
Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Deep Reasoning in AI with Answer Set
Programming

ASP Basics

Francesco Ricca and Mario Alviano

Department of Mathematics and Computer Science

University of Calabria

ESSAI 2024 - Athens

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Outline

Introduction

The language of ASP (intro)

Problem solving in ASP (basics)

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Deep Reasoning

Learning vs Reasoning
From the particular to the universal (induction)
From the universal to the particular (deduction)

Why... this course?
Spotlight Seminars in AI, June 24, 2022
→ Machine Learning and Logic: Fast and Slow Thinking
→ Prof. Moshe Vardi - Rice University
https://www.youtube.com/watch?v=K-wfD5SKaLc

“Reasoning” has a problem of marketing and adoption
→ ESSAI23 - Pills of ASP → Deep Reasoning with ASP - ESSAI24

F. Ricca Deep AI with ASP

https://www.youtube.com/watch?v=K-wfD5SKaLc

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Deep Reasoning

Learning vs Reasoning
From the particular to the universal (induction)
From the universal to the particular (deduction)

Why... this course?
Spotlight Seminars in AI, June 24, 2022
→ Machine Learning and Logic: Fast and Slow Thinking
→ Prof. Moshe Vardi - Rice University
https://www.youtube.com/watch?v=K-wfD5SKaLc

“Reasoning” has a problem of marketing and adoption
→ ESSAI23 - Pills of ASP → Deep Reasoning with ASP - ESSAI24

F. Ricca Deep AI with ASP

https://www.youtube.com/watch?v=K-wfD5SKaLc

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Deep Reasoning

Learning vs Reasoning
From the particular to the universal (induction)
From the universal to the particular (deduction)

Why... this course?
Spotlight Seminars in AI, June 24, 2022
→ Machine Learning and Logic: Fast and Slow Thinking
→ Prof. Moshe Vardi - Rice University
https://www.youtube.com/watch?v=K-wfD5SKaLc

“Reasoning” has a problem of marketing and adoption
→ ESSAI23 - Pills of ASP → Deep Reasoning with ASP - ESSAI24

F. Ricca Deep AI with ASP

https://www.youtube.com/watch?v=K-wfD5SKaLc

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Context

Answer Set Programming (ASP) [BET11]
Declarative programming paradigm
Non-monotonic reasoning and logic programming
Stable model semantics [GL91]

Expressive KR Language
Roots in Datalog and Nonmonotonic Logic
Default negation, Disjunction, Aggregates,
Hard and Weak constraint, ...
Basic ASP models up to ∆P

3 [DEGV01]

→ i.e., problems not (polynomially) translatable to SAT or CSP

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Context (2)

Robust and efficient implementations
Clasp, Wasp, lp2*, DLV, Cmodels, IDP, etc [GLM+18].
Performance improvements in the last years [GMR17]

Applications in several fields
Artificial Intelligence, Knowledge Representation & Reas.,
Information Integration, Bioinformatics, Robotics...
industrial ones!
see [EGL16]

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Goals of the course

Introduce ASP from the basics to sophisticated use-cases

Illustrate the language of ASP1

Show how to model and solve problems with ASP
Provide details on the working principle of ASP systems
Show how to use ASP systems proficiently
Present some recent Explainable AI technology
Secure and modular development with ASP

1The coverage is not extensive, and may reflect our own biased view.
F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Presentation roadmap

The language of ASP is:

Datalog
+ Default negation
+ Disjunction
+ Integrity Constraints
+ Weak Constraints
+ Aggregate atoms
+ Choice Rules

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Presentation roadmap

The language of ASP is:

Datalog
+ Default negation
+ Disjunction
+ Integrity Constraints
+ Weak Constraints
+ Aggregate atoms
+ Choice Rules
+ Some other solver-specific extensions

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

What is Datalog?

Datalog

A logic language for querying databases
→ The name is de combination of “Data + Logic”

Overcomes some limits of Relational Algebra/ SQL
→ Recursive definitions

Deductive database applications, query answering
→ The basic fragment of ASP

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Datalog Syntax

Rule

head(H) :- body1(X1), . . . , bodyn(Xn).

Intuitive meaning

“Infer head(h) if body1(x1), . . . , bodyn(xn) is true”

Terms, Variables, Atoms
Numbers, Strings and Variables (Prolog-like syntax)
Variables occur in some body atom (Safety)
Atoms: head(h), body1(x1), ..., bodyn(xn)

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Datalog Syntax

Example
Program and query:

father(X) :-parent(X ,Y),male(X). father(X)?

Database:

male(rob). ← Facts have empty body
parent(rob, ann). ← symbol :- omitted
parent(mary , ann). ← “True by definition”
parent(lucy , terry).

Query Result:

father(rob).

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Semantics by Example
Example

father(X) :- parent(X ,Y),male(X).

male(rob). parent(rob, ann). parent(mary , ann).
parent(lucy , terry).

Evaluation:
I0 = {}
I1 = I0 ∪ { male(rob), parent(rob, ann),

parent(mary , ann), parent(lucy , terry)}
I2 = I1 ∪ {father(rob)}
No match is possible given I2 = I... STOP!

Result:
I = {male(rob), parent(rob, ann), parent(mary , ann),

parent(lucy , terry), father(rob)}
F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Semantics by Example
Example

father(X) :- parent(X ,Y),male(X).

male(rob). parent(rob, ann). parent(mary , ann).
parent(lucy , terry).

Evaluation:
I0 = {}
I1 = I0 ∪ { male(rob), parent(rob, ann),

parent(mary , ann), parent(lucy , terry)}
I2 = I1 ∪ {father(rob)}
No match is possible given I2 = I... STOP!

Result:
I = {male(rob), parent(rob, ann), parent(mary , ann),

parent(lucy , terry), father(rob)}
F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Semantics by Example
Example

father(X) :- parent(X ,Y),male(X).

male(rob). parent(rob, ann). parent(mary , ann).
parent(lucy , terry).

Evaluation:
I0 = {}
I1 = I0 ∪ { male(rob), parent(rob, ann),

parent(mary , ann), parent(lucy , terry)}
I2 = I1 ∪ {father(rob)}
No match is possible given I2 = I... STOP!

Result:
I = {male(rob), parent(rob, ann), parent(mary , ann),

parent(lucy , terry), father(rob)}
F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Semantics by Example
Example

father(X) :- parent(X ,Y),male(X).

male(rob). parent(rob, ann). parent(mary , ann).
parent(lucy , terry).

Evaluation:
I0 = {}
I1 = I0 ∪ { male(rob), parent(rob, ann),

parent(mary , ann), parent(lucy , terry)}
I2 = I1 ∪ {father(rob)}
No match is possible given I2 = I... STOP!

Result:
I = {male(rob), parent(rob, ann), parent(mary , ann),

parent(lucy , terry), father(rob)}
F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Fully declarative language
Example (Reachability)
Input: a graph encoded by relation edge(_, _).
Problem: Find all pairs of reachable nodes (transitive closure of edge).

Can you write an SQLa??

aUsing a Select - Project - Join query, or say SQL92

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Fully declarative language

Example (Reachability)
Input: a graph encoded by relation edge(_, _).
Problem: Find all pairs of reachable nodes (transitive closure of edge).

% if there is an edge from X to Y, then X is reachable from Y
reachable(X ,Y) :-edge(X ,Y)

% Reachability is transitive
reachable(X ,Y) :- reachable(X ,Z), edge(Z ,Y)

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Fully declarative language

Example (Reachability)
Input: a graph encoded by relation edge(_, _).
Problem: Find all pairs of reachable nodes (transitive closure of edge).

% if there is an edge from X to Y, then X is reachable from Y
reachable(X ,Y) :-edge(X ,Y)

% Reachability is transitive
reachable(X ,Y) :- reachable(X ,Z), edge(Z ,Y)

Intuitive meaning: (bottom-up evaluation)

→ Start with the facts in the DB
→ Iteratively derive facts from rules until no new fact is derived
→ Obtain the unique minimal (perfect, well-founded, stable...) model!

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Fully declarative language
Example (Reachability)
Input: a graph encoded by relation edge(_, _).
Problem: Find all pairs of reachable nodes (transitive closure of edge).

% if there is an edge from X to Y, then X is reachable from Y
reachable(X ,Y) :-edge(X ,Y)

% Reachability is transitive
reachable(X ,Y) :- reachable(X ,Z), edge(Z ,Y)

Example (Fully Declarative Language!)

% if there is an edge from X to Y, then X is reachable from Y
reachable(X ,Y) :-edge(X ,Y)

% Reachability is transitive
reachable(X ,Y) :- reachable(Z ,Y), reachable(X ,Z).

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Fully declarative language
Example (Reachability)
Input: a graph encoded by relation edge(_, _).
Problem: Find all pairs of reachable nodes (transitive closure of edge).

% if there is an edge from X to Y, then X is reachable from Y
reachable(X ,Y) :-edge(X ,Y)

% Reachability is transitive
reachable(X ,Y) :- reachable(X ,Z), edge(Z ,Y)

Example (Atom’s and Rule’s order is immaterial!)
% Reachability is transitive
reachable(X ,Y) :-edge(Z ,Y), reachable(X ,Z)
↕
% if there is an edge from X to Y, then X is reachable from Y
reachable(X ,Y) :-edge(X ,Y)

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Exercise limits (1)

Given the following relational database schema

beers(beername∗,manufacturer)
sells(bar∗, beername∗, price)
associate(bar , bar) (* indicates primary key)

Write (if possible) in SQL92, and Datalog

Manufacturers of beers sold by “John’s bar”
Beers sold by "John’s bar" that are not sold by “Annie’s” bar
Bars that sell more than three beers
Bars that sell exactly two beers
Number of beers sold by “John’s bar”
Bars that are associated trough a chain of bar associations
to “John’s bar”

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Presentation roadmap

The language of ASP is:

Datalog ← Done!
+ Default negation
+ Disjunction
+ Integrity Constraints
+ Weak Constraints
+ Aggregate atoms
+ Choice Rules

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Default Negation

Limits of Datalog
Datalog programs are positive
Already is not enough for expressing simple queries!

Example (Anti join)
% The airports that are not reachable from El Paso

Can you write a Datalog query??

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Default Negation

Limits of Datalog
Datalog programs are positive
Already is not enough for expressing simple queries!

Example (Anti join)
% The airports that are not reachable from El Paso

You need some form of negation!

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Default Negation

Limits of Datalog
Datalog programs are positive
Already is not enough for expressing simple queries!

Example (Anti join)
% The airports that are not reachable from El Paso

reachableFromElPaso(X) :- reachable(”ElPaso”,X).

query(X) :-airport(X), not reachableFromElPaso(X)

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Default Negation

Often, it is desirable to express negation in the following sense:

“If we do not have evidence that X holds, conclude Y.”

This is expressed by default negation: the operator not.

Example (Cross railroad)
An agent could act according to the following rule:

% If the grass is not wet then it did not rain.
did_not_rain :- not wet_grass.

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Negation might be problematic (1)

Example (Bad negation (1))

p(X) :-q(X), not p(X).

q(1). q(2).

Evaluation:

I0 = {}
I1 = {q(1), q(2)}
I2 = {q(1), q(2), p(1), p(2).}
I3 = {q(1), q(2)} = I1

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Negation might be problematic (1)

Example (Bad negation (1))

p(X) :-q(X), not p(X).

q(1). q(2).

Evaluation:

I0 = {}
I1 = {q(1), q(2)}
I2 = {q(1), q(2), p(1), p(2).}
I3 = {q(1), q(2)} = I1

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Negation might be problematic (1)

Example (Bad negation (1))

p(X) :-q(X), not p(X).

q(1). q(2).

Evaluation:

I0 = {}
I1 = {q(1), q(2)}
I2 = {q(1), q(2), p(1), p(2).} ← What?!?
I3 = {q(1), q(2)} = I1

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Negation might be problematic (1)

Example (Bad negation (1))

p(X) :-q(X), not p(X).

q(1). q(2).

Evaluation:

I0 = {}
I1 = {q(1), q(2)}
I2 = {q(1), q(2), p(1), p(2).}
I3 = {q(1), q(2)} = I1 So... it does not work!

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Negation might be problematic (2)

Example (Bad negation (2))

a(X) :- not b(X), d(X)

b(X) :- not a(X), d(X)

d(1).

Try to apply the bottom-up evaluation strategy...

Again, it does not work... :-(

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Negation might be problematic (2)

Example (Bad negation (2))

a(X) :- not b(X), d(X)

b(X) :- not a(X), d(X)

d(1).

Try to apply the bottom-up evaluation strategy...

Again, it does not work... :-(

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Stratified Programs

Definition (Dependency Graph)
Given program P, the graph DG(P) =< V ,E > s.t.:

V = {p | p is predicate occurring in P}
E = {(p, q,+) | p is in the head and q is positive in the body of r ∈ P}

∪

{(p, q,−) | p is in the head and q is negative in the body of r ∈ P}

Definition (Recursive Program)
P is recursive if DG(P) is cyclic.

Definition (Stratified Program)
P is stratified if no cycle in DG(P) contains a negative edge.

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Examples: stratified programs

Example (Non stratified)

p(X) :-q(X), not p(X).

Example (Non stratified)

a(X) :- not b(X), d(X)

b(X) :- not a(X), d(X)

Example (Cyclic, stratified)

reachable(X ,Y) :-edge(X ,Y)

reachable(X ,Z) :- reachable(X ,Z), edge(Z ,Y)

reachableFromElPaso(X) :- reachable(”ElPaso”,X).

query(X) :-airport(X), not reachableFromElPaso(X)

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Stratified negation (1)

Example (Good negation)

reachable(X ,Y) :-edge(X ,Y)

reachable(X ,Z) :- reachable(X ,Z), edge(Z ,Y)

reachableFromElPaso(X) :- reachable(”ElPaso”,X).

query(X) :-airport(X), not reachableFromElPaso(X)

Evaluation:

Evaluate stratum by stratum
→ when all the information is present when negation is evaluated

Stratified Datalog
→ One set of answers, one model!

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Stratified negation (1)

Example (Good negation)

reachable(X ,Y) :-edge(X ,Y)

reachable(X ,Z) :- reachable(X ,Z), edge(Z ,Y)

reachableFromElPaso(X) :- reachable(”ElPaso”,X).

query(X) :-airport(X), not reachableFromElPaso(X)

Evaluation:
Stratum 1:
→ Rules (1),(2), and (3)

→ Now reachableFromElPaso(·) fully computed!!

Stratum 2
→ Rule (4)

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Exercise limits (1)

Given the following relational database schema

beers(beername∗,manufacturer)
sells(bar∗, beername∗, price)
associate(bar , bar) (* indicates primary key)

Write (if possible) in SQL92, and Stratified Datalog

Manufacturers of beers sold by “John’s bar”
Beers sold by "John’s bar" that are not sold by “Annie’s” bar
Bars that sell more than three beers
Bars that sell exactly two beers
Number of beers sold by “John’s bar”
Bars that are associated trough a chain of bar associations
to “John’s bar”

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Arithmetic Expressions and Builtins

Applications may require to use numbers, make
comparisons, etc.

Example (Comparison operator)

older(P1,P2) :-person(P1,Age1), person(P2,Age2),
Age1 > Age2.

Example (Fibonacci numbers)

fib(0, 1).
fib(1, 1).

fib(N + 2,Y1 + Y2) :- fib(N,Y1), fib(N + 1,Y2).

WARNING: For recursive definitions an upper bound for integers (system
setting) or a domain has to be specified.

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Intuitive definition of model

Definition (Informal)

Interpretation: A set I of true ground atoms
Satisfaction: A rule r is satisfied w.r.t. I if the head is
true whenever all the body literals are true
Model: An interpretation that satisfies all (the
instantiations of the) rules

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Intuitive definition of model

Example (Models)

Given:

a :-b, c.
c :-d .
d .

Interpretations and Models:

I1 = {b, c, d}
I2 = {a, b, c, d}
I3 = {c, d}

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Intuitive definition of model

Example (Models)

Given:

a :-b, c.
c :-d .
d .

Interpretations and Models:

I1 = {b, c, d} ← not a model!
I2 = {a, b, c, d} ← model!
I3 = {c, d} ← minimal model!

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Unrestricted negation (1)

Example (Stable models)

a :- not b

b :- not a

Some Observation:
What if we assume a is true and b is false? ..OK!
What if we assume a is false and b is true? ..OK!
There is no problem if you fix a “good interpretation”!

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Unrestricted negation (1)

Example (Stable models)

a :- not b

b :- not a

Some Observation:
What if we assume a is true and b is false? ..OK!
What if we assume a is false and b is true? ..OK!
There is no problem if you fix a “good interpretation”!

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Unrestricted negation (1)

Example (Stable models)

a :- not b

b :- not a

Some Observation:
What if we assume a is true and b is false? ..OK!
What if we assume a is false and b is true? ..OK!
There is no problem if you fix a “good interpretation”!

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Unrestricted negation (1)

Example (Stable models)

a :- not b

b :- not a

Some Observation:
What if we assume a is true and b is false? ..OK!
What if we assume a is false and b is true? ..OK!
There is no problem if you fix a “good interpretation”!

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Unrestricted negation (2)

We know that
Positive programs have a deterministic behavior
Some assumptions can be satisfactory

Gelfond-Lifschitz Reduct
Remove rules with false negative literals in the body
Remove the remaining negative literals

Stable Model or Answer Set (step by step)
Given a model m for P
Compute the reduct Pm

m is stable if it is the model of Pm

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Example 1

Example (Reduct)
Program:

a :-d , not b.
b :- not d .

d .

Consider: I = {a, d}

Reduct:

a :-d .
d .

I is an answer set of P I and therefore it is an answer set of P.

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Example 2

Example (Stable models)

a :- not b b :- not a

Let’s check all possibilities:

Assume {} is not a model
Assume {a, b} is a model but is not stable!
Assume {a}, is model, actually a stable one!
Assume {b}, is model, actually a stable one!

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Example 2

Example (Stable models)

a :- not b b :- not a

Let’s check all possibilities:

Assume {} is not a model
Assume {a, b} is a model but is not stable!
Assume {a}, is model, actually a stable one!
Assume {b}, is model, actually a stable one!

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Example 2

Example (Stable models)

a :- not b b :- not a

Let’s check all possibilities:

Assume {} is not a model
Assume {a, b} is a model but is not stable!
Assume {a}, is model, actually a stable one!
Assume {b}, is model, actually a stable one!

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Example 2

Example (Stable models)

a :- not b b :- not a

Let’s check all possibilities:

Assume {} is not a model
Assume {a, b} is a model but is not stable!
Assume {a}, is model, actually a stable one!
Assume {b}, is model, actually a stable one!

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Example 2

Example (Stable models)

a :- not b b :- not a

Let’s check all possibilities:

Assume {} is not a model
Assume {a, b} is a model but is not stable!
Assume {a}, is model, actually a stable one!
Assume {b}, is model, actually a stable one!

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Example 2

Example (Stable models)

a :- not b b :- not a

Let’s check all possibilities:

Assume {} is not a model
Assume {a, b} is a model but is not stable!
Assume {a}, is model, actually a stable one!
Assume {b}, is model, actually a stable one!

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Example 3

Example
Program:

a :- not b.

Answer Set: {a}

Example
Program:

a :- not b.
b :- not a.
c :-b.
c :-a.

Answer Sets: {a, c}, {b, c}

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Example 4

Example
Program:

a :- not a.

Answer Set: no answer set!

Example
Program:

a :- not b.
b :- not a.
f :-b, not f

Answer Set: {a}

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Supported Models and Answer Sets (1)

Definition (Supported Model)
A model M is supported if for each a ∈ M there exist rule r ∈ P
such that a is the head and ∀b in the body, b is true w.r.t. M

Intuition:
Something is true if there is a rule “supporting” its truth.

Theorem:

Answer sets are supported models

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Supported Models and Answer Sets (2)

Example (Inverse does not hold.)
Program:

a :-a.

Models: {}, {a} ← both are supported

Answer Set: {}

→ Circular support is not allowed!

→ Empty answer set is fine!

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Supported Models and Answer Sets (2)

Example (Inverse does not hold.)
Program:

a :-a.

Models: {}, {a} ← both are supported

Answer Set: {}

→ Circular support is not allowed!

→ Empty answer set is fine!

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Supported Models and Answer Sets (2)

Example (Inverse does not hold.)
Program:

a :-a.

Models: {}, {a} ← both are supported

Answer Set: {}

→ Circular support is not allowed!

→ Empty answer set is fine!

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Unfounded Sets and Answer Sets (intuition)

Unfounded Set:

A set of ground atoms X is an unfounded set if, for each rule r
s.t. H(r) ∈ X, one of the following conditions hold

the body of r is false, or
some literal in the positive body belongs to X

Example: a :-a. and X = {a}. is unfounded!

Theorem:

Answer sets are unfounded-free interpretations, i.e., no subset
is unfounded.

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Unfounded Sets and Answer Sets (intuition)

Unfounded Set:

A set of ground atoms X is an unfounded set if, for each rule r
s.t. H(r) ∈ X, one of the following conditions hold

the body of r is false, or
some literal in the positive body belongs to X

Example: a :-a. and X = {a}. is unfounded!

Theorem:

Answer sets are unfounded-free interpretations, i.e., no subset
is unfounded.

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Multiple models...

Observation:
Several stable models might represent several possible
solutions
Stable models are sets... answer sets
No answer set... no solution

Idea [Lif99]:
Represent a computational problem by a Logic program
Answer sets correspond to problem solutions
Use an ASP solver to find these solutions

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Multiple models...

Observation:
Several stable models might represent several possible
solutions
Stable models are sets... answer sets
No answer set... no solution

Idea [Lif99]:
Represent a computational problem by a Logic program
Answer sets correspond to problem solutions
Use an ASP solver to find these solutions

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Exercise SAT

Given a propositional formula Φ in 3 CNF, compute an
assignment to variables that satisfies Φ if it exists.

Write a logic program P(Φ) such that answer sets of P(Φ)
correspond to satisfying assignments of Φ

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Exercise SAT

Given a propositional formula Φ in 3 CNF, compute an
assignment to variables that satisfies Φ if it exists.

Write a logic program P(Φ) such that answer sets of P(Φ)
correspond to satisfying assignments of Φ

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Hints...

Example (Ingredient 1)

a :- not b

b :- not a

Example (Ingredient 2)

p :- not p

Example (A simple 3SAT formula)

(A ∨ B ∨ ¬C) ∧ (¬A ∨ B ∨ C) ∧ (¬A ∨ ¬B ∨ ¬C)

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Presentation roadmap

The language of ASP is:

Datalog ← Done!
+ Default negation ← Done!
+ Disjunction
+ Integrity Constraints
+ Weak Constraints
+ Aggregate atoms
+ Choice Rules

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Disjunction

There is a more intuitive way of expressing multiple models.

Often we just desire to express disjunctive information.

“We want to model several alternative scenarios”

This is expressed by disjunctive rules: the operator | .

Example (Datalog + Disjunction)
% Disjunctive knowledge:
%“A parent P is either a father or a mother”

mother(P,S) | father(P,S) :-parent(P,S).

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Constraints

Many models → need to express properties of solutions

“Discard a solution If that conjunction holds.”

Constrains are rules with empty (false) head

Example (Parent of himself)

% “Ensure that none is the parent of himself.”

:-mother(P,P). :- father(P,P).

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

ASP Syntax

Rule: a1 | . . . | an󰁿 󰁾󰁽 󰂀 :- b1, . . . , bk , not bk+1, . . . , not bm.󰁿 󰁾󰁽 󰂀
head body

Atoms and Literals: ai , bi , not bi

Positive Body: b1, . . . , bk

Negative Body: not bk+1, . . . , not bm.

Fact: A rule with empty body
Constraint: A rule with empty head

Variables: allowed in atom’s arguments

Must occur in the positive body (Safety)
Are placeholders for constants

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

ASP Syntax

Rule: a1 | . . . | an󰁿 󰁾󰁽 󰂀 :- b1, . . . , bk , not bk+1, . . . , not bm.󰁿 󰁾󰁽 󰂀
head body

Atoms and Literals: ai , bi , not bi

Positive Body: b1, . . . , bk

Negative Body: not bk+1, . . . , not bm.

Fact: A rule with empty body
Constraint: A rule with empty head

Variables: allowed in atom’s arguments

Must occur in the positive body (Safety)
Are placeholders for constants

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Informal Semantics

Rule: a1 | . . . | an󰁿 󰁾󰁽 󰂀 :- b1, . . . , bk , not bk+1, . . . , not bm.󰁿 󰁾󰁽 󰂀
head body

Informal Semantics:

“If all b1, . . . , bk are true and all bk+1, . . . , bm are not true,
then at least one among a1, . . . , an is true”.

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Informal Semantics

Rule: a1 | . . . | an󰁿 󰁾󰁽 󰂀 :- b1, . . . , bk , not bk+1, . . . , not bm.󰁿 󰁾󰁽 󰂀
head body

Informal Semantics:

“If all b1, . . . , bk are true and all bk+1, . . . , bm are not true,
then at least one among a1, . . . , an is true”.

Example (Disjunction + Constraint)
%“A a node is either in the set or out of the set”
inSet(N) | outSet(N) :-node(N).

% Constrains: “Two adjacent nodes cannot be in the set.”
:- inSet(N1), inSet(N2), edge(N1,N2).

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Informal Semantics: Variables

Handling variables
Variables are placeholders for constants
Grounding: “Replace variables by constants in all possible
ways”

Example (Ground Instantiation)
Consider:

isInterestedinASP(X) | isCurious(X) :- attendsASP(X).
attendsASP(john). attendsASP(mary).

Instantiation:

isInterestedinASP(john) | isCurious(john) :- attendsASP(john).
isInterestedinASP(mary) | isCurious(mary) :- attendsASP(mary).
attendsASP(john). attendsASP(mary).

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Informal Semantics: Minimal Models
Example (Disjunction)

isInterestedinASP(john) | isCurious(john) :- attendsASP(john).
attendsASP(john).

Two (minimal) models encoding two plausible scenarios:

M1:{isInterestedinASP(john), attendsASP(john).}
M2:{isCurious(john), attendsASP(john).}

Example (Constraints)

isInterestedinASP(john) | isCurious(john) :- attendsASP(john).
:- hatesASP(john), isInterestedinASP(john).
attendsASP(john). hatesASP(john).

Only one plausible scenario:

M1:{isInterestedinASP(john), attendsASP(john), hatesASP(john).}
M2:{isCurious(john), attendsASP(john), hatesASP(john).}

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Informal Semantics: Minimal Models
Example (Disjunction)

isInterestedinASP(john) | isCurious(john) :- attendsASP(john).
attendsASP(john).

Two (minimal) models encoding two plausible scenarios:

M1:{isInterestedinASP(john), attendsASP(john).}
M2:{isCurious(john), attendsASP(john).}

Example (Constraints)

isInterestedinASP(john) | isCurious(john) :- attendsASP(john).
:- hatesASP(john), isInterestedinASP(john).
attendsASP(john). hatesASP(john).

Only one plausible scenario:

M1:{isInterestedinASP(john), attendsASP(john), hatesASP(john).}
M2:{isCurious(john), attendsASP(john), hatesASP(john).}

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Informal Semantics (Disjunction and minimality)

Semantics of disjunction is:

Minimal
a | b | c. ⇒ {a}, {b}, {c}
Actually subset minimal
a | b.
a | c. ⇒ {a}, {b, c}
...but not exclusive
a | b.
a | c.
b | c. ⇒ {a, b}, {a, c}, {b, c}

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Informal Semantics (Disjunction and minimality)

Semantics of disjunction is:

Minimal
a | b | c. ⇒ {a}, {b}, {c}
Actually subset minimal
a | b.
a | c. ⇒ {a}, {b, c}
...but not exclusive
a | b.
a | c.
b | c. ⇒ {a, b}, {a, c}, {b, c}

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Informal Semantics (Disjunction and minimality)

Semantics of disjunction is:

Minimal
a | b | c. ⇒ {a}, {b}, {c}
Actually subset minimal
a | b.
a | c. ⇒ {a}, {b, c}
...but not exclusive
a | b.
a | c.
b | c. ⇒ {a, b}, {a, c}, {b, c}

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Exercise SAT

Given a propositional formula Φ in 3 CNF, compute an
assignment to variables that satisfies Φ if it exists.

Write a disjunctive ASP program P(Φ) such that answer
sets of P(Φ) correspond to satisfying assignments of Φ

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Formal Semantics: just a recap

Answer Set Semantics (aka stable models semantics)

Instantiation

Positive (Ground) Programs

Negative Programs
via Gelfong & Lifschitz Reduct [GL91]

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Formal Semantics: just a recap

Answer Set Semantics (aka stable models semantics)

Instantiation (get rid of variables)

Positive (Ground) Programs (minimal models)

Negative Programs (stable models)
via Gelfong & Lifschitz Reduct [GL91]

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Presentation roadmap

The language of ASP is:

Datalog ← Done!
+ Default negation ← Done!
+ Disjunction ← Done!
+ Integrity Constraints ← Done!
+ Weak Constraints
+ Aggregate atoms
+ Choice Rules

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Optimum Models

Weak Constraints
Express desiderata
Constraints which should possibly be satisfied
(as soft constraints in CSP)

Syntax :∼ body(X ,Y). [w@p,X]

Intuitive meaning “set body as false, if possible”

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Optimum Models

Weak Constraints
Express desiderata
Constraints which should possibly be satisfied
(as soft constraints in CSP)

Syntax :∼ body(X ,Y). [w@p,X]

Weight and Priority Level

• higher weights/priorities ⇒ higher importance
• “@p” can be omitted

“Minimize the sum of the weights of the violated constraints in
the highest priority level, and so on”

Declarative specification of optimization problems

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Weak Constraints Example

Example (Exams Scheduling)
Problem: Assign course exams to 3 time slots avoiding overlapping of exams
of courses with common students.

Strict Solution:

assign(X , s1) | assign(X , s2) | assign(X , s3) :- course(X).
% No overlap is admitted!”
:- assign(X ,S), assign(Y ,S), commonStudents(X ,Y ,N),N > 0.

Optimal Solution:

assign(X , s1) | assign(X , s2) | assign(X , s3) :- course(X).
% If overlapping is unavoidable, then reduce it “As Much As Possible”
:∼ assign(X ,S), assign(Y ,S), commonStudents(X ,Y ,N),N > 0. [N@0]

NB: Answer sets minimizing the total number of “lost" exams are preferred.

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Aggregates

Aggregate atoms
Express functions calculated over sets of elements
Often needed by applications
Similar to aggregates in SQL

Lg <1 f{S} <2 Ug

5 < #count{EmpId : emp(EmpId ,male,Skill ,Salary)} ≤ 10

The atom is true if the number of male employees is greater
than 5 and does not exceed 10.

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Aggregate Example (1)

Example (Count beers)

% Number of beers sold by “John’s bar”

numBeers(X) :-#count{B : beers(B, _), sells(john,B, _)} = X.

Example (Sum salaries)

% Sum of salaries of team members

sumSal(S) :- #sum{Sa, I : emp(I,Sa), teamMember(I)} = S.

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Aggregate Example (2)

Example (Team Building)
% An employee is either included in the team or not
inTeam(I) | outTeam(I) :- emp(I,Sx ,Sk ,Sa).

% The team consists of a certain number of employees
:- nEmp(N), #count{I : inTeam(I)} ∕= N.

% At least a given number of different skills must be present in the team
:- nSkill(M),#count{Sk : emp(I,Sx ,Sk ,Sa), inTeam(I)} ≤ M.

% The sum of the salaries of the team must not exceed the given budget
:- budget(B), #sum{Sa, I : emp(I,Sx ,Sk ,Sa), inTeam(I)} > B.

% The salary of each individual employee is within a specified limit
:-maxSal(M), #max{Sa : emp(I,Sx ,Sk ,Sa), inTeam(I)} > M.

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Choice Rules
Syntax

{a(X) : l1(X1), · · · , lk (Xk)}Θu :-b1(Y1), · · · , bn(Xn).

Intuitive meaning: (Direct modeling of the search space)

“if the body of the rule is true, choose as true an arbitrary subset of n
atoms a(X), such that l1(X1), · · · , lk (Xk) are true, and the expression

nΘu is satisfied”

Example (Assign colors)

% Choose exactly one color per each node

{col(X ,C) : color(C)} = 1 :- node(X).
color(red). color(blue). node(1). node(2)

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Choice Rules
Syntax

{a(X) : l1(X1), · · · , lk (Xk)}Θu :-b1(Y1), · · · , bn(Xn).

Intuitive meaning: (Direct modeling of the search space)

“if the body of the rule is true, choose as true an arbitrary subset of n
atoms a(X), such that l1(X1), · · · , lk (Xk) are true, and the expression

nΘu is satisfied”

Example (Assign colors)

% Choose exactly one color per each node
{col(1, red), col(1, blue)} = 1 :- node(1).
{col(2, red), col(2, blue)} = 1 :- node(2).
color(red). color(blue). node(1). node(2)

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Choice Rules
Syntax

{a(X) : l1(X1), · · · , lk (Xk)}Θu :-b1(Y1), · · · , bn(Xn).

Intuitive meaning: (Direct modeling of the search space)

“if the body of the rule is true, choose as true an arbitrary subset of n
atoms a(X), such that l1(X1), · · · , lk (Xk) are true, and the expression

nΘu is satisfied”

Example (Assign colors)

% Choose exactly one color per each node
{col(1, red), col(1, blue)} = 1 :- node(1).
{col(2, red), col(2, blue)} = 1 :- node(2).
color(red). color(blue). node(1). node(2)

Admissible choices (combine and get the answer sets):

{col(1, red)}, {col(1, blue).}, {col(2, red).}, {col(3, blue).}

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Aggregate Example (2)

Example (Team Building)
% Select a team of exactly a given number of employees
{inTeam(I) : emp(I,Sx ,Sk ,Sa)} = N :- nEmp(N).

% At least a given number of different skills must be present in the team
:- nSkill(M),#count{Sk : emp(I,Sx ,Sk ,Sa), inTeam(I)} ≤ M.

% The sum of the salaries of the team must not exceed the given budget
:- budget(B), #sum{Sa, I : emp(I,Sx ,Sk ,Sa), inTeam(I)} > B.

% The salary of each individual employee is within a specified limit
:-maxSal(M), #max{Sa : emp(I,Sx ,Sk ,Sa), inTeam(I)} > M.

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Presentation roadmap

The language of ASP is:

Datalog ← Done!
+ Default negation ← Done!
+ Disjunction ← Done!
+ Integrity Constraints ← Done!
+ Weak Constraints ← Done!
+ Aggregate atoms ← Done!
+ Choice Rules ← Done!

How to solve problems with ASP?

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Presentation roadmap

The language of ASP is:

Datalog ← Done!
+ Default negation ← Done!
+ Disjunction ← Done!
+ Integrity Constraints ← Done!
+ Weak Constraints ← Done!
+ Aggregate atoms ← Done!
+ Choice Rules ← Done!

How to solve problems with ASP?

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Problem solving in ASP

Programming Steps:

Model your domain
→ Single out input/output predicates

Write a logic program modeling your problem
→ Use predicates representing relevant entities

→ Hint: take input data separated from derived ones

Are you solving a hard combinatorial problem?
NO : → Direct encoding with stratified program
YES: → Guess & Check & Optimize methodology

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Problem solving in ASP

Programming Steps:

Model your domain
→ Single out input/output predicates

Write a logic program modeling your problem
→ Use predicates representing relevant entities

→ Hint: take input data separated from derived ones

Are you solving a hard combinatorial problem?
NO : → Direct encoding with stratified program
YES: → Guess & Check & Optimize methodology

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Problem solving in ASP

Programming Steps:

Model your domain
→ Single out input/output predicates

Write a logic program modeling your problem
→ Use predicates representing relevant entities

→ Hint: take input data separated from derived ones

Are you solving a hard combinatorial problem?
NO : → Direct encoding with stratified program
YES: → Guess & Check & Optimize methodology

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Problem solving in ASP

Programming Steps:

Model your domain
→ Single out input/output predicates

Write a logic program modeling your problem
→ Use predicates representing relevant entities

→ Hint: take input data separated from derived ones

Are you solving a hard combinatorial problem?
NO : → Direct encoding with stratified program
YES: → Guess & Check & Optimize methodology

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Problem solving in ASP

Programming Steps:

Model your domain
→ Single out input/output predicates

Write a logic program modeling your problem
→ Use predicates representing relevant entities

→ Hint: take input data separated from derived ones

Are you solving a hard combinatorial problem?
NO : → Direct encoding with stratified program
YES: → Guess & Check & Optimize methodology

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Direct Encodings when...

Use a “Direct” Encoding with Datalog rules for
Polynomial Problems, Deductive Database, etc.

Example (Reachability)
Problem: Find all nodes reachable from the others.
Input: edge(_, _).

% X is reachable from Y if an edge (X,Y) exists
reachable(X ,Y) :-edge(X ,Y).

% Reachability is transitive
reachable(X ,Y) :- reachable(X ,Z), edge(Z ,Y).

Unfeasible for search problems in NP and beyond:
→ Need for a systematic programming methodology

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Programming Methodology

Guess & Check & Optimize (GCO)
Guess solutions → using disjunctive rules
Check admissible ones → using strong constraints

Optimization problem?
Specify Preference criteria → using weak constraints

In other words...
disjunctive rules → generate candidate solutions
constraints → test solutions discarding unwanted ones
weak constraints → single out optimal solutions

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Programming Methodology

Guess & Check & Optimize (GCO)
Guess solutions → using disjunctive rules
Check admissible ones → using strong constraints

Optimization problem?
Specify Preference criteria → using weak constraints

In other words...
disjunctive rules → generate candidate solutions
constraints → test solutions discarding unwanted ones
weak constraints → single out optimal solutions

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Programming Methodology

Guess & Check & Optimize (GCO)
Guess solutions → using disjunctive rules
Check admissible ones → using strong constraints

Optimization problem?
Specify Preference criteria → using weak constraints

In other words...
disjunctive rules → generate candidate solutions
constraints → test solutions discarding unwanted ones
weak constraints → single out optimal solutions

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Guess and Check (Example 1)

Example (Group Assignments)
Problem: We want to partition a set of persons in two groups,

while avoiding that father and children belong to the same group.
Input: persons and fathers are represented by person(_) and father(_, _).

% a disjunctive rule to “guess” all the possible assignments

group(P, 1) | group(P, 2) :-person(P).

% a constraint to discard unwanted solutions
% i.e., father and children cannot belong to the same group

:-group(P1,G), group(P2,G), father(P1,P2).

...so how does it work really?

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Guess and Check (Example 1)

Example (Group Assignments)
Problem: We want to partition a set of persons in two groups,

while avoiding that father and children belong to the same group.
Input: persons and fathers are represented by person(_) and father(_, _).

% a disjunctive rule to “guess” all the possible assignments

group(P, 1) | group(P, 2) :-person(P).

% a constraint to discard unwanted solutions
% i.e., father and children cannot belong to the same group

:-group(P1,G), group(P2,G), father(P1,P2).

...so how does it work really?

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Guess and Check (Example 1)

Example (Group Assignments)
Problem: We want to partition a set of persons in two groups,

while avoiding that father and children belong to the same group.
Input: persons and fathers are represented by person(_) and father(_, _).

% a disjunctive rule to “guess” all the possible assignments

group(P, 1) | group(P, 2) :-person(P).

% a constraint to discard unwanted solutions
% i.e., father and children cannot belong to the same group

:-group(P1,G), group(P2,G), father(P1,P2).

...so how does it work really?

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Guessing part explained

Consider: group(P, 1) | group(P, 2) :-person(P).

If the input is: person(john). person(joe). father(john, joe).

Then, the answer set of this single-rule program are:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 2)}

i.e., one a.s. for each assignment of 2 pers. to 2 groups!

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Guessing part explained

Consider: group(P, 1) | group(P, 2) :-person(P).

If the input is: person(john). person(joe). father(john, joe).

Then, the answer set of this single-rule program are:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 2)}

i.e., one a.s. for each assignment of 2 pers. to 2 groups!

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Guessing part explained

Consider: group(P, 1) | group(P, 2) :-person(P).

If the input is: person(john). person(joe). father(john, joe).

Then, the answer set of this single-rule program are:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 2)}

i.e., one a.s. for each assignment of 2 pers. to 2 groups!

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Guessing part explained

Consider: group(P, 1) | group(P, 2) :-person(P).

If the input is: person(john). person(joe). father(john, joe).

Then, the answer set of this single-rule program are:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 2)}

i.e., one a.s. for each assignment of 2 pers. to 2 groups!

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Checking part explained

Consider: group(P, 1) | group(P, 2) :-person(P).
Now add: :-group(P1,G), group(P2,G), father(P1,P2).

If the input is: person(john). person(joe). father(john, joe).

The constraint “discards” two non admissible answers:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 2)}

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Checking part explained

Consider: group(P, 1) | group(P, 2) :-person(P).
Now add: :-group(P1,G), group(P2,G), father(P1,P2).

If the input is: person(john). person(joe). father(john, joe).

The constraint “discards” two non admissible answers:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 2)}

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Guess & Check explained

Consider: group(P, 1) | group(P, 2) :-person(P).
:-group(P1,G), group(P2,G), father(P1,P2).

If the input is: person(john). person(joe). father(john, joe).

The answer sets are:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)}

G&C = Define search space + specify desired solutions

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Guess and Check (Example 1)

Example (3-col)
Problem: Given a graph, assign one color out of 3 colors to each node such

that two adjacent nodes have always different colors.
Input: a Graph is represented by node(_) and edge(_, _).

% guess a coloring for the nodes
(r) col(X , red) | col(X , yellow) | col(X , green) :- node(X).

% discard colorings where adjacent nodes have the same color
(c) :- edge(X ,Y), col(X ,C), col(Y ,C).

% NB: answer sets are subset minimal → only one color per node

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Guess and Check (Example 1)

Example (3-col)
Problem: Given a graph, assign one color out of 3 colors to each node such

that two adjacent nodes have always different colors.
Input: a Graph is represented by node(_) and edge(_, _).

% guess a coloring for the nodes
(r) col(X , red) | col(X , yellow) | col(X , green) :- node(X).

% discard colorings where adjacent nodes have the same color
(c) :- edge(X ,Y), col(X ,C), col(Y ,C).

% NB: answer sets are subset minimal → only one color per node

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Guess and Check (Example 1)

Example (3-col)
Problem: Given a graph, assign one color out of 3 colors to each node such

that two adjacent nodes have always different colors.
Input: a Graph is represented by node(_) and edge(_, _).

% guess a coloring for the nodes
(r) col(X , red) | col(X , yellow) | col(X , green) :- node(X).

% discard colorings where adjacent nodes have the same color
(c) :- edge(X ,Y), col(X ,C), col(Y ,C).

% NB: answer sets are subset minimal → only one color per node

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Guess and Check (Example 1)

Example (3-col)
Problem: Given a graph, assign one color out of 3 colors to each node such

that two adjacent nodes have always different colors.
Input: a Graph is represented by node(_) and edge(_, _).

% guess a coloring for the nodes
(r) col(X , red) | col(X , yellow) | col(X , green) :- node(X).

% discard colorings where adjacent nodes have the same color
(c) :- edge(X ,Y), col(X ,C), col(Y ,C).

% NB: answer sets are subset minimal → only one color per node

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Guess and Check (Example 2)

Example (Hamiltonian Path)
Problem: Find a path in a Graph beginning at the starting node which
contains all nodes of the graph.
Input: node(_) and edge(_, _), and start(_).

% Guess a path
inPath(X ,Y) | outPath(X ,Y) :- edge(X ,Y).

% A node can be reached only once
:- inPath(X ,Y), inPath(X ,Y1),Y ∕= Y1.
:- inPath(X ,Y), inPath(X1,Y),X ∕= X1.
% All nodes must be reached
:- node(X), not reached(X).
% The path is not cyclic
:- inPath(X ,Y), start(Y).

reached(X) :- reached(Y), inPath(Y ,X).

reached(X) :- start(X).

| Guess

|
| Check
|
|
|

| Aux. Rules
|

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Guess and Check (Example 2)

Example (Hamiltonian Path)
Problem: Find a path in a Graph beginning at the starting node which
contains all nodes of the graph.
Input: node(_) and edge(_, _), and start(_).

% Guess a path
inPath(X ,Y) | outPath(X ,Y) :- edge(X ,Y).

% A node can be reached only once
:- inPath(X ,Y), inPath(X ,Y1),Y ∕= Y1.
:- inPath(X ,Y), inPath(X1,Y),X ∕= X1.
% All nodes must be reached
:- node(X), not reached(X).
% The path is not cyclic
:- inPath(X ,Y), start(Y).

reached(X) :- reached(Y), inPath(Y ,X).

reached(X) :- start(X).

| Guess

|
| Check
|
|
|

| Aux. Rules
|

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Guess and Check (Example 2)

Example (Hamiltonian Path)
Problem: Find a path in a Graph beginning at the starting node which
contains all nodes of the graph.
Input: node(_) and edge(_, _), and start(_).

% Guess a path
inPath(X ,Y) | outPath(X ,Y) :- edge(X ,Y).

% A node can be reached only once
:- inPath(X ,Y), inPath(X ,Y1),Y ∕= Y1.
:- inPath(X ,Y), inPath(X1,Y),X ∕= X1.
% All nodes must be reached
:- node(X), not reached(X).
% The path is not cyclic
:- inPath(X ,Y), start(Y).

reached(X) :- reached(Y), inPath(Y ,X).

reached(X) :- start(X).

| Guess

|
| Check
|
|
|

| Aux. Rules
|

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Guess and Check (Example 2)

Example (Hamiltonian Path)
Problem: Find a path in a Graph beginning at the starting node which
contains all nodes of the graph.
Input: node(_) and edge(_, _), and start(_).

% Guess a path
inPath(X ,Y) | outPath(X ,Y) :- edge(X ,Y).

% A node can be reached only once
:- inPath(X ,Y), inPath(X ,Y1),Y ∕= Y1.
:- inPath(X ,Y), inPath(X1,Y),X ∕= X1.
% All nodes must be reached
:- node(X), not reached(X).
% The path is not cyclic
:- inPath(X ,Y), start(Y).

reached(X) :- reached(Y), inPath(Y ,X).

reached(X) :- start(X).

| Guess

|
| Check
|
|
|

| Aux. Rules
|

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Guess and Check (Example 2)

Example (Hamiltonian Path)
Problem: Find a path in a Graph beginning at the starting node which
contains all nodes of the graph.
Input: node(_) and edge(_, _), and start(_).

% Guess a path
inPath(X ,Y) | outPath(X ,Y) :- edge(X ,Y).

% A node can be reached only once
:- inPath(X ,Y), inPath(X ,Y1),Y ∕= Y1.
:- inPath(X ,Y), inPath(X1,Y),X ∕= X1.
% All nodes must be reached
:- node(X), not reached(X).
% The path is not cyclic
:- inPath(X ,Y), start(Y).

reached(X) :- reached(Y), inPath(Y ,X).

reached(X) :- start(X).

| Guess

|
| Check
|
|
|

| Aux. Rules
|

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Guess, Check and Optimize (Example 3)

Example (Traveling Salesman Person)
Problem: Find a path of minimum length in a Weighted Graph beginning at
the starting node which contains all nodes of the graph.
Input: node(_) and edge(_, _, _), and start(_).

% Guess a path
inPath(X ,Y) | outPath(X ,Y) :- edge(X ,Y , _).
% Ensure that it is Hamiltonian
:- inPath(X ,Y), inPath(X ,Y1),Y <> Y1.
:- inPath(X ,Y), inPath(X1,Y),X <> X1.
:- node(X), not reached(X). :- inPath(X ,Y), start(Y).

reached(X) :- reached(Y), inPath(Y ,X).

reached(X) :- start(X).

% Minimize the sum of distances
:∼ inPath(X ,Y), edge(X ,Y ,C). [C@1,X ,Y]

| Guess

|
| Check
|
|
| Aux. Rules
|

| Optimize

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Guess, Check and Optimize (Example 3)

Example (Traveling Salesman Person)
Problem: Find a path of minimum length in a Weighted Graph beginning at
the starting node which contains all nodes of the graph.
Input: node(_) and edge(_, _, _), and start(_).

% Guess a path
inPath(X ,Y) | outPath(X ,Y) :- edge(X ,Y , _).
% Ensure that it is Hamiltonian
:- inPath(X ,Y), inPath(X ,Y1),Y <> Y1.
:- inPath(X ,Y), inPath(X1,Y),X <> X1.
:- node(X), not reached(X). :- inPath(X ,Y), start(Y).

reached(X) :- reached(Y), inPath(Y ,X).

reached(X) :- start(X).

% Minimize the sum of distances
:∼ inPath(X ,Y), edge(X ,Y ,C). [C@1,X ,Y]

| Guess

|
| Check
|
|
| Aux. Rules
|

| Optimize

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Guess, Check and Optimize (Example 3)

Example (Traveling Salesman Person)
Problem: Find a path of minimum length in a Weighted Graph beginning at
the starting node which contains all nodes of the graph.
Input: node(_) and edge(_, _, _), and start(_).

% Guess a path
inPath(X ,Y) | outPath(X ,Y) :- edge(X ,Y , _).
% Ensure that it is Hamiltonian
:- inPath(X ,Y), inPath(X ,Y1),Y <> Y1.
:- inPath(X ,Y), inPath(X1,Y),X <> X1.
:- node(X), not reached(X). :- inPath(X ,Y), start(Y).

reached(X) :- reached(Y), inPath(Y ,X).

reached(X) :- start(X).

% Minimize the sum of distances
:∼ inPath(X ,Y), edge(X ,Y ,C). [C@1,X ,Y]

| Guess

|
| Check
|
|
| Aux. Rules
|

| Optimize

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Exercises

Rewrite the above encodings:

Using aggregates where counting is involved
Using choice rules instead of disjunctive rules
Extend 3-Col example to n-Col
Provide a non-ground encoding for 3SAT

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

Acknowledgments

Thanks for your attention!

Questions?

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

References

[BET11] Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczynski.
Answer set programming at a glance. Commun. ACM,
54(12):92–103, 2011.

[DEGV01] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei
Voronkov. Complexity and expressive power of logic
programming. ACM Comput. Surv., 33(3):374–425, 2001.

[EGL16] Esra Erdem, Michael Gelfond, and Nicola Leone. Applications of
answer set programming. AI Magazine, 37(3):53–68, 2016.

[GL91] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic
programs and disjunctive databases. New Generation Comput.,
9(3/4):365–386, 1991.

[GLM+18] Martin Gebser, Nicola Leone, Marco Maratea, Simona Perri,
Francesco Ricca, and Torsten Schaub. Evaluation techniques and
systems for answer set programming: a survey. In IJCAI, pages
5450–5456. ijcai.org, 2018.

F. Ricca Deep AI with ASP

Introduction
The language of ASP (intro)

Problem solving in ASP (basics)

References (cont.)

[GMR17] Martin Gebser, Marco Maratea, and Francesco Ricca. The sixth
answer set programming competition. J. Artif. Intell. Res.,
60:41–95, 2017.

[Lif99] Vladimir Lifschitz. Answer set planning. In ICLP, pages 23–37.
MIT Press, 1999.

F. Ricca Deep AI with ASP

