Deep Reasoning in Al with Answer Set Programming ASP Basics

Francesco Ricca and Mario Alviano

Department of Mathematics and Computer Science

University of Calabria

ESSAI 2024 - Athens

Deep Reasoning

Learning vs Reasoning

- From the particular to the universal (induction)
- From the universal to the particular (deduction)

Why... this course?

- Spotlight Seminars in Al, June 24, 2022
 - \rightarrow Machine Learning and Logic: Fast and Slow Thinking
 - \rightarrow Prof. Moshe Vardi Rice University

https://www.youtube.com/watch?v=K-wfD5SKaLc

• "Reasoning" has a problem of marketing and adoption

 \rightarrow ESSAI23 - Pills of ASP \rightarrow Deep Reasoning with ASP - ESSAI24

Deep Reasoning

Learning vs Reasoning

- From the particular to the universal (induction)
- From the universal to the particular (deduction)

Why... this course?

- Spotlight Seminars in AI, June 24, 2022
 - \rightarrow Machine Learning and Logic: Fast and Slow Thinking
 - \rightarrow Prof. Moshe Vardi Rice University

https://www.youtube.com/watch?v=K-wfD5SKaLc

• "Reasoning" has a problem of marketing and adoption

 \rightarrow ESSAI23 - Pills of ASP \rightarrow Deep Reasoning with ASP - ESSAI24

Deep Reasoning

Learning vs Reasoning

- From the particular to the universal (induction)
- From the universal to the particular (deduction)

Why... this course?

- Spotlight Seminars in AI, June 24, 2022
 - \rightarrow Machine Learning and Logic: Fast and Slow Thinking
 - \rightarrow Prof. Moshe Vardi Rice University

https://www.youtube.com/watch?v=K-wfD5SKaLc

• "Reasoning" has a problem of marketing and adoption

 \rightarrow ESSAI23 - Pills of ASP \rightarrow Deep Reasoning with ASP - ESSAI24

Context

Answer Set Programming (ASP) [BET11]

- Declarative programming paradigm
- Non-monotonic reasoning and logic programming
- Stable model semantics [GL91]

Expressive KR Language

- Roots in Datalog and Nonmonotonic Logic
- Default negation, Disjunction, Aggregates,
- Hard and Weak constraint, ...
- Basic ASP models up to Δ_3^P [DEGV01]

 \rightarrow i.e., problems not (polynomially) translatable to SAT or CSP

Context

Robust and efficient implementations

- Clasp, Wasp, lp2*, DLV, Cmodels, IDP, etc [GLM+18].
- Performance improvements in the last years [GMR17]

Applications in several fields

- Artificial Intelligence, Knowledge Representation & Reas.,
- Information Integration, Bioinformatics, Robotics... industrial ones!
- see [EGL16]

Goals of the course

Introduce ASP from the basics to sophisticated use-cases

- Illustrate the language of ASP¹
- Show how to model and solve problems with ASP
- Provide details on the working principle of ASP systems
- Show how to use ASP systems proficiently
- Present some recent Explainable AI technology
- Secure and modular development with ASP

¹The coverage is not extensive, and may reflect our own biased view.

Presentation roadmap

The language of ASP is:

Datalog

- + Default negation
- + Disjunction
- + Integrity Constraints
- + Weak Constraints
- + Aggregate atoms
- + Choice Rules

Presentation roadmap

The language of ASP is:

Datalog

- + Default negation
- + Disjunction
- + Integrity Constraints
- + Weak Constraints
- + Aggregate atoms
- + Choice Rules
- + Some other solver-specific extensions

What is Datalog?

Datalog

- A logic language for querying databases
 - \rightarrow The name is de combination of "Data + Logic"
- Overcomes some limits of Relational Algebra/ SQL
 - \rightarrow Recursive definitions
- Deductive database applications, query answering
 - \rightarrow The basic fragment of ASP

Datalog Syntax

Rule

 $head(\overline{H}) := body_1(\overline{X_1}), \dots, body_n(\overline{X_n}).$

Intuitive meaning

"Infer $head(\overline{h})$ if $body_1(\overline{x_1}), \ldots, body_n(\overline{x_n})$ is true"

Terms, Variables, Atoms

- Numbers, Strings and Variables (Prolog-like syntax)
- Variables occur in some body atom (Safety)
- Atoms: $head(\overline{h})$, $body_1(\overline{x_1})$, ..., $body_n(\overline{x_n})$

Datalog Syntax

Example

Program and guery: father(X) := parent(X, Y), male(X).father(X)? Database: male(rob). ← Facts have empty body parent(rob, ann). \leftarrow symbol :- omitted parent(mary, ann). \leftarrow "True by definition" parent(lucy, terry). **Query Result:** father(rob).

Semantics by Example

Example

father(X) := parent(X, Y), male(X).

male(rob). parent(rob, ann). parent(mary, ann).
parent(lucy, terry).

Evaluation:

- **1** $I^0 = \{\}$
 - $I^1 = I^0 \cup \{ male(rob), parent(rob, ann), \}$
 - parent(mary, ann), parent(lucy, terry)}
 - $I^2 = I^1 \cup \{father(rob)\}$
- No match is possible given I² = I... STOP!

Result:

I = {*male*(*rob*), *parent*(*rob*, *ann*), *parent*(*mary*, *ann*), *parent*(*lucy*, *terry*), *father*(*rob*)}

Semantics by Example

Example

father(X) := parent(X, Y), male(X).

male(rob). parent(rob, ann). parent(mary, ann).
parent(lucy, terry).

Evaluation:

1
$$I^0 = \{\}$$

$$I^{1} = I^{0} \cup \{ male(rob), parent(rob, ann),$$

parent(mary, ann), parent(lucy, terry)}

- $I^2 = I^1 \cup \{father(rob)\}$
- In the match is possible given $I^2 = I...$ STOP!

Result:

I = {*male*(*rob*), *parent*(*rob*, *ann*), *parent*(*mary*, *ann*), *parent*(*lucy*, *terry*), *father*(*rob*)}

Semantics by Example

Example

father(X) := parent(X, Y), male(X).

male(rob). parent(rob, ann). parent(mary, ann).
parent(lucy, terry).

Evaluation:

- **1** $I^0 = \{\}$
- $I^{1} = I^{0} \cup \{ male(rob), parent(rob, ann),$

parent(mary, ann), parent(lucy, terry)}

- $I^2 = I^1 \cup \{father(rob)\}$
- No match is possible given I² = I... STOP!

Result:

I = {*male*(*rob*), *parent*(*rob*, *ann*), *parent*(*mary*, *ann*), *parent*(*lucy*, *terry*), *father*(*rob*)}

Semantics by Example

Example

father(X) := parent(X, Y), male(X).

male(rob). parent(rob, ann). parent(mary, ann).
parent(lucy, terry).

Fully declarative language

Example (Reachability)

Input: a graph encoded by relation *edge*(_,_). **Problem:** Find all pairs of reachable nodes (transitive closure of *edge*).

Can you write an SQL^a??

^aUsing a Select - Project - Join query, or say SQL92

Fully declarative language

Example (Reachability)

Input: a graph encoded by relation *edge*(_,_). **Problem:** Find all pairs of reachable nodes (transitive closure of *edge*).

% if there is an edge from X to Y, then X is reachable from Y reachable(X, Y) := edge(X, Y)

% Reachability is transitive reachable(X, Y) :- reachable(X, Z), edge(Z, Y)

Fully declarative language

Example (Reachability)

Input: a graph encoded by relation *edge*(_,_). **Problem:** Find all pairs of reachable nodes (transitive closure of *edge*).

% if there is an edge from X to Y, then X is reachable from Y reachable(X, Y) := edge(X, Y)

% Reachability is transitive reachable(X, Y) :- reachable(X, Z), edge(Z, Y)

Intuitive meaning: (bottom-up evaluation)

- ightarrow Start with the facts in the DB
- \rightarrow Iteratively derive facts from rules until no new fact is derived
- \rightarrow Obtain the unique minimal (perfect, well-founded, stable...) model!

Fully declarative language

Example (Reachability)

Input: a graph encoded by relation *edge*(_,_). **Problem:** Find all pairs of reachable nodes (transitive closure of *edge*).

% if there is an edge from X to Y, then X is reachable from Y reachable(X, Y) := edge(X, Y)

% Reachability is transitive reachable(X, Y) :- reachable(X, Z), edge(Z, Y)

Example (Fully Declarative Language!)

% if there is an edge from X to Y, then X is reachable from Y reachable(X, Y) := edge(X, Y)

% Reachability is transitive reachable(X, Y) := reachable(Z, Y), reachable(X, Z).

Fully declarative language

Example (Reachability)

Input: a graph encoded by relation *edge*(_,_). **Problem:** Find all pairs of reachable nodes (transitive closure of *edge*).

% if there is an edge from X to Y, then X is reachable from Y reachable(X, Y) := edge(X, Y)

% Reachability is transitive reachable(X, Y) :- reachable(X, Z), edge(Z, Y)

Example (Atom's and Rule's order is immaterial!)

% Reachability is transitive reachable(X, Y) :- edge(Z, Y), reachable(X, Z) \uparrow % if there is an edge from X to Y, then X is reachable from Y reachable(X, Y) :- edge(X, Y)

Exercise limits (1)

Given the following relational database schema

- beers(beername*, manufacturer)
- sells(bar*, beername*, price)
- associate(bar, bar)

(* indicates primary key)

Write (if possible) in SQL⁹², and Datalog

- Manufacturers of beers sold by "John's bar"
- Beers sold by "John's bar" that are not sold by "Annie's" bar
- Bars that sell more than three beers
- Bars that sell exactly two beers
- Number of beers sold by "John's bar"
- Bars that are associated trough a chain of bar associations to "John's bar"

Presentation roadmap

The language of ASP is:

$\mathsf{Datalog} \leftarrow \mathsf{Done!}$

- + Default negation
- + Disjunction
- + Integrity Constraints
- + Weak Constraints
- + Aggregate atoms
- + Choice Rules

Default Negation

Limits of Datalog

- Datalog programs are positive
- Already is not enough for expressing simple queries!

Example (Anti join)

% The airports that are **not** reachable from El Paso

Can you write a Datalog query??

Default Negation

Limits of Datalog

- Datalog programs are positive
- Already is not enough for expressing simple queries!

Example (Anti join)

% The airports that are **not** reachable from El Paso

You need some form of negation!

Default Negation

Limits of Datalog

- Datalog programs are positive
- Already is not enough for expressing simple queries!

Example (Anti join)

% The airports that are **not** reachable from El Paso

reachableFromElPaso(X) := reachable("ElPaso", X).

query(X) := airport(X), not reachableFromElPaso(X)

Default Negation

Often, it is desirable to express negation in the following sense:

"If we do not have evidence that X holds, conclude Y."

This is expressed by default negation: the operator not.

Example (Cross railroad)

An agent could act according to the following rule: % If the grass is not wet then it did not rain. *did_not_rain:-* not *wet_grass*.

Negation might be problematic

Example (Bad negation (1))

 $p(X) \coloneqq q(X)$, not p(X). q(1). q(2).

1
$$I^{0} = \{\}$$

2 $I^{1} = \{q(1), q(2)\}$
3 $I^{2} = \{q(1), q(2), p(1), p(2).\}$
4 $I^{3} = \{q(1), q(2)\} = I^{1}$

Negation might be problematic

Example (Bad negation (1))

 $p(X) \coloneqq q(X)$, not p(X). q(1). q(2).

1
$$l^0 = \{\}$$

2 $l^1 = \{q(1), q(2)\}$
3 $l^2 = \{q(1), q(2), p(1), p(2)\}$
4 $l^3 = \{q(1), q(2)\} = l^1$

Negation might be problematic

Example (Bad negation (1))

 $p(X) \coloneqq q(X)$, not p(X). q(1). q(2).

1
$$I^0 = \{\}$$

2 $I^1 = \{q(1), q(2)\}$
3 $I^2 = \{q(1), q(2), p(1), p(2).\} \leftarrow What? !?$
4 $I^3 = \{q(1), q(2)\} = I^1$

Negation might be problematic

Example (Bad negation (1))

 $p(X) \coloneqq q(X)$, not p(X). q(1). q(2).

•
$$l^0 = \{\}$$

• $l^1 = \{q(1), q(2)\}$
• $l^2 = \{q(1), q(2), p(1), p(2).\}$
• $l^3 = \{q(1), q(2)\} = l^1$ So... it does not work!

Negation might be problematic

Example (Bad negation (2))

a(X) := not b(X), d(X)b(X) := not a(X), d(X)d(1).

Try to apply the bottom-up evaluation strategy...

Again, it does not work... :-(

Negation might be problematic

Example (Bad negation (2))

a(X) := not b(X), d(X)b(X) := not a(X), d(X)d(1).

Try to apply the bottom-up evaluation strategy...

Again, it does not work ... :-(

Stratified Programs

Definition (Dependency Graph)

Given program P, the graph $DG(P) = \langle V, E \rangle$ s.t.:

- $V = \{p \mid p \text{ is predicate occurring in } P\}$
- $E = \{(p, q, +) \mid p \text{ is in the head and } q \text{ is positive in the body of } r \in P\}$

U

 $\{(p, q, -) \mid p \text{ is in the head and } q \text{ is negative in the body of } r \in P\}$

Definition (Recursive Program)

P is recursive if DG(P) is cyclic.

Definition (Stratified Program)

P is stratified if no cycle in DG(P) contains a negative edge.

Examples: stratified programs

Example (Non stratified)

p(X) := q(X), not p(X).

Example (Non stratified)

 $a(X) := \operatorname{not} b(X), d(X)$ $b(X) := \operatorname{not} a(X), d(X)$

Example (Cyclic, stratified)

reachable(X, Y) := edge(X, Y) reachable(X, Z) := reachable(X, Z), edge(Z, Y) reachableFromElPaso(X) := reachable("ElPaso", X).query(X) := airport(X), not reachableFromElPaso(X)
Stratified negation

Example (Good negation)

- reachable(X, Y) :- edge(X, Y)
- 2 reachable(X,Z):- reachable(X,Z), edge(Z,Y)
- reachableFromElPaso(X) :- reachable(" ElPaso", X).
- Query(X):- airport(X), not reachableFromElPaso(X)

Evaluation:

- Evaluate stratum by stratum
 - \rightarrow when all the information is present when negation is evaluated
- Stratified Datalog
 - \rightarrow One set of answers, one model!

Stratified negation

Example (Good negation)

- reachable(X, Y) :- edge(X, Y)
- 2 reachable(X,Z) :- reachable(X,Z), edge(Z,Y)
- reachableFromElPaso(X) :- reachable(" ElPaso", X).
- **4** query(X) := airport(X), not reachableFromElPaso(X)

Evaluation:

Stratum 1:

- \rightarrow Rules (1),(2), and (3)
- \rightarrow Now reachableFromElPaso(\cdot) fully computed!!

Stratum 2

 \rightarrow Rule (4)

Exercise limits (1)

Given the following relational database schema

- beers(beername*, manufacturer)
- sells(bar*, beername*, price)
- associate(bar, bar)

(* indicates primary key)

Write (if possible) in SQL⁹², and Stratified Datalog

- Manufacturers of beers sold by "John's bar"
- Beers sold by "John's bar" that are not sold by "Annie's" bar
- Bars that sell more than three beers
- Bars that sell exactly two beers
- Number of beers sold by "John's bar"
- Bars that are associated trough a chain of bar associations to "John's bar"

Arithmetic Expressions and Builtins

Applications may require to use numbers, make comparisons, etc.

Example (Comparison operator)

 $older(P1, P2) := person(P1, Age1), person(P2, Age2), \\ Age1 > Age2.$

Example (Fibonacci numbers)

 $\begin{aligned} & \textit{fib}(0,1). \\ & \textit{fib}(1,1). \\ & \textit{fib}(N+2,Y1+Y2) \coloneqq \textit{fib}(N,Y1),\textit{fib}(N+1,Y2). \end{aligned}$

WARNING: For recursive definitions an upper bound for integers (system setting) or a domain has to be specified.

Intuitive definition of model

Definition (Informal)

- Interpretation: A set I of true ground atoms
- **Satisfaction:** A rule *r* is satisfied w.r.t. *I* if the head is true whenever all the body literals are true
- **Model:** An interpretation that satisfies all (the instantiations of the) rules

Intuitive definition of model

Example (Models)

Given:

a:- b, c. c:- d. d.

Interpretations and Models:

Intuitive definition of model

Example (Models)

Given:

a:- b, c. c:- d. d.

Interpretations and Models:

•
$$I_1 = \{b, c, d\} \leftarrow \text{not a model}$$

•
$$I_2 = \{a, b, c, d\} \leftarrow model!$$

•
$$I_3 = \{c, d\} \leftarrow minimal model!$$

Unrestricted negation

Example (Stable models)

a:- not b

b :- not *a*

- What if we assume a is true and b is false? .. OK!
- What if we assume *a* is false and *b* is true? ..OK!
- There is no problem if you fix a "good interpretation"!

Unrestricted negation

Example (Stable models)

a:- not *b*

b :- not *a*

- What if we assume a is true and b is false? ...OK!
- What if we assume a is false and b is true? ..OK!
- There is no problem if you fix a "good interpretation"!

Unrestricted negation

Example (Stable models) a:- not b b:- not a

- What if we assume a is true and b is false? .. OK!
- What if we assume a is false and b is true? ...OK!
- There is no problem if you fix a "good interpretation"!

Unrestricted negation

Example (Stable models)

a:- not b

b :- not *a*

- What if we assume a is true and b is false? .. OK!
- What if we assume a is false and b is true? .. OK!
- There is no problem if you fix a "good interpretation"!

Unrestricted negation

We know that

Positive programs have a deterministic behavior

2

Some assumptions can be satisfactory

Gelfond-Lifschitz Reduct

- Remove rules with false negative literals in the body
- Remove the remaining negative literals

Stable Model or Answer Set (step by step)

- Given a model *m* for *P*
- Compute the reduct *P^m*
- *m* is stable if it is the model of *P^m*

Example 1

Example (Reduct)

Program:

```
a := d, \text{ not } b.

b := \text{ not } d.

d.

Consider: I = \{a, d\}

Reduct:

a := d.

d.
```

I is an answer set of P^{I} and therefore it is an answer set of P.

Example (Stable I	models)	
<i>a</i> :– not <i>b</i>	<i>b</i> :– not <i>a</i>	

- Assume {} is not a model
- Assume $\{a, b\}$ is a model but is not stable!
- Assume {*a*}, is model, actually a stable one!
- Assume {b}, is model, actually a stable one!

Example (Stable n	nodels)	
<i>a</i> :– not <i>b</i>	<i>b</i> :- not <i>a</i>	

- Assume {} is not a model
- Assume $\{a, b\}$ is a model but is not stable!
- Assume {*a*}, is model, actually a stable one!
- Assume {b}, is model, actually a stable one!

Example (Stable r	nodels)	
<i>a</i> :– not <i>b</i>	<i>b</i> :- not <i>a</i>	

- Assume {} is not a model
- Assume {*a*, *b*} is a model but is not stable!
- Assume {*a*}, is model, actually a stable one!
- Assume {b}, is model, actually a stable one!

Example (Stable r	nodels)	
a:- not b	<i>b</i> :- not <i>a</i>	

Let's check all possibilities:

- Assume {} is not a model
- Assume {*a*, *b*} is a model but is not stable!
- Assume {*a*}, is model, actually a stable one!

• Assume {b}, is model, actually a stable one!

Example (Stable n	nodels)	
<i>a</i> :- not <i>b</i>	<i>b</i> :– not <i>a</i>	

- Assume {} is not a model
- Assume {*a*, *b*} is a model but is not stable!
- Assume {*a*}, is model, actually a stable one!
- Assume {b}, is model, actually a stable one!

Example (Stable n	nodels)	
<i>a</i> :- not <i>b</i>	<i>b</i> :– not <i>a</i>	

- Assume {} is not a model
- Assume {*a*, *b*} is a model but is not stable!
- Assume {*a*}, is model, actually a stable one!
- Assume {b}, is model, actually a stable one!

Example 3

Example **Program**: a := not b.Answer Set: {**a**} Example **Program:** a := not b.b := not a. *c* :- *b*. с:-а. Answer Sets: $\{a, c\}, \{b, c\}$

Example 4

Example Program: a:- not a. Answer Set: no answer set!

Example

Program:

 $a := not \ b.$ $b := not \ a.$ $f := b, not \ f$

Answer Set: {a}

Supported Models and Answer Sets (1)

Definition (Supported Model)

A model M is supported if for each $a \in M$ there exist rule $r \in P$ such that a is the head and $\forall b$ in the body, b is true w.r.t. M

Intuition:

Something is true if there is a rule "supporting" its truth.

Theorem:

Answer sets are supported models

Supported Models and Answer Sets (2)

Example (Inverse does not hold.)

Program:

a :− *a*.

Models: $\{\}, \{a\} \leftarrow \text{both are supported}$

Answer Set: {}

ightarrow Circular support is not allowed!

→ Empty answer set is fine!

Supported Models and Answer Sets (2)

Example (Inverse does not hold.)

Program:

a:− *a*.

Models: $\{\}, \{a\} \leftarrow \text{both are supported}$

Answer Set: {}

- \rightarrow Circular support is not allowed!
- → Empty answer set is fine!

Supported Models and Answer Sets (2)

Example (Inverse does not hold.)

Program:

a:− *a*.

- Models: $\{\}, \{a\} \leftarrow \text{both are supported}$
- Answer Set: {}
 - \rightarrow Circular support is not allowed!
 - \rightarrow Empty answer set is fine!

Unfounded Sets and Answer Sets (intuition)

Unfounded Set:

A set of ground atoms X is an unfounded set if, for each rule r s.t. $H(r) \in X$, one of the following conditions hold

- the body of r is false, or
- some literal in the positive body belongs to X

Example: a := a. and $X = \{a\}$. is unfounded!

Theorem:

Answer sets are unfounded-free interpretations, i.e., no subset is unfounded.

Unfounded Sets and Answer Sets (intuition)

Unfounded Set:

A set of ground atoms X is an unfounded set if, for each rule r s.t. $H(r) \in X$, one of the following conditions hold

- the body of r is false, or
- some literal in the positive body belongs to X

Example: a:-a. and $X = \{a\}$. is unfounded!

Theorem:

Answer sets are unfounded-free interpretations, i.e., no subset is unfounded.

Multiple models...

Observation:

- Several stable models might represent several possible solutions
- Stable models are sets... answer sets
- No answer set... no solution

Idea [Lif99]:

- Represent a computational problem by a Logic program
- Answer sets correspond to problem solutions
- Use an ASP solver to find these solutions

Multiple models...

Observation:

- Several stable models might represent several possible solutions
- Stable models are sets... answer sets
- No answer set... no solution

Idea [Lif99]:

- Represent a computational problem by a Logic program
- Answer sets correspond to problem solutions
- Use an ASP solver to find these solutions

Given a propositional formula Φ in 3 CNF, compute an assignment to variables that satisfies Φ if it exists.

Write a logic program $P(\Phi)$ such that answer sets of $P(\Phi)$ correspond to satisfying assignments of Φ

Given a propositional formula Φ in 3 CNF, compute an assignment to variables that satisfies Φ if it exists.

Write a logic program $P(\Phi)$ such that answer sets of $P(\Phi)$ correspond to satisfying assignments of Φ

Hints...

Example (Ingredient 1)

a:- not *b*

b :- not *a*

Example (Ingredient 2)

p := not p

Example (A simple 3SAT formula)

 $(A \lor B \lor \neg C) \land (\neg A \lor B \lor C) \land (\neg A \lor \neg B \lor \neg C)$

Presentation roadmap

The language of ASP is:

$\mathsf{Datalog} \leftarrow \mathsf{Done!}$

- + Default negation ← Done!
- + Disjunction
- + Integrity Constraints
- + Weak Constraints
- + Aggregate atoms
- + Choice Rules

Disjunction

There is a more intuitive way of expressing multiple models.

Often we just desire to express disjunctive information.

"We want to model several alternative scenarios"

This is expressed by disjunctive rules: the operator |.

Example (Datalog + Disjunction)

% Disjunctive knowledge: %"A parent *P* is either a father or a mother"

 $mother(P, S) \mid father(P, S) := parent(P, S).$

Constraints

Many models \rightarrow need to express properties of solutions

"Discard a solution If that conjunction holds."

Constrains are rules with empty (false) head

Example (Parent of himself)

% "Ensure that none is the parent of himself."

:- mother(P, P). :- father(P, P).

ASP Syntax

Atoms and Literals: a_i , b_i , not b_i Positive Body: b_1, \ldots, b_k Negative Body: not b_{k+1}, \ldots , not b_m .

Fact: A rule with empty body Constraint: A rule with empty head

Variables: allowed in atom's arguments

- Must occur in the positive body (Safety)
- Are placeholders for constants
ASP Syntax

Atoms and Literals: a_i , b_i , not b_i Positive Body: b_1, \ldots, b_k Negative Body: not b_{k+1}, \ldots , not b_m .

Fact: A rule with empty body Constraint: A rule with empty head

Variables: allowed in atom's arguments

- Must occur in the positive body (Safety)
- Are placeholders for constants

Informal Semantics

Rule: $\underbrace{a_1 \mid \ldots \mid a_n}_{head} \coloneqq \underbrace{b_1, \ldots, b_k, \text{ not } b_{k+1}, \ldots, \text{ not } b_m}_{body}.$

Informal Semantics:

"If all b_1, \ldots, b_k are true and all b_{k+1}, \ldots, b_m are not true, then at least one among a_1, \ldots, a_n is true".

Informal Semantics

Informal Semantics:

"If all b_1, \ldots, b_k are true and all b_{k+1}, \ldots, b_m are not true, then at least one among a_1, \ldots, a_n is true".

Example (Disjunction + Constraint)

%"A a node is either in the set or out of the set" $inSet(N) \mid outSet(N) := node(N)$.

% Constrains: "Two adjacent nodes cannot be in the set." :- *inSet*(*N*1), *inSet*(*N*2), *edge*(*N*1, *N*2).

Informal Semantics: Variables

Handling variables

- Variables are placeholders for constants
- Grounding: "Replace variables by constants in all possible ways"

Example (Ground Instantiation)

Consider:

```
isInterestedinASP(X) | isCurious(X) :- attendsASP(X).
attendsASP(john). attendsASP(mary).
```

Instantiation:

isInterestedinASP(john) | isCurious(john) :- attendsASP(john). isInterestedinASP(mary) | isCurious(mary) :- attendsASP(mary). attendsASP(john). attendsASP(mary).

Informal Semantics: Minimal Models

Example (Disjunction)

isInterestedinASP(john) | isCurious(john) :- attendsASP(john). attendsASP(john).

Two (minimal) models encoding two plausible scenarios:

- M₁:{isInterestedinASP(john), attendsASP(john).}
- M₂:{*isCurious(john)*, *attendsASP(john)*.}

Example (Constraints)

isInterestedinASP(john) | isCurious(john) :- attendsASP(john). :- hatesASP(john), isInterestedinASP(john). attendsASP(john). hatesASP(john).

Only one plausible scenario:

- M₁:{isInterestedinASP(john), attendsASP(john), hatesASP(john).}
- M₂:{isCurious(john), attendsASP(john), hatesASP(john).}

Informal Semantics: Minimal Models

Example (Disjunction)

isInterestedinASP(john) | isCurious(john) :- attendsASP(john). attendsASP(john).

Two (minimal) models encoding two plausible scenarios:

- M₁:{isInterestedinASP(john), attendsASP(john).}
- M₂:{isCurious(john), attendsASP(john).}

Example (Constraints)

isInterestedinASP(john) | isCurious(john) :- attendsASP(john). :- hatesASP(john), isInterestedinASP(john). attendsASP(john). hatesASP(john).

Only one plausible scenario:

- M1:{isInterestedinASP(john), attendsASP(john), hatesASP(john).}
- M₂:{isCurious(john), attendsASP(john), hatesASP(john).}

Informal Semantics (Disjunction and minimality)

Semantics of disjunction is:

- Minimal
 - $a \mid b \mid c. \Rightarrow \{a\}, \{b\}, \{c\}$
- Actually subset minimal
 - a|b.
 - $a \mid c. \Rightarrow \{a\}, \{b, c\}$
- ...but not exclusive
 - a|b.
 - a|c.
 - $b \mid c. \Rightarrow \{a, b\}, \{a, c\}, \{b, c\}$

Informal Semantics (Disjunction and minimality)

Semantics of disjunction is:

- Minimal
 - $a \mid b \mid c. \Rightarrow \{a\}, \{b\}, \{c\}$
- Actually subset minimal
 - a|b.
 - $a \mid c. \Rightarrow \{a\}, \{b, c\}$
- ...but not exclusive

```
a|b.
```

- a|c.
- $b \mid c. \Rightarrow \{a, b\}, \{a, c\}, \{b, c\}$

Informal Semantics (Disjunction and minimality)

Semantics of disjunction is:

- Minimal
 - $a \mid b \mid c. \Rightarrow \{a\}, \{b\}, \{c\}$
- Actually subset minimal
 - a|b.
 - $a \mid c. \Rightarrow \{a\}, \{b, c\}$
- ...but not exclusive
 - a|b.
 - a | c.
 - $b \mid c. \Rightarrow \{a, b\}, \{a, c\}, \{b, c\}$

Given a propositional formula Φ in 3 CNF, compute an assignment to variables that satisfies Φ if it exists.

Write a disjunctive ASP program $P(\Phi)$ such that answer sets of $P(\Phi)$ correspond to satisfying assignments of Φ

Formal Semantics: just a recap

Answer Set Semantics (aka stable models semantics)

- Instantiation
- Positive (Ground) Programs
- Negative Programs
 - via Gelfong & Lifschitz Reduct [GL91]

Formal Semantics: just a recap

Answer Set Semantics (aka stable models semantics)

Instantiation

(get rid of variables)

- Positive (Ground) Programs
- Negative Programs

(minimal models)

(stable models)

• via Gelfong & Lifschitz Reduct [GL91]

Presentation roadmap

The language of ASP is:

$Datalog \leftarrow Done!$

- + Default negation ← Done!
- + Disjunction ← Done!
- + Integrity Constraints ← Done!
- + Weak Constraints
- + Aggregate atoms
- + Choice Rules

Optimum Models

Weak Constraints

- Express desiderata
- Constraints which should possibly be satisfied (as soft constraints in CSP)
- Syntax :~ $body(\overline{X}, \overline{Y})$. $[w@p, \overline{X}]$
- Intuitive meaning "set body as false, if possible"

Optimum Models

Weak Constraints

- Express desiderata
- Constraints which should possibly be satisfied (as soft constraints in CSP)
- Syntax :~ $body(\overline{X}, \overline{Y})$. $[w@p, \overline{X}]$

Weight and Priority Level

- higher weights/priorities \Rightarrow higher importance
- "@p" can be omitted

"Minimize the sum of the weights of the violated constraints in the highest priority level, and so on"

Declarative specification of optimization problems

Weak Constraints Example

Example (Exams Scheduling)

Problem: Assign course exams to 3 time slots avoiding overlapping of exams of courses with common students.

Strict Solution:

assign(X, s1) | assign(X, s2) | assign(X, s3) := course(X).

% No overlap is admitted!"

:- assign(X, S), assign(Y, S), commonStudents(X, Y, N), N > 0.

Optimal Solution:

assign(X, s1) | assign(X, s2) | assign(X, s3) :- course(X).% If overlapping is unavoidable, then reduce it "As Much As Possible" :~ assign(X, S), assign(Y, S), commonStudents(X, Y, N), N > 0. [N@0]

NB: Answer sets minimizing the total number of "lost" exams are preferred.

Aggregates

Aggregate atoms

- Express functions calculated over sets of elements
- Often needed by applications
- Similar to aggregates in SQL

 $L_g <_1 f\{S\} <_2 U_g$

 $5 < #count{Empld : emp(Empld, male, Skill, Salary)} \le 10$

The atom is true if the number of male employees is greater than 5 and does not exceed 10.

Aggregate Example

Example (Count beers)

% Number of beers sold by "John's bar"

 $numBeers(X) := \#count\{B : beers(B,), sells(john, B,)\} = X.$

Example (Sum salaries)

% Sum of salaries of team members

 $sumSal(S) := #sum{Sa, I : emp(I, Sa), teamMember(I)} = S.$

Aggregate Example

Example (Team Building)

- % An employee is either included in the team or not *inTeam(I)* | *outTeam(I)* :- *emp(I, Sx, Sk, Sa)*.
- % The team consists of a certain number of employees :- nEmp(N), $\#count\{I : inTeam(I)\} \neq N$.
- % At least a given number of different skills must be present in the team :- *nSkill(M)*, #*count*{*Sk* : *emp*(*I*, *Sx*, *Sk*, *Sa*), *inTeam*(*I*)} ≤ *M*.

% The sum of the salaries of the team must not exceed the given budget :- budget(B), #sum{Sa, I : emp(I, Sx, Sk, Sa), inTeam(I)} > B.

% The salary of each individual employee is within a specified limit :- *maxSal(M)*, #*max{Sa: emp(I, Sx, Sk, Sa), inTeam(I)} > M*.

Choice Rules

Syntax

$$\{a(\overline{X}): l_1(\overline{X_1}), \cdots, l_k(\overline{X_k})\} \Theta u \coloneqq b_1(\overline{Y_1}), \cdots, b_n(\overline{X_n}).$$

Intuitive meaning: (Direct modeling of the search space)

"if the body of the rule is true, choose as true an arbitrary subset of *n* atoms $a(\overline{X})$, such that $l_1(\overline{X_1}), \dots, l_k(\overline{X_k})$ are true, and the expression $n \Theta u$ is satisfied"

Example (Assign colors)

% Choose exactly one color per each node

 $\{col(X, C) : color(C)\} = 1 :- node(X).$ color(red). color(blue). node(1). node(2)

Choice Rules

Syntax

$\{a(\overline{X}): l_1(\overline{X_1}), \cdots, l_k(\overline{X_k})\} \Theta u \coloneqq b_1(\overline{Y_1}), \cdots, b_n(\overline{X_n}).$

Intuitive meaning: (Direct modeling of the search space)

"if the body of the rule is true, choose as true an arbitrary subset of *n* atoms $a(\overline{X})$, such that $l_1(\overline{X_1}), \dots, l_k(\overline{X_k})$ are true, and the expression $n\Theta u$ is satisfied"

Example (Assign colors)

% Choose exactly one color per each node {col(1, red), col(1, blue)} = 1 :- node(1). {col(2, red), col(2, blue)} = 1 :- node(2). color(red). color(blue). node(1). node(2)

Choice Rules

Syntax

$\{a(\overline{X}): l_1(\overline{X_1}), \cdots, l_k(\overline{X_k})\} \Theta u \coloneqq b_1(\overline{Y_1}), \cdots, b_n(\overline{X_n}).$

Intuitive meaning: (Direct modeling of the search space)

"if the body of the rule is true, choose as true an arbitrary subset of *n* atoms $a(\overline{X})$, such that $l_1(\overline{X_1}), \dots, l_k(\overline{X_k})$ are true, and the expression $n \Theta u$ is satisfied"

Example (Assign colors)

% Choose exactly one color per each node {col(1, red), col(1, blue)} = 1 :- node(1). {col(2, red), col(2, blue)} = 1 :- node(2). color(red). color(blue). node(1). node(2)

Admissible choices (combine and get the answer sets):

 $\{col(1, red)\}, \{col(1, blue).\}, \{col(2, red).\}, \{col(3, blue).\}$

Aggregate Example

Example (Team Building)

% Select a team of exactly a given number of employees $\{inTeam(I) : emp(I, Sx, Sk, Sa)\} = N := nEmp(N).$

% At least a given number of different skills must be present in the team :- nSkill(M), #count{Sk : emp(I, Sx, Sk, Sa), inTeam(I)} ≤ M.

% The sum of the salaries of the team must not exceed the given budget :- budget(B), #sum{Sa, I : emp(I, Sx, Sk, Sa), inTeam(I)} > B.

% The salary of each individual employee is within a specified limit :- maxSal(M), #max{Sa: emp(I, Sx, Sk, Sa), inTeam(I)} > M.

Presentation roadmap

The language of ASP is:

 $Datalog \leftarrow Done!$

- + Default negation ← Done!
- + Disjunction ← Done!
- + Integrity Constraints ← Done!
- + Weak Constraints ← Done!
- + Aggregate atoms ← Done!
- + Choice Rules ← Done!

How to solve problems with ASP?

Presentation roadmap

The language of ASP is:

 $Datalog \leftarrow Done!$

- + Default negation ← Done!
- + Disjunction ← Done!
- + Integrity Constraints ← Done!
- + Weak Constraints ← Done!
- + Aggregate atoms ← Done!
- + Choice Rules ← Done!

How to solve problems with ASP?

Problem solving in ASP

Programming Steps:

- Model your domain
 - \rightarrow Single out input/output predicates
- 2 Write a logic program modeling your problem
 - ightarrow Use predicates representing relevant entities
 - \rightarrow Hint: take input data separated from derived ones

- NO : \rightarrow Direct encoding with stratified program
- YES: → Guess & Check & Optimize methodology

Problem solving in ASP

Programming Steps:

- Model your domain
 - \rightarrow Single out input/output predicates
- Write a logic program modeling your problem
 - \rightarrow Use predicates representing relevant entities
 - \rightarrow Hint: take input data separated from derived ones

- NO : \rightarrow Direct encoding with stratified program
- YES: \rightarrow Guess & Check & Optimize methodology

Problem solving in ASP

Programming Steps:

- Model your domain
 - \rightarrow Single out input/output predicates
- Write a logic program modeling your problem
 - \rightarrow Use predicates representing relevant entities
 - \rightarrow Hint: take input data separated from derived ones

- NO : \rightarrow Direct encoding with stratified program
- YES: → Guess & Check & Optimize methodology

Problem solving in ASP

Programming Steps:

- Model your domain
 - \rightarrow Single out input/output predicates
- Write a logic program modeling your problem
 - \rightarrow Use predicates representing relevant entities
 - \rightarrow Hint: take input data separated from derived ones

- $\bullet~\text{NO}~:\rightarrow$ Direct encoding with stratified program
- YES: → Guess & Check & Optimize methodology

Problem solving in ASP

Programming Steps:

- Model your domain
 - \rightarrow Single out input/output predicates
- Write a logic program modeling your problem
 - \rightarrow Use predicates representing relevant entities
 - \rightarrow Hint: take input data separated from derived ones

- $\bullet~\text{NO}~:\rightarrow$ Direct encoding with stratified program
- **YES:** \rightarrow Guess & Check & Optimize methodology

Direct Encodings when...

Use a "Direct" Encoding with Datalog rules for

• Polynomial Problems, Deductive Database, etc.

Example (Reachability)

Problem: Find all nodes reachable from the others.

```
Input: edge(_,_).
```

```
% X is reachable from Y if an edge (X,Y) exists reachable(X, Y) := edge(X, Y).
```

% Reachability is transitive reachable(X, Y) :- reachable(X, Z), edge(Z, Y).

Unfeasible for search problems in NP and beyond:

 \rightarrow Need for a systematic programming methodology

Programming Methodology

Guess & Check & Optimize (GCO)

- $\textcircled{O} Guess solutions \rightarrow using disjunctive rules$
- 2 Check admissible ones \rightarrow using strong constraints
- Optimization problem?
- Image Specify Preference criteria \rightarrow using weak constraints

In other words...

- In the disjunctive rules \rightarrow generate candidate solutions
- Output: O(t) = 0 and O(t) = 0.
- \bigcirc weak constraints \rightarrow single out optimal solutions

Programming Methodology

Guess & Check & Optimize (GCO)

- **(1)** Guess solutions \rightarrow using disjunctive rules
- **2** Check admissible ones \rightarrow using strong constraints *Optimization problem?*
- **③** Specify Preference criteria \rightarrow using weak constraints

In other words...

- If the second s
- Output: O(t) = 0 and O(t) = 0.
- \bigcirc weak constraints \rightarrow single out optimal solutions

Programming Methodology

Guess & Check & Optimize (GCO)

- **(1)** Guess solutions \rightarrow using disjunctive rules
- 2 Check admissible ones \rightarrow using strong constraints
- Optimization problem?
- **③** Specify Preference criteria \rightarrow using weak constraints

In other words...

- **1** disjunctive rules \rightarrow generate candidate solutions
- 2 constraints \rightarrow test solutions discarding unwanted ones
- \bigcirc weak constraints \rightarrow single out optimal solutions

Guess and Check (Example 1)

Example (Group Assignments)

Problem: We want to partition a set of persons in two groups, while avoiding that father and children belong to the same group. Input: persons and fathers are represented by person(_) and father(_,_).

% a disjunctive rule to "guess" all the possible assignments

group(P, 1) | group(P, 2) := person(P).

% a constraint to discard unwanted solutions % i.e., father and children cannot belong to the same group

:- group(P1, G), group(P2, G), father(P1, P2).

...so how does it work really?

Guess and Check (Example 1)

Example (Group Assignments)

Problem: We want to partition a set of persons in two groups, while avoiding that father and children belong to the same group. Input: persons and fathers are represented by person(_) and father(_,_).

% a disjunctive rule to "guess" all the possible assignments

group(P, 1) | group(P, 2) := person(P).

% a constraint to discard unwanted solutions % i.e., father and children cannot belong to the same group

:- group(P1, G), group(P2, G), father(P1, P2).

...so how does it work really?
Guess and Check (Example 1)

Example (Group Assignments)

Problem: We want to partition a set of persons in two groups, while avoiding that father and children belong to the same group. Input: persons and fathers are represented by person(_) and father(_,_).

% a disjunctive rule to "guess" all the possible assignments

group(P, 1) | group(P, 2) := person(P).

% a constraint to discard unwanted solutions % i.e., father and children cannot belong to the same group

:- group(P1, G), group(P2, G), father(P1, P2).

...so how does it work really?

Guessing part explained

Consider: group(P, 1) | group(P, 2) := person(P).

If the input is: *person(john)*. *person(joe)*. *father(john, joe)*.

Then, the answer set of this single-rule program are:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 1)} {person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)} {person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)} {person(john), person(joe), father(john, joe), group(john, 2), group(joe, 2)}

Guessing part explained

Consider: group(P, 1) | group(P, 2) := person(P).

If the input is: *person(john)*. *person(joe)*. *father(john, joe)*.

Then, the answer set of this single-rule program are:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 1)} {person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)} {person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)} {person(john), person(joe), father(john, joe), group(john, 2), group(joe, 2)}

Guessing part explained

Consider: group(P, 1) | group(P, 2) := person(P).

If the input is: *person(john)*. *person(joe)*. *father(john, joe)*.

Then, the answer set of this single-rule program are:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 1)} {person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)} {person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)} {person(john), person(joe), father(john, joe), group(john, 2), group(joe, 2)}

Guessing part explained

Consider: group(P, 1) | group(P, 2) := person(P).

If the input is: *person(john)*. *person(joe)*. *father(john, joe)*.

Then, the answer set of this single-rule program are:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 1)} {person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)} {person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)} {person(john), person(joe), father(john, joe), group(john, 2), group(joe, 2)}

Checking part explained

Consider:group(P, 1) | group(P, 2) := person(P).Now add::- group(P1, G), group(P2, G), father(P1, P2).

If the input is: *person(john)*. *person(joe)*. *father(john, joe)*.

The constraint "discards" two non admissible answers:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 2)}

Checking part explained

- Consider:group(P, 1) | group(P, 2) := person(P).Now add::- group(P1, G), group(P2, G), father(P1, P2).
- If the input is: *person(john)*. *person(joe)*. *father(john, joe)*.

The constraint "discards" two non admissible answers:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 2)}

Guess & Check explained

Consider: group(P, 1) | group(P, 2) := person(P). := group(P1, G), group(P2, G), father(P1, P2).

If the input is: *person(john)*. *person(joe)*. *father(john, joe)*.

The answer sets are:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)}

G&C = Define search space + specify desired solutions

Guess and Check (Example 1)

Example (3-col)

Problem: Given a graph, assign one color out of 3 colors to each node such that two adjacent nodes have always different colors.
Input: a Graph is represented by node(_) and edge(_,_).

% guess a coloring for the nodes (r) $col(X, red) \mid col(X, yellow) \mid col(X, green) := node(X).$

% discard colorings where adjacent nodes have the same color (c) := edge(X, Y), col(X, C), col(Y, C).

% NB: answer sets are subset minimal \rightarrow only one color per node

Guess and Check (Example 1)

Example (3-col)

Problem: Given a graph, assign one color out of 3 colors to each node such that two adjacent nodes have always different colors.
Input: a Graph is represented by node(_) and edge(_,_).

% guess a coloring for the nodes (r) $col(X, red) \mid col(X, yellow) \mid col(X, green) := node(X).$

% discard colorings where adjacent nodes have the same color (c) := edge(X, Y), col(X, C), col(Y, C).

% NB: answer sets are subset minimal \rightarrow only one color per node

Guess and Check (Example 1)

Example (3-col)

Problem: Given a graph, assign one color out of 3 colors to each node such that two adjacent nodes have always different colors.
Input: a Graph is represented by node() and edge(,).

% guess a coloring for the nodes (r) $col(X, red) \mid col(X, yellow) \mid col(X, green) := node(X).$

% discard colorings where adjacent nodes have the same color (c) := edge(X, Y), col(X, C), col(Y, C).

% NB: answer sets are subset minimal \rightarrow only one color per node

Guess and Check (Example 1)

Example (3-col)

Problem: Given a graph, assign one color out of 3 colors to each node such that two adjacent nodes have always different colors.
Input: a Graph is represented by node() and edge(,).

% guess a coloring for the nodes (r) $col(X, red) \mid col(X, yellow) \mid col(X, green) := node(X).$

% discard colorings where adjacent nodes have the same color (c) := edge(X, Y), col(X, C), col(Y, C).

% NB: answer sets are subset minimal \rightarrow only one color per node

Guess and Check (Example 2)

```
Problem: Find a path in a Graph beginning at the starting node which
contains all nodes of the graph.
Input: node() and edge(,), and start().
    % Guess a path
                                                         Guess
    inPath(X, Y) \mid outPath(X, Y) := edge(X, Y).
                                                         Check
                                                         Aux, Rules
```

Guess and Check (Example 2)

```
Problem: Find a path in a Graph beginning at the starting node which
contains all nodes of the graph.
Input: node() and edge(,), and start().
    % Guess a path
                                                          Guess
    inPath(X, Y) \mid outPath(X, Y) := edge(X, Y).
    % A node can be reached only once
    :- inPath(X, Y), inPath(X, Y1), Y \neq Y1.
                                                          Check
    :- inPath(X, Y), inPath(X1, Y), X \neq X1.
                                                          Aux. Rules
```

Guess and Check (Example 2)

```
Problem: Find a path in a Graph beginning at the starting node which
contains all nodes of the graph.
Input: node(_) and edge(_,_), and start(_).
    % Guess a path
                                                           Guess
    inPath(X, Y) \mid outPath(X, Y) := edge(X, Y).
    % A node can be reached only once
    :- inPath(X, Y), inPath(X, Y1), Y \neq Y1.
                                                           Check
    :- inPath(X, Y), inPath(X1, Y), X \neq X1.
    % All nodes must be reached
    :- node(X), not reached(X).
                                                           Aux. Rules
```

Guess and Check (Example 2)

```
Problem: Find a path in a Graph beginning at the starting node which
contains all nodes of the graph.
Input: node(_) and edge(_,_), and start(_).
    % Guess a path
                                                           Guess
    inPath(X, Y) \mid outPath(X, Y) := edge(X, Y).
    % A node can be reached only once
    :- inPath(X, Y), inPath(X, Y1), Y \neq Y1.
                                                           Check
    :- inPath(X, Y), inPath(X1, Y), X \neq X1.
    % All nodes must be reached
    :- node(X), not reached(X).
    % The path is not cyclic
    :- inPath(X, Y), start(Y).
                                                           Aux. Rules
```

Guess and Check (Example 2)

```
Problem: Find a path in a Graph beginning at the starting node which
contains all nodes of the graph.
Input: node() and edge(,), and start().
    % Guess a path
                                                           Guess
    inPath(X, Y) \mid outPath(X, Y) := edge(X, Y).
    % A node can be reached only once
    :- inPath(X, Y), inPath(X, Y1), Y \neq Y1.
                                                           Check
    :- inPath(X, Y), inPath(X1, Y), X \neq X1.
    % All nodes must be reached
    :- node(X), not reached(X).
    % The path is not cyclic
    :- inPath(X, Y), start(Y).
    reached(X) := reached(Y), inPath(Y, X).
                                                           Aux. Rules
    reached(X) := start(X).
```

Guess, Check and Optimize (Example 3)

Example (Traveling Salesman Person)

```
Problem: Find a path of minimum length in a Weighted Graph beginning at
the starting node which contains all nodes of the graph.
Input: node() and edge(, , ), and start().
    % Guess a path
                                                         Guess
    inPath(X, Y) \mid outPath(X, Y) := edge(X, Y, ).
                                                         Check
                                                         Aux, Rules
                                                        Optimize
```

Guess, Check and Optimize (Example 3)

Example (Traveling Salesman Person)

```
Problem: Find a path of minimum length in a Weighted Graph beginning at
the starting node which contains all nodes of the graph.
Input: node() and edge(, , ), and start().
    % Guess a path
                                                          Guess
    inPath(X, Y) \mid outPath(X, Y) := edge(X, Y, ).
    % Ensure that it is Hamiltonian
    :- inPath(X, Y), inPath(X, Y1), Y \ll Y1.
                                                          Check
    :- inPath(X, Y), inPath(X1, Y), X \ll X1.
    :- node(X), not reached(X). :- inPath(X, Y), start(Y).
    reached(X) := reached(Y), inPath(Y, X).
                                                          Aux. Rules
    reached(X) := start(X).
                                                         Optimize
```

Guess, Check and Optimize (Example 3)

Example (Traveling Salesman Person)

```
Problem: Find a path of minimum length in a Weighted Graph beginning at
the starting node which contains all nodes of the graph.
Input: node() and edge(, , ), and start().
    % Guess a path
                                                          Guess
    inPath(X, Y) \mid outPath(X, Y) := edge(X, Y, ).
    % Ensure that it is Hamiltonian
    :- inPath(X, Y), inPath(X, Y1), Y \ll Y1.
                                                          Check
    :- inPath(X, Y), inPath(X1, Y), X \ll X1.
    :- node(X), not reached(X). :- inPath(X, Y), start(Y).
    reached(X) := reached(Y), inPath(Y, X).
                                                          Aux. Rules
    reached(X) := start(X).
    % Minimize the sum of distances
    :~ inPath(X, Y), edge(X, Y, C). [C@1, X, Y]
                                                         | Optimize
```


Rewrite the above encodings:

- Using aggregates where counting is involved
- Using choice rules instead of disjunctive rules
- Extend 3-Col example to n-Col
- Provide a non-ground encoding for 3SAT

Acknowledgments

Thanks for your attention! Questions?

References

- [BET11] Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczynski. Answer set programming at a glance. <u>Commun. ACM</u>, 54(12):92–103, 2011.
- [DEGV01] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complexity and expressive power of logic programming. <u>ACM Comput. Surv.</u>, 33(3):374–425, 2001.
 - [EGL16] Esra Erdem, Michael Gelfond, and Nicola Leone. Applications of answer set programming. <u>AI Magazine</u>, 37(3):53–68, 2016.
 - [GL91] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunctive databases. <u>New Generation Comput.</u>, 9(3/4):365–386, 1991.
- [GLM⁺18] Martin Gebser, Nicola Leone, Marco Maratea, Simona Perri, Francesco Ricca, and Torsten Schaub. Evaluation techniques and systems for answer set programming: a survey. In <u>IJCAI</u>, pages 5450–5456. ijcai.org, 2018.

References (cont.)

- [GMR17] Martin Gebser, Marco Maratea, and Francesco Ricca. The sixth answer set programming competition. <u>J. Artif. Intell. Res.</u>, 60:41–95, 2017.
 - [Lif99] Vladimir Lifschitz. Answer set planning. In <u>ICLP</u>, pages 23–37. MIT Press, 1999.