Formal Aspects of Strategic Reasoning and Game Playing

Laurent Perrussel – Munyque Mittelmann – Nello Murano July 2024

IRIT – Université Toulouse Capitole (FR) University of Napoli (IT)

Motivation

• Game: describe and justify actions in a multi-agent context

- Autonomy for agent means
 - Decision making: justify actions (agent rationality) *P1 plays scissor because...*
 - handling or playing in different environments (facing a new game)

P2 now plays Tic-tac-toe

Computer Science vs Game Theory?

• Game Theory

Main goal: assessing the graph (i.e. the game) and find equilibrium or existence of winning strategies

• Computer Science

Main goal: compact representation, computation of the possible next actions and choice

General Game Playing

Computer scientists challenge: build programs sufficiently general for playing different games.

- Lecture 1: Game Description Language and Game Description Logic (GDL)
- Lecture 2: GDL and Imperfect Information
- Lecture 3: Basics of Formal Verification of 1 and 2 players Game
- Lecture 4: Strategic Reasoning and Formal Verification of multiple players Game
- Lecture 5: Strategic Reasoning and Quantitative information and goals

Motivation

General Game Playing

Game Description Language

Game Description Logic: GDL with a (logic-flavored) semantics

Imperfect Information: Extending the Logic

Reasoning for winning?

Still a lot to do! - Example: Equivalent games

Perspectives

General Game Playing

General Game Playing - Overall organization

More details at http://ggp.org and in [Genesereth and Thielscher, 2014]

Interaction between server and players:

 \Rightarrow Game rules & current state of the game \Leftarrow Moves Limited to the shared aspect of the game

- **Type of game** No randomness perfect information (board game)
- Language Processable by the server and players (game rules)
- **Timeclock** sync player moves and game run No prerequisite on players implementation (reasoning is not compulsory!)

- Overall goal: designing intelligent agent Building players sufficiently general for playing different games
- GGP competition: players compete by playing at different games. Challenge is **not** to build the best player for one game
- GGP player will never beat AlphaGo (at least in a Go game!)

General Game Playing - Specialized player

- Usually rules of the game hard-coded in the player
- Possibly exhaustive search
- Predefined library of best moves (tactics, ie. library of plans) combined with heuristics
- Library can be learned

Game Description Language (GDL)

• General

General enough for describing different games: no primitives related to some specific game

- Game rules and remarkable states Initial and final states, legal actions...
- Compact

Logic-based language, namely first-order logic

Server

• Not relevant - Zero intelligence

Players

- No specific implementation Several implementation are available (Java, Prolog...)
- No specific way to play Reasoning, Heuristics, Monte-Carlo, CSP...

Tic-Tac-Toe

Tic Tac Toe (or Noughts and Crosses, Xs and Os) is a game for two players who take turns placing their marks in a 3x3 grid. The first player to place three of his marks in a horizontal, vertical, or diagonal row wins the game.

General Game Playing - GDL Example

Tic-Tac-Toe GDL representation (1/3)

```
;;; Components
          . . . . . . . . . . . . .
   (role white)
   (role black)
   . . .
;;; init
(init (cell 1 1 b))
   . . .
   (init (cell 3 3 b))
   (init (control white))
```

General Game Playing - GDL Example

```
Tic-Tac-Toe GDL representation (2/3)
```

```
;;; legal moves
    (<= (legal ?w (mark ?x ?y))
        (true (cell ?x ?y b))
        (true (control ?w)))
    (<= (legal white noop)
        (true (control black)))
    . . .
;;; next (effects)
    (<= (next (cell ?m ?n x))
        (does white (mark ?m ?n))
        (true (cell ?m ?n b)))
    . . .
```

General Game Playing - GDL Example

Tic-Tac-Toe GDL representation (3/3)

```
;;; goal
    (<= (goal white 100)
        (line x)
        (not (line o)))
    (<= (goal white 0)
        (not (line x))
        (line o))
    . . .
;;; terminal
    (<= terminal
        (line x))
```

Game Description Language

Prolog/Datalog like rules with predefined keywords (prefix notation)

Static perspective

- role players of the game (role white)
- init initial state (init (cell 1 1 b))
- true current state (true (cell 2 2 b))

GDL - Primitives (2/2)

Dynamic perspective

- legal rules of the game possible moves
 (<= (legal x noop) (true (control o)))
- does performing action (in the current state) (<= (next (cell ?x ?y ?player)) (does ?player (mark ?x ?y)))
- goal objectives of the players (<= (goal ?player 100) (line ?player))

"Enforcing" game flavor

- sequence of keywords is *prohibited*
- role only atomic (fixed players)
- next predicate only in heads
- init and true predicates only in bodies
- does predicate only in bodies
- recursion restriction

A logic programming perspective

- Minimal data set *D* which are models of a game *G*: set of grounded atoms
 - ground literal (not p) is satisfied iff p is not in D
- GDL game description: logic program with predefined predicate and shape
 - Complete definition of role, init
 - legal and goal only defined wrt true
 - next only defined wrt true and does
- Unique minimal model satisfying the state of the game (ie true predicate)
- Several minimal models when considering the dynamics (ie does predicate)

GDL - Chess example (1/6)

- Around 1000 lines!
- initial state already complex
- legal moves differ for each piece type
- basic rules + specific rules (pawn promotion...)
- no number in GDL: rules for encoding them!

Initial state

- Two players
- Chess board and pieces
 - blank cells
 - black and white rooks (wr, br)
 - black and white pawn (wp)
- First player

```
(role white)
(role black)
(init (cell a 1 wr))
(init (cell a 2 wp))
(init (cell a 3 b))
...
(init (cell h 8 br))
(init (control white))
```

Goal states

- Check mate the opponent
 - ⇒ should be defined for the white and black players
- Draw is a good compromise
- Not being checkmate is also a goal!

(<= (goal white 100)
 (checkmate black))</pre>

- (<= (goal white 50)
 stalemate)</pre>
- (<= (goal white 0)</pre>

(checkmate white))

•••

GDL - Chess example (4/6)

End of the game

- One player is stuck
 - \Rightarrow regardless king is in check or not
- After 200 rounds, game is stopped
 - \Rightarrow Numbers and counting should be defined

```
(<= (stuck ?pl)
    (role ?pl)
    (not (has_legal_move ?pl)))
....
(<= terminal
    (towns (sumture) ?plenewe))</pre>
```

```
(true (control ?player))
(stuck ?player))
```

```
(<= terminal
   (true (step 201)))</pre>
```

```
...
(succ 1 2)
(succ 2 3)
```

GDL - Chess example (5/6)

Legal moves

- Define the moves for each piece
 - what means adjacent?
 - what means diagonal?
 - ...
- Define legality
 - context is OK (players, piece is on the cell, move is meaningful...)

```
(<= (knight_move ?piece ?u ?v
                  ?x ?y ?owner)
    (piece_owner_type ?piece
                 ?owner knight)
    (adjacent_two ?v ?y)
    (adjacent ?u ?x))
. . .
(<= (legal ?player (move ?piece
                       ?u ?v ?x ?y))
  (true (control ?player))
  (true (cell ?u ?v ?piece))
  (occupied_by_opp ?x ?y ?player)
  (legal2 ?player (move ?piece
                    ?u ?v
                    ?x ?y))
```

Actions and update

- General rules for the game e.g. blank cell
- specific rules for specific moves

e.g. "en passant"

• update the step number

(<= (next (cell ?x1 ?y1 b))
 (does ?player (move ?piece
 ?x1 ?y1 ?x2 ?y2))
 (pawn_capture_en_passant
 ?player ?x1 ?y1 ?x2 ?y2))</pre>

Implementing a Player

- Free implementation
- Reasoning is not compulsory
- Main technique:
 - Search-Space and Heuristics
 - Compute the value of the next state
- eg. (1) Minimax
- eg. (2) Monte-Carlo Tree Search

- > 🖶 org.ggp.base.player.gamer.statemachine.random
- 🛚 🌐 org.ggp.base.player.gamer.statemachine.sample
 - > 🚺 SampleGamer.java
 - 🛛 🚺 SampleLegalGamer.java
 - > J SampleMonteCarloGamer.java
 - J SampleNoopGamer.java
 - 👂 🚺 SampleSearchLightGamer.java
- 🖶 org.ggp.base.player.proxy

Game Description Logic: GDL with a (logic-flavored) semantics

Towards reasoning about Perfect Information Games First step is to build a logic based on GDL [Jiang, 2016]

Signature Agents, actions, propositions:

$$(N, \mathcal{A}, \Phi)$$

Language predefined symbols and temporal operators

 $arphi ::= p \mid initial \mid terminal \mid legal(r, a) \mid wins(r) \mid$ $does(r, a) \mid \neg \varphi \mid \varphi \land \psi \mid \bigcirc \varphi$ GDL description of Tic-tac-Toe:

1.
$$initial \leftrightarrow turn(x) \land \neg turn(o) \land \bigwedge_{i,j=1}^{3} \neg (p_{i,j}^{x} \lor p_{i,j}^{o})$$

2. $wins(r) \leftrightarrow \bigvee_{i=1}^{3} \bigwedge_{l=0}^{2} p_{i,1+l}^{r} \lor \bigvee_{j=1}^{3} \bigwedge_{l=0}^{2} p_{1+l,j}^{r} \lor \bigwedge_{l=0}^{2} p_{1+l,1+l}^{r} \lor \bigwedge_{l=0}^{2} p_{1+l,3-l}^{r}$
3. $terminal \leftrightarrow wins(x) \lor wins(o) \lor \bigwedge_{i,j=1}^{3} (p_{i,j}^{x} \lor p_{i,j}^{o})$
4. $legal(r, a_{i,j}) \leftrightarrow \neg (p_{i,j}^{x} \lor p_{i,j}^{o}) \land turn(r) \land \neg terminal$
5. $legal(r, noop) \leftrightarrow turn(-r)$
6. $\bigcirc p_{i,j}^{r} \leftrightarrow p_{i,j}^{r} \lor (does(r, a_{i,j}) \land \neg (p_{i,j}^{x} \lor p_{i,j}^{o})))$
7. $turn(r) \rightarrow \bigcirc \neg turn(r) \land \bigcirc turn(-r)$

State-Transition Model (Perfect-Information Game)

 $M = (W, I, T, L, U, g, \pi)$

- W is a non-empty finite set of *possible states*.
- I ⊆ W, representing a set of *initial* states.
- $T \subseteq W \setminus I$, representing a set of *terminal* states.
- $L \subseteq W \setminus T \times N \times 2^{\mathcal{A}}$ is a *legality* relation, specifying legal actions for each agent at non-terminal states. Let $L_r(w) = \{a \in \mathcal{A} : (w, r, a) \in L\}$ be the set of all legal actions for agent r at state w. To make the game playable, we require $L_r(w) \neq \emptyset$ for every $r \in N$ and $w \in W \setminus T$.
- U: W × A^{|N|} → W\I is an update function, specifying the state transition for each state and *joint action* (synchronous moves).
- g: N → 2^W is a goal function, specifying the winning states of each agent.
- $\pi: \mathcal{W} \to 2^{\Phi}$ is a standard valuation function.

$M = (W, I, T, L, U, g, \pi)$

- Set of states W can be very large
 5 478 states for Tic-Tac-Toe
- Set I = {w₀} usually a singleton

ST Model - Details (2/3)

$M = (W, I, T, L, U, g, \pi)$

• Set *T* of terminal states consider all

cases 958 terminal states

- winning or draw states
- winning states g specific to each agent and subset of T

$M = (W, I, T, L, U, g, \pi)$

- Legal transitions (L) 9 legal actions from $\langle (1,1), noop \rangle$ to $\langle (3,3), noop \rangle$ in w_0
- Update is deterministic. Update can be defined while illegal (eg. (noop, noop)

Path δ is an infinite sequence of states and actions

$$w_0 \stackrel{d_1}{\rightarrow} w_1 \stackrel{d_2}{\rightarrow} w_2 \cdots \stackrel{d_j}{\rightarrow} \cdots$$

such that for all $j \ge 1$ and for any $r \in N$,

1.
$$w_j = U(w_{j-1}, d_j)$$
 (state update);

- 2. $(w_{j-1}, d_j(r)) \in L_r$ (that is, any action that is taken must be legal);
- 3. if $w_{j-1} \in T$, then $w_{j-1} = w_j$ (that is, a loop after reaching a terminal state).

 $\theta_r(\delta, j)$: action of agent r at stage j of δ

Sequence of actions

- Run over an ST-model
- No requirement about first and last states
- formulas will be interpreted over a path at some step
- $\delta[j]$: jth state of path δ
- $\theta_r(\delta, j)$ action performed by agent rat state j of path δ

eg:
$$\theta_x(\delta,3) = a_{1,1}$$

W.r.t. M, some path δ and index j

iff $p \in \pi(\delta[j])$ $M, \delta, j \models p$ $M, \delta, j \models \neg \varphi$ iff $M, \delta, i \not\models \varphi$ iff $M, \delta, j \models \varphi_1$ and $M, \delta, j \models \varphi_2$ $M, \delta, i \models \varphi_1 \land \varphi_2$ iff $\delta[i] \in I$ $M, \delta, j \models initial$ $M, \delta, j \models terminal$ iff $\delta[j] \in T$ iff $\delta[j] \in g(r)$ $M, \delta, i \models wins(r)$ $M, \delta, j \models legal(r, a)$ iff $a \in L_r(\delta[i])$ $M, \delta, j \models does(r, a)$ iff $\theta_r(\delta, j) = a$ $M, \delta, j \models \bigcirc \varphi$ iff $M, \delta, j+1 \models \varphi$

Tic-Tac-Toe formulas

- $M, \delta, 0 \models \neg p_{1,1}^x$
- $M, \delta, 1 \models p_{2,2}^{x}$
- $M, \delta, 1 \models \neg wins(x)$
- $M, \delta, 1 \models does(o, a_{1,3})$
- $M, \delta, 2 \models \bigcirc does(o, a_{2,3})$
- $M, \delta, 3 \models \neg \bigcirc wins(x)$

General game properties

• $\models \bigvee_{r \in N} wins(r) \rightarrow terminal \text{ iff } g(r) \subseteq T$

Bounded time

•
$$\not\models \bigwedge_{i \in 1..n} \bigcirc^{i} \neg wins(r) \rightarrow \bigcirc^{n+1} \neg wins(r)$$

General game playing w.r.t. some ongoing game

- assessing a "strategy" vs (game state, move) (M,δ)
- Look ahead via model checking (\mathbf{PTIME})
- Winning move (encoded in δ)?

$$M, \delta, 0 \models \bigcirc wins(x)$$

- Prevent opponent x to win?
 - Choose an action a for x and an action b for -x next move
 - \Rightarrow Check $M, \delta, 0 \models \bigcirc does(-x, b) \land \bigcirc^2 wins(-x)$
 - Choose alternative action a' for x
 - \Rightarrow Check $M, \delta', 0 \models \bigcirc does(-x, b) \land \bigcirc^2 \neg wins(-x)$
 - Choose other b' and recheck
- No meta-reasoning in GDL (assessment over paths) "Try to win, if not prevent to loose" cannot be represented

Specific game properties

- Set of rules specific to a game
- Identify pattern for general game playing
- Example: Tic-Tac-Toe
 - $diagonal(x) \leftrightarrow \bigwedge_{i \in 1..3} p_{i,i}^x \vee \bigwedge_{i \in 0..2} p_{1+i,3-i}^x$
 - $line(x) \leftrightarrow diagonal(x) \lor column(x) \lor row(x)$
 - Double threat consequence of move a by x: two potential lines
 - Meta-reasoning as two paths are considered (eg: row or column):

For any next move b by -x, pick up x move c and c', build path δ,δ' and check

 $M, \delta, 0 \models \bigcirc^2 row(x) \text{ or } M, \delta', 0 \models \bigcirc^2 column(x)$

(Simplified) Nim Game

- 2 players sequential game
- 12 sticks
- at each round, each player picks 1, 2 or 3 sticks
- winner of game: the player picking the last stick

Provide the GDL representation

Imperfect Information: Extending the Logic

Imperfect Information

Figure 1: Krieg Tic-Tac-Toe

Two players black, white

- see her own marks only
- know turn-taking and available actions

Main issue

How to describe and reason about games with imperfect information?

Server side vs Player side

- Player perspective
 - How to handle certain and uncertain information?
 - How to handle other players' "knowledge"?
- Server Perspective
 - GDL-II: how to represent imperfect information?
 - GDL-II: how Information flows
 - GDL-II: randomness

Extending GDL with epistemic operators [Jiang et al., 2021]

- $K_r \varphi$: "agent *r* knows φ "
- C φ : as " φ is common knowledge among all the agents in N"

Definition (Syntax)

 $\varphi ::= p \mid initial \mid terminal \mid legal(r, a) \mid wins(r) \mid does(r, a) \mid$

 $\neg \varphi \mid \varphi \land \psi \mid \bigcirc \varphi \mid \mathsf{K}_r \varphi \mid \mathsf{C} \varphi$

 $\mathsf{E}\varphi =_{def} \bigwedge_{r \in N} \mathsf{K}_r \varphi$

Epistemic extension: Syntax (2/2)

Sequential Krieg-Tic-Tac-Toe - Epistemic rules

```
Additional symbol:
```

 $tried(r, a_{i,j})$ represents the fact that player r has tried to mark cell (i, j) but failed

1. $tried(r, a_{i,j}) \rightarrow p_{i,j}^{-r}$ 2. $does(r, a_{i,j}) \rightarrow K_r(does(r, a_{i,j}))$ 3. $initial \rightarrow Einitial$ 4. $(turn(r) \rightarrow Eturn(r)) \land (\neg turn(r) \rightarrow E\neg turn(r))$ 5. $(p_{i,j}^r \rightarrow K_r p_{i,j}^r) \land (\neg p_{i,j}^r \rightarrow K_r \neg p_{i,j}^r)$ 6. $(tried(r, a_{i,j}) \rightarrow K_r tried(r, a_{i,j})) \land (\neg tried(r, a_{i,j}) \rightarrow K_r \neg tried(r, a_{i,j}))$

Epistemic extension: Semantics (1/2)

Epistemic state transition (EST) model M is a tuple (W, I, T, $\{R_r\}_{r \in N}, \{L_r\}_{r \in N}, U, g, \pi$)

- W is a non-empty set of *possible states*.
- $I \subseteq W$, representing a set of *initial* states.
- $T \subseteq W \setminus I$, representing a set of *terminal* states.
- $R_r \subseteq W \times W$ is an equivalence relation for agent r, indicating the states that are indistinguishable for r.
- $L_r \subseteq W \times A^r$ is a *legality* relation for agent r,
- $U: W imes \prod_{r \in N} A^r \hookrightarrow W \setminus I$ is a partial *update* function
- $g: N \to 2^W$ is a goal function, specifying the winning states for each agent.
- $\pi: W \to 2^{\Phi}$ is a standard valuation function.

Imperfect Recall

$$\delta \approx_r \delta'$$
 iff $\delta[0] R_r \delta'[0]$

Satisfaction with respect to some EST ${\it M}$ and path δ

 $\begin{array}{ll} M,\delta\models {\sf K}_r\varphi & \quad \text{iff} \quad \text{ for any } \delta'\in \mathcal{P}, \text{ if } \delta\approx_r\delta', \text{ then } M,\delta'\models \varphi \\ M,\delta\models {\sf C}\varphi & \quad \text{iff} \quad \text{ for any } \delta'\in \mathcal{P}, \text{ if } \delta\approx_N\delta', \text{ then } M,\delta'\models \varphi \\ \end{array}$

where \approx_N is the transitive closure of $\bigcup_{r\in N} \approx_r$ and \mathcal{P} is the set of all paths in M.

General game playing w.r.t. some ongoing game

Figure 2: Player o Knowledge

Player o cannot distinguish between the two states

 $terminal \rightarrow Cterminal$ is not valid

Properties about Krieg-Tic-Tac-Toe (valid formulas in all Krieg-Tic-Tac-Toe models)

- $1 \ \textit{initial} \to \mathsf{Cinitial}$
- 2. $legal(a_{i,j}^r) \rightarrow K_r(legal(a_{i,j}^r))$
- 3. $does(a_{i,j}^r) \rightarrow \bigcirc \mathsf{K}_r(p_{i,j}^r \lor tried(a_{i,j}^r))$
- 4. $K_r tried(a_{i,j}^r) \rightarrow K_r p_{i,j}^{-r}$

EGDL for reasoning about games

General game playing w.r.t. some ongoing game

- assessing a "strategy" vs (game state, move) (M,δ)
- Looking ahead via model checking (Δ_2^p)
- Winning situation (encoded in δ)?

$$M, \delta \models K_r \bigcirc wins(x)$$

• Prevent opponent of r to win?

Check
$$M, \delta \models does(r, a) \land K_r \bigcirc \neg wins(-r)$$

• Opponent of r may win (wrt. to some r move)?

Check $M, \delta \models \neg K_r \neg \bigcirc (does(-r, a) \land \bigcirc wins(-r))$

• No complex reasoning over paths in EGDL

EGDL for reasoning about games

Specific game properties

Figure 3: Player x move

Player x knows that

$$does(x, a_{i,j}) \rightarrow \bigcirc \mathcal{K}_x(p_{i,j}^x \lor tried(x, a_{i,j}))$$

Hence

 K_x tried $(x, a_{1,1})$

EGDL for reasoning about games

Specific game properties

Figure 4: Player x move

Player x knows that

$$K_x$$
tried $(x, a_{i,j}) \rightarrow K_x p_{i,j}^o$

Hence

$$K_{x}p_{1,1}^{o}$$

Guessing a number

- 2 players game
- Player 1 choose a number $n \in [1, 10]$ (initial state)
- Player 2 has to guess *n*
- After each round, Player 1 informs Player 2 whether its proposal is too low or too high.
- Player 2 wins if it guesses *n* in 3 rounds.

Provide the EGDL representation

GDL-II: extension of GDL - Server side [Thielscher, 2010]

• sees specify what a player perceives at the next state (sees ?player (holds ?player ?card))

sees behaviour similar to next: only in head of clauses.

• *random* random player (*role random*)

Perform action with parameters randomly set (does random (deal ?player ?card))

Simultaneous move: possible tie-break

- ;;; additional random player for tie break
 (role black)
 (role white)
 (role random)
- ;;; random player can only solve tie break
 (legal random (tiebreak white))
 (legal random (tiebreak black))

```
;;; "tried" predicate: "try to mark"
    (<= next (tried ?r ?m ?n)
        (does ?r (mark ?m ?n)))</pre>
```

```
(<= next (tried ?r ?m ?n)
                               (true (tried ?r ?m ?n)))</pre>
```

Solving tie-break (simultaneous moves)

```
;;; possible tie-break
  (<= next (cell ?m ?n ?r)
      (true (cell ?m ?n b))
      (does white (mark ?m ?n)))
      (does black (mark ?m ?n)))
      (does random (tiebreak ?r)))</pre>
```

Krieg Tic-Tac-Toe GDL representation (3/3)

Only seeing own moves - simultaneous moves

```
;;; success when moves differ
    (<= sees ?r1 (cell ?m1 ?r1)
        (true (cell ?m1 ?n1 b))
        (does ?r1 (mark ?m1 ?n1))
        (does ?r2 (mark ?m2 ?n2))
        (distinct ?m1 ?m2))
 . . .
::: successful tie break
    (<= sees black (cell ?m ?n black)</pre>
        (true (cell ?m ?n b))
```

```
(does black (mark ?m ?n)))
```

```
(does random (tiebreak black)))
```

GDL-II Semantics

Mapping Game G to State-Transition model

- Σ set of all states S of ground atoms f
- $S^{\text{true}} = \{ \text{true}(f_1), \cdots, \text{true}(f_n) \}$
 - S: set of ground atoms $f_1 \cdots f_n$
 - S^{true} : extension of S with true predicate
- $M^{\texttt{does}} = \{\texttt{does}(1,a_1),\cdots,\texttt{does}(r,a_r)\}$
 - $M^{ extsf{does}}$: joint move derivable from $G \cup S^{ extsf{true}}$
- Model $\mathcal{M} = (\Sigma, N, w_0, t, l, u, \mathcal{I}, g)$
 - $N = \{r \mid G \text{ satisfies role}(r) \}$
 - $w_0 = \{f \mid G \text{ satisfies init}(f) \}$
 - $u(M, S) = \{f \mid G \cup S^{true} \cup M^{does} \text{ satisfies } next(f) \} \text{ for all } M$ and S
 - $\mathcal{I} = \{(r, M, S, p) \mid G \cup S^{true} \cup M^{does} \text{ satisfies sees}(r, p) \}$ for all $r \neq \texttt{random}, M \text{ and } S$

Krieg Tic-Tac-Toe State-Transition model (1/3)

```
Building up model \mathcal{M} = (N, w_0, t, l, u, \mathcal{I}, g)
```

```
\{black, white\} \subseteq N
```

```
(role black)
(role white)
(role random)
```

```
\{cell(1,1,b),...,cell(3,3,b)\} \in w_0 as
```

```
(init (cell 1 1 b))
...
(init (cell 3 3 b))
```

Krieg Tic-Tac-Toe State-Transition model (2/3)

Building up model $\mathcal{M} = (N, w_0, t, l, u, \mathcal{I}, g)$

 $u(\langle (1,1)^{x}, (3,3)^{o} \rangle, w_{0}) = \{ cell(1,1,x), ..., cell(3,3,o) \} as$ $G \cup w_{0}^{true} \cup \langle (1,1)^{x}, (3,3)^{o} \rangle^{does} \text{ satisfies (next (cell 1 1 x))}$

and

 $G \cup w_0^{true} \cup \langle (1,1)^x, (3,3)^o \rangle^{does}$ satisfies (next (cell 3 3 o)) Remind that rules with next are applied

```
(<= next (cell ?r ?m ?n)
   (true (cell ?m ?n b))
   (does white (mark ?m ?n)))
   (does black (mark ?m ?n)))
   (does random (tiebreak ?r)))</pre>
```

Krieg Tic-Tac-Toe State-Transition model (3/3)

Building up model $\mathcal{M} = (N, w_0, t, l, u, \mathcal{I}, g)$ $(x, \langle (1, 1)^x, (3, 3)^o \rangle, w_1, cell(1, 1, x)) \in \mathcal{I}$ as $G \cup w_0^{true} \cup \langle (1, 1)^x, (3, 3)^o \rangle^{does}$ satisfies (sees x (cell 1 1 x)) Remind that

Notice that $(o, \langle (1,1)^x, (3,3)^o \rangle, w_1, cell(1,1,x)) \notin \mathcal{I}$ as $G \cup w_0^{\text{true}} \cup \langle (1,1)^x, (3,3)^o \rangle^{\text{does}}$ does not satisfies (sees o (cell 1 1 x))

Reasoning for winning?

From Game Theory to Logic

- Key question in GT: can the player win?
- What is *best response*?
- What about rational behaviour and equilibrium?

van Benthem (2012)

Much of game theory is about the question whether strategic equilibria exist. But there are hardly any explicit languages for defining, comparing, or combining strategies.

Focus on the representation of strategies

Extend GDL and build a player on that extension

- Connecting action and output: how to play?
 - Quantification over possible runs is compulsory Overall assessment of the game: what happened if, instead of playing a, b is played?
 - Priority over eligible actions if action a leads to win while action b leads to loose, action a should be chosen (if rational)
- Question: how to represent predefined library of strategies?

GDL-based Strategy Representation (1/5)

"Priority" operator: $\phi \nabla \psi$ [Jiang et al., 2014] ϕ should hold; if not then ψ hold

```
M, \delta, j \models \phi \text{ or } (\texttt{Paths}(\phi, \delta[0, j]) = \emptyset \text{ and } M, \delta, j \models \psi)
```

where $Paths(\phi, \delta[0, j])$ is the set of paths where ϕ holds at j and sharing initial segment $\delta[0, j]$:

 $\mathtt{Paths}(does(r, a), \delta[0, j]) = \{\delta''\} \texttt{ and } \mathtt{Paths}(does(r, b), \delta[0, j]) = \{\delta\}$

GDL-based Strategy Representation (2/5)

Suppose M and δ :

- $M, \delta, 0 \models does(x, a_{2,2})$
- $M, \delta, 0 \not\models does(x, a_{1,3})$
- $M, \delta, 0 \models does(x, a_{2,2}) \triangledown does(x, a_{1,3})$
- $M, \delta, 1 \models does(o, a_{1,3})$
- $M, \delta, 1 \not\models does(o, a_{2,2})$
- $M, \delta, 1 \models does(o, a_{2,2}) \triangledown does(o, a_{1,3})$

Strategy rule

- syntax: $\phi := \varphi_1 \nabla \varphi_2 \nabla \cdots \nabla \varphi_n$
- Non-ambiguous: at any state, ϕ must "elicit" only one action:
- Could be extended to perfect recall: consider history rather than state.
- Strategy for Player x (1st player)

 $combined^{x} := fill_centre^{x} \triangledown check^{x} \triangledown block^{x} \triangledown fill_corner^{x} \triangledown fill_any^{x}$

and

$$\phi^{x} := (turn(x) \rightarrow combined^{x}) \land (\neg turn(x) \rightarrow noop^{x})$$

• Strategy rule ϕ^x is a no loosing strategy for xNo way to express the output in the GDL with priority

GDL-based Strategy Representation (5/5)

Example: strategy for Tic-Tac-Toe

- Fill the center:
 - $fill_center^r = does(a^r_{2,2})$
- Check if I can win: $check^{r} = \bigvee_{i,j=1}^{3} (does(a_{i,j}^{r}) \land \bigcirc wins(r))$
- Prevent immediate loss: $block^r = \bigvee_{i,j=1}^{3} (\bigcirc (does(a_{i,j}^{-r}) \land \bigcirc wins(-r)) \land does(a_{i,j}^{r}))$
- Fill an available corner:

$$\textit{fill_corner}^r = \bigvee_{i,j \in \{1,3\}} \textit{does}(a^r_{i,j})$$

• Fill anywhere available:

$$\textit{fill}_\textit{any}^r = \bigvee_{i,j=1}^3 \textit{does}(a^r_{i,j})$$

Combined actions:
 combined^r = fill_centre^r ⊽ check^r ⊽ block^r ⊽ fill_corner^r ⊽ fill_any^r
A modal reading of the priority operator (1/2) [Zhang and Thielscher, 2015]

- Basic GDL + look ahead operator: ↓a↓ φ
 If action a were chosen then φ would be true (but a is not executed)
- *does* operator restricted to joint action: does(a)
- New semantics relative to a state and a joint action: $w, a \models \varphi$
 - $w, a \models p \text{ iff } p \in \pi(w)$
 - $w, a \models does(b)$ iff a = b
 - $w, a \models \lfloor b \rfloor \varphi$ iff $w, b \models \varphi$

A modal reading of the priority operator (2/2)

• Prioritised disjunction operator

$$\varphi \nabla \psi =_{def} \varphi \vee (\psi \land \bigwedge_{c} \lfloor c \rfloor \neg \varphi)$$

In terms of semantics
 For any M, w and a: w, a ⊨ φ ∇ψ iff either w, a ⊨ φ or
 w, a ⊨ ψ but w, c ⊨ ¬φ for all c

ATL for reasoning about GDL game description

- Use GDL game description as underlying semantic for ATL reasoning
- ATL: reasoning about cooperation

 $\langle\langle C\rangle\rangle\varphi$ Coalition C can achieve φ

- GDL + ATL:
 - check properties of game (playability)
 - check strategic properties

Alternating-time Temporal Logic - Syntax [Alur et al., 2002, Ruan et al., 2009]

- Coalition operator $\langle \langle C \rangle
 angle$
- Temporal operator (next), □ (always),
 ◊ (sometimes), U (until)

 $\varphi ::= p \mid \varphi \lor \varphi \mid \langle \langle C \rangle \rangle \bigcirc \varphi \mid \langle \langle C \rangle \rangle \Box \varphi \mid \langle \langle C \rangle \rangle \Diamond \varphi \mid \langle \langle C \rangle \rangle \varphi \mathcal{U} \varphi$

• coalition and temporal operators always together

 $\langle\langle x \rangle\rangle \diamondsuit wins(x) \lor \langle\langle x \rangle\rangle \diamondsuit \neg wins(-x)$

ATL Reasoning about strategies

Alternating-time Temporal Logic - Semantics

• based on Concurrent Game Structure (or Transition systems)

$$\mathcal{A} = (\mathcal{Q}, q_0, N, \Pi, \pi, \textit{legal}, \textit{update})$$

where

- \mathcal{Q} : set of states
- q₀: initial state
- N: set of agents
- Π: propositions
- π : valuation function
- *legal*: possible move function for each agent
- update: deterministic joint move transition function
- Truth condition relative to a state q

$$\mathcal{A}, q \models_{ATL} \varphi$$

Alternating-time Temporal Logic - Semantics

- λ : sequence of states
- Additional component: strategy function $f_a(\lambda) \in legal(a,q)$ where q is the last state of λ

$$F_A = \{f_a | a \in A\}$$

• Output of a strategy: set of possible sequences $\lambda = q q' q'' ...$

 $out(q, F_A) = \{\lambda | \lambda[0] = q \text{ and}$ $\exists m \text{ s.t. } \forall a \in A, m_a \in f_a(\lambda[0..i]) \text{ and } (\lambda[i+1] = update(\lambda[i], m)) \}$

Alternating-time Temporal Logic - Semantics

- $\mathcal{A} = (\mathcal{Q}, q_0, N, \Pi, \pi, \textit{legal}, \textit{update})$
- Truth conditions
 - $\mathcal{A}, q \models_{ATL} p \text{ iff } p \in \pi(q)$
 - $\mathcal{A}, q \models_{ATL} \langle \langle C \rangle \rangle \bigcirc \varphi$ iff there exists F_C such that:

 $\mathcal{A}, \lambda[1] \models_{ATL} \varphi \text{ for all } \lambda \in out(q, F_C)$

• $\mathcal{A}, q \models_{ATL} \langle \langle C \rangle \rangle \Box \varphi$ iff there exists F_C such that:

 $\mathcal{A}, \lambda[i] \models_{ATL} \varphi \text{ for all } \lambda \in out(q, F_C) \text{ and } i \geqslant 0$

 $\mathcal{A} = (\mathcal{Q}, q_0, N, \Pi, \pi, \textit{legal}, \textit{update})$

Assume

 $f_{x}([q_{0}q_{1}])=noop$

- $\mathcal{A}, q_1 \models_{ATL} \ \langle \langle x \rangle \rangle \Box (p_{1,1}^x \lor p_{3,3}^x)$
- Assume $f_o([q_0 q_2]) = \{(2, 2)\}$
- $\mathcal{A}, q_2 \models_{ATL} \ \langle \langle o \rangle \rangle \bigcirc p_{2,2}^o$

ATL for checking GDL specification

- Translation/embedding of GDL theory to ATL
- Model checking is EXPTIME
- Checking soundness

 $\langle \langle \rangle \rangle \Box ((\textit{terminal} \land \varphi) \to \langle \langle \rangle \rangle \Box (\textit{terminal} \land \varphi))$

• Winnable

$$\bigvee_{i} \langle \langle i \rangle \rangle \diamondsuit$$
 wins(i)

• Sequential

$$\langle \langle \rangle \rangle \Box (\langle \langle N \rangle \rangle \bigcirc \varphi \to \bigvee_i \langle \langle i \rangle \rangle \bigcirc \varphi)$$

ATL for checking GDL specification

- Tic-Tac-Toe properties (CGS encoding)
- no-losing strategies for x

 $\langle \langle x \rangle \rangle \Box$ (terminal $\rightarrow \neg wins(o)$)

• No explicit representation of actions (hidden in the semantics)

ATL Reasoning about strategies - On going work

Mixing priority and ATL operators (ongoing work)

• agent r may win?

$$\mathsf{posCheck}^r = igvee_{i,j\in 1..3} \mathsf{does}(r,\mathsf{a}_{i,j}) o \langle \langle r
angle
angle \diamond \mathsf{check}^r$$

• agent r can prevent -r to win

$$posBlock^r = \bigvee_{i,j \in 1..3} does(r, a_{i,j}) \rightarrow \langle \langle r \rangle \rangle \Diamond block^r$$

(Towards) General strategic player

 $check^{r} \triangledown block^{r} \triangledown posCheck^{r}_{a} \triangledown posBlock^{r}_{a}$

Model checking is **EXPTIME**

Pending questions:

- How to design strategies? Connection with Machine Learning and Planning
- Generalize strategies? Are they any common points (General Strategic Reasoning)
- How to implement? Complexity of strategic reasoning and complexity of the game

Still a lot to do! - Example: Equivalent games

Equivalent games (1/3)

Number Scrabble:

1.
$$initial \leftrightarrow turn(b) \land \neg turn(w) \land \bigwedge_{i=1}^{9} \neg (s(b,i) \lor s(w,i))$$

2. $wins(r) \leftrightarrow (\bigvee_{i=2}^{3} (s(r,i) \land s(r,4) \land s(r,11-i)) \lor \bigvee_{i=1}^{2} (s(r,i) \land s(r,6) \land s(r,9-i)) \lor \bigvee_{i=1}^{4} (s(r,5-i) \land s(r,5) \land s(r,5+i)))$

3. terminal
$$\leftrightarrow$$
 wins(b) \lor wins(w) $\lor \bigwedge_{i=1}^{s} (s(b, i) \lor s(w, i))$

4.
$$legal(r, pick(n)) \leftrightarrow \neg(s(b, n) \lor s(w, n)) \land turn(r) \land \neg terminal$$

5.
$$legal(r, noop) \leftrightarrow turn(-r) \lor terminal$$

6.
$$\bigcirc s(r,n) \leftrightarrow s(r,n) \lor (\neg(s(b,n) \lor s(w,n)) \land does(r,pick(n)))$$

7.
$$turn(r) \land \neg terminal \rightarrow \bigcirc \neg turn(r) \land \bigcirc turn(-r)$$

Equivalence [Jiang et al., 2023]

Semantics 2 models (State-Transition) with a bisimulation between them

Syntax Set of rules are equivalent

Number Scrabble and Tic-Tac-Toe are equivalent

Pending questions:

- Loose equivalence *A game is "close" to a second one? Restricted equivalence to a sub-part of the game?*
- Connecting equivalence and strategic reasoning *"ready-to-go" strategies*
- How to implement

Complexity for deciding whether two games are equivalent. Available heuristics? Perspectives

On GDL:

- Connecting action and strategy
- Imperfect Information
- Games comparison

Still on GDL

- Connection to planning
- Construction of a General Player? Is it realistic to reason with GDL formulas?

Main references i

Alur, R., Henzinger, T. A., and Kupferman, O. (2002). **Alternating-time temporal logic.** *Journal of the ACM*, 49(5):672–713.

- Genesereth, M. and Thielscher, M. (2014).
 General game playing, volume 8 of Synthesis Lectures on Artificial Intelligence and Machine Learning.
 Morgan & Claypool Publishers.
- Jiang, G. (2016).

Logics for strategic reasoning and collective decision-making.

PhD thesis, Western Sydney & University Université Toulouse 1.

- Jiang, G., Perrussel, L., and Zhang, D. (2017).
 On axiomatization of epistemic GDL.
 In LORI, volume 10455 of Lecture Notes in Computer Science, pages 598-613. Springer.

Jiang, G., Zhang, D., and Perrussel, L. (2014). GDL meets ATL: A logic for game description and strategic reasoning.

In Proceedings of the 13th Pacific Rim International Conference on Artificial Intelligence (PRICAI'14), pages 733–746. Springer.

Main references iii

 Jiang, G., Zhang, D., Perrussel, L., and Zhang, H. (2021).
 Epistemic gdl: A logic for representing and reasoning about imperfect information games.

Artificial Intelligence Journal, 294.

- - Jiang, G., Zhang, D., Perrussel, L., Zhang, H., and Zhang, Y. (2023).

Game equivalence and expressive power of game description languages: a bisimulation approach. *J. Log. Comput.*, 33(1).

Ruan, J., van der Hoek, W., and Wooldridge, M. (2009).
 Verification of games in the game description language.
 J. Log. Comput., 19(6):1127-1156.

] Thielscher, M. (2010).

A general game description language for incomplete information games.

In AAAI. AAAI Press.

- 📄 van Benthem, J. (2012).
 - In praise of strategies.

In van Eijck, J. and Verbrugge, R., editors, *Games, Actions and Social Software: Multidisciplinary Aspects*, pages 96–116. Springer Berlin Heidelberg.

Zhang, D. and Thielscher, M. (2015).
A logic for reasoning about game strategies.
In Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI'15), pages 1671–1677. PhD proposal: Compact Representation of Strategies Starting date: Fall 2024 Keywords: strategic reasoning, GDL, ATL, Model-checking based player, Machine Learning.

More details: laurent.perrussel@irit.fr

Appendix

Proof theory of GDL

Mainly consists of axiom schemas for \bigcirc , modus ponens inference rule and general game properties:

Axioms

- 1. All tautologies of classical propositional logic.
- 2. $\bigcirc (\varphi \rightarrow \psi) \rightarrow (\bigcirc \varphi \rightarrow \bigcirc \psi)$
- 3. $\neg \bigcirc \varphi \rightarrow \bigcirc \neg \varphi$

Axioms for general game properties

4.
$$\neg \bigcirc$$
 initial
5. terminal $\rightarrow \bigwedge_{a^r \in A^r \setminus \{noop^r\}} \neg legal(a^r) \land legal(noop^r)$
6. $\bigvee_{a^r \in A^r} does(r, a)$
7. $\neg (does(r, a) \land does(r, b))$ for $a^r \neq b^r$.
8. $does(a^r) \rightarrow legal(a^r)$
9. $\varphi \land terminal \rightarrow \bigcirc \varphi$

GDL and Propositional Dynamic Logic (PDL)

- PDL formulas: $[\alpha]\varphi$ s.t. $[\alpha]\varphi =_{def} \neg \langle \alpha \rangle \neg \varphi$
- + α limited to atomic program and sequence
- Interpretation over Kripke structure $M = (W, R_{\alpha}, v)$
- PDL semantics
 - $M, w \models p \iff p \in v(w)$
 - $M, w \models [\alpha] \varphi$ iff for all $w' \in R_{\alpha}$, $M, w' \models \varphi$

GDL and Propositional Dynamic Logic (PDL)

- Mapping between GDL and PDL
- First step: map the signature and formulas
- Second step: map the model (interpretations and paths)
- Third step: mapping result

 $M_{GDL}, \delta_{GDL}, j \models_{GDL} \varphi \iff M_{PDL}, w_j \models_{PDL} tr(\varphi)$

GDL and Propositional Dynamic Logic (PDL)

- Mapping between GDL and PDL
- First step: map the signature and formulas
- Second step: map the model (interpretations and paths)
- Third step: mapping result

 $M_{GDL}, \delta_{GDL}, j \models_{GDL} \varphi \iff M_{PDL}, w_j \models_{PDL} tr(\varphi)$

Epistemic extension: Axiomatics (1/3)

Mainly consists of axiom schemas and inference rules for \bigcirc , K_r, C and general game properties [Jiang et al., 2017] Axioms

1. All tautologies of classical propositional logic.

Axioms for general game properties

2.
$$\neg \bigcirc$$
 initial
3. terminal $\rightarrow \bigwedge_{a^r \in A^r \setminus \{noop^r\}} \neg legal(a^r) \land legal(noop^r)$
4. $\bigvee_{a^r \in A^r} does(a^r)$
5. $\neg (does(a^r) \land does(b^r))$ for $a^r \neq b^r$.
6. $does(a^r) \rightarrow legal(a^r)$
7. $\varphi \land terminal \rightarrow \bigcirc \varphi$

Epistemic extension: Axiomatics (2/3)

Axioms for \bigcirc , K_r , C 8. $\bigcirc(\varphi \rightarrow \psi) \rightarrow (\bigcirc \varphi \rightarrow \bigcirc \psi)$

- 9. $\neg \bigcirc \varphi \leftrightarrow \bigcirc \neg \varphi$ 10. $K_r(\varphi \to \psi) \to (K_r \varphi \to K_r \psi)$
- 11. $K_r \varphi \rightarrow \varphi$
- 12. $K_r \varphi \rightarrow K_r K_r \varphi$
- 13. $\neg K_r \varphi \rightarrow K_r \neg K_r \varphi$
- 14. E $\varphi \leftrightarrow \bigwedge_{r=1}^{m} \mathsf{K}_{r} \varphi$
- 15. $C\varphi \rightarrow E(\varphi \wedge C\varphi)$

Inference Rules (R1) From $\varphi, \varphi \rightarrow \psi$ infer ψ . (R2) From φ infer $\bigcirc \varphi$. (R3) From φ infer K_r φ . (R4) From $\varphi \rightarrow E(\varphi \land \psi)$ infer $\varphi \rightarrow C\psi$. Derivation about Krieg-Tic-Tac-Toe (full description: $\Sigma_{\kappa\tau}$).

Proposition

For any $r \in \textit{N}_{\textit{KT}}$ and $a^r_{i,j} \in \textit{A}^r_{\textit{KT}}$,

1.
$$\vdash_{\Sigma_{KT}} initial \rightarrow Cinitial$$

2. $\vdash_{\Sigma_{KT}} legal(a_{i,j}^r) \rightarrow K_r(legal(a_{i,j}^r))$
3. $\vdash_{\Sigma_{KT}} does(a_{i,j}^r) \rightarrow \bigcirc K_r(p_{i,j}^r \lor tried(a_{i,j}^r))$
4. $\vdash_{\Sigma_{KT}} K_r tried(a_{i,j}^r) \rightarrow K_r p_{i,j}^{-r}$

Completeness... in one slide

Overall picture

96