Ag,Ac,V , d , o, ℓ), where:

Ap propositions (relevant facts)

Ag agents

Ac agents’ actions

V states

d : Ag× V → 2Ac available actions

o : V ×AcAg → V transition function

ℓ : V × Ap → [0, 1] weight function

p=.5
q=.2

p=.5
q=.2
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q=.6
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q=1

p=.2
q=.8
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Weight function instead of labeling function to model degrees of truth. (fuzzy satisfaction)
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Quantitative logics for MAS

The logics are parametrized over a set of functions F 4:

f : [0, 1]n → [0, 1] ∈ F

Example:

x ∨ y := max(x , y) (disjunction)

x ∧ y := min(x , y) (conjunction)

¬x := 1− x (negation)

We assume that some standard functions belong to F : ≤ (Boolean), = (Boolean), bounded
sum, etc.

4We assume the functions in F to be computable in polynomial time
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Quantitative ATL∗ and ATL

ATL∗[F ] Syntax

φ ::= p | f [φ, ..., φ] | Xφ | φUφ | φRφ | ⟨⟨A⟩⟩φ

where p is a proposition, A is a coalition, and f ∈ F

ATL[F ] Syntax (no temporal nesting allowed)

φ ::= p | f [φ, ..., φ] | ⟨⟨A⟩⟩Xφ | ⟨⟨A⟩⟩φUφ | ⟨⟨A⟩⟩φRφ

ATL∗[F ] and ATL[F ] Semantics

“f [φ, ..., φ]” - compute the function over the satisfaction values of its inputs

“⟨⟨A⟩⟩φ” - coalition A maximizes the satisfaction value of φ

Abbreviations: [[A]]φ := ¬⟨⟨A⟩⟩¬φ Fφ := ⊤Uφ Gφ := ⊥Rφ
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Relation with Boolean ATL∗

Can we capture ATL∗ with ATL∗[F ]?

Yes, when atomic propositions can only take values 0 and 1, and F contains only negation and
disjunction.
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Example: Drone battle

Two carrier drones a and b cooperate trying to bring an artifact to a rescue point and keep it
away from the “villain” drone v :

rescued denotes whether the artifact is at the rescue point

dis computes the distance between two (normalized) positions

posx denote the position of drone x

Level of safety: minimum distance between any carrier and the villain

φsafe := ⟨⟨a, b⟩⟩ min[dis[posa,posv ], dis[posb,posv ]] U rescued

What does the formula φsafe captures?

Carriers a and b best-performing joint strategy to keep the villain as far as
possible from the carriers, until the artifact is rescued.
What if the artifact is never rescued?
The satisfaction value of φsafe would be 0.
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Example: Drone battle (cont.)

Can we express that there is a strategy for the drone a such that
for all strategies of the villain (v), the drone b has a response strategy?

No, we cannot capture alternation of strategy quantification
(each strategic quantifier resets previously assigned strategies).

We need a more expressive logic...

Mittelmann, Murano, Perrussel 12 / 70



Example: Drone battle (cont.)

Can we express that there is a strategy for the drone a such that
for all strategies of the villain (v), the drone b has a response strategy?

No, we cannot capture alternation of strategy quantification
(each strategic quantifier resets previously assigned strategies).

We need a more expressive logic...

Mittelmann, Murano, Perrussel 12 / 70



Example: Drone battle (cont.)

Can we express that there is a strategy for the drone a such that
for all strategies of the villain (v), the drone b has a response strategy?

No, we cannot capture alternation of strategy quantification
(each strategic quantifier resets previously assigned strategies).

We need a more expressive logic...

Mittelmann, Murano, Perrussel 12 / 70



Quantitative SL

SL[F ] Syntax

φ ::= p | ∃s.φ | (a, s)φ | f [φ, ..., φ] | Xφ | φUφ

where p is a proposition, s is a variable, a is an agent, and f ∈ F

SL[F ] Semantics

Defined over assignments of strategies to variables and agents

“∃s.φ” - the maximal satisfaction value of φ for the possible assignments of strategy to s

“(a, s)φ” - the satisfaction value of φ when agent a is assigned to the str. assigned to s

Abbreviations: ∀s.φ := ¬∃s.¬φ Fφ := ⊤Uφ Gφ := ¬F¬φ φRψ := ¬(¬φU¬ψ)
We call LTL[F ] the fragment without strategic operators and bindings
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Example: Drone battle (cont.)

There is a strategy for drone a such that for all strategies of the villain v , b has a response
strategy to keep the villain as far as possible, until the artifact is rescued:

∃s.∀t.∃s ′.(a, s)(v , t)(b, s ′) min[dis[posa, posv ], dis[posb,posv ]] U rescued
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Example: Nash equilibrium

Assume each agent a has an LTL[F ] goal φa.
Let s = (sa)a∈Ag denote a strategy profile.
Ag−a denotes the set of agents without a.
s−a denotes the strategies of Ag−a in the profile s.

Nash equilibrium (NE)

The strategy profile s is a Nash equilibrium if for each agent a, no alternative strategy t for a
leads to a better utility than her strategy sa (while all other agent’ strategies play s−a).

How can we express whether s is a NE in SL[F ]?

NE(s) def=
∧
a∈Ag

∀t.
[
(Ag−a, s−a)(a, t)φa ≤ (Ag, s)φa

]
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Example: Nash equilibrium (cont)

We can also measure how much agent a can benefit from a selfish deviation using formula:

∃t.diff
[
(Ag−a, s−a)(a, t)φa, (Ag, s)φa

]
where diff (x , y) = max{0, x − y}.
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Model checking

Model checking problem

Given an SL[F ] (similarly ATL∗[F ] or ATL[F ]) formula φ, a wCGS G, a state v , and a
predicate P ⊆ (0, 1], decide whether the satisfaction value of φ in v is a subset or equal to P,
denoted

[[φ]]G(v) ⊆ P

The predicate can be the set of values above a threshold ϵ ∈ (0, 1]:
Decide whether [[φ]]G(v) ≥ ϵ.
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Complexity of Model Checking

Using automata-theoretic approaches:

Theorem 1 (Bouyer et al., 2019)

Model-checking SL[F ] in (k+1) Exptime
(where k is the number of alternations of strategic operators )

Theorem 2 (Jamroga et al., 2024)

Model-checking ATL∗[F ] 2Exptime-complete
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Complexity of Model Checking

Algorithmic solution:

Theorem 3 (Jamroga et al., 2024)

Model-checking ATL[F ] Ptime-complete

Theorem 4 (Maubert et al., 2021)

Model checking SL[F ] with memoryless agents Pspace-complete

Mittelmann, Murano, Perrussel 20 / 70
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Weighted Module

Weighted Module is a special wCGS G = (Ap,Ag,Ac,V , d , o, ℓ):

Ap propositions (relevant facts)

Ag ∪ {e} agents and environment

Ac actions

V states

Ve ⊆ V environment’s states

d : Ag× V → 2Ac available actions

o : V × AcAg → V transition function

ℓ : V × Ap → [0, 1] weight function

p=.5
q=.2

p=.5
q=.2

p=.3
q=.6

p=.7
q=0

p=.2
q=1

p=.2
q=.8

p=.3
q=.9

p=.4
q=.7

p=.5
q=.5

p=0
q=1

act

act

act

act

act

act
act

act

act
act

act
act

Environment states (gray) under the control of an “environmental” authority, who shapes the
game by selecting possible successors at each iteration.
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Module Checking

For a given weighted module G:
T ∈ exec(G) is a possible wCGS resulting from the choices of e in G.

Given an ATL∗[F ] formula φ, a module G, a position v :

[[φ]]Gr (v) = {[[φ]]T (v) | T ∈ exec(G)} all possible values in v according to T

Definition 5 (Module Checking)

Deciding whether [[φ]]Gr (v) ⊆ P, for a given predicate P ⊆ [0, 1].
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Complexity of Module Checking

Automata-theoretic approach

Theorem 6 (Jamroga et al., 2024)

Module-checking ATL∗[F ] 3Exptime-complete

Module-checking ATL[F ] Exptime-complete
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Relation with Boolean Module Checking and Model Checking

ATL∗[F ] module checking is not subsumed by ATL∗ module checking over weighted
modules

ATL∗[F ] module checking is not subsumed by ATL∗[F ] model checking.
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Contents

Quantitative extensions of SL, ATL∗, and ATL

Model and module checking problems have the same computational complexity as the
corresponding logics with Boolean semantics

MAS with quantitative goals: application to mechanism design
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Mechanism Design
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Mechanism Design
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Motivation

Preference aggregation problems
▶ Auctions, elections, fair division protocols, etc

Logic-based approach: verification5 and synthesis of mechanisms6

▶ We use the weights [−1, 1] for convenience

5Maubert, Mittelmann, Murano, and Perrussel (2021). “Strategic Reasoning in Automated Mechanism
Design”. In: KR 2021.

6Mittelmann, Maubert, Murano, and Perrussel (2022). “Automated Synthesis of Mechanisms”. In: IJCAI
2022.
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Mechanisms

Alternatives Alt
▶ {(buyerBob, paysk), (buyerAnn, paysk) : 0 ≤ k ≤ 10} (selling an item)

▶ {(Ann,Bob), (Ann,Carol), (Bob,Carol)} (choosing two representatives)

▶ {( 13 ,
1
3 ,

1
3 ), (

1
2 ,

1
2 , 0), (1, 0, 0), ...} (splitting a resource)

Many mechanisms describe monetary transfers, thus an alternative is in the form
(x , (pa)a∈Ag) where x ∈ X is a choice from a finite set of choices, and pa is the payment
for agent a.
E.g., x = buyerBob, pBob = 10, pAnn = 0
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Mechanisms for social choice

Agent’s type (preference) θa ∈ Θa

Valuation function vag : X ×Θa → R
Utility function uag : Alt×Θa → R

▶ E.g., Possible types in a single-item auction ΘBob = {0, ..., 10}
▶ θBob = 2 means Bob value to the item is 2 euros

▶ The valuation of Bob is
vBob(buyerBob, θBob) = θBob

vBob(buyerAnn, θBob) = 0

▶ The (quasi-linear) utility is

uBob((buyerBob, (pBob, pAnn)), θBob) = vBob(buyerBob, θBob)− pBob

uBob((buyerBob, (5, 0)), 2) = 2− 5 = −3
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Mechanisms for social choice

Types Θ =
∏

a∈AgΘa

Strategies S =
∏

a∈Ag sa

Mechanism M : S → Alt
▶ English auction: the agents increase the price until there are no other buyers interested
▶ Dutch auction: the price decreases until one agent accepts to buy

Mittelmann, Murano, Perrussel 33 / 70



Example: wCGS representing the Dutch auction

⟨1, (0, 0)⟩

⟨23 , (0, 0)⟩⟨1, (1, 0)⟩ ⟨1, (0, 1)⟩

⟨13 , (0, 0)⟩⟨23 , (1, 0)⟩ ⟨23 , (0, 1)⟩

⟨0, (0, 0)⟩⟨13 , (1, 0)⟩ ⟨13 , (0, 1)⟩

w,w

w,w

w,w

b,
w

b,
w

b,
w

w, b

w, b

w, b

Figure 2: Part of the mechanism for the Dutch auction with two agents and decrement dec = 1
3 .
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Mechanisms for social choice

Evaluation of a mechanism with rational agents: solution concepts

Example of properties:

Budget-balance

Strategyproof

Individual rationality

Efficiency

...
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Solution concepts

Nash equilibrium (NE): considers (unilateral) deviations of individual agents

Dominant strategy equilibrium (DSE): the strategy associated with each agent weakly
maximizes her utility, for all possible strategies of other agents

m-resilient equilibrium (REm): considers deviations by coalitions of agents rather than
individuals, it tolerates deviations of up to m agents

Mittelmann, Murano, Perrussel 36 / 70



Mechanism Properties

Individual Rationality (IR):

IR
def
=

∧
a∈Ag

0 ≤ utila

The Dutch auction is IR
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Mechanism Properties

Strong Budget Balance (SBB):

SBB
def
= 0 =

∑
a∈Ag

paya

Weak Budget Balance (WBB):

WBB
def
= 0 ≤

∑
a∈Ag

paya

The Dutch auction is WBB and not SBB
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Mechanism Properties

Strategyproofness (SP)
Let θ̂a be the truth-revealing strategy for a

DSE(s) where A(sa) = θ̂a for each a

The Dutch auction is not SP

Efficiency, Pareto optimality, ...
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Model-checking SL[F ]

Model checking mechanism properties with SL[F ] when agents are strategic:
For a given property φ and solution concept ζ, we check

∃σ.[ζ(σ) ∧ (Ag,σ)φ]

More complex mechanisms

By changing the specification language, we can also verify mechanisms with imperfect
information 7 and probabilistic features 8

7Maubert, Mittelmann, Murano, and Perrussel (2021). “Strategic Reasoning in Automated Mechanism
Design”. In: KR 2021

8Mittelmann, Maubert, Murano, and Perrussel (2023). “Formal Verification of Bayesian Mechanisms”. In:
AAAI

Mittelmann, Murano, Perrussel 40 / 70



Synthesis of Mechanisms

Creating mechanisms from a logical specification in SL[F ]

Satisfiability of SL (thus, SL[F ]) is undecidable in general

Decidable cases

Mittelmann, Murano, Perrussel 41 / 70



Synthesis of Mechanisms

Given a finite set V ⊂ [−1, 1] such that {−1, 1} ⊆ V, the V-satisfiability problem for SL[F ] is
the restriction of the satisfiability problem to V-weighted wCGS.

Theorem 7 (Mittelmann, Maubert, et al., 2022)

The satisfiability of SL[F ] is decidable in the following cases:

wCGS with bounded actions

Turn-based wCGS

Algorithms for the satisfiability → return a satisfying wCGS when one exists (see Pnueli
and Rosner, 1989)
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Optimal mechanism synthesis

Algorithm 2 Optimal mechanism synthesis

Data: A SL[F ] specification Φ and a set of possible values for atomic propositions V
Result: A wCGS G such that [[Φ]]G is maximal

Compute ṼalΦ,V Let ν1, ..., νn be a decreasing enumeration of ṼalΦ,V for i=1...n do
Solve V- satisfiability for Φ and ε = νi if there exists G such that [[Φ]]G ≥ νi then

return G
end

end

Mittelmann, Murano, Perrussel 43 / 70



Advantage

Optimal mechanism synthesis

Synthesis from auction rules (e.g. ADL-like9) and strategic requirements (e.g.
strategyproofness)

9Mittelmann, Bouveret, and Perrussel (2022). “Representing and reasoning about auctions”. In:
Autonomous Agents and Multi-Agent Systems 36.1, p. 20.
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Example Auction rules

AG((¬sold ∧ price + inc < 1) → (price + inc = Xprice ∧ ¬Xterminal))

AG((sold ∨ price + inc ≥ 1) → (price = Xprice ∧ Xterminal))

AG(choice = winsa ↔ bida ∧
∧

b ̸=a ¬bida)

AG
(∧

a∈Ag(choice = winsa → paya = price)
)
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Contents

Logic-Based Mechanism Design
▶ Verifying properties under strategic behaviour → MC SL[F ]-formulas
▶ Generating mechanisms → synthesis from SL[F ]-formulas

Correctness of the encoding for classic mechanism design

Logics for MAS allows us to go further
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Partially redesigning a system

We can design new mechanisms with nice properties when agents act rationally...

What if we already have a mechanism (or a system) but it doesn’t have those properties?

What if we cannot redesign it from scratch?

Existing environmental legislation fails to reach sustainability targets.
How can we change the system to address this issue?

How can we change the system to satisfy desirable properties?
▶ norms, incentives, ...
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Partially redesigning a system

How can we convince agents to act on behalf of the environment?

Laws prohibiting the use of disposable plastic bags

Taxes based on companies’ pollution rates

Subsidizing public transportation fees

Norm design10

Incentive design11

10Alechina, De Giacomo, Logan, and Perelli (2022). “Automatic Synthesis of Dynamic Norms for
Multi-Agent Systems”. In: KR.

11Hyland, Mittelmann, Murano, Perelli, and Wooldridge (2024). “Incentive Design for Rational Agents”. In:
KR (to appear).
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Incentive Design

Agents try to maximize their utilities, expressed with LTL[F ]-goals

We want to impose incentive schemes

Rationality is defined w.r.t. solution concepts

Incentive Scheme

It is a function, that assigns new weights to some (or all) atomic propositions
It can be either:

Static (memoryless)

Dynamic (history-based)

We assume that incentive schemes have a fixed level of granularity
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Example - River

Two companies share the usage of a river

At each moment, the companies can either discharge waste water in the river or treat the
waste water (at a cost)

▶ If both firms discharge, the water quality deteriorates
▶ If only one discharges, the quality is not affected
▶ If both firms clean, the river quality improves

A regulator can impose taxes on each company
▶ Company a goal: G(utilitya − taxa)
▶ Taxes are initially zero → it motivates the companies to discharge wastewater in the river
▶ Regulator goal: G(quality ∧ fair).
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Example - River

With static incentive schemes:
▶ The regulator can set the taxes so that at least one of the firms is worse off by discharging
▶ If only one firm is taxed, it may be seen as unfair
▶ If both firms are taxed, there may be an unnecessary loss of profits to both firms

With dynamic incentive schemes:
▶ The regulator can alternate between taxing the firms a sufficient amount for discharging,

which is more fair and efficient

Mittelmann, Murano, Perrussel 52 / 70



Computational Problems

Incentive Verification

Check if an incentive scheme guarantees that the goal φ is satisfied at least c

Incentive Synthesis

Find an incentive scheme, if it exists, that guarantees that the goal φ is satisfied at least c

Variants of the problems

ζ ∈ {DSE,NE,REm} denotes the solution concept

E (similarly, A) indicates that the goal is satisfied in some (resp. all) equilibrium (fixed ζ)

S (similarly, D) indicates that the incentive scheme is static (resp. dynamic)
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Static Case

For verification, we apply the static incentive scheme to the wCGS and then check the
corresponding SL[F ] formulas:

∃σ.[ζ(σ) ∧ (Ag,σ)φ]

∀σ.[ζ(σ) → (Ag,σ)φ]

For synthesis, we non-deterministically guess an incentive scheme, then proceed with
verification
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Complexity - Static Case

Theorem 8 (Hyland et al., 2024)

For ζ ∈ {DSE,NE,REm},m ∈ {1, ..., |Ag|}, the following problems are 2Exptime-complete:

ζ-S-E-Incentive-Verification

ζ-S-A-Incentive-Verification

ζ-S-E-Incentive-Synthesis

ζ-S-A-Incentive-Synthesis
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Dynamic Case

We transform the original wCGS into a modified one:
▶ We embed the incentive designer into the wCGS as an agent
▶ Her actions correspond to the application of incentives
▶ The new wCGS interleaves actions of the incentive designer and the other agents
▶ This requires to inflate the runs of the wCGS and translate formulas

Then, verification is done similarly to the static case (with adapted SL[F ] formulas)

For synthesis, we also check the existence of an incentive designer strategy (which leads
to an additional alternation in the ζ-D-A case)
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Complexity - Dynamic Case

Theorem 9 (Hyland et al., 2024)

For ζ ∈ {DSE,NE,REm},m ∈ {1, ..., |Ag|}, the following problems are 2Exptime-complete

ζ-D-E-Incentive-Verification

ζ-D-A-Incentive-Verification

ζ-D-E-Incentive-Synthesis

Finally, ζ-D-A-Incentive-Synthesis is in 3Exptime and is 2Exptime-hard.
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Contents

Incentive Design allows the partial redesign of games through incentives

For the cases considered, the complexity of the problems is not harder than the
corresponding Boolean rational verification problems (Abate et al., 2021)
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Future discounting in MAS

Satisfying the goal sooner > after a long wait

Temporal discounting operators alongside Linear Temporal Logic (LTLdisc[D])12

SLdisc[D]: Strategy Logic + future discounting13

12Almagor, Boker, and Kupferman (2014). “Discounting in LTL”. In: TACAS.
13Mittelmann, Murano, and Perrussel (2023). “Discounting in Strategy Logic”. In: IJCAI.
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Strategy Logic with Discounting

Enable to express:
1 Strategic abilities of agents with discounted goals
2 Solution concepts in discounting games

Parametrized by a set of discounting functions D:
▶ Agents may be affected differently by how long it takes to achieve their goal
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Strategy Logic with Discounting

A discounting function is a function that tends to zero and is non-increasing (e.g., d(i) = 1
i+1)

We assume the functions in D are computable in polynomial time

SLdisc[D] syntax

φ ::= p | ¬φ | φ ∨ φ | ∃s. φ | (a, s)φ | Xφ | φUφ | φUdφ

where p ∈ Ap, s ∈ Ap, a ∈ Ag, and d ∈ D.

SLdisc[D] semantics

Quantified semantics defined over Concurrent Game Structures
Discounted-until φ1Udφ2 is weighted by how far in the future φ1 and φ2 occur
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Relation with LTLdisc[D], SL and SL[F ]

LTLdisc[D] ⊂ SLdisc[D]

SL ⊂ SLdisc[D]

SL[F ] is interpreted over a different class of models
Functions are independent of how far in the play they are being evaluated
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Example - Secretary Problem

Fd k-hired
∃s∀t(a, s)(Ag−a, t)(

∨
j∈C ¬presentj)Ud k-hired

Figure 3: Instance of the secretary problem; the utility decreases the more time is taken to hire one.
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Model Checking SLdisc[D]

Theorem 10 (Mittelmann, Murano, and Perrussel, 2023)

Model checking SLdisc[D] with memoryless agents Pspace-complete

Theorem 11 (Mittelmann, Murano, and Perrussel, 2023)

Model checking SLdisc[D] with memoryfull agents (k + 1)-Exptime
(when functions in D are exponential-discounting, where k is the number of quantifiers
alternations)
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Contents

SLdisc[D]: reasoning about temporal goals whose satisfaction value decays over time

More expressive than SL

Under certain restrictions, it has the same complexity as SL
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Directions for Future Work

Synthesis from fragments of SL[F ]

Partial synthesis
▶ Incentives + Temporal Discounting
▶ Fuzzy Norms
▶ Finding minimal changes in the model

SL[F ] + SLdisc[D]?

Extensions of model-checkers
▶ MCMAS - https://sail.doc.ic.ac.uk/software/mcmas/
▶ STV - https://github.com/blackbat13/stv
▶ Vitamin - https://arxiv.org/abs/2403.02170
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