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Course overview

Lecture 1 - Bias and discrimination in Al
systems: Sources of bias, definitions and
models of fairness

* Motivation and application examples of
algorithms exhibiting biased behaviour

- Different types of bias and their cause
* Definitions of fairness

Lecture 2. Bias mitigation

* Pre-, In- and Post-processing approaches
to fairness-aware learning

* End-to-end approaches to fairness-aware
learning

Lecture 3. Solutions for mitigating
unfairness in concrete contexts

* Fairness in rankings and recommendations,
entity resolution, graphs

/Lecture 4 - Explainable Al: Models and
methods
* Introduction to explainable Al (XAl)

* Overview of post-hoc explanations

* LIME, Shapley values, counterfactual
\explanatlons

\

/

Lecture 5 - Connections between
fairness and explanations

* Counterfactual explanation of unfairness
* Actionable recourse

* Shapley-based and data-based
explanations of unfairness

* Fairness of explanations

Fairness and Explainability in Al: Models, Measures, and Mitigation Strategies
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* Growing XAl requirements

Key concepts

Types of explanations
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« SHAP
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Impediments to Al adoption

KEY HURDLES TO Al ADOPTION »
Technology and data Ability to quantify ROI

Technology and data Ability to prove ROI
believe low external Report that inability . .
0 ecosystem maturity to quantify benefits 5 3 0/ Low e?(t.e.mal. ecosyStem matunty (56%) ili P if fi %
(v] restricts their ability to is a key factor impeding (4] «  Low digitization (53%) + Inability to objectively quantify benefits (53%)
accelerate Al initiatives ’ Al adopt "\;] o Inadequate 1raining data (36%) + Inadequate number of use cases (44%)

Disparate datasets (34%)

Talent and culture Trust, ethics & regulations

business leaders state that

4 0 talent shortage is a key
o hurdle in implementing

and scaling Al solutions

Al explainability as a

g back Alled | 47%

holdin
making

Talent Trust, ethics and regulations

Al Explainability (47%)

Unintended consequence of Al decisions (38%)
Regulations & Compliance (36%)

Bias (20%)

Ethics (18%)

= Talent Shortage (40%)
= Cultural or behavioral impediments (38%)
«  Workforce Displacement (33%)

Source: Link
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https://www.businessprocessincubator.com/content/impediments-to-ai-adoption-what-enterprises-perceive-vs-what-they-actually-experience/

Responsible/Trustworthy Al: Key principles
and requirements

* A growing interest in principles, tools, and best practices for deploying Al
ethically and responsibly.

4 Ethlcal PrinCipleS Seven key requirements
* Respect for human autonomy
* Prevention of harm
* Fairness \
y Explica bil Ity capable of being explair;;\d'”"

* 7 Key Requirements
* Human agency and oversight enies oo

Technical robustness and safety

Privacy and data governance

Transparency

* Diversity, non-discrimination and fairness

- Societal and environmental wellbeing

 Accountability

Source: https://ec.europa.eu/futurium/en/ai-alliance-consultation.1.html

Fairness and Explainability in Al: Models, Measures, and Mitigation Strategies 6



The Al Act

* The Al Act is a proposed European law on artificial intelligence (Al) —the
first law on Al by a major regulator anywhere. The law assigns applications
of Al to three risk categories.

Transparency means that Al systems are developed and
used in a way that allows appropriate traceability and
explainability, while making humans aware that they

EU Artificial Intelligence Act: Risk levels

) iy T Tians communicate or interact with an Al system, as well as
surveillance, manipulation of ble Prohibited duly informing deployers of the capabilities and
behaviour causing harm limitations of that Al system and affected persons about
Access to employment, ﬂ = Conform ity their ng hts.

education and public services, 5 5 w Source: Link

safety components of vehicles, ngh risk A assessment

law enforcement, etc.

Impersonation, Chatbots, J\& Trans parency
emotion recognition, 5 3
biometric categorization Limited risk obligation
deep fake
4
- 4 No
Remaining Minimal risk ‘gr e
@ |obligation

Source: Image
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https://artificialintelligenceact.eu/the-act/
https://www.telefonica.com/en/communication-room/blog/a-fit-for-purpose-and-borderless-european-artificial-intelligence-regulation/
https://www.europarl.europa.eu/doceo/document/TA-9-2024-0138_EN.html

Growing global Al regulations

SR 11-7: Guidance on Model Risk Management

BOARD OF GOVERNORS
OF THE FEDERAL RESERVE SYSTEM
WASHINGTON, D.C. 20551

What's driving Stress Testing and Model Risk Management efforts?

Regulatory efforts

SR 11-7 says “Banks benefit from conducting model stress
testing to check performance over a wide range of inputs and
parameter values, including extreme values, to verify that the
meodel is robust”

In fact, SR14-03 explicitly calls for all models used for Dodd-
Frank Act Company-Run Stress Tests must fall under the
purview of Model Risk Management.

In addition SR12-07 calls for incorporating validation or other
type of independent review of the stress testing framework to
ensure the integrity of stress testing processes and results.

=]

[

-

Article 22. Automated individual decision making, including profiling

. The data subject shall have the right not to be subject to a decision based solely on automated processing, including profiling,

which produces legal effects concerning him or her or similarly significantly affects him or her.

. Paragraph 1 shall not apply if the decision:

(a) is necessary for entering into, or performance of, a contract between the data subject and a data controller;
(b) is authorised by Union or Member State law to which the controller is subject and which also lays down suitable measures
to safeguard the data subject’s rights and freedoms and legitimate interests; or

(c) is based on the data subject’s explicit consent.
In the cases referred to in points (2) and (c) of paragraph 2, the data controller shall implement suitable measures to safeguard
the data subject’s rights and freedoms and legitimate interests, at least the right to obtain human intervention on the part of the
controller, to express his or her point of view and to contest the decision.
Decisions referred to in paragraph 2 shall not be based on special categories of personal data referred to in Article 9(1), unless
point (a) or (g) of Article 9(2) apply and suitable measures to safeguard the data subject’s rights and freedoms and legitimate
interests are in place.

Fairness and Explainability in Al: Models, Measures, and Mitigation Strategies

Credit: Lecueet al., Tutorial on XAl. AAAI 2020. https://xaitutorial2020.github.io/

CALIFORNIA
CONSUMER

PRIVACY
ACT OF 2018




Growing global Al regulations

* GDPR “right to explanation”: Article 22 empowers individuals with the right to demand
an explanation of how an automated system made a decision that affects them.

* Algorithmic Accountability Act 2019: Requires companies to provide an assessment of
the risks posed by the automated decision system to the privacy or security and the
risks that contribute to inaccurate, unfair, biased, or discriminatory decisions impacting
consumers

* California Consumer Privacy Act: Requires companies to rethink their approach to
capturing, storing, and sharing personal data to align with the new requirements by
January 1, 2020.

« Washington Bill 1655: Establishes guidelines for the use of automated decision
systems to protect consumers, improve transparency, and create more market
predictability.

* Massachusetts Bill H.2701: Establishes a commission on automated decision-making,
transparency, fairness, and individual rights.

* lllinois House Bill 3415:States predictive data analytics determining creditworthiness or
hiring decisions may not include information that correlates with the applicant race or
zip code.

Credit: Lecueet al., Tutorial on XAl. AAAI 2020. https.//xaitutorial2020.github.io/

Fairness and Explainability in Al: Models, Measures, and Mitigation Strategies 9



XAl as a key requirement

* Early phases of Al adoption
* Ok to not fully understand how the model predicts, as long as the accuracy is
high
* Shifting focus

* Recognition of the importance of understanding the decision-making
processes of Al systems.

* Emphasis on building human interpretable models.

* Why it becomes important?
e Trust: XAl helps us build trust in Al systems by explaining their decisions.

* Transparency: XAl helps in understanding potential biases, limitations and
risks in Al systemes.

» Accountability: It can help us hold Al systems accountable for their decisions.

Fairness and Explainability in Al: Models, Measures, and Mitigation Strategies 10
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Black — vs white box models

* A Black Box model is a system that does not reveal its internal

mechanisms.

* In machine learning, “black box” describes models that cannot be understood

by looking at their parameters

* Examples of black-box models: neural networks, ensembles, SVMs, ...

7
XA
")

ST
\“'50, A

i
i

Output layer

.~
Input layer @
Hidder layers

Source:link

Fairness and Explainability in Al:

| Trainer |«

L3 ]

Y

weak classifier 1

l Non-linear classifier

weak classifier 2

\ Weighted _

Voter

Feature 2

Feature 1
weak classifier K

Classifier
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https://www.researchgate.net/figure/Schematic-diagram-of-the-deep-neural-network-a-an-architecture-of-DNN-model-comprised_fig2_345137756

Black — vs white box models

* The opposite of a black box is sometimes referred to as White Box
(or, interpretable model).

* Linear regression, logistic regression and the decision tree are commonly used
interpretable models.

Algorithm

Linear regression
Logistic regression
Decision trees
RuleFit

Naive Bayes

k-nearest neighbors

Linear Monotone Interaction
Yes Yes No

No Yes No

No Some Yes

Yes No Yes

No Yes No

No No No

Source: Link

Task

regr

class
class,regr
class,regr
class

class,regr

I Qutlook I
Siermy Overcast Rain
,,L Wind
/Hig.': Hom{:..* Sj‘/ong Wec{.t\
No Yes No Yes
|
A
[
A n
O
Apg
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https://christophm.github.io/interpretable-ml-book/simple.html#simple

Sunny Overcast Rain
i
High Normal Strong Wtﬂ{
No Yes No Yes

Black — vs white box models

* We could argue whether such models are always interpretable (e.g., a
very long decision tree)

Source: Link
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https://www.kdnuggets.com/2020/01/decision-tree-algorithm-explained.html

Predictive Power

Accuracy interpretability trade-off

[n]
CNNs < RNNs g
DNNs x w

)

=

S

Tree Ensembles x &
L, X GAMs
3
b
g x Decision Trees
D
§ X Linear Regression
Interpretability

Source: Link

Accuracy vs Interpretability Trade-off

High

Model accuracy

Low

‘ XAl's future

Hybrid modelling approaches
New explainability-preserving modelling approaches
Interpretable feature engineering

research arena

Post-hoc explainability techniques
Interpretability-driven model designs

Low High

Model interpretability

@ orn
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https://livebook.manning.com/book/interpretable-ai/chapter-2/v-3

Black — vs white box models

- 2 directions
* Build inherently interpretable models
* j.e., white models
* Post-hoc explanations for black-box models

* Assume black-box models and create a second (post-hoc) model to explain the first
black-box model

« Apply methods that analyze the model after training (post-hoc) (Carvalho et al.,
2019)

» Advice:

* If you can build an interpretable model which is also adequately accurate for
your setting, do it!

* Otherwise, post-hoc explanations come to the rescue.

D. V. Carvalho, E. M. Pereira, & Jaime S. Cardoso (2019). Machine Learning Interpretability: A Survey on Methods and Metrics. Electronics, 8, 832.

Fairness and Explainability in Al: Models, Measures, and Mitigation Strategies 16


https://www.mdpi.com/2079-9292/8/8/832

Why we need XAl?

* Many Al systems nowadays are black boxes.
* As an example, ChatGPT 4 has 1.76 trillion parameters

* Post-hoc explanations are therefore necessary

?

) Output

Fairness and Explainability in Al: Models, Measures, and Mitigation Strategies
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Explainability is a versatile tool for different
types of users 1/3

* For end users, that “consume” the technology, to understand how a
certain decision was made (GDPR “right to explanation”)

* In healthcare: “Why was | classified as a high-risk patient for COVID?”
* In credit scoring: “Why was my credit application rejected?”
* In predictive policing: “Why was | selected for police inspection?”

* And moreover:
* “Am | being treated fairly?”
* “Can | contest the decision?”

* “What could | do differently to get a positive outcome?”
* In credit scoring:”What should | change in my application to get a loan?”

Based on Fosca Giannoti (2022) keynote, ECMLPKDD (link to a previous version of the slides)

Fairness and Explainability in Al: Models, Measures, and Mitigation Strategies 20


https://xaitutorial2021.github.io/

Explainability is a versatile tool for different
types of users 2/3

* For professionals that make decisions with (the help of) Al, to ensure that
decisions are correct and in accordance with legal and societal standards
(e.g., no discrimination)

* E.g., An example x-ray image classified as Pneumonia, as well as the different
XAl visualizations

-
-

Original Input LRP LIME Counterfactual

Source: Link

Based on Fosca Giannoti (2022) keynote, ECMLPKDD (link to a previous version of the slides)

Fairness and Explainability in Al: Models, Measures, and Mitigation Strategies 21


https://www.frontiersin.org/articles/10.3389/frai.2022.825565/full
https://xaitutorial2021.github.io/

Explainability is a versatile tool for different
types of users 3/3

* For Al technology developers, as an inspection/debugging tool, to ensure that the
technology is robust “Is my system working as designed?”

* Right decisions for the right reasons
* Insights on how to improve model performance

Based on Fosca Ciannoti (2022) keynote, ECMLPKDD (link to a previous version of the slides)

Fairness and Explainability in Al: Models, Measures, and Mitigation Strategies 22


https://xaitutorial2021.github.io/

XAl as an inspection/debugging tool

* Explaining a text classification: text is classified correctly but for the wrong
reasons.

* Actionable insights: The explanation reveals that the model focuses on html|
tags, common words, ...

Text with highlighted words

From: johnchad@triton.unm Bll (jchadwic) Prediction probabilitics atheism ) ST
Subject: Another request for Darwin Fish atheism

Organization: University of New Mexico, Albuquerque christian

Lines: 11

(SIS - PSR BIGSY: triton.unm

Hello Gang,

8 been some notes recently asking where to obtain the
DARWIN fish.
This is the same question I il and I [l not seen an answer on
the
net. If anyone has a contact please post on the net or email me.

Your ideas: Source: Ribeiro et al, 2016

What could have gone wrong during training?
How can we improve the model?

Fairness and Explainability in Al: Models, Measures, and Mitigation Strategies 23


https://arxiv.org/pdf/1606.05386.pdf?source=post_page

XAl as an inspection/debugging tool

* Explaining an image: the image is wrongly classified as a wolf

 Actionable insights: The explanation reveals that the model focuses on the
snow in the background.

(a)a Husky misclassificd (b) The Explanation shows the
as a \/olf classificr only concentlrale
on lhe background

Your ideas: Source: Ribeiro et al, 2016
What could have gone wrong during training?

How can we improve the model?

Fairness and Explainability in Al: Models, Measures, and Mitigation Strategies 24


https://arxiv.org/pdf/1606.05386.pdf?source=post_page

XAl for bias detection

 Explaining a text classification: text is classified wrongly as hate speech

- Actionable insights: the explanation reveals that the model is oversensitive to
group identifiers and unable to identify the context in which these words are
used (Kennedy et al, 2020).

“[FJor many Africans, the most threatening kind of ethnic
hatred is black against black.” - New York Times

“There is a great discrepancy between whites and blacks
in SA. Itis ... [because] blacks will always be the most
backward race in the world.” Anonymous user, Gab.com

muslim jew jews white islam blacks muslims
women whites gay black democat islamic allah jew-
ish lesbian transgender race brown woman mexican
religion homosexual homosexuality africans

Two documents which are classified as hate speech by a fine-
tuned BERT classifier. Group identifiers are underlined.

Your ideas: List of identity terms for bias detection
What could have gone wrong during training?
How can we improve the model?

Fairness and Explainability in Al: Models, Measures, and Mitigation Strategies 25


https://aclanthology.org/2020.acl-main.483.pdf
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Overview of explanation methods

* Two general categories: Methods can explain a specific prediction (local),
or the overall logic of the model (global)

* Local (or instance-based) explanations
* Provide an explanation for a specific instance.

* Focus on the decision-making process for a single instance rather than the entire model.
* Representative methods:

+ Feature importance/attribution methods (LIME, Shapley, ... ), Saliency maps, Prototype-
/example-based, Counterfactual, ...

* Global explanations

* Explain the overall behavior of the model across the entire dataset.

* Provide a holistic view of how the model makes decisions based on the overall patterns
it has learned.

* Representative methods

+ Global feature importance (aggregated Shapley values), Accumulated local effects (ALE), Model
distillation/ Global surrogate model, Partial dependence plots (PDP)

Fairness and Explainability in Al: Models, Measures, and Mitigation Strategies 27
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Local explanation methods

* Explain predictions on a single instance.

* A motivating example: Consider a clinic using Al to diagnose patients' illnesses. In this
scenario, the Al application processes a patient's symptoms and related information, utilizes
an Al model, and concludes that the symptoms align with those of the flu. The doctor can
subsequently examine the results and initiate appropriate treatment

* Itis important for the doctor to understand why the model predicted “flue” and what were the key
factors for the prediction

* LIME: Sneeze and headache are portrayed as contributing to the “flu” prediction, while “no fatigue” is evidence
against it

/ ' / Sheeze &l Explainer | sneeze ]
& 4 / i (LIME)
| ::;%gtche —_— headache || | —
\ | no fatigue
4 age

Model Data and Prediction Explanation Human makes decision

Source: Link
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LIME (Ribeiro et al, 2016

“Why Should | Trust You?”
Explaining the Predictions of Any Classifier

* LIME (Local Interpretable Model-agnostic
Explanations)

Flu

sneezZe

weight
headache
no fatigue

age 14

Data and Prediction

Explainer

(LIME)

sneeze
headache

Explanation

Despite widespread adoption, machine learning models re-
main mostly black boxes. Understanding the reasons behind
predictions is, however, quite important in assessing trust,
which is fundamental if one plans to take action based on a
prediction, or when choosing whether to deploy a new model.
Such understanding also provides insights into the model,
which can be used to transform an untrustworthy model or
prediction into a trustworthy one.

In this work, we propose LIME, a novel explanation tech-
nique that explains the predictions of any classifier in an in-
terpretable and faithful manner, by learning an interpretable
model locally around the prediction. We also propose a
method to explain models by presenting representative indi-
vidual predictions and their explanations in a non-redundant
way, framing the task as a submodular optimization prob-
lem. We demonstrate the flexibility of these methods by
explaining different models for text (e.g. random forests)
and image classification (e.g. neural networks). We show the
utility of explanations via novel experiments, both simulated
and with human subjects, on various scenarios that require
trust: deciding if one should trust a prediction, choosing
between models, improving an untrustworthy classifier, and
identifying why a classifier should not be trusted.

1. INTRODUCTION

Machine learning is at the core of many recent advances in
science and technology. Unfortunately, the important role
of humans is an oft-overlooked aspect in the field. Whether
humans are directly using machine learning classifiers as tools,
or are deploying models within other products, a vital concern
remains: if the users do not trust a model or a prediction,

Marco Tulio Ribeiro Sameer Singh Carlos Guestrin
. University of Washington University of Washington University of Washington
Seattle, WA 98105, USA Seattle, WA 98105, USA Seattle, WA 98105, USA
* One of the most popular methods in XA O o ML L S
ABSTRACT how much the human understands a model’s behaviour, as

opposed to seeing it as a black box.

Determining trust in individual predictions is an important
problem when the model is used for decision making. When
using machine learning for medical diagnosis [6] or terrorism
detection, for example, predictions cannot be acted upon on
blind faith, as the consequences may be catastrophic.

Apart from trusting individual predictions, there is also a
need to evaluate the model as a whole before deploying it “in
the wild”. To make this decision, users need to be confident
that the model will perform well on real-world data, according
to the metrics of interest. Currently, models are evaluated
using accuracy metrics on an available validation dataset.
However, real-world data is often significantly different, and
further, the evaluation metric may not be indicative of the
product’s goal. Inspecting individual predictions and their
explanations is a worthwhile solution, in addition to such
metrics. In this case, it is important to aid users by suggesting
which instances to inspect, especially for large datasets.

In this paper, we propose providing explanations for indi-
vidual predictions as a solution to the “trusting a prediction”
problem, and selecting multiple such predictions (and expla-
nations) as a solution to the “trusting the model” problem.
Our main contributions are summarized as follows.

LIME, an algorithm that can explain the predictions of any
classifier or regressor in a faithful way, by approximating
it locally with an interpretable model.

SP-LIME, a method that selects a set of representative
instances with explanations to address the “trusting the
model” problem, via submodular optimization,

o Comprehensive evaluation with simulated and human sub-
ierts where we measnre the imnact of exnlanations on

Ribeiro, M. T,, Singh, S., & Guestrin, C. ~“Why should i trust you?" Explaining the predictions of any classifier. KDD 2016.

Fairness and Explainability in Al: Models, Measures, and Mitigation Strategies
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LIME

* LIME a technique that approximates any black box machine learning model with a
local, interpretable model to explain individual instance predictions.

Local
Interpretable
Model-agnostic

Explanations

* Local: Replicates the model’s behavior locally and can explain individual predictions.

¢ |nterpretab|e: Provides a qualitative understanding between the input variables and the
response.

¢ Model—agnostic: Treats the model as a black box.

¢ Explanations: Uses locally weighted interpretable models

Fairness and Explainability in Al: Models, Measures, and Mitigation Strategies 33



How it works?

* Input:
* A black box model f(): for a given input x

(marked as +) it can provide an
output/prediction f(x)

* The instance x to be explained

* Goal:

* For the input instance x, explain the
decision f(x) of the black box model f()

- Key idea:

* Build a transparent surrogate model g()
in the neighborhood of the instance x to

simulate the local behavior of the black
box f().

/
/
I

{

I
+

I
/
|

Black-box model:

* complex model (decision boundary shown in
blue/pink background)

* Cannot be easily approximated by a linear
model (dotted black line)
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Key steps

I
I
:
» Step 1: Sample points around x +"
» Step 2: Use the black box model f() to |
predict their labels P
- Step 3: Weight points based on their I

distance to x
Black-box model:

* Step 4: Learn an interpretab|e model * complex model (decision boundary shown in

g() on the weighted samples blue/pink background)
* Cannot be easily approximated by a linear

model (denoted by the dotted black line)

Fairness and Explainability in Al: Models, Measures, and Mitigation Strategies 35



Key steps: Step 1

I
Ll
° '1'4 -i’
Step 1: Sample points around x e
* Create a neighborhood N of similar +4+ @
instances around x + @ o
| ® 0®
I
I .
]

lgnore the colors, size and symbols of the
instances for the moment
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Key steps: Step 2

Step 1: Sample points around x 2
local neighborhood N

Step 2: Use the black box model f() to
predict their labels

* For each instance x”in N, predict f(x’)
using the block box f{()

!

L

+F

+H
I
I

I

I

§~+

Color and symbol indicates the class
predicted by the black box.

lgnore the size of the instances for the
moment
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Key steps: Step 3

Step 1: Sample points around x 2
local neighborhood N

Step 2: Use the black box model f() to
predict their labels = labeled local
neighborhood N

Step 3: Weight points based on their
distance to x

 Higher weights for nearby instances
* Lower weights for far away instances

I

I
+
0

I
+ @
++ @
—H. ® +
| ©® e®

I
}

[}

Color and symbol indicates the class
predicted by the black box.
Size indicates the proximity to x
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Key steps: Step 4 : e

+

- ® . +
Step 1: Sample points around x = local 1 @ e
neighborhood N ,'\ 5
Step 2: Use the black box model f() to predict ' \
their labels = labeled local neighborhood N

Interpretable model: in this
Step 3: Weight points based on their distance to x case a linear classifier

= labeled weighted local neighborhood N

Step 4: Learn an interpretable model g() on the weighted samples
e Training set: the weighted samples.
e Choose from the class of interpretable models, e.g., a linear classifier
e The local model g() must correspond to how the model f() behaves in the vicinity of the
instance being predicted (local fidelity)
e The complexity of g() can be further controlled to improve interpretability
® For decisions trees, it can be the depth of the tree
® Forlinear regression, it can be the number of features with non- zero weight
e Fidelity-Interpretability trade-off

g(-’*’") = argmin E(fa g, ﬂ'a:) + Q(Q) 1, is the neighborhood of x
geEG
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LIME overview: reflection on key components

Given a decision
made on an input

Construct . .
. . . Constructed neighborhood train the
nelghboru}g points (reflects the local behavior) surrogate model
of the input
Black box decisions
on the neighbors Extract information on

decision making process
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Neighborhood selection

* The definition of the neighborhood N around x is critical as it comprises
the training set for the local classifier

- Recall that we don’t have access to the training data of the black box
model

* So how can we create a local neighborhood around x?
* In LIME, the neighborhood is created by perturbing the input instance x

* The perturbation depends on the data type (tabular, text, images)

* For text and images: create new samples by turning single words or super-
pixels on and off

* For tabular data: create new samples by perturbing each feature individually,
drawing from a normal distribution with mean and standard deviation taken
from the feature.
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Neighborhood selection: text data

Source: Molnar Christoph

Dataset: YouTube comments

Model: a model that predicts whether a YouTube comment is spam or normal

CONTENT CLASS
287 PSY is a good guy 0
173 For Christmas Song visit my channel! ;) 1

* The neighborhood of an instance is created by perturbing the instance (turning words on
and off)

[ For Christmas Song visit my channel! ;) prob weight ]
1 0 1 1 0 0 1 0.17 0.57
Your ideas:
0 1 1 1 1 0 1 0.17 0.71 What can go wrong with the
ions?
1 0 0 1 1 11 0.99 0.71 pertubations:
1 0 1 1 1 1 1 0.99 0.86
0 1 1 1 0 0 1 0.17 0.57
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Neighborhood selection: image data

* Naive idea: randomly change pixels

- Likely won't affect the prediction much since >1 pixels contribute to a class.
* Instead, create image variations by segmenting into “superpixels” and turning
them on or off.
* Superpixels are interconnected pixels with similar colors and can be turned off by
replacing each pixel with a user-defined color such as gray.

* The user can also specify a probability for turning off a superpixel in each
permutation.
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Neighborhood selection: image data

* What does LIME really see in images? Garreau & Mardaoui, 2021 (paper)

mean rep.

zero rep.

Figure 2. Sampling procedure of LIME for images. The image to explain, &, is first split into d superpixels (lower left corner, here d = 72).
A replacement image & is computed, which is by default the mean of £ on each superpixel (fop row), see Eq. (1). This replacement image
can also be filled uniformly with a pre-determined color (bottom row: replacement with the color black). Then, for each new generated

example x; with 1 < ¢ < n, the superpixels are randomly switched depending on the throw of d independent Bernoulli random variables
with parameter 1/2. Thus LIME creates n new images where key parts of £ disappear at random.
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Neighborhood selection: tabular data

Source: Molnar Christoph
FIGURE 9.5: LIME algorithm for tabular data.

A) Random forest predictions given features x1
and x2. Predicted classes: 1 (dark) or O
(light).

B) Instance of interest (big dot) and data
sampled from a normal distribution (small

dots).

- | C) Assign higher weight to points near the

instance of interest.

3 D) Signs of the grid show the classifications of

the locally learned model from the weighted
samples. The white line marks the decision

boundary (P(class=1) = 0.5).
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LIME: discussion

- Advantages

* Model-agnostic
* can explain the decisions of any ML model, regardless of its complexity. This makes

it a versatile tool for XAl
* Generates local explanations
 useful in many practical situations

* Limitations

* Sensitive to perturbations (for the local neighborhood of the instance)
* Small changes in the instance might result in different explanations

* The choice of the distance function to assess proximity between a point and

the instance to be explained can affect the explanations.
« Which function to use?
* Challenges with high dimensional data, mixed-data types, ...
« Approaches exist that work on the latent-space, e.g., Cai et al, 2023, Lambridis et al,
2020
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SHAP

* SHAP (SHapley Additive exPlanations) by
Lundberg and Lee (2017).

« Another popular method in XAl

Additive
ExPlanations

1
SHapley l'l'
S

A Unified Approach to Interpreting Model
Predictions

Scott M. Lundberg Su-In Lee
Paul G. Allen School of Computer Science Paul G. Allen School of Computer Science
University of Washington Department of Genome Sciences
Seattle, WA 98105 University of Washington
slund1@cs.washington.edu Seattle, WA 98105

suinlee@cs.washington. edu

Abstract

Understanding why a model makes a certain prediction can be as crucial as the
prediction’s accuracy in many applications. However, the highest accuracy for large
modern datasets is often achieved by complex models that even experts struggle to
interpret, such as ensemble or deep learning models, creating a tension between
accuracy and interpretability. In response, various methods have recently been
proposed to help users interpret the predictions of complex models, but it is often
unclear how these methods are related and when one method is preferable over
another. To address this problem, we present a unified framework for interpreting
predictions, SHAP (SHapley Additive exPlanations). SHAP assigns each feature
an importance value for a particular prediction. Its novel components include: (1)
the identification of a new class of additive feature importance measures, and (2)
theoretical results showing there is a unique solution in this class with a set of
desirable properties. The new class unifies six existing methods, notable because
several recent methods in the class lack the proposed desirable properties. Based
on insights from this unification, we present new methods that show improved

i and/or better i with human intuition than

previous approaches.

1 Introduction

The ability to correctly interpret a prediction model’s output is extremely important. It engenders
appropriate user trust, provides insight into how a model may be improved, and supports understanding
of the process being modeled. In some applications, simple models (e.g., linear models) are often
preferred for their ease of interpretation, even if they may be less accurate than complex ones.
However. the growing availability of big data has increased the benefits of using complex models. so

Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference

on Neural Information Processing Systems (pp. 4768-4777).
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SHAP

* SHAP is a technique that computes the contribution of each attribute to the final
prediction(s).

N
SHapleyl ""'
]

Additive lll
ExPanations
SHAP

¢ SHapIey: Based on Shapley values from game theory

* Additive: the contribution of each feature to the final prediction can be computed
independently and then summed up.

. ExPIanations

Fairness and Explainability in Al: Models, Measures, and Mitigation Strategies 50



Motivation

* Idea behind SHAP comes from cooperative game theory

« Cooperative games: In a cooperative game, “players” have the possibility to forge
coalitions to achieve a common goal. After the game is over, the coalition gets a
certain payout/benefit/gain for the results.

* Key question: How should the money be distributed among the team?

* Example: a team of data scientists, cooperate in a Kaggle competition and won
the first prize. How the prize should be distributed among the team members?

Contribution ' ]
- PaVOUt $

kaggle
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Motivation N
= B

kaggle

 Key question: How should the money be distributed among the team?
* One idea: Equal distribution among the players. Is this a good idea?

* Key intuition:
* Some players may contribute more to the coalition than others (for example,

an ML expert in the Kaggle team) or may possess different bargaining power
(for example, threatening to destroy the whole surplus)

* Rephrased questions:

* How important is each player to the overall cooperation, and what payoff can
he or she anticipate as a result?

* How interactions between players should be considered?

* One possible answer: Shapley values (term coined by Shapley (1953))
 Shapley won the Nobel Memorial Prize in Economic Sciences for it in 2012.

Shapley, Lloyd S. “A value for n-person games.” Contributions to the Theory of Games 2.28 (1953): 307-317.
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Shapley values: Notation

Assume a coalition of N players (grand coalition).
* For example, the 4 team members in the Kaggle competition

S € N is a subset of participants of the grand coalition N (partial coalition).
v is a value function that maps subsets of players S to a real number

v(S)="the revenue of the coalition §*

* v(N) is the value function of the grand coalition. In our example, the value generated by
all players is 100 credits: v(N)=100K.

When a player i joins a set of players S, the marginal contribution of
playeritoSis:
v(S U {i}) —v(5)

* The marginal contribution measures the value that player i added when (s)he joined the
group of players S. This contribution can be zero, positive or even ... negative.

The Shapley value of player i tells us the average contribution of playeri to the
payout v(N)
* Average over all possible ways to form a coalition

Fairness and Explainability in Al: Models, Measures, and Mitigation Strategies 53



More formally

* Given a set of players N and a value function v(), the Shapley value
of player iis a weighted average of the marginal contributions
of / over all possible coalitions S of N.

S|U(IN| - [S] — D)|[v(S U {i}) — v(8)]

* Average: average the marginal contributions over all possible ways
to form a coalition.

* [N|!is the number of ways to arrange the grand coalition N.

« Weight: ensures that each marginal contribution is fairly averaged
across all possible permutations and is the product of the number
of ways to arrange coalition S (|S|!) and the number of ways to
arrange the remaining players excluding i ((|N] - [S]| -1)!).

* Marginal contribution: the marginal contribution of player i to the
subset S
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Input variables (contributors)

Sports
Size Weight activities  Gender

) I S
From games to XAl —
N
¥ v Contributions
How to distribute the
payout fairly among

The cooperative the contributors?
game

Predlctlon
Payout of the game

« SHAP explanations: an XAl technique based on Shapley values used to
determine how input variables contribute to output predictions.

* A prediction can be explained by assuming that each feature is a “player”
in a game where the prediction is the payout.

* Game: the prediction problem
* Players: the features
* Payout: the prediction for the instance
* So, Shapley values tell us how to distribute the payout/prediction among
the features.
* In other words, what are the feature contributions to model predictions
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Shapley values

* The Shapley value of a feature is its contribution to the payout, weighted

and summed over all possible feature combinations:

soa) =y EEEZEE R s u ) - val(s)
SC{L,...p1\{5} '

* j: the feature of interest
* S: a subset of the features used in the model

* p: the number of features.
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How to calculate the Shapley values: 2 key
challenges

S|t (p — S| = 1)!
p!

¢i(val) = >

SC{L,. P}

(val (S U {j}) — val(5))

* Challenge 1: The Shapley value is based on evaluating all possible
combinations of players.

* For a large number of features (e.g., pixels in an image, words in a document
etc), calculating individual feature contributions becomes impractical as the
number of coalitions exponentially increases as more features are added.

« Key idea: use approximation

* Challenge 2: How to exclude a feature from a ML model?
« We cannot just remove a feature, will affect the representation
 Key idea: instead of removing a feature, set its value to a random value
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Challenge 1: How to calculate the values?

* SHAP does not attempt to calculate the actual Shapley values.
* It uses sampling and approximations to calculate the SHAP values.

 Strumbelj & Kononenko, 2014 propose an approximation with Monte-
Carlo sampling

* M: number of iterations

b= LS (Fm) - Fm)
Vet
/ \

the prediction for x, but with a random number of feature Almost identical to x,, but the value x; is
values replaced by feature values from a random data taken from z.
point z, except for the respective value of feature j.
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Pseudocode: Approximate Shapley estimation (Strumbelj & Kononenko, 2014)

Data Matrix X: where the samples should come from? Often implemented
as a background dataset of instances from the domain

 QOutput: Shapley value for thejth feature The procedure has to be repeated for each
of the features to get all Shapley values.

* Input: Instance x, feature j, data matrix X, ML mode|
f(), number of iterations M

 Forallm=1.. M

* Draw ra ndom instance z from the data matrix X //For each iteration, a random instance z is selected
) from the data and a random order of the features is
* Choose a random permutation of the feature generated
values

//Two new instances are created by combining values

* Order instance X: x,=(X4, ..., X, ....X
I 0 (1' 7y p) from the instance of interest x and the sample z.

* Order instance z: 2y=(z, ..., Z; ....Z,)

* Construct two new Instances //The instance Xy is the instance of interest, but all values in the order

+ With feature J: X+j:(-X,I Zjyg ,__,zp) after feature j are replaced by feature values from the sample z.

+ Without feature j: x.= 2t coneZ

.j K (-Zj sl p) ) //The instance X_j is the same as Xyjs but in addition has feature j
. replaced by the value for feature j from the sample z
+ Computer marginal distribution of feature j: laced by the value for f from th |
m o f£(am _ f M
d)j =f ($+j) f (wfj) //The difference in the prediction from the black box is computed:

« Compute Shapley value as the average:

$i(x) = o S g
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SHAP: discussion

- Advantages
* Grounded on game theory

* Model-agnostic

* can explain the decisions of any ML model, regardless of its complexity. This makes
it a versatile tool for XAl

* Generates local and global explanations

» can provide both local explanations (for individual instances) and global
explanations (aggregating feature importances across all instances).

* Limitations
« Computational cost

* Approximation necessity
* The need for a background dataset
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Motivation for counterfactual explanations

WHAT MIGHT
HAVE BEEN
.. . . The Social Psychology
* Counterfactual thinking is a psychological term that of Counterfactual Thinking
refers to the human tendency to imagine
alternative outcomes or scenarios that might have
occurred in the past, present, or future, but did not
actually happen. edited by
Neal J. Roese

James M. Olson

What actually I

happens

* It involves mentally exploring "what if" scenarios
and considering how things might be different
under different circumstances.

FACTUAL

COUNTERFACTUAL
Remembering the past Counterfactual thinking in Changing behaviour in
the present the future

A
"l am alway
“If I studied, | would have prepared to dfmy
easily passed that test” best!"

What is

¥

Whatis

T

Magbe DI be happy
it 1 hadnt encrasen(

in any counterfactual
f

T

What would What could
happen if we 9 have been if__7
+ook X action !

T'L_fn(mc".-.

What if X were
+rue/false?
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Counterfactual explanations

* What features need to be changed to flip the decision of a model? (Verma
et al, 2020) = Counterfactual explanations (CFs)

Predictive
Model

Applicant

Loan Application ' '
Deny Loan “

e
°
o°°/
W
-
Counterfactual Generation i
Algorithm

Recourse: Increase your salary by 50K & pay your credit card bills on time for next 3 months

Source: (Joshi et al, 2021)
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Why are CFs useful?

* Counterfactuals are particularly useful because they offer both an
explanation and actionable changes that can be applied to achieve a
desired outcome.

* Example: How to attain a higher salary?

Age Job Edu WorkHrs Location Class Age Job Edu WorkHrs Location Class
K{:| 149 | Seller | HS | 40 |Geman3r| * Kﬂl 19 | Seller | HS | 40 |German],r| *

x1| 19 | seller | HS | 10 | Germany| x

Y
Kzl 23 | Seller |B5c| 10 |GEI‘II]E.[I.]F| ®

X3 | 23 | Seller |[BSc| 10 | US | x

x4 | 23 |Developer [BSc | 10 | wUs | x

xr [ beveioper ] 0 [ W ] v xr [ [peveroper [ [0 & ] «
(a) Traditional counterfactual (b) Sequential counterfactual

Source: Naumann and Ntoutsi, 2021
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What are counterfactual explanations (CFs)?

* CFs aim to determine the changes needed in the given input x to
transform it into x” in order to alter the prediction outcome f(x’) (Wachter
et al., 2017)

/ /
x = x + o, ; x,x,0e X CR"
Counterfactual Original input  Explanation

st. f(@') =y #y=f(x); yye), f:X& =)

* These changes (6) are the explanation of the original prediction

* There are many possible x” .....

Wachter, Sandra, Brent Mittelstadt, and Chris Russell. "Counterfactual explanations without opening the black box:
Automated decisions and the GDPR." Harv. JL & Tech. 31 (2017): 841.
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Design principles for counterfactual
explanations &L = o b O addcXCR

Counterfactual Original input  Explanation

st. f(@) =y #Fy=f(x); v.¥ eV, f- X =D
 Desiderata for CFs (Dandl et al, 2020):

* Closest possible world/ Proximity:
* x’should be close to x, e.g., L2 norm

Sparsity: ) Decision boundary

* change only a few features
Plausibility/ Feasibility:

* x’should come from the data distribution
Actionability:

* ARs should only recommend changes to the
features that are actionable (e.g., do not change
immutable features)

Causality:

+ Adhere to problem-specific causal constraints (e.g.,
age cannot decrease)

Source: Verma et al, 2010

Verma, Sahil, John Dickerson, and Keegan Hines. "Counterfactual explanations for machine learning: Challenges revisited." arXiv preprint
arXiv:2106.07756 (2021).
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Methods for generating CFs

* Naive approach to CF generation

* Single-objective optimization (Wachter et al., 2017)
* single objective (proximity)
* requires access to model gradients
* Single-objective (Tolomei et al, 2017)
* single objective (proximity)
* Requires access to a trained Random Forest model
* Multi-objective optimization (Dandl et al, 2020)
* multiple objectives

- Single-objective, diverse CFs (Mothilal et al., 2020)
+ diversity objective (Determinental Point Process)

 Sequential CFs (Naumann and Ntoutsi, 2021)
+ consider the order in which changes in features (actions) are applied

* Amortized (scalable) CFs (Verma et al, 2021)
* Learn a policy to generate CFs, e.g., with RL (Panagiotou and Ntoutsi, 2023)
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Naive approach to CF generation

* Why not select an existing instance from the target class?

:ﬂ‘itﬁ‘. : -

* Pros
* Easy to implement (e.g., just choose closest neighbor)

* Cons
* Exposing other users’ real data

* Some instances will not have a close target neighbor
* This becomes more prominent with class imbalance/ other biases
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Multi-objective optimization approach (Dand|
et al, 2020)

- A counterfactual explanation x for an observation x* is defined as a data point
fulfilling proximity, sparsity, plausibility objectives

* Formulate the CF generation as a MOO problem

m}gno(x) = mxin ((:rl(f().;)1 Y, 09(x, x*), 03(%, X*), 04(x, Xobsn

+ 01: the distance between the predicted class and the target class Y’

+ 02: the proximity between x and x*, measured using Gower distance to account for
mixed features (proximity)

+ 03: the number of changed features (sparsity)

* 04: KNN distance to ground truth data (plausibility)

* Balancing the four objectives is difficult since the objectives contradict each other,
e.g., 01 becomes harder when we require 02

* They solve the problem using the Nondominated Sorting Genetic Algorithm
(NSGA-II)
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x2

Multi-objective optimization approach (Dand|

et al, 2020)

Input instance X

Design space

v

copies of X

obj2 4

A

Black-box

mutation/cross

Current

population
‘eedbaok
evolve
Sorted/Selecte
d instances
mutation/crossover

Objective space

o ©
Pareto optimal
O solutions

A\

obj1
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CFs: discussion

- Advantages
* Nice concept close to counterfactual human thinking
 Actionable insights: what to change in my instance to achieve a desired
outcome?
* Limitations
* Many possible worlds/ CFs, which one(s) to choose?
* Typically based on desiderata
* Various ways to evaluate the different desiderata objectives
* Evaluation typically assesses the quality w.r.t. design desiderata
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Reflecting on explanations

* A versatile tool for different user groups

* Different explanation types
* Feature attribution methods like SHAP, LIME, ...
 Counter factual explanations
* Also for specific data types, e.g., timeseries, images, text ....

... and many more not covered in this course (see excellent surveys by Guidotti

et al, 2022; Bodria et al, 2023; etc)
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Reflecting on explanations

- Still many open questions and challenges
* Which explanation?
* One vs many explanations?
« Can we trust the explanations?

* Recall the many assumptions of LIME, for example

* Explanations can be easily manipulated/attacked (Yang e
al, 2022)

« Computational aspects

* E.g., optimizing for each instance or learning a policy for
explanation generation

Can We Really Trust Explanations? Evaluating the Stability of Feature
Attribution Explanation Methods via Adversarial Attack
Zhao Yang'“, Yuanzhe Zhang'~, Zhongtao Jiang' -,
Yiming Ju'~, Jun Zhao'*, Kang Liu"***
iSchool of Artificial Intelligence, University of
Chinese Academy of Sciences / Beijing, 100049, China
“National Laboratory of Pattern Recognition, Institute of Automation,
Chinese Academy of Sciences / Beijing, 100190, China
Beijing Academy of Antificial Intelligence / Beijing. 100084, China
{zhao zhang, z| tao.jiang)@nlpr.ia.ac.cn
, kliu}@nlpr.ia.ac.cn

Abstract

Explanations can increase the transparency of neural networks and make them mare trustworthy
However, can we really trust explanations generated by the existing explanation methods? If
the explanation methads are not stable cnough, the credibility of the explanation will be greatly
reduced. Previous studics seldom cansidered such an important issue. To this end, this paper
propases a new evaluation frame to evaluate the stabiliy of current typical feature attribution
explanation methods via textual adversarial attack. Our frame could gencrate adversarial cxam-
ples with similar textual semantics. Such adversarial cxamples will make the original models
have the same outpats, but make most current explanation methods deduce completely different
explanations. Under this frame, we test five classical explanation methods and show their perfor-
mance on several stability-relited metrics, Experimental results show our evaluation is effective
and could reveal the stabilify performance of existing explanation methods.

1 Introduction

Fucled by recent rapid development in deep learning. NLP systems have obtained promising results in
several fields, such as madical, law and commerce (Rudin, 2019; Bommasani ct al, 2021). However,
besides the predicted results, users concern more on how these results are generated (Lipton, 2018). To
this end, lots of emphases have been set upon the explanation methods for neural netwarks (Ribeiro et
al., 2016; Li et al , 2016; Simonyan et al,, 2013; Bastings ot al., 2019).

Although the current cxplanation methods have increased the trnsparency of the newral networks ind
provided explanations as supports for predicted results, most of them | gnored important questions: are
these methods reliable and the generated explanations wally mustful? Besides the widely wsed focused
propenties of explanation methads, such as faithfulness, plausibility (Adchayo ct al, 2018; Jacovi and
Goldberg, 2020; Atanasova et al., 2020), readablencss (Bastings ct al., 2019) and compactness (Miller.
2019; Jiang et al., 2021), we believe stability is @ important but often overlooked property (Robnik-

» Evaluation!!!!
* No ground truth
* User studies

Original Input LRP

LIME Counterfactual

Source: Link

Fairness and Explainability in Al: Models, Measures, and Mitigation Strategies 84


https://aclanthology.org/2022.ccl-1.82/
https://aclanthology.org/2022.ccl-1.82/
https://www.frontiersin.org/articles/10.3389/frai.2022.825565/full

Thank you for your attention!
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