
Beyond NP with ASP
ASP solving overview

Programming Hints

Deep Reasoning in AI with Answer Set
Programming

ASP Solving and Modeling beyond NP

Francesco Ricca and Mario Alviano

Department of Mathematics and Computer Science

University of Calabria

ESSAI 2024 - Athens

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Outline

Beyond NP with ASP

ASP solving overview
Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Programming Hints

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Just a quick mention

Complexity notions

What is a decision problem?
The P class
The NP class
The co-NP class
Beyond NP: the Polynomial Hierarchy

The ΣP
k class

The ΠP
k class

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Context (1)

Answer Set Programming (ASP) [BET11]

Declarative programming paradigm
Non-monotonic reasoning and logic programming
Roots in Datalog and Nonmonotonic Logic
Stable model semantics [GL91]

Robust and efficient systems [GLM+18]

DLV [AAC+18], Clingo [GKK+16], ...

Effective in practical industrial-grade applications [EGL16]

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Context (2)

Expressive KR Language
Basic ASP models up to ΣP

2 [DEGV01]

→ i.e., problems not (polynomially) translatable to SAT or CSP

Well-known facts about ASP
Uniform and compact encodings
→ Fixed encoding, instances as facts, inductive definitions

Modular solutions
→ Generate-Define-Test/Guess&Check methodology [Lif02, EFLP00]

Compact and elegant modeling of problem in NP

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Context (2)

Expressive KR Language
Basic ASP models up to ΣP

2 [DEGV01]

→ i.e., problems not (polynomially) translatable to SAT or CSP

Well-known facts about ASP
Uniform and compact encodings
→ Fixed encoding, instances as facts, inductive definitions

Modular solutions
→ Generate-Define-Test/Guess&Check methodology [Lif02, EFLP00]

Compact and elegant modeling of problem in NP

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Context (2)

Expressive KR Language
Basic ASP models up to ΣP

2 [DEGV01]

→ i.e., problems not (polynomially) translatable to SAT or CSP

Well-known facts about ASP
Uniform and compact encodings
→ Fixed encoding, instances as facts, inductive definitions

Modular solutions
→ Generate-Define-Test/Guess&Check methodology [Lif02, EFLP00]

Compact and elegant modeling of problem in NP

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

The usual example

Example (3-col)
Problem: Given a graph, assign one color out of 3 colors to each node such

that two adjacent nodes have always different colors.
Input: a Graph is represented by node(_) and edge(_, _).

% guess a coloring for the nodes
(r) col(X , red) | col(X , yellow) | col(X , green) :- node(X).

% discard colorings where adjacent nodes have the same color
(c) :- edge(X ,Y), col(X ,C), col(Y ,C).

% NB: answer sets are subset minimal → only one color per node

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Motivation (1)

What about modeling beyond NP with ASP?

It is possible...

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Motivation (1)

What about modeling beyond NP with ASP?

It is possible... with unrestricted disjunction [DEGV01]

→ Stable model checking in co-NP

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Motivation (1)

What about modeling beyond NP with ASP?

It is possible... with unrestricted disjunction [DEGV01]

→ Stable model checking in co-NP

Rarely elegant and compact
→ Unless one can find a positive encoding

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

A rare example...

Example (Strategic Companies is ΣP
2 -complete)

Problem: There are various products, each one is produced by several
companies. We now have to sell some companies. What are the minimal
sets of strategic companies, such that all products can still be produced? A
company also belong to the set, if all its controlling companies belong to it.
Input: produced_by(_, _, _) and controlled_by(_, _, _, _)

% Guess strategic companies
strategic(Y) | strategic(Z) :-produced_by(X ,Y ,Z).

% Ensure they are strategic
strategic(W) :- controlled_by(W ,X ,Y ,Z),

strategic(X), strategic(Y), strategic(Z).

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Motivation (1)

What about modeling beyond NP with ASP?

It is possible... to some extent

Rarely elegant and compact
→ Unless one can find a positive encoding
→ Well-known strategic companies example

Generate-define-test approach is no longer sufficient

Saturation technique [EG95]
Exploits the minimality to check “for all” conditions
Difficult to use, not intuitive
→ Introduces constraints with no direct relation with the problem

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Motivation (1)

What about modeling beyond NP with ASP?

It is possible... to some extent

Rarely elegant and compact
→ Unless one can find a positive encoding
→ Well-known strategic companies example

Generate-define-test approach is no longer sufficient

Saturation technique [EG95]
Exploits the minimality to check “for all” conditions
Difficult to use, not intuitive
→ Introduces constraints with no direct relation with the problem

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Beyond NP (Saturation)
Example (Quantified Boolean Formulas by [EG95])
Problem: Given a QBF formula Φ = ∃X∀Yφ(X ,Y), where φ is in 3-DNF
form, determine an assignment for X that makes Φ satisfiable.
Input: conj(X1,SX1 ,X2,SX2 ,X3,SX3) and exist(X), forall(Y)

% Guess assignment for X
asgn(X , true) ∨ asgn(X , false) ← exist(X).

% Guess assignment for Y
asgn(Y , true) ∨ asgn(Y , false) ← forall(Y).

% Saturate Y
asgn(Y , true) ← sat , forall(Y).
asgn(Y , false) ← sat , forall(Y).

% check satisfiability Y
sat ← conj(X1,S1,X2,S2,X3,S3), asgn(X1,S1), asgn(X2,S2), asgn(X3,S3).
← not sat .

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Motivation and Goals

“Unlike the ease of common ASP modeling, [...]
these techniques are rather involved and hardly

usable by ASP laymen.” [GKS11]

Goals
Address the shortcomings of ASP beyond NP
Make modeling natural as for NP

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Motivation and Goals

“Unlike the ease of common ASP modeling, [...]
these techniques are rather involved and hardly

usable by ASP laymen.” [GKS11]

Goals
Address the shortcomings of ASP beyond NP
Make modeling natural as for NP

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

ASP with Quantifiers: Syntax and Semantics [ART19]

Definition (ASP with Quantifiers)
An ASP with Quantifiers (ASP(Q)) program Π is of the form:

□1P1 □2P2 · · · □nPn : C, (1)

□i ∈ {∃st , ∀st}; Pi a program; C a stratified normal program.

Intuitive semantics

Program Π = ∃stP1∀stP2 · · · ∃stPn−1∀stPn : C is coherent if:
“There is an answer set M1 of P1 s.t. for each answer set M2 of P2 ∪ fix(M1)

there is an answer set M3 of P3 ∪ fix(M2) such that . . . for each answer set Mn

of Pn ∪ fix(Mn−1) there is an answer set of C ∪ fix(Mn)”

where fixP(I) = {a | a ∈ I}∪{← a | a ∈ BP \ I}. M1 quantified answer set of Π

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Basic Example

Example (Quantified ASP Program)

Let Π = ∃stP1∀stP2 : C

P1 = {a(1) ∨ a(2)}
P2 = {b(1) ∨ b(2) ← a(1); b(2) ← a(2)}
C = {← b(1), not b(2)}

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Basic Example

Example (Quantified ASP Program)

Let Π = ∃stP1∀stP2 : C

P1 = {a(1) ∨ a(2)}
P2 = {b(1) ∨ b(2) ← a(1); b(2) ← a(2)}
C = {← b(1), not b(2)}

P1 has two answer sets {a(1)} and {a(2)}

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Basic Example

Example (Quantified ASP Program)

Let Π = ∃stP1∀stP2 : C

P1 = {a(1) ∨ a(2)}
P2 = {b(1) ∨ b(2) ← a(1); b(2) ← a(2)}
C = {← b(1), not b(2)}

P1 has two answer sets {a(1)} and {a(2)}
P ′

2 = P2 ∪ fixP1({a(1)}), and fixP1({a(1)}) = {a(1);← a(2)}

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Basic Example

Example (Quantified ASP Program)

Let Π = ∃stP1∀stP2 : C

P1 = {a(1) ∨ a(2)}
P2 = {b(1) ∨ b(2) ← a(1); b(2) ← a(2)}
C = {← b(1), not b(2)}

P1 has two answer sets {a(1)} and {a(2)}
P ′

2 = {b(1) ∨ b(2) ← a(1); b(2) ← a(2); a(1);← a(2)}

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Basic Example

Example (Quantified ASP Program)

Let Π = ∃stP1∀stP2 : C

P1 = {a(1) ∨ a(2)}
P2 = {b(1) ∨ b(2) ← a(1); b(2) ← a(2)}
C = {← b(1), not b(2)}

P1 has two answer sets {a(1)} and {a(2)}
P ′

2 = {b(1) ∨ b(2) ← a(1); b(2) ← a(2); a(1);← a(2)}
P ′

2 has two answer sets {a(1), b(1)} and {a(1), b(2)}

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Basic Example
Example (Quantified ASP Program)

Let Π = ∃stP1∀stP2 : C

P1 = {a(1) ∨ a(2)}
P2 = {b(1) ∨ b(2) ← a(1); b(2) ← a(2)}
C = {← b(1), not b(2)}

P1 has two answer sets {a(1)} and {a(2)}
P ′

2 = {b(1) ∨ b(2) ← a(1); b(2) ← a(2); a(1);← a(2)}
P ′

2 has two answer sets {a(1), b(1)} and {a(1), b(2)}
But C ∪ fixP′

2
({a(1), b(1)}) is not coherent!

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Basic Example

Example (Quantified ASP Program)

Let Π = ∃stP1∀stP2 : C

P1 = {a(1) ∨ a(2)}
P2 = {b(1) ∨ b(2) ← a(1); b(2) ← a(2)}
C = {← b(1), not b(2)}

P1 has two answer sets {a(1)} and {a(2)}

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Basic Example

Example (Quantified ASP Program)

Let Π = ∃stP1∀stP2 : C

P1 = {a(1) ∨ a(2)}
P2 = {b(1) ∨ b(2) ← a(1); b(2) ← a(2)}
C = {← b(1), not b(2)}

P1 has two answer sets {a(1)} and {a(2)}
P ′

2 = P2 ∪ fixP1({a(2)}), and fixP1({a(2)}) = {a(2);← a(1)}

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Basic Example

Example (Quantified ASP Program)

Let Π = ∃stP1∀stP2 : C

P1 = {a(1) ∨ a(2)}
P2 = {b(1) ∨ b(2) ← a(1); b(2) ← a(2)}
C = {← b(1), not b(2)}

P1 has two answer sets {a(1)} and {a(2)}
P ′

2 has one answer set {a(2), b(2)}

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Basic Example

Example (Quantified ASP Program)

Let Π = ∃stP1∀stP2 : C

P1 = {a(1) ∨ a(2)}
P2 = {b(1) ∨ b(2) ← a(1); b(2) ← a(2)}
C = {← b(1), not b(2)}

P1 has two answer sets {a(1)} and {a(2)}
P ′

2 has one answer set {a(2), b(2)}
Finally, {a(2), b(2)} satisfies C!

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Basic Example

Example (Quantified ASP Program)

Let Π = ∃stP1∀stP2 : C

P1 = {a(1) ∨ a(2)}
P2 = {b(1) ∨ b(2) ← a(1); b(2) ← a(2)}
C = {← b(1), not b(2)}

Π is coherent, and {a(2)} is a quantified answer set of Π

P1 has two answer sets {a(1)} and {a(2)}
P ′

2 has one answer set {a(2), b(2)}
Finally, {a(2), b(2)} satisfies C!

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Beyond NP (Saturation vs ASP(Q)) (1)
Example (Quantified Boolean Formulas)
Problem: Given a QBF formula Φ = ∃X∀Yφ(X ,Y), where φ is in 3-DNF
form, determine an assignment for X that makes Φ satisfiable.
Input: conj(X1,SX1 ,X2,SX2 ,X3,SX3) and exist(X), forall(Y)

% Guess assignment for X
asgn(X , true) ∨ asgn(X , false) ← exist(X).

% Guess assignment for Y
asgn(Y , true) ∨ asgn(Y , false) ← forall(Y).

% Saturate Y
asgn(Y , true) ← sat , forall(Y).
asgn(Y , false) ← sat , forall(Y).

% Check satisfiability Y
sat ← conj(X1,S1,X2,S2,X3,S3), asgn(X1,S1), asgn(X2,S2), asgn(X3,S3).
← not sat .

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Beyond NP (Saturation vs ASP(Q)) (2)
Example (Quantified Boolean Formulas)
Problem: Given a QBF formula Φ = ∃X∀Yφ(X ,Y), where φ is in 3-DNF
form, determine an assignment for X that makes Φ satisfiable.
Input: conj(X1,SX1 ,X2,SX2 ,X3,SX3) and exist(X), forall(Y)

Solution: Π = ∃stP1∀stP2 : C such that:

% Guess assignment for X
P1 = { asgn(X , true) ∨ asgn(X , false) ← exist(X). }

% Guess assignment for Y
P2 = { asgn(Y , true) ∨ asgn(Y , false) ← forall(Y). }

% Check satisfiability Y
C = {
sat ← conj(X1,S1,X2,S2,X3,S3), asgn(X1,S1), asgn(X2,S2), asgn(X3,S3).
← not sat .
}

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Beyond NP (ΠP
2 -complete)

Example (Quantified Boolean Formulas)
Problem: Given a QBF formula Ψ = ∀X∃Yψ(X ,Y), where ψ is in 3-CNF
form, determine an assignment for X that makes Ψ satisfiable.
Input: disj(X1,SX1 ,X2,SX2 ,X3,SX3) and exist(X), forall(Y)

Solution: Π = ∀stP1∃stP2 : C such that:

% Guess assignment for X
P1 = { asgn(X , true) ∨ asgn(X , false) ← forall(X). }

% Guess assignment for Y
P2 = { asgn(Y , true) ∨ asgn(Y , false) ← exist(Y). }

% Check satisfiability Y
C = {
← disj(X1,S1,X2,S2,X3,S3), iasgn(X1,S1), iasgn(X2,S2), iasgn(X3,S3).
iasgn(X , false) :- asgn(X , true).
iasgn(X , true) :- asgn(X , false).
}

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Theoretical Results

Theorem (ASP(Q) is a straightforward generalization of ASP)

Let P be an ASP program, and Π the ASP(Q) program ∃stP : C, with C = ∅.
Then,

AS(P) = QAS(Π).

COHERENCE problem: Given Π, decide whether Π is coherent.

Theorem (Complexity)

The COHERENCE problem is

(i) PSPACE-complete, even restricted to normal ASP(Q) programs;

(ii) ΣP
n -complete for n-normal existential ASP(Q) programs;

(iii) ΠP
n -complete for n-normal universal ASP(Q) programs.

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Modeling Examples from [ART19]

Min-Max Clique [Ko95]

Example of ΠP
2 -complete problem

Key role in game theory, optimization and complexity [CDG+95]

Approach can be adapted to model other minmax problems

Pebbling Number [MC06]

Mathematical game

Example of ΠP
2 -complete problem

Vapnik-Chervonenkis Dimension (VC-Dimension) [BEHW89]

Relevant problem in machine learning

Measures the capacity of a space of functions that can be learned by a
statistical classification algorithm

Example of ΣP
3 -complete problem

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Modeling Examples from [ART19]

Min-Max Clique [Ko95]

Example of ΠP
2 -complete problem

Key role in game theory, optimization and complexity [CDG+95]

Approach can be adapted to model other minmax problems

Pebbling Number [MC06]

Mathematical game

Example of ΠP
2 -complete problem

Vapnik-Chervonenkis Dimension (VC-Dimension) [BEHW89]

Relevant problem in machine learning

Measures the capacity of a space of functions that can be learned by a
statistical classification algorithm

Example of ΣP
3 -complete problem

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Minmax Clique: The Problem
Definition (Minmax Clique)

Given a graph G, sets of indices I and J, a partition (Ai,j)i∈I,j∈J ,
and an integer k , decide whether

min
f∈J I

max{|Q| : Q is a clique of Gf} ≥ k .

J I is the set of all total functions from I to J, and Gf is the
subgraph of G induced by

󰁖
i∈I Ai,f (i).

In simpler words:
“For each total function f ∈ J I , there exists a clique c in Gf ,

such that the size of c is larger than k”

Solution: An ASP(Q) program Π = ∀stP1∃stP2 : C.

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Minmax Clique: The Solution
“For each total function f ∈ J I”

P1 =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

edge(a, b) ∀(a, b) ∈ E
node(a) ∀a ∈ N
v(i, j, a) ∀i ∈ I, j ∈ J, a ∈ Ai,j

setI(X) ← v(X , _, _)
setJ(X) ← v(_,X , _)

1{f (X ,Y) : setJ(Y)}1 ← setI(X)

󰀼
󰁁󰁁󰁁󰁁󰁁󰁁󰁀

󰁁󰁁󰁁󰁁󰁁󰁁󰀾

“There exists a clique c in Gf ”

P2 =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

inInduced(Z) ← v(X ,Y ,Z), f (X ,Y)
edgeP(X ,Y) ← edge(X ,Y), inInduced(X),

inInduced(Y)
{inClique(X) : inInduced(X)}

← inClique(X), inClique(Y),
not edgeP(X ,Y),X < Y .

󰀼
󰁁󰁁󰁁󰁁󰁁󰁁󰁀

󰁁󰁁󰁁󰁁󰁁󰁁󰀾

“Such that the size of c is larger than k ”

C =
󰀋

← #count{X : inClique(X)} < k
󰀌

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Pebbling Number: The Problem

Definition (Pebbling Number)
Given a digraph G = 〈N,E〉 with pebbles placed on (some of) its nodes.

A pebbling move along (a, b) removes 2 pebbles from a and adds 1 to b

The Pebbling number π(G) is the smallest number of pebbles s.t. for
each assignment of k pebbles and for each node w (the target), some
sequence of pebbling moves results in a pebble on w

Problem: Is π(G) ≤ k?

In simpler words:
“For each assignment of k pebbles to the nodes of G, and for

each target node t ∈ N, there exists a sequence of pebble
moves (at most k − 1 moves), such that some pebble is on w”

Solution: An ASP(Q) program Π = ∀stP1∃stP2 : C.

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Pebbling Number: The Solution (1)

“For each assignment of k pebbles to the nodes of G, and for
each target node w ∈ N”

P1 =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

edge(a, b) ∀(a, b) ∈ E
node(a) ∀a ∈ N

pebble(i) ∀i = 0, 1, . . . , k
1{onNode(X ,N) : pebble(N)}1 ← node(X)

← #sum{N,X : onNode(X ,N)} ∕= k
1{target(X) : node(X)}1

󰀼
󰁁󰁁󰁁󰁁󰁁󰁁󰁀

󰁁󰁁󰁁󰁁󰁁󰁁󰀾

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Pebbling Number: The Solution (2)
“There exists a sequence of pebble moves”

P2 =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

step(i) ∀i = 0, 1, . . . , k − 1
1{endstep(S) : step(S)}1

onNode(X ,N, 0) ← onNode(X ,N)
1{move(X ,Y ,S) : edge(X ,Y)}1 ← step(S), endstep(T), 1 ≤ S, S ≤ T

← move(X ,Y ,S), onNode(X ,N,S),N < 2
affected(X ,S) ← move(X ,Y ,S)
affected(Y ,S) ← move(X ,Y ,S)

onNode(X ,N − 2,S) ← onNode(X ,N,S − 1),move(X ,Y ,S)
onNode(Y ,M + 1,S) ← onNode(Y ,M,S − 1),move(X ,Y ,S)

onNode(X ,N,S) ← onNode(X ,N,S − 1), not affected(X ,S)

󰀼
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁀

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀾

“Such that some pebble is on w”

C =
󰀋

← target(W), onNode(W , 0,T), endstep(T)
󰀌

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Vapnik-Chervonenkis Dimension: The Problem

Definition (VC Dimension)

Let k be an integer, U a finite set, C = {S1, . . . ,Sn} ⊆ 2U a
collection of subsets of U represented by a program PC .

Problem: Is there X ⊆ U of size at least k , s.t. for each S ⊆ X ,
there is Si s.t. S = Si ∩ X?
(VC dimension of C, VC(C) is the maximum size of such a set
X .)

Solution: An ASP(Q) program Π = ∃stP1∀stP21∃stP3 : C.

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Vapnik-Chervonenkis Dimension: The Solution

“There is X ⊆ U of size at least k ”

P1 =

󰀝
inU(x) ∀x ∈ U

k{inX (X) : inU(X)}

󰀞

“Such that for each S ⊆ X ”

P2 =
󰀋

{inS(X) : inX (X)}
󰀌

“There is Si ”

P3 = PC

“Such that S = Si ∩ X ”

C =󰀻
󰀿

󰀽

inIntersection(Z) ← true(Z), inX (Z)
← inIntersection(Z), not inS(Z)
← not inIntersection(Z), inS(Z)

󰀼
󰁀

󰀾

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

ASP(Q) vs ASP vs QBF

ASP vs ASP(Q)
ASP(Q) is a natural extension of ASP
Natural in ΣP

2 with disjunctive positive encodings
Normal program sufficient to model PH

QBF vs ASP(Q)
Both extend base language with some form of quantifier
→ variable assignments vs answer sets

Same computational properties
ASP(Q) supports variables and inductive definitions
ASP(Q) inherits aggregates, choice rules, strong negation,
and disjunction

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

ASP Solving

ASP Implementation
(overview)

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Answer Set Programming (ASP) (1)

Idea:
Represent a computational problem by a Logic program
Answer sets correspond to problem solutions
Use an ASP implementation to find these solutions

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Answer Set Programming (ASP) (1)

Idea:
Represent a computational problem by a Logic program
Answer sets correspond to problem solutions
Use an ASP implementation to find these solutions

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Introduction: Evaluation of ASP Programs

The idea of ASP:
Write a program representing a computational problem
→ i.e., such that answer sets correspond to solutions

Use a solver to find solutions

Why is the knowledge of ASP Solving important?
Knowledge of programming methodology
→ you can write programs
Knowledge of the evaluation process
→you can write programs more efficiently
Knowledge of an ASP System
→ you can actually implement applications

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Introduction: Evaluation of ASP Programs

The idea of ASP:
Write a program representing a computational problem
→ i.e., such that answer sets correspond to solutions

Use a solver to find solutions

Why is the knowledge of ASP Solving important?
Knowledge of programming methodology
→ you can write programs
Knowledge of the evaluation process
→you can write programs more efficiently
Knowledge of an ASP System
→ you can actually implement applications

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Introduction: Evaluation of ASP Programs

The idea of ASP:
Write a program representing a computational problem
→ i.e., such that answer sets correspond to solutions

Use a solver to find solutions

Why is the knowledge of ASP Solving important?
Knowledge of programming methodology
→ you can write programs
Knowledge of the evaluation process
→you can write programs more efficiently
Knowledge of an ASP System
→ you can actually implement applications

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Introduction: Evaluation of ASP Programs

The idea of ASP:
Write a program representing a computational problem
→ i.e., such that answer sets correspond to solutions

Use a solver to find solutions

Why is the knowledge of ASP Solving important?
Knowledge of programming methodology
→ you can write programs
Knowledge of the evaluation process
→you can write programs more efficiently
Knowledge of an ASP System
→ you can actually implement applications

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Introduction: Evaluation of ASP Programs

The idea of ASP:
Write a program representing a computational problem
→ i.e., such that answer sets correspond to solutions

Use a solver to find solutions

Why is the knowledge of ASP Solving important?
Knowledge of programming methodology
→ you can write programs
Knowledge of the evaluation process
→you can write programs more efficiently
Knowledge of an ASP System
→ you can actually implement applications

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Evaluation of ASP Programs (1)

Traditionally a two-step process:

Instantiation (or grounding)
→ Variable elimination

Propositional search (or ASP Solving)
→ Model Generation: “generate models”

→ (Stable) Model Checking: “verify that models are answer sets”

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Outline

Beyond NP with ASP

ASP solving overview
Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Programming Hints

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

About the Instantiation

Some facts:
Exponential in the worst case
Input of a subsequent exponential procedure
Significantly affects the performance of the overall process

Full instantiation: i.e., apply every possible substitution

→ Not viable in practice

Intelligent instantiation
→ Keep the size of the instantiation as small as possible

→ Equivalent to the full one

→ Intelligent Instantiators can solve problems in P

→ Deductive Databases as a subcase!

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

About the Instantiation

Some facts:
Exponential in the worst case
Input of a subsequent exponential procedure
Significantly affects the performance of the overall process

Full instantiation: i.e., apply every possible substitution

→ Not viable in practice

Intelligent instantiation
→ Keep the size of the instantiation as small as possible

→ Equivalent to the full one

→ Intelligent Instantiators can solve problems in P

→ Deductive Databases as a subcase!

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

About the Instantiation

Some facts:
Exponential in the worst case
Input of a subsequent exponential procedure
Significantly affects the performance of the overall process

Full instantiation: i.e., apply every possible substitution

→ Not viable in practice

Intelligent instantiation
→ Keep the size of the instantiation as small as possible

→ Equivalent to the full one

→ Intelligent Instantiators can solve problems in P

→ Deductive Databases as a subcase!

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Instantiation Example: 3-Colorability
% guess a coloring for the nodes
(r) col(X , red) | col(X , yellow) | col(X , green) :- node(X).

% discard colorings where adjacent nodes have the same color
(c) :- edge(X ,Y), col(X ,C), col(Y ,C).

Instance: node(1). node(2). node(3). edge(1, 2). edge(2, 3).

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Instantiation Example: 3-Colorability
% guess a coloring for the nodes
(r) col(X , red) | col(X , yellow) | col(X , green) :- node(X).

% discard colorings where adjacent nodes have the same color
(c) :- edge(X ,Y), col(X ,C), col(Y ,C).

Instance: node(1). node(2). node(3). edge(1, 2). edge(2, 3).

Full Theoretical Instantiation:

col(red , red) | col(red , yellow) | col(red , green) :- node(red).
col(yellow , red) | col(yellow , yellow) | col(yellow , green) :- node(yellow).
col(green, red) | col(green, yellow) | col(green, green) :- node(green).
. . .
col(1, red) | col(1, yellow) | col(1, green) :- node(1).
. . .
:- edge(1, 2), col(1, 1), col(2, 1).
. . .
:- edge(1, 2), col(1, red), col(2, red).
. . .

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Instantiation Example: 3-Colorability
% guess a coloring for the nodes
(r) col(X , red) | col(X , yellow) | col(X , green) :- node(X).

% discard colorings where adjacent nodes have the same color
(c) :- edge(X ,Y), col(X ,C), col(Y ,C).

Instance: node(1). node(2). node(3). edge(1, 2). edge(2, 3).

Full Theoretical Instantiation: → is huge (2916 rules) and redundant!

col(red , red) | col(red , yellow) | col(red , green) :- node(red).
col(yellow , red) | col(yellow , yellow) | col(yellow , green) :- node(yellow).
col(green, red) | col(green, yellow) | col(green, green) :- node(green).
. . .
col(1, red) | col(1, yellow) | col(1, green) :- node(1). ← OK!
. . .
:- edge(1, 2), col(1, 1), col(2, 1). ← redundant!
. . .
:- edge(1, 2), col(1, red), col(2, red). ← OK!
. . .

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Instantiation Example: 3-Colorability
% guess a coloring for the nodes
(r) col(X , red) | col(X , yellow) | col(X , green) :- node(X).

% discard colorings where adjacent nodes have the same color
(c) :- edge(X ,Y), col(X ,C), col(Y ,C).

Instance: node(1). node(2). node(3). edge(1, 2). edge(2, 3).

Intelligent Instantiation: → equivalent but much smaller (9 rules)!

col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).

:- col(1, red), col(2, red).
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Instantiation of a Rule: like a join in a DB

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Intelligent Instantiator

The instantiator (or grounder)

outputs a ground program equivalent to the input

...often much smaller than full theoretical instantiation

Performs “deterministic” inferences

Computes the unique answer set if the input is
stratified and non disjunctive

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Intelligent Instantiator

The instantiator (or grounder)

outputs a ground program equivalent to the input

...often much smaller than full theoretical instantiation

Performs “deterministic” inferences

Computes the unique answer set if the input is
stratified and non disjunctive

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Outline

Beyond NP with ASP

ASP solving overview
Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Programming Hints

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Model Generation & Checking

Model Generation → produces candidate models

Similar to a SAT solver
Davis-Putnam-Logeman-Loveland (DPLL) - (1st gen.)

Propagate Deterministic Consequences
→ Unit Propagation
→ Support Propagation
→ Well-founded Negation

Assume a literal l (heuristically) until a model is generated
Upon inconsistency Backtrack (assume not l)

Model Checker → checks if candidates are Answer Sets

Polynomial time computable check
Translation to UNSAT for hard (non-HCF) instances

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Model Generation & Checking

Model Generation → produces candidate models

Similar to a SAT solver
Davis-Putnam-Logeman-Loveland (DPLL) - (1st gen.)

Propagate Deterministic Consequences
→ Unit Propagation
→ Support Propagation
→ Well-founded Negation

Assume a literal l (heuristically) until a model is generated
Upon inconsistency Backtrack (assume not l)

Model Checker → checks if candidates are Answer Sets

Polynomial time computable check
Translation to UNSAT for hard (non-HCF) instances

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Model Generator (DPLL)
Input : An interpretation I for a program Π
Output: True if Π admits answer set, false otherwise
begin

if ! Propagate(I) then
return false ;

end
if I is total then

return CheckModel(I)
end
ℓ := ChooseUndefinedLiteral();
if ComputeAnswerSet(I ∪ {ℓ}) then

return true;
end
if ComputeAnswerSet(I ∪ {not ℓ}) then

return true;
end
else

return false;
end

end

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Unit Propagation

Infer a literal if it is the only one which can satisfy a rule
Forward Inference + Contraposition
Same as unit propagation in SAT

Example (Unit propagation)

a | b :- c.

If b is false and c is true infer a to be true.

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Support Propagation

Based on the supportedness property
“Each atom in an answer set has to be supported”

Example (Support propagation)

a | b :- c.
a | d :- not b.

If b and c are false and d is true infer a false.

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Aggregates Propagation

Similar to propagation in pseudo-boolean solvers
Basically needed only for #count and #sum
“Apply the semantics of the aggregate”

Example (Aggregate propagation)
:- #sum{ (from :- #sum{X,Y : a(X,Y)}>=2)

1,2 :a(1,2);
1,3 :a(1,3);
1,4 :a(1,4)

} >= 2

If a(1, 2) is true then a(1, 3) and a(1, 4) must be false

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Well-founded Propagation

Self-supporting truth is not admitted in answer sets
Unfounded sets are sets of atoms violating this property

Definition (Unfounded set)
A set U is an unfounded set for program Π w.r.t. I if, for each
a ∈ U, for each rule r ∈ Π such that a ∈ H(r) at least one of
these holds:

(i) B(r) ∩ ¬I ∕= ∅ (ii) B+(r) ∩ U ∕= ∅ (iii) H(r) \ U ∩ I ∕= ∅

Detected unfounded sets are propagated as false

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Model Generation Example: 3-Colorability

Model Generation step:

col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).

:- col(1, red), col(2, red).
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).

True: {}
False: {}

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Model Generation Example: 3-Colorability

Model Generation step: Chose literal

col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).

:- col(1, red), col(2, red).
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).

True: {} ← col(1, red)
False: {}

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Model Generation Example: 3-Colorability

Model Generation step: Propagate Deterministic Consequences

col(1, red) | col(1, yellow) | col(1, green). ← 1-support propagation
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).

:- col(1, red), col(2, red). ← 2-unit propagation
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).

True: {col(1, red)}
False: { col(1, yellow), col(1, green), col(2, red) }

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Model Generation Example: 3-Colorability

Model Generation step: Chose literal

col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).

:- col(1, red), col(2, red).
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).

True: {col(1, red) ← col(2, yellow) }
False: { col(1, yellow), col(1, green), col(2, red) }

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Model Generation Example: 3-Colorability

Model Generation step: Propagate Deterministic Consequences

col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green). ←1-support propagation
col(3, red) | col(3, yellow) | col(3, green).

:- col(1, red), col(2, red).
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow). ← 2-unit propagation

True: {col(1, red), col(2, yellow) }
False: { col(1, yellow), col(1, green), col(2, red), col(2, green),
col(3, yellow) }

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Model Generation Example: 3-Colorability

Model Generation step: Chose literal

col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).

:- col(1, red), col(2, red).
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).

True: {col(1, red), col(2, yellow)} ← col(3, red)
False: { col(1, yellow), col(1, green), col(2, red), col(2, green),
col(3, yellow) }

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Model Generation Example: 3-Colorability

Model Generation step: Propagate Deterministic Consequences

col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green). ←support propagation

:- col(1, red), col(2, red).
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).

True: {col(1, red), col(2, yellow), col(3, red)
False: { col(1, yellow), col(1, green), col(2, red), col(2, green),
col(3, yellow) col(3, green) }

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Model Generation Example: 3-Colorability

Model Generation step: Answer set found!

col(1, red) | col(1, yellow) | col(1, green).
col(2, red) | col(2, yellow) | col(2, green).
col(3, red) | col(3, yellow) | col(3, green).

:- col(1, red), col(2, red).
:- col(1, green), col(2, green).
:- col(1, yellow), col(2, yellow).
:- col(2, red), col(3, red).
:- col(2, green), col(3, green).
:- col(2, yellow), col(3, yellow).

Answer Set: {col(1, red), col(2, yellow), col(3, red) }

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Model Checking

Model Checker → checks if candidates are Answer Sets

Polynomial time computable check
Translation to UNSAT for hard (non-HCF) instances

Implementation
Generate SAT formula
Call SAT solver
...do it only if necessary!

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Model Checking: build SAT Formula

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Example: build SAT Formula

Consider: M = {a, b}

a | b | c.
a :-b.
b :-a, not c..
a :- c.

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Example: build SAT Formula

Step:(1)
Consider: M = {a, b}

a | b | c.
a :-b.
b :-a, not c..
a :- c.

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Example: build SAT Formula

Step:(2)
Consider: M = {a, b}

a | b | c.
a :-b.
b :-a, not c.

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Example: build SAT Formula

Step:(3)
Consider: M = {a, b}

a | b | c.
a :-b.
b :-a.

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Example: build SAT Formula

Consider: M = {a, b}

a | b.
a :-b.
b :-a.

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Example: build SAT Formula

Step: (6-9)
Consider: M = {a, b}

a | b. =⇒ ← a ∧ b
a :-b.
b :-a.

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Example: build SAT Formula

Step: (6-9)
Consider: M = {a, b}

a | b. =⇒ ← a ∧ b
a :-b. =⇒ b ← a
b :-a.

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Example: build SAT Formula

Step: (6-9)
Consider: M = {a, b}

a | b. =⇒ ← a ∧ b
a :-b. =⇒ b ← a
b :-a. =⇒ a ← b

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Example: build SAT Formula

Step: (6-9)
Consider: M = {a, b} =⇒ a ∨ b ←

a | b. =⇒ ← a ∧ b
a :-b. =⇒ b ← a
b :-a. =⇒ a ← b

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Example: build SAT Formula

Step: (6-9)
Consider: M = {a, b} =⇒ a ∨ b

a | b. =⇒ ← a ∧ b =⇒ ¬a ∨ ¬b
a :-b. =⇒ b ← a =⇒ ¬a ∨ b
b :-a. =⇒ a ← b =⇒ ¬b ∨ a

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Example: build SAT Formula

Consider: M = {a, b} =⇒ a ∨ b

=⇒ ¬a ∨ ¬b
=⇒ ¬a ∨ b
=⇒ ¬b ∨ a

Unsatisfiable → Answer Set!

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Example: build SAT Formula

Consider: M = {a, c}

a | b | c
a :-b.
b :-a, not c.
a :- c.

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Example: build SAT Formula

Consider: M = {a, c} =⇒ a ∨ c ←

a | b | c =⇒ a ∨ c
a :-b. =⇒
b :-a, not c. =⇒
a :- c.=⇒ c ← a.

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Example: build SAT Formula

Consider: M = {a, c} =⇒ a ∨ c ←

a ∨ c

c ← a.
Satisfied by {c} → not an answer set!

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Modern ASP Solvers - (2nd gen)

Pre-processing
Program Rewriting (mostly completion)
Program Simplification

Model Generator
CDCL-based [MLM21] ASP solver
→ Unit+Well-founded Negation+Aggregate Propagation

→ New Heuristics & Learning

Model Checker
Build the “formula” once (solving under assumption)
→ Reduct-based check (Wasp)

→ Encoding of (Hard) Unfounded-free check (Clasp)

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Rewriting and Simplification (1)

Program Completion [Cla77, EL03]

Simulate support propagation
Sufficient for tight programs (i.e., no positive recursion)

Example (completion)
a :- b, c a ↔ ((b ∧ c) ∨ (e ∧ f))
a :- e, f

% transformed to “simulate” support

a :- abc

a :- aef

:- a, not abc , not aef

abc :- b, c
:- abc , not b
:- abc , not c

aef :- e, f
:- aef , not e
:- aef , not f

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Rewriting and Simplification (2)

Simplifications (intuition, from SatELite [EB05, HJL+15])
Remove useless statements (subsumption-check)
Reduce search space (variable-elimination)
... and more

Example (some simplifications)

b|c. f |g.
a.

a :- not b, c
:- not e, f
:- not e, g

:- not f , not c, not b
:- f , not c

→
→
→
→
→
→

b|c. f |g.
a.

a :- not b, c///////////// % subsumption

:- not e, f/////////// % pure literal elim.

:- not e, g//////////// % pure literal elim.

:- not c, not b % self-subsum.

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Rewriting and Simplification (2)

Simplifications (intuition, from SatELite [EB05, HJL+15])
Remove useless statements (subsumption-check)
Reduce search space (variable-elimination)
... and more

Example (some simplifications)

b|c. f |g.
a.

a :- not b, c
:- not e, f
:- not e, g

:- not f , not c, not b
:- f , not c

→
→
→
→
→
→

b|c. f |g.
a.

a :- not b, c///////////// % subsumption

:- not e, f/////////// % pure literal elim.

:- not e, g//////////// % pure literal elim.

:- not c, not b % self-subsum.

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Model Generator: CDCL Algorithm

I := preprocessing()

I := propagation(I)

AnswerSet := I

I := chooseUndefinedLiteral(I)

analyzeConflict(I))

I := restoreConsistency(I)

Incoherent AnswerSet

[inconsistent]

learning

backjumping

[consistent]

[no undefined literals]

[fail]

[succeed]

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Heuristics and learning [MMZ+01, ES03, MLM21]

Learning
Detect the reason of a conflict
Learn constraints using 1-UIP schema

Deletion Policy
Exponentially many constraints → forget something
Less “useful” constraints are removed

Search Restarts
Escape “local minimum” by restarting the search
Based on some heuristic sequence

Branching Heuristics
VSIDS-Based heuristic

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Learning 1-UIP (from Marijin J.H. Heule Tutorial)Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧
(x3 ∨ x̄4 ∨ x̄5) ∧
(x̄3 ∨ x̄2 ∨ x̄4) ∧
Fextra

7

1

2

7

7

7
x1=0 x4=1

x2=1

x5=1

x3=0

x3=1

(x̄2 ∨ x̄4 ∨ x̄5)

0

1

2

6

7

2

x5=1

x2=1

x1=0
x4=1
x3=1
x3=0

x4=0
x1=1

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 4 / 24

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Learning 1-UIP (from Marijin J.H. Heule Tutorial)Learning conflict clauses [Marques-SilvaSakallah’96]

6

x13=0

7

x11=1

4

x6=0

7
x7=1

7

x12=0

7
x2=0

3

x4=1

7
x10=0

1

x8=1

7
x1=1

7
x3=1

7
x5=0

5

x17=0

2

x19=1

7
x18=1

7
x18=0

(¬x1 ∨ ¬x3 ∨ x5 ∨ x17 ∨ ¬x19)

tri-asserting clause

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 6 / 24

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Learning 1-UIP (from Marijin J.H. Heule Tutorial)Learning conflict clauses [Marques-SilvaSakallah’96]

6

x13=0

7

x11=1

4

x6=0

7
x7=1

7

x12=0

7
x2=0

3

x4=1

7
x10=0

1

x8=1

7
x1=1

7
x3=1

7
x5=0

5

x17=0

2

x19=1

7
x18=1

7
x18=0

(x10 ∨ ¬x8 ∨ x17 ∨ ¬x19)

first unique implication point

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 6 / 24

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Learning 1-UIP (from Marijin J.H. Heule Tutorial)Learning conflict clauses [Marques-SilvaSakallah’96]

6

x13=0

7

x11=1

4

x6=0

7
x7=1

7

x12=0

7
x2=0

3

x4=1

7
x10=0

1

x8=1

7
x1=1

7
x3=1

7
x5=0

5

x17=0

2

x19=1

7
x18=1

7
x18=0

(x2 ∨ ¬x4 ∨ ¬x8 ∨ x17 ∨ ¬x19)

second unique implication point

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 6 / 24

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Outline

Beyond NP with ASP

ASP solving overview
Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Programming Hints

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Grounding bottleneck

When traditional ASP solving is effective?
When you can keep the grounding “small”!

The truth about grounding...
Exponential process
Might fill the entire memory
Might be problematic also if only quadratic

The grounding bottleneck problem

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

ASP Systems Architectures

The “Grounding-less” architecture
Instantiate rules if required during the search
Interleave G&S to avoid the “grounding bottleneck”
→ ASPERIX [LefeN09], GASP [PaluDPR09]

→ OMIGA [DaoTrEFWW12], ALPHA [Weinzierl17,BJW19]

The “Compilation-based” architecture
Simulate rules to avoid the “grounding bottleneck”
Extend the solver with adhoc propagator procedures
→ Partial Compilation: WaspProp [MRD22, CDRS20]

→ Full Compilation: ProASP [DMR23, MDR24]

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Compilation of ASP Programs

Compilation

“Translation of a program in a high-level language into another
(lower-level) programming language”

Ideally by “compilation of ASP programs” we mean

Given a (non-ground) ASP program Π

Transform it in a C++ program ΠC

→ Optimized ad-hoc implementation

Run C++ building pipeline on ΠC

→ Obtain a specific binary executable

Run binary on different instances

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Compilation of ASP Programs

Compilation

“Translation of a program in a high-level language into another
(lower-level) programming language”

Ideally by “compilation of ASP programs” we mean

Given a (non-ground) ASP program Π

Transform it in a C++ program ΠC

→ Optimized ad-hoc implementation → Runtime advantages!

Run C++ building pipeline on ΠC

→ Obtain a specific binary executable

Run binary on different instances → Fits ASP idea!!

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Idea: Compilation of ASP Programs

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

The ProASP System: Compilation Phase

Given a non-ground program Π:
The Rewriter generates two
programs: ΠProp and ΠGen

ΠProp simulates the
propagation of Π
ΠGen defines the domain of
predicates in ΠGen

ΠGen is compiled into custom
bottom-up evaluation
procedures
ΠProp is compiled into custom
propagators

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

The ProASP System: Compilation Phase

Given a non-ground program Π:
The Rewriter generates two
programs: ΠProp and ΠGen

ΠProp simulates the
propagation of Π
ΠGen defines the domain of
predicates in ΠGen

ΠGen is compiled into custom
bottom-up evaluation
procedures
ΠProp is compiled into custom
propagators

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Example: Compiled Propagator Module
Input : A literal l , an interpretation M
Output: A set of literals Ml
begin

Ml := ∅;
if pred(l) = “asgn” and l ∈ M+

then
x := l[0]; c := l[1];
for l2 ∈ {edge(x , y) ∈ M+}

do
y := l2[2];
Ml := Ml ∪ {asgn(y , c)}

end
y := l[0]; c := l[1];
for l2 ∈ {edge(x , y) ∈ M+}

do
x := l2[2];
Ml := Ml ∪ {asgn(x , c)}

end
end
return Ml

end

Input : A literal l , an interpretation M
Output: A set of literals Ml
begin

Ml := ∅;
if pred(l) = “asgn” and l ∈ M+

then
x := l[0]; c := l[1];
Ml := Ml ∪ {nAsgn(x , c)}

end
if

pred(l) = “nAsgn” and l ∈ M+

then
x := l[0]; c := l[1];
Ml := Ml ∪ {asgn(x , c)}

end
return Ml

end

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

The ProASP System: Solving Phase

Given a program instance F :
The Generator module
computes the domain of each
predicate
Generated atoms are fed into
the Sat Solver and CDCL starts
Each assigned literal activates
the Propagator module, and
rule inferences are propagated
Conflicts are analyzed in the Sat
Solver asking the Propagator to
reconstruct propagation clauses

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

The ProASP System: Solving Phase

Given a program instance F :
The Generator module
computes the domain of each
predicate
Generated atoms are fed into
the Sat Solver and CDCL starts
Each assigned literal activates
the Propagator module, and
rule inferences are propagated
Conflicts are analyzed in the Sat
Solver asking the Propagator to
reconstruct propagation clauses

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

The ProASP System performance

Synthetic benchmark:

k WASP-PROP WASP CLINGO
t mem t mem t mem

1000 0 0 1.02 59.6 0.66 40.2
2000 0.1 18.6 4.36 286.5 3.23 303.5
3000 0.24 38.5 9.98 696.3 7.68 709.5
4000 0.53 53.7 18.47 1168.1 13.62 1216.8
5000 0.93 74.6 28.8 2215.4 22.23 1933.3
6000 1.19 109.8 42.47 2807.2 32.73 2871.1
7000 1.44 142.3 58.31 3402 42.88 3576.7
8000 1.96 152 - - - -
9000 2.89 191.6 - - - -

10000 3.87 254.7 - - - -
20000 12.52 898.5 - - - -
30000 26.43 1888.3 - - - -
40000 58.88 3319.6 - - - -
50000 - - - - - -

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

The ProASP System: Real instances

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

The ProASP System: Blending grounding and solving

Also grounding can be compiled!
Fine-grained blending grounding and solving [MDR24]

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

The ProASP System: Blending performance

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Outline

Beyond NP with ASP

ASP solving overview
Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Programming Hints

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

A solver for ASP(Q)

ASP(Q):

A natural solution for modeling beyond NP with ASP
ASP(Q) extends ASP via quantifiers over stable models

Clear computational properties of the language
Examples to show the modeling capabilities

Can be used in practice?
QASP: Implementation by rewriting in QBF
(LPNMR22) [ACRT22]

PYQASP implementation in python featuring program
optimizations and automatic selection of the backend
(ICLP23) [FMR23]

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

A solver for ASP(Q)

ASP(Q):

A natural solution for modeling beyond NP with ASP
ASP(Q) extends ASP via quantifiers over stable models

Clear computational properties of the language
Examples to show the modeling capabilities

Can be used in practice?
QASP: Implementation by rewriting in QBF
(LPNMR22) [ACRT22]

PYQASP implementation in python featuring program
optimizations and automatic selection of the backend
(ICLP23) [FMR23]

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

System Architecture and Implementation

Input Language
→ Basically ASP

→ Quantifiers annotated comments

Implementation
→ Existing ASP tools (gringo, lp2*)

→ A choice of QBF pre-processors and solvers

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

QBF Encoder core (1)

Intermediate Groundings Gi

Let Π be an ASP(Q) program of the form (1), and let G(P)
denote the grounding of P:

Gi =

󰀻
󰀿

󰀽

G(P1) i = 1
G(Pi ∪ CH(Gi−1,Pi)) i ∈ [2..n]

G(C ∪ CH(Gn,C)) i = n + 1

where CH(P,P ′) = ch(
󰁖

p∈Int(P,P′) at(G(P), p)).

Intuitively
Each subprogram Pi is grounded separately
A choice rule for the "interface" between Pi and Pi+1, i > 1
→ i.e., atoms that are passed from i-th to i+1-th program

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

QBF Encoder core (2)

QBF encoding Φ(Π)

Let Π be an ASP(Q) program of the form (1).

Φ(Π) = ⊞1 · · ·⊞n+1

󰀣
n+1󰁡

i=1

(φi ↔ CNF (Gi))

󰀤
∧ φc ,

where CNF (P) is a CNF formula encoding P; φ1, . . . ,φn+1 are fresh prop.
variables; ⊞i = ∃xi if □i = ∃st or i = n + 1, and ⊞i = ∀xi otherwise,
xi = var(φi ↔ CNF (Gi)) for i = 1, · · · , n + 1, and φc is the formula

φc = φ′
1 ⊙1 (φ

′
2 ⊙2 (· · ·φ′

n ⊙n (φn+1) · · ·))

where ⊙i = ∨ if □i = ∀st , and ⊙i = ∧ otherwise, and φ′
i = ¬φi if □i = ∀st , and

φ′
i = φi otherwise.

Intuitively
φi is satisfied iff Pi is coherent
φc imposes semantics of ASP(Q) quantifiers

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

QBF Encoder core (2)

QBF encoding Φ(Π)

Let Π be an ASP(Q) program of the form (1).

Φ(Π) = ⊞1 · · ·⊞n+1

󰀣
n+1󰁡

i=1

(φi ↔ CNF (Gi))

󰀤
∧ φc ,

where CNF (P) is a CNF formula encoding P; φ1, . . . ,φn+1 are fresh prop.
variables; ⊞i = ∃xi if □i = ∃st or i = n + 1, and ⊞i = ∀xi otherwise,
xi = var(φi ↔ CNF (Gi)) for i = 1, · · · , n + 1, and φc is the formula

φc = φ′
1 ⊙1 (φ

′
2 ⊙2 (· · ·φ′

n ⊙n (φn+1) · · ·))

where ⊙i = ∨ if □i = ∀st , and ⊙i = ∧ otherwise, and φ′
i = ¬φi if □i = ∀st , and

φ′
i = φi otherwise.

Theorem

Let Π be a quantified program. Then Φ(Π) is true iff Π is coherent.

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Actual implementation: QBF Encoding (2)

Example

Let Π be the following ASP(Q)
program:

@exists % P1
a ← a, not b
c ← not a
{b} ←
@forall % P2
{d(1..2)} ← c
{d(3..100)} ← a
@constraint
% C is empty

Example

The resulting encoding is obtained
as follows

󰀻
󰀿

󰀽

G1 = P1

G2 = P2 ∪ { {a; c} ←}
G3 = C ∪ {}

Φ(Π) = ∃sta, b, c
∀std(1), . . . , d(100)
(φ1 ↔ CNF (G1))∧
(φ2 ↔ CNF (G2))∧
(φ3 ↔ CNF (G3))∧
φ1 ∧ (¬φ2 ∨ φ3)

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Actual implementation: QBF Encoding (2)

Example

Let Π be the following ASP(Q)
program:

@exists % P1
a ← a, not b
c ← not a
{b} ←
@forall % P2
{d(1..2)} ← c
{d(3..100)} ← a
@constraint
% C is empty

Example

The resulting encoding is obtained
as follows

󰀻
󰀿

󰀽

G1 = P1

G2 = P2 ∪ { {a; c} ←}
G3 = C ∪ {}

Φ(Π) = ∃sta, b, c
∀std(1), . . . , d(100)
(φ1 ↔ CNF (G1))∧
(φ2 ↔ CNF (G2))∧
(φ3 ↔ CNF (G3))∧
φ1 ∧ (¬φ2 ∨ φ3)

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Benchmarks

Quantified Boolean Formulas (QBF)
933 Hard instances from QBF Lib
2049 Easy and hard random instances

Argumentation Coherence (AC)
326 instances of ICCMA 2019
No dedicated solvers

Minmax Clique (MMC) [Ko95]
45 graphs from ASP Competitions
No dedicated solvers

Paracoherent ASP (PAR)
73 Existing benchmark [ADFR21]
441 Random 3-SAT around the phase transition

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

Some experimental results

Figure: Comparison qasp vs pyqasp.

There is still space for improvement, and new applications!F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Instantiation
Model Generation & Checking
Grounding-less ASP
Implementation of ASP(Q)

The PYQASP system: Download & Setup

PYQASP is available at:
https://github.com/MazzottaG/PyQASP

Required python packages
joblib
scikit-learn
pyinstaller

From repository root run:
./clean-install.bash pyqasp

Use -h option to get available options:
./dist/pyqasp -h

F. Ricca Deep AI with ASP

https://github.com/MazzottaG/PyQASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Programming for performance

Programming
for Performance

(hints)

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Programming for performance: basic idea

Example (Maximal Clique)
Problem: Given an indirected Graph compute a clique of maximal size
Input: node(_) and edge(_, _).

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Programming for performance: basic idea

Example (Maximal Clique)
Problem: Given an indirected Graph compute a clique of maximal size
Input: node(_) and edge(_, _).

Natural Encoding:
inClique(X) | outClique(X) :- node(X). % Guess
:- inClique(X), inClique(Y), not edge(X ,Y),X <> Y . % Check
:∼ outClique(X).[1,X] % Optimize

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Programming for performance: basic idea

Example (Maximal Clique)
Problem: Given an indirected Graph compute a clique of maximal size
Input: node(_) and edge(_, _).

Natural Encoding:
inClique(X) | outClique(X) :- node(X). % Guess
:- inClique(X), inClique(Y), not edge(X ,Y),X <> Y . % Check
:∼ outClique(X).[1,X] % Optimize

Optimized Encoding:
inClique(X) | outClique(X) :- node(X).
:- inClique(X), inClique(Y), not edge(X ,Y),X < Y . ← less constraints!
:∼ outClique(X).[1,X]

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Programming for performance: basic idea (2)
Example (3-col- encoding 1)
% guess a coloring for the nodes

col(X , red) | col(X , yellow) | col(X , green) :- node(X).

% check condition :- edge(X ,Y), col(X ,C), col(Y ,C).

Example (3-col- encoding 2)
% guess a coloring for the nodes

col(X , red) | ncol(X , red) :- node(X).
col(X , yellow) | ncol(X , yellow) :- node(X).
col(X , green) | ncol(X , green) :- node(X).

% check condition
:- edge(X ,Y), col(X ,C), col(Y ,C).

:- col(X ,C1), col(Y ,C2),C1 <> C2.

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Programming for performance: basic idea (2)
Example (3-col- encoding 1)
% guess a coloring for the nodes

col(X , red) | col(X , yellow) | col(X , green) :- node(X).

% check condition :- edge(X ,Y), col(X ,C), col(Y ,C).

% NB: answer sets are subset minimal → only one color per node

Example (3-col- encoding 2)
% guess a coloring for the nodes

col(X , red) | ncol(X , red) :- node(X).
col(X , yellow) | ncol(X , yellow) :- node(X).
col(X , green) | ncol(X , green) :- node(X).

% check condition
:- edge(X ,Y), col(X ,C), col(Y ,C).

:- col(X ,C1), col(Y ,C2),C1 <> C2. ← additional constraint

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Programming for performance: basic idea (2)
Example (3-col- encoding 1)
% guess a coloring for the nodes

col(X , red) | col(X , yellow) | col(X , green) :- node(X).

% check condition :- edge(X ,Y), col(X ,C), col(Y ,C).

Example (3-col- encoding 2 - Larger grounding!)
% guess a coloring for the nodes

col(X , red) | ncol(X , red) :- node(X). ← three times
col(X , yellow) | ncol(X , yellow) :- node(X). ← more
col(X , green) | ncol(X , green) :- node(X). ← ground rules

% check condition
:- edge(X ,Y), col(X ,C), col(Y ,C).

:- col(X ,C1), col(Y ,C2),C1 <> C2. ← additional ground constraints

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Programming for performance: basic idea (2)
Example (3-col- encoding 1)
% guess a coloring for the nodes

col(X , red) | col(X , yellow) | col(X , green) :- node(X).

% check condition :- edge(X ,Y), col(X ,C), col(Y ,C).

Example (3-col- encoding 2 - Larger Search Space!)
% guess a coloring for the nodes

col(X , red) | ncol(X , red) :- node(X). ← additional
col(X , yellow) | ncol(X , yellow) :- node(X). ← ground
col(X , green) | ncol(X , green) :- node(X). ← atoms

% check condition
:- edge(X ,Y), col(X ,C), col(Y ,C).

:- col(X ,C1), col(Y ,C2),C1 <> C2.

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Programming for performance: lesson learned

Prefer an encoding if:

Easier to ground

→ precomputes as much as possible

Smaller instantiation

→ use e.g., minimality, aggregates, ...

Produces less ground disjunctive rules and less “guessed atoms”

→ smaller search space

→ exponential gain

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Stable Marriage

Definition
Given n men and n women, where each person has ranked all
members of the opposite sex with a unique number between 1
and n in order of preference, marry the men and women
together such that there are no two people of opposite sex who
would both rather have each other than their current partners.

M W
john mary
luca anna

P1 P2 Pref
john mary 1
john anna 2
luca mary 2
luca anna 1

P1 P2 Pref
mary john 1
anna john 2
mary luca 2
anna luca 1

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Stable Marriage: Natural Encoding

% guess matching
match(M,W) | nMatch(M,W) :- man(M), woman(W).

% no polygamy
:- match(M1,W), match(M,W), M <> M1.
:- match(M,W), match(M,W1), W <> W1.

% no singles
married(M) :- match(M,W).
:- man(M), not married(M).

% strong stability condition
:- match(M,W1), match(M1,W), W1 <> W,

pref(M,W,Smw), pref(M,W1,Smw1), Smw > Smw1,
pref(W,M,Swm), pref(W,M1,Swm1), Swm >= Swm1.

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Stable Marriage: First Optimization

% guess matching
{match(M,W)} :- man(M), woman(W).

% no polygamy
:- match(M1,W), match(M,W), M <> M1.
:- match(M,W), match(M,W1), W <> W1.

% no singles
married(M) :- match(M,W).
:- man(M), not married(M).

% strong stability condition
:- match(M,W1), match(M1,W), W1 <> W,

pref(M,W,Smw), pref(M,W1,Smw1), Smw > Smw1,
pref(W,M,Swm), pref(W,M1,Swm1), Swm >= Swm1.

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Stable Marriage: Second Optimization

% guess matching
{match(M,W) : woman(W)} = 1 :- man(M).

% no singles
married(M) :- match(M,W).
:- woman(M), not married(M).

% strong stability condition
:- match(M,W1), match(M1,W), W1 <> W,

pref(M,W,Smw), pref(M,W1,Smw1), Smw > Smw1,
pref(W,M,Swm), pref(W,M1,Swm1), Swm >= Swm1.

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Stable Marriage: Third Optimization

% guess matching
{match(M,W) : woman(W)} = 1 :- man(M).

% no singles
married(M) :- match(M,W).
:- woman(M), not married(M).

% strong stability condition
matched(m,M,S) match(M,W), pref(M,W,S).
matched(w,W,S-1) match(M,W), pref(W,M,S), S > 1.
matched(T,P,S-1) matched(T,P,S), S > 1.

:- pref(M,W,R), pref(W,M,S), not matched(m,M,R), not
matched(w,W,S).

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Stable Marriage: Impact

In practice (Tested on one instance from 3rd ASP Competition)

Encoding Time Number of rules
Natural encoding 25 seconds approx. 6 millions
First optimization 25 seconds approx. 6 millions
Second optimization 22 seconds approx. 6 millions
Third optimization 0.3 seconds approx. 40 thousands

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

Acknowledgments

Thanks for your attention!

Questions?

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

References

[AAC+18] Weronika T. Adrian, Mario Alviano, Francesco Calimeri, Bernardo
Cuteri, Carmine Dodaro, Wolfgang Faber, Davide Fuscà, Nicola
Leone, Marco Manna, Simona Perri, Francesco Ricca,
Pierfrancesco Veltri, and Jessica Zangari. The ASP system DLV:
advancements and applications. KI, 32(2-3):177–179, 2018.

[ACRT22] Giovanni Amendola, Bernardo Cuteri, Francesco Ricca, and
Mirek Truszczynski. Solving problems in the polynomial hierarchy
with ASP(Q). In LPNMR, volume 13416 of Lecture Notes in
Computer Science, pages 373–386. Springer, 2022.

[ADFR21] Giovanni Amendola, Carmine Dodaro, Wolfgang Faber, and
Francesco Ricca. Paracoherent answer set computation. Artif.
Intell., 299:103519, 2021.

[ART19] Giovanni Amendola, Francesco Ricca, and Miroslaw
Truszczynski. Beyond NP: quantifying over answer sets. Theory
Pract. Log. Program., 19(5-6):705–721, 2019.

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

References (cont.)

[BEHW89] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and
Manfred K. Warmuth. Learnability and the Vapnik-Chervonenkis
dimension. J. ACM, 36(4):929–965, 1989.

[BET11] Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczynski.
Answer set programming at a glance. Commun. ACM,
54(12):92–103, 2011.

[CDG+95] Feng Cao, Ding-Zhu Du, Biao Gao, Peng-Jun Wan, and Panos M.
Pardalos. Minimax Problems in Combinatorial Optimization,
pages 269–292. Springer US, Boston, MA, 1995.

[CDRS20] Bernardo Cuteri, Carmine Dodaro, Francesco Ricca, and Peter
Schüller. Overcoming the grounding bottleneck due to constraints
in ASP solving: Constraints become propagators. In IJCAI, pages
1688–1694. ijcai.org, 2020.

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

References (cont.)

[Cla77] Keith L. Clark. Negation as failure. In Hervé Gallaire and Jack
Minker, editors, Logic and Data Bases, Symposium on Logic and
Data Bases, Centre d’études et de recherches de Toulouse,
France, 1977, Advances in Data Base Theory, pages 293–322,
New York, 1977. Plemum Press.

[DEGV01] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei
Voronkov. Complexity and expressive power of logic
programming. ACM Comput. Surv., 33(3):374–425, 2001.

[DMR23] Carmine Dodaro, Giuseppe Mazzotta, and Francesco Ricca.
Compilation of tight ASP programs. In ECAI, volume 372 of
Frontiers in Artificial Intelligence and Applications, pages
557–564. IOS Press, 2023.

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

References (cont.)

[EB05] Niklas Eén and Armin Biere. Effective preprocessing in SAT
through variable and clause elimination. In Fahiem Bacchus and
Toby Walsh, editors, Theory and Applications of Satisfiability
Testing, 8th International Conference, SAT 2005, St. Andrews,
UK, June 19-23, 2005, Proceedings, volume 3569 of Lecture
Notes in Computer Science, pages 61–75. Springer, 2005.

[EFLP00] Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald Pfeifer.
Declarative problem-solving using the dlv system. In Logic-based
Artificial Intelligence, pages 79–103. 2000.

[EG95] Thomas Eiter and Georg Gottlob. On the computational cost of
disjunctive logic programming: Propositional case. Ann. Math.
Artif. Intell., 15(3-4):289–323, 1995.

[EGL16] Esra Erdem, Michael Gelfond, and Nicola Leone. Applications of
answer set programming. AI Magazine, 37(3):53–68, 2016.

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

References (cont.)

[EL03] Esra Erdem and Vladimir Lifschitz. Tight logic programs. Theory
Pract. Log. Program., 3(4-5):499–518, 2003.

[ES03] Niklas Eén and Niklas Sörensson. An extensible sat-solver. In
Enrico Giunchiglia and Armando Tacchella, editors, Theory and
Applications of Satisfiability Testing, 6th International Conference,
SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected
Revised Papers, volume 2919 of Lecture Notes in Computer
Science, pages 502–518. Springer, 2003.

[FMR23] Wolfgang Faber, Giuseppe Mazzotta, and Francesco Ricca. An
efficient solver for ASP(Q). Theory Pract. Log. Program., (to
appear), 2023.

[GKK+16] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max
Ostrowski, Torsten Schaub, and Philipp Wanko. Theory solving
made easy with clingo 5. In ICLP (Technical Communications),
volume 52 of OASICS, pages 2:1–2:15. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2016.

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

References (cont.)

[GKS11] Martin Gebser, Roland Kaminski, and Torsten Schaub. Complex
optimization in answer set programming. TPLP, 11(4-5):821–839,
2011.

[GL91] Michael Gelfond and Vladimir Lifschitz. Classical negation in
logic programs and disjunctive databases. New Generation
Comput., 9(3/4):365–386, 1991.

[GLM+18] Martin Gebser, Nicola Leone, Marco Maratea, Simona Perri,
Francesco Ricca, and Torsten Schaub. Evaluation techniques
and systems for answer set programming: a survey. In IJCAI,
pages 5450–5456. ijcai.org, 2018.

[HJL+15] Marijn Heule, Matti Järvisalo, Florian Lonsing, Martina Seidl, and
Armin Biere. Clause elimination for SAT and QSAT. J. Artif. Intell.
Res., 53:127–168, 2015.

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

References (cont.)

[Ko95] Chih-Long Ko, Ker-Iand Lin. On the Complexity of Min-Max
Optimization Problems and their Approximation, pages 219–239.
Springer US, Boston, MA, 1995.

[Lif02] Vladimir Lifschitz. Answer set programming and plan generation.
Artif. Intell., 138(1-2):39–54, 2002.

[MC06] Kevin Milans and Bryan Clark. The complexity of graph pebbling.
SIAM J. Discret. Math., 20(3):769–798, March 2006.

[MDR24] Giuseppe Mazzotta, Carmine Dodaro, and Francesco Ricca.
Blending grounding and compilation for efficient asp solving. In
KR, page to appear, 2024.

F. Ricca Deep AI with ASP

Beyond NP with ASP
ASP solving overview

Programming Hints

References (cont.)

[MLM21] João Marques-Silva, Inês Lynce, and Sharad Malik.
Conflict-driven clause learning SAT solvers. In Armin Biere,
Marijn Heule, Hans van Maaren, and Toby Walsh, editors,
Handbook of Satisfiability - Second Edition, volume 336 of
Frontiers in Artificial Intelligence and Applications, pages
133–182. IOS Press, 2021.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao
Zhang, and Sharad Malik. Chaff: Engineering an efficient SAT
solver. In Proceedings of the 38th Design Automation
Conference, DAC 2001, Las Vegas, NV, USA, June 18-22, 2001,
pages 530–535. ACM, 2001.

[MRD22] Giuseppe Mazzotta, Francesco Ricca, and Carmine Dodaro.
Compilation of aggregates in ASP systems. In AAAI, pages
5834–5841. AAAI Press, 2022.

F. Ricca Deep AI with ASP

