== UNIVERSITA
MARIO ALVIANO — DELLA
DeMaCS@UNICAL CALABRIA

il Campus per eccellenza

: Future
Artificial
Intelligence
Research

| Deep Reasoning

|
| - e %0
| In Al with ASP | .
| O P O
I Joint effort with Francesco Ricca I ',,, ‘,s:

CYBER
= CHALLENGEIT

fl'll STEar) < SERICS
:f, y \ 3 RITY AND RIGH ISPACE

SISTEMA INTEGRATO |
DI LABORATORI
PER LAMBIENTE

https://asp-chef.alviano.net/s/dimacs-to-truth-table

https://asp-chef.alviano.net/s/tutorials/essai2024/1

https://asp-chef.alviano.net/s/tutorials/essai2024/2

Suqgested Book

Potassco Guide
https://github.com/potassco/guide/releases/download/v2.2.0/guide.pdf

r———

- L2

https://asp-chef.alviano.net/s/dimacs-to-truth-table
https://asp-chef.alviano.net/s/tutorials/essai2024/1
https://asp-chef.alviano.net/s/tutorials/essai2024/2
https://github.com/potassco/guide/releases/download/v2.2.0/guide.pdf

https://asp-chef.alviano.net/s/asp-playground

https://asp-chef.alviano.net/s/grounding-playground

https://asp-chef.alviano.net/s/tutorials/basic-usage

https://asp-chef.alviano.net/s/tutorials/aquarium

r———

L3

https://asp-chef.alviano.net/s/tutorials/basic-usage
https://asp-chef.alviano.net/s/tutorials/aquarium
https://asp-chef.alviano.net/s/grounding-playground
https://asp-chef.alviano.net/s/asp-playground

https://asp-chef.alviano.net/s/tutorials/billy-the-kid

https://asp-chef.alviano.net/s/tutorials/fortress

https://asp-chef.alviano.net/s/tutorials/essai2024/3

r———

L4

https://asp-chef.alviano.net/s/tutorials/billy-the-kid
https://asp-chef.alviano.net/s/tutorials/fortress
https://asp-chef.alviano.net/s/tutorials/essai2024/3

Structured Declarative Language (SDL)

Explainability Issues

ASP and LLMs interaction

r———

LS

GitHub Repository
https://github.com/dodaro/SDL

https://github.com/dodaro/SDL
https://asp-chef.alviano.net/s/SDL

Declarative Programming

Expresses the logic of a computation
without describing its control flow

Declarative Programming

Expresses the logic of a computation
without describing its control flow

Declarative Programming

Expresses the logic of a computation
without describing its control flow

Answer Set Programming
is (at its core) declarative

But is ASP a

good speaker?

Relational Algebra vs Structured Query Lanquage (SQL)

T id

O username = "root" AND password = "toor" US€T

Relational Algebra vs Structured Query Lanquage (SQL)

Tid n
Y username = "root" AND password = "toor" US€T // / \
_/ /
OK in papers (for compactness) id o

OK for the engine (to optimize) pd \

username = "root" AND password = "toor" user

Relational Algebra vs Structured Query Lanquage (SQL)

Tid n
Y username = "root" AND password = "toor" US€T // / \
_/ /
OK in papers (for compactness) id o

OK for the engine (to optimize)

But programmers
prefer to express
themselves this way

—

username = "root" AND password = "toor" user

SELECT 1id
FROM user
WHERE username

'root' AND password = 'toor'

ASP for Papers vs ASP for Programmers

{assign(X,C) : color(C)} = 1 «+ node(X).
1 < edge(X,Y),assign(X,C),assign(Y,C).

[1@1, C] «~ assign(_,C).

ASP for Papers vs ASP for Programmers

[1@1, C] «~ assign(_,C).

{assign(X,C) : color(C)} = 1 «+ node(X).

1 < edge(X,Y),assign(X,C),assign(Y,C).

giless ppe

{aésign(x,c}

10 ?r-. ent

FaTal T I
LU LU

: color(C)} = 1

-+

lave |

1 - - Aar asa~rh oA
11 L cal-f NOOQcE

: - node(X).

]] .- grgnt colors

: - edge{x Y], a551gn(x C), assign(Y,C).

Tnimi7

LN LI L

-~ assign(_,

= ¥ |
e '

Gy

e nu

1oer ot used

[1@1 c]

ASP for Papers vs ASP for Programmers

[1@1, C] «~ assign(_,C).

{assign(X,C) : color(C)} = 1 «+ node(X).

1 + edge(X,Y),assign(X,C),assign(Y,C).

But... they are essentially

the same!

% guess one color for each node
{assign(X,C) : color(C)} = 1 :- node(X).

% adjacent nodes must have different colors
:- edge(X,Y), assign(X,C), assign(Y,C).

% minimize the number of used colors
:~ assign(_,C). [1@1, C]

The SAME... but for Different Purposes!

In a paper, you
want to be concise

The SAME... but for Different Purposes!

In a paper, you
want to be concise

The SAME... but for Different Purposes!

In a paper, you
want to be concise

But a long-standing codebase needs
maintenance, readability, and robustness

Three downsides of long-standing ASP codebases

1) Propagating Changes
2) Use of Object Variables
3) Lack of Semantic Annotations

ASP Example

r

5 cab(cab_id, driver)
; customer (cust_id, name, title)

ey

ot
e

=

% assign(cust_id, cab_1id)

% assign one cab to every customer
{assign{(C,C') : cab(c',D)} =1 :- customer(C,N,T).

% don't assign more than one customer to each cab
:- cab(C,D), #count{C' : assign(C',C)} > 1.

ASP Example

If driver is moved in a different predicate,
both rules HAVE TO be changed!

:- cab(C,D), #count{C' :

fassign(c,C') : cab(C',D)} =

assign(c’';c)} > 1.

fh e

- customer(C,N,T).

ASP Example

If driver is moved in a different predicate,
both rules HAVE TO be changed!

cab(cab_id, driver)

2 a8

s
)

assign(cust_id, cab_1id)

{assign{C,C') : cab(c',D)} =1

% assign one cab to every customer
: = customer(C,N,T).

% don't assign more than one customer to each cab
:- cab(C,D), #count{C' : assign(C',C)} > 1.

customer(cust_id, name, title) The rules don’t use the driver...

but the driver affect the rules!

ASP Example

If driver is moved in a different predicate,
both rules HAVE TO be changed!

% cab(cab_id, driver)
% customer(cust_id, name, title)
assign(cust_id, cab_1id)

=
=

A0

% assign one cab to every customer

{assign{(C,C') : cab(c',D)} =1 :- customer(C,N,T).

% don't assign more than one customer to each cab
:- cab(C,D), #count{C' : assign(C',C)} > 1.
|

The rules don’t use the driver...

but the driver affect the rules!

L

Object variables are often shorts and
used inconsistently (e.g., C and C’)

ASP Example

If driver is moved in a different predicate,
both rules HAVE TO be changed!

cab(cab_id, driver)
customer(cust_id, name, title) The rules don’t use the driver...
assign(cust_id, cab_id) but the driver affect the rules!

2 a8

2R

% assign one cab to every customer
{assign{C,C') : cab(c',D)} = 1 :- customer(C,N,T).

% don't assign more than one customer to each cab
:- cab(C,D), #count{C' : assign(C',C)} > 1.
|

L

Object variables are often shorts and
used inconsistently (e.g., C and C’)

BTW... is assign(cust, cab) or assign(cab, cust)?

There is no semantic annotation within the syntax!

Structured Declarative Language (SDL)

Structured Declarative Language (SDL)

Abstraction and Simplification

Problems are expressed in a language
closer to English

Structured Declarative Language (SDL)

Qualifyving Names for Attribute Access

Abstraction and Simplification

Dot notation, as in OOP!
No order of attributes,
no object variables

Problems are expressed in a language
closer to English

Structured Declarative Language (SDL)

Qualifyving Names for Attribute Access

Abstraction and Simplification

Dot notation, as in OOP!
No order of attributes,
no object variables

Problems are expressed in a language
closer to English

Automatic Attribute Tracking

References to records are tracked to ease debugging, and
to avoid comparing apples and oranges

Structured Declarative Language (SDL)

Qualifyving Names for Attribute Access

Abstraction and Simplification

Problems are expressed in a language
closer to English

Dot notation, as in OOP!
No order of attributes,
no object variables

Automatic Attribute Tracking

References to records are tracked to ease debugging, and
to avoid comparing apples and oranges

SDL maps to semantically annotated atoms >

assign(

customer (CUST_ID, NAME, TITLE),
cab(CAB_ID, DRIVER)

VS

assign(C,C')

SDL Example - | ASP

{assign(c,C') : cab(c',D)} = 1 :- customer(C,N,T}.

- cab(c,D), #count{C' : assign(C',C)} > 1.

record Cab: id: int, driver: str;
record Customer: 1id: int, name: str, title: str;
record Assign: customer: Customer, cab: Cab;

guess from Customer exactly 1
Assign from Cab
where Assign.customer == Customer and Assign.cab == Cab;
deny from Cab having
count {Assign.customer from Assign where Assign.cab == Cab} > 1;

SDL Example

A Cab has attributes
id (an integer) and
driver (a string)

- cab(c,D), #count{C'

fassign(c.c') : cab(€', D)} = 1 :-

ASP

P assugn(El el =i

customer(C,N,T).

guess from Customer exactly 1
Assign from Cab

where Assign.customer
deny from Cab having

count {Assign.customer from Assign where Assign.cab

T
record Cab: id: int, driver: str;
record Customer: 1id: int, name: str, title: str;
record Assign: customer: Customer, cab: Cab;

Customer and Assign.cab

Cab;

Cab} > 1;

SDL Example ASP
{assign(C,C') : calJ(C';D)} = 1 :- customer(C,N,T).
A Cab has attributes
|d (an Integer) and :- cab(c,D), #count{C' : assign(C',C)} > 1.
driver (a strin) :
(9 Assign has attributes
/ customer (being a Customer) and
, . - : cab (being a Cab)

record Cab: id: int, driver: str;

record Customer id: int, name: str, title: str;

record Assign: customer: Customer, cab: Cab;

guess from Customer exactly 1
Assign from Cab
where Assign.customer == Customer and Assign.cab ==
deny from Cab having
count {Assign.customer from Assign where Assign.cab ==

Cab;

Cab} >

SDL Example ASP

{assign(c,C') : cab(c',D)} = 1 :- customer(C,N,T}.

A Cab has attributes
id (an integer) and

:- cab(c,D), #count{C' : assign(C',C)} > 1.

driver (a string)

Assign has attributes
/ customer (being a Customer) and

cab (being a Cab)

record Cab: id: int, driver: str;
record Customer id: int, name: str, title: str;
record Assign: customer: Customer, cab: Cab;

guess from Customer exactly 1~ ——
Assign from Cab
where Assign.customer == Customer and Assign.cab == Cab;

Assign one cab to every customer

deny from Cab having
count {Assign.customer from Assign where Assign.cab == Cab} > 1;

SDL Example

ASP

{assign(c,C') : cab(c',D)} = 1 :- customer(C,N,T}.

A Cab has attributes
id (an integer) and
driver (a string)

:- cab(c,D), #count{C' : assign(C',C)} > 1.

Assign has attributes
/ customer (being a Customer) and

record Cab:

record Customer
record Assign:

id: int, driver: str;

id: int, name:

customer: Customer, cab: Cab;

guess from Customer exactly 1~ ——
Assign from Cab

where Assign.customer == Customer and Assign.cab == Cab;
deny from Cab having
count {Assign.customer from Assign where Assign.cab == Cab} > 1;

cab (being a Cab)

str, title: str;

Assign one cab to every customer

—

Don’t assign more than one customer to each cab

Just two little observations...

record Cab: id: int, driver: str;
record Customer: 1id: int, name: str, title: str;
record Assign: customer: Customer, cab: Cab;

guess from Customer exactly 1
Assign from Cab
where Assign.customer == Customer and Assign.cab
deny from Cab having
count {Assign.customer from Assign where Assign.cab

Cab;

Cab} > 1;

Just two little observations...

record Cab: id: int, driver: str;
record Customer: 1id: int, name: str, title: str;

record Assign: customer: Customer, cab: Cab;
guess from Customer exactly 1 Doesn't use the driver... and
Assign from Cab has no idea about the driver!
where Assign.customer == Customer and Assign.cab == Cab;

deny from Cab having
count {Assign.customer from Assign where Assign.cab == Cab} > 1;

Just two little observations...

record Cab: id: int, driver: str;
record Customer: 1id: int, name: str, title: str;
record Assign: customer: Customer, cab: Cab;
guess from Customer exactly 1 Doesn't use the driver... and
Assign f£rom Cab has no idea about the driver!
where Assign.customer == Customer and Assign.cab == Cab;
deny from Cab having
count {Assign.customer from Assign where Assign.cab == Cab} > 1;
AN

¥ Attributes accessed by name,

not by position!

record Cab: id: int, driver: str;
record Customer: 1id: int, name: str, title: str;
record Assign: customer: Customer, cab: Cab;

guess from Customer exactly 1
Assign from Cab
where Assign.customer == Customer and Assign.cab == Cab;
deny from Cab having
count {Assign.customer from Assign where Assign.cab == Cab} > 1;

{assign(C,C') : cab(C',D)} = 1 :- customer(C,N,T).

:- cab(C,D), #count{C' : assign(C',C)} > 1.

record Cab: id: int, driver: str;
record Customer: 1id: int, name: str, title: str;
record Assign: customer: Customer, cab: Cab;

guess from Customer exactly 1
Assign from Cab

where Assign.customer
deny from Cab having

count {Assign.customer from Assign where Assign.cab

Customer and Assign.cab Cab;

Cab} > 1;

{assign(
customer (ID, NAME, TITLE),
cab(ID, DRIVER)

i T
il

assign(C',C)} = 1.

:- cab(C,D), #count{C'

1 :- customer(C,N,T).

} : cab(ID,DRIVER)} = 1 :-
customer(ID, NAME, TITLE).

:- cab(ID,DRIVER), #count{
customer (ID, NAME, TITLE)
assign(

customer (ID, NAME, TITLE),
cab(ID,DRIVER)

)
1 =1,

[oy
L

Structure Instruction

record RecordName: Attributes;

\\

List of name: type pairs
\

—

Int, str or a record name

Structure Instruction

record RecordName: Attributes:;

\\

List of name: type pairs

—

Int, str or a record name

Everything MUST be declared
(SDL targets long-standing codebases)

Structure Instruction

record RecordName: Attributes:;

\\

List of name: type pairs

—

int, str or a record name

Everything MUST be declared
(SDL targets long-standing codebases)

Acyclicity of structure instructions is
required and checked

Query Instruction

show RecordNames;

—

List of record names

Query Instruction

show Record\Names;

—

List of record names

We may include more expressive query

instructions in the future, but for now... KISS!

Query Instruction

show Record\N ames;

—

List of record names

We may include more expressive query

instructions in the future, but for now... KISS!

By default, we only show SAT/UNSAT...

Query Instruction

show Record\Names;

—

List of record names

malvi@pandora:~ [ven giu 07 15:01]
_ S echo "a(foo). b(bar). #ishow a/1. " | clingo --outf=1 -V@
to avoid any ANSWER

ambiguity a(foo).

malvi@pandora:~ [ven giu 07 15:01]

S echo "a(foo). b(bar). #show a(X) : a(X)." | clingo --outf=1 -V@
ANSWER

a(foo). b(bar). a(foo).

Model Instructions (several)

r

Refer records by defining aliases (optional);
prepend not to refer the complement

RecordName as alias

Model Instructions (several)

r

Refer records by defining aliases (optional);
prepend not to refer the complement

RecordName as alias

/

Attributes are accessed with dot operations,
as in OOP languages

alias.attribute_name

alias.attribute_name.sub_attribute

Model Instructions (several)

r

Refer records by defining aliases (optional);
prepend not to refer the complement

RecordName as alias

/

Attributes are accessed with dot operations,
as in OOP languages

alias.attribute_name

alias.attribute_name.sub_attribute

Values (of attributes, or constants)
can be combined in expressions

Model Instructions: Definitions

record Node: id: int;
record Edge: first: Node, second: Node;

define Edge as self from Edge as other
where self.first == other.second and self.second

other.first;

Model Instructions: Definitions

record Node: id: int;

record Edge: first: Node, second: Node;

define Edge as self from Edge as other
where self.first == other.second and self.second == other.first;

edge(node(SelfFirst), node(SelfSecond)) :-
edge(node(OtherFirst), node(OtherSecond)),
node(SelfFirst) == node(OtherSecond),

node(SelfSecond) == node(0OtherFirst).

Model Instructions: Definitions

record Node: id: int;
record Edge: first: Node, second: Node;

define Edge as self from Edge as other

where self.first == other.second and self.second == other.first;
edge(node(SelfFirst), node(SelfSecond)) :-
edge(node(OtherFirst), node(OtherSecond)),
node(SelfFirst) == node(OtherSecond),
node(SelfSecond) == node(0OtherFirst).

edge(OtherSecond, OtherFirst)

Essen“a"y’ the same of edge(OtherFirst, OtherSecond).

record Node: id: int;

record Edge: first: Node, second: Node;
record In: node: Node;

record Size: value: int;

define Size having count {In.node from In} == Size.value;

record Node: id: int;

record Edge: first: Node, second: Node;
record In: node: Node;

record Size: value: int;

define Size having count {In.node from In} == Size.value;

> | size(value) :- #count{node(Id) : in(node(Id))} = Vvalue.

Model Instructions: Guesses

record Node: id: int;

record Edge: first: Node, second: Node;
record In: node: Node;

record Size: value: int;

guess from Node at most 1

In where Node == In.node;

Model Instructions: Guesses

record Node: id: int;

record Edge: first: Node,

record In: node: Node;

record Size: value: int;

second: Node;

guess from Node at

In where Node

most 1

= In.node;

} <=1

E]{:{
in(node(Id')) :
node(Id) == node(Id')

- node(Id).

Model Instructions: Denies

record Node:
record Edge:

record In:

record Size:

id: int;

first: Node,
node: Node;
value: int;

second: Node;

deny from

In as 1n1l,

In as in2, not Edge

where 1nl.node == Edge.first and
in2.node == Edge.second and
inl.node < in2.node;

Model Instructions: Denies

record Node: id: int;

record Edge: first: Node, second: Node;
record In: node: Node;

record Size: value: int;

deny from In as 1nl, In as 1n2, not Edge
where 1nl.node == Edge.first and
in2.node == Edge.second and
inl.node < in2.node;

:- in(node(Id)), in(node(Id')), not edge(node(F), node(S)),
node(Id) == node(F),
node(Id') == node(S),

node(Id) < node(Id').

Model Instructions: Denies with Penalty

or pay 1 at 1;

record Node: id: int;

record Edge: first: Node, second: Node;
record In: node: Node;

record Size: value: int;

deny from Node, not In

where In.node == Node

Model Instructions: Denies with Penalty

record Node: id: int;
record Edge: first: Node, second: Node;
record In: node: Node;

record Size: value: int;

deny from Node, not In
where In.node == Node

or pay 1 at 1;

:- node(Id), not in(node(Id')),
node(Id') == node(Id).
[1@1, Id, Id']

And if you need “assembly”...

@asp_block %
to_be | not_to_be :-
plain, hold, asp, code.

possible.
:- suggested.
$

We don’t do any syntactic or semantic check in

@asp_block $... $

Summing UP

ASP syntax is not suitable for long-standing codebases

(it doesn’t even look like a programming language)

CompLex 11y

SIMPUSTIC

BN |pe- 6P

Image Credits to Hill Investment Group

Summing UP

ASP syntax is not suitable for long-standing codebases

(it doesn’t even look like a programming language)

SDL is a programming language of higher level,
enforcing a proper structure of records, and
introducing dependencies only if explicitly needed

SIMPUSTIC

CompLex 11y

BEMNpE- e

Image Credits to Hill Investment Group

Summing UP

ASP syntax is not suitable for long-standing codebases

(it doesn’t even look like a programming language)

SDL is a programming language of higher level,
enforcing a proper structure of records, and
introducing dependencies only if explicitly needed

CompLex 11y

SIMPUSTIC

BEMNpE- e

Image Credits to Hill Investment Group

Explainability Issues

https://asp-chef.alviano.net/s/ucorexplain/

https://asp-chef.alviano.net/s/ucorexplain/

Outline

Who has an issue with explainability
 What you are asked to believe in ASP
* How to ask for less faith

ASP powered approach
* |nteractive representation

Explainability: A ML issue?

Input > Output >

Black-box ML algorithms for Al:

The link between input and output is unclear
(i.e., it cannot be explained)

Explainability: A ML issue?

Black-box ML algorithms for Al:

The link between input and output is unclear
(i.e., it cannot be explained)

White-box ML algorithms for Al

Input >

Output >

The link between input and output is understandable by domain experts

(e.g., a collection of features that influenced the resulit)

What about ASP?

ASP
engine

Input (program + facts> Output (answer set)>

What about ASP?

ASP
engine

Input (program + facts> 0

Output (answer set)>

The algorithm is known, the semantics is intuitive.

The answer set can be checked in polynomial time
(in the normal case, wrt. the ground program).

What about ASP?

ASP
engine

Input (program + facts> O

Output (answer set)>

The algorithm is known, the semantics is intuitive.

The answer set can be checked in polynomial time
(in the normal case, wrt. the ground program).

[y
So... is everything perfect here?

Recipe

Gl clam]

#1. Search Models

Height 6@ ¢ Decode _ base6d4__

1 node(X) :- 1link(X,Y).
2 node(Y) :- link(X,Y).

#of models 1

‘ ECHO ‘ USE CONSTRAINTS

= RAISE ERROR

#2. Search Models

Height 80 ¢ Decode _ base64__
1 g(node(X), label(X)) :- node(X).

2 g(link(X,Y)) :- link(X,Y).
3 g(defaults, undirected).

#ofmodels 1

‘ ECHO ‘ USE CONSTRAINTS ‘

Sl RAISE ERROR
|

#3. Graph

Height 5@@ C @ Predicate g

/\
\/

1
2
3
4
5
6
7
8
9

Input

link(a,b).
link(a,c).
link(b,c).
link(b,e).
link(c,e).
link(c,d).
link(d,e).
link(d,f).
link(e,f).

https://asp-chef.alviano.net

https://asp-chef.alviano.net/

Recipe BER0- 8 | e https://asp-chef.alviano.net

1 1link(a,b).
#1. Search Models - ~ 1 '
2 link(a.c).
; A 3 link(b,c).
Height 60 ¢ Decode __base64__ ‘ECHG ‘ USE CONSTRAINTS 4 link(b,e).
1 node(X) :- link(X,Y). 5 link(c,e).
2 node(Y) :- link(X,Y). 6 link(c,d).
7 link(d,e).
#of models 1 - 8 link(d,f).
9 link(e,f).
Height 89 < Decode _ base64 [Height 100 ¢ Decode _ base64__ ‘ ECHO ‘ USE CONSTRAINTS ‘ 1 link(a,b).
2 link(a,c).
1 g(node(X), label(X)) :- node(X). 1 assign(X, red) :- node(X), not assign(X, green), not assign(X, blue). 3 11:&2 E:
2 g(link(X,Y)) :- link(X,Y). 2 assign(X, green) :- node(X), not assign(X, red), not assign(X, blue). . 1ink(b'e).
3 g(defaults, undirected). 3 assign(X, blue) :- node(X), not assign(X, red), not assign(X, green). 5 link(c:e):
4 :- link(X,Y), assign(X,C), assign(Y,C). .
of model 6 link(c,d).
of models | 1 #of models 1 2 7 link(d,e).
8 link(d,f).
9 1link(e,f).

Height 50@ < Predicate g Height 80 2 Decode = __baseb4__ ‘ECHD ‘ USECONSTRAINTS‘

1 g(node(X), label(X), color(C)) :- node(X), assign(X,C).
2 g(link(X,Y)) :- link(X,Y).
3 g(defaults, undirected).

~

d
\ #of models 1 -

Output
Height 500 ¢ Predicate g ECHO P

assign(b,blue).
assign(c,red).
assign(e,green).
assign(d,blue).
assign(f,red).
assign(a,green).

o
(=) I, I - VI S

https://asp-chef.alviano.net/

Recipe OEEO:- 8 | e https://asp-chef.alviano.net

1 1link(a,b).
#1. Search Models o ’ : d
2 link(a.c).
; A 3 link(b,c).
Height 60 ¢ Decode __base64__ ‘ECHD ‘ USE CONSTRAINTS 4 link(b,e).
1 node(X) :- link(X,Y). 5 link(c,e).
2 node(Y) :- link(X,Y). 6 link(c,d).
7 link(d,e).
#of models 1 - 8 link(d,f).
9 link(e,f).
Height 89 < Decode _ base64 [Height 100 ¢ Decode _ base64__ ‘ ECHO ‘ USE CONSTRAINTS ‘ 1 link(a,b).
2 link(a,c).
1 g(node(X), label(X)) :- node(X). 1 assign(X, red) :- node(X), not assign(X, green), not assign(X, blue). 3 1;:&2 E:
2 g(link(X,Y)) :- link(X,Y). 2 assign(X, green) :- node(X), not assign(X, red), not assign(X, blue). . 1ink(b'e).
3 g(defaults, undirected). 3 assign(X, blue) :- node(X), not assign(X, red), not assign(X, green). 5 link(c:e):
4 :- link(X,Y), assign(X,C), assign(Y,C). K
of model 6 link(c,d).
ofmodels | 1 #ofmodels 1 2 7 link(d,e).
8 link(d,f).
9 1link(e,f).

Height 50@ < Predicate g Height 80 2 Decode = __baseb4__ ‘ECHO ‘ USECONSTRAINTS‘

1 g(node(X), label(X), color(C)) :- node(X), assign(X,C).
2 g(link(X,Y)) :- link(X,Y).
3 g(defaults, undirected).

~

d
\ #of models 1 -

#6. Graph —

Output
Height 500 ¢ Predicate g ECHO P

assign(b,blue).
assign(c,red).
assign(e,green).
assign(d,blue).
assign(f,red).
assign(a,green).

(=) I, I - VI S

https://asp-chef.alviano.net/

Input Ovutput
link(a,b).

: 3 1 assign(b,blue).

2 l}nk{a,c]. 2 assign(c,red).

3 1link(b,c). 3 .

; assign(e,green).

4 l}nk{b.e]. 4 assign(d,blue).

5 l}nk{c,e]. 5 assign(f,red).

- l?nk{c,d]. 6 assign(a,green).

7 link(d,e).

8 1link(d,f).

9 | link(e.f).
10
11 node(X) :- link(X,Y).
12 | node(Y) :- link(X,Y).
13
14 assign(X, red) :- node(X), not assign(X, green), not assign(X, blue).
15 assign(X, green) :- node(X), not assign(X, red), not assign(X, blue).
16 assign(X, blue) :- node(X), not assign(X, red), not assign(X, green).
17 :- 1link(X,Y), assign(X,C), assign(Y,C).

An answer set is a minimal model of its program reduct (a Datalog program).

Datalog models can be computed by support inference.
The computation gives a DAG. Extract a proof tree for the query atom.

0 EE e b St . I T

The program reduct is obtained from 4 .
the ground version of the program in input P s o
by fixing the interpretation of negative literals ! |
. \E\F—""" : = Sy

! §

In the program reduct...

link(e,f).
node(e) :- link(e,f).

% assign(e, red) :- node(e), not assign(e, green), not assign(e, blue).
assign(e, red) :- node(e), #false, #true.
% assign(e, green) :- node(e), not assign(e, red), not assign(e, blue).

E> assign(e, green) :- node(e), #true, #true.

% assign(e, blue) :- node(e), not assign(e, red), not assign(e, green).
assign(e, blue) :- node(e), #true, #false.

1) assign(e, green) is supported by node(e)
2) node(e) is supported by link(e,f)
3) link(e,f) is a fact

In the program reduct...

link(e,f).
node(e) :- link(e,f).

% assign(e, red) :- node(e), not assign(e, green), not assign(e, blue).
assign(e, red) :- node(e), #false, #true.

% assign(e, green) :- node(e), not assign(e, red), not assign(e, blue).
E> assign(e, green) :- node(e), #true, #true.

% assign(e, blue) :- node(e), not assign(e, red), not assign(e, green).
assign(e, blue) :- node(e), #true, #false.
1) assign(e, green) is supported by node(e) Why

2) node(e) is supported by link(e,f) #true, #true
3) link(e,f) is a fact ?

The answer set
(true atoms)

< swole as[e} Auew Ajuunu|

Fixing here means (blindly) trusting!

The answer set
(true atoms)

How big must our faith be?

swioje as|e) Auew Auuyul

| The truth about ASP \ _
ASP engine

(by itself)
Input (program + facts> Output (answer set)>

Let’s say it is a gray-box!

You can check the answer set in polynomial time,
but who want to do this?

Anyhow you must trust all false atoms,
a huge act of faith!

Let’s try to make the assumption smaller!

auzignis, gree|
meplained by supgar:

h’ ? SRR . I
Rules with false heads y W 5

suplaimd by requined i fasity body

(e.g., constraints)
can infer falsity

of some atoms! R
Some other & €@
atoms are simply Bring me to life!
assumed false S

https://xasp-navigator.netlify.app/#eJy1lttuozAQhl8F+aqRvBHmGJC2N32JRNteAHEjtCykHKSNqr77GrBl4zGIauEqkOT7/xnPjO1PVFZX2qD41yfKryi2MSqSlBYoRknT5LfyKcFp0dHDa8neuz/3Nq9KhNFfFDtH9ucHiv2j/YVHmgA6m6NdToeSdgz0raa0NOAexF2JF3n5m8G9b9Pd71XdjlR49AcqkJSnUSmkTpxyJOUDKtMpm1MnSQUalUCK8LyUCENApTrlw7xOkuor/DTLKOWLNCbRmQAyxNag2ZSUUhGiQWDNIw4RBTL1R02vOurCJSQuQClHa/rR5ezRaivrPSma/P1hpdX1MW0YNWEPaKWrtERDuIqWbxi3NVrEMHuBQUuMj3GBPAUODUkJeDkUMYlqWieDGt8HJpEIVpksEhlKxdnlQERDKy3jwO2Mmtck4JHYDH7Dw6CNm2JTdXVGh3lqk/pG28lADs17OVjxD2uYzTO+HI6vJfuwfj5bbFJRH4rQiOY1zms1+nkTIv7aQNj2NBUhUsRbL0KnIo4UgRv/GVt9I/daPEHMHlpL/jzWQf92KHVv2ltms4ZwL9jZkMBW2sPRVRyVHNWKYCn1Il8u7IVpvmBeLRYZzvSKKeru5uLelqGDjvWMbb+RuL9l6MmCerC5eCDFjR06tuBCj/YtvNihyayh4fja2REeDnsYhkqK/1WxITIMtvDQeA5sJq8cVYZzXeT+zfUaF1ks2IIjvB7t7AgvG3sYKme3er35ftH6yDA4SyPjgbyRuqPcGQz3q01GaMERXr73djReRzZxfPv6B67enbA=!

How? Step 1: Minimal Assumption Set!

Assume falsity of some atoms>

1) Initial well-founded simplification
2) Support inference

3) Lack of support inference

4) Inference via constraint-like rules

If the answer set Is reconstructed,
it was a (good) assumption set!

Prefer subset-minimal assumption sets not containing the query atom

Example of Minimal Assumption Set

assign(a, blue)
assign(c, blue)
assign(c,

green)

assign
assign
assign
assign
assign
assign(a

(b
(
(
(
(
(a

C,
e,
d,
_F

node(b).

node(c
node
node

).

,blue).
red).
green).
blue).
red).
,green).

MAS is a combinatorial optimization problem

Serialize input
(program, answer set,

query)
as facts

MAS is a combinatorial optimization problem

1
2
3

431

e
[l = == =R |

12
13
14
15
16
17

18
19
20
21
22
23
24

{fassume_false{Atom)} :- false(Atom). a 3

i~ false(Atom), assume_false(Atom), not explain{Atom). [l@l, Atom] Se”ahze InpUt

i~ false(Atom), assume_false(Atom), explain{Atom). [1l@2, Atom] (program’ answer Set’
has_explanation(Atom) :- explained by(Atom,). query)

:- atom(X), #count{Reason: explained by(Atom,Reason)} != 1. as facts
explained _by(Atom, assumption) :- assume_false(Atom).

{fexplained by{Atom, (support, Rule))} :- head(Rule,Atom), true(Atom):

true(BAtom) : pos_body(Rule,BAtom);
has_explanation{BAtom) : pos_body(Rule,BAtom);
false(BAtom) : neg body(Rule,BAtom);

has _explanation{BAtom) : neg_ body({Rule,BAtom).

fexplained by{Atom, lack of support)} :- false(Atom); - -
false body(Rule) : head(Rule,Atom). Each Opt|ma| answer set is a MAS
false body(Rule) :- rule(Rule); o c q
pos_body(Rule,BAtom), false(BAtom), has explanation(BAtom). (and comes Wlth a derlvatlon)
false_body(Rule) :- rule(Rule);

neg_body(Rule, BAtom), true(BAtom), has_explanation{BAtom}.

{explained_by{Atom, (required_to_ falsify body, Rule))} :- Ffalse({Atom);
pos_body({Rule, Atom), false_ _head(Rule);
true(BAtom) : pos_body{Rule,BAtom), BAtom != Atom;

has_explanation{BAtom) : pos_body(Rule,BAtom), BAtom != Atom;
false(BAtom) : neg body(Rule,BAtom) ;
has_explanation{BAtom) : neg_body(Rule,BAtom).

false _head(Rule) :- rule(Rule); false(HAtom) : head(Rule,HAtom);
has_explanation{HAtom) : head(Rule,HAtom).

How? Step 2: Directed Acyclic Graph (DAG)

Program, answer set, and query serialized as facts...
derivation serialized (and indexed) as explained_by/3

The DAG can be materialized by a Datalog program

1
2
3
1

5
6

7
i}
9
10
11
12

link{Atom, BAtom) :- explained by({_, Atom, (support, Rule)):
pos_body(Rule, BAtom).

link{Atom, BAtom) :- explained_by({_, Atom, (support, Rule)};
neg body({Rule, BAtom).

{link({Atom, A) : pos_body(Rule,A), false(A), explained by(I,A,), I < Index;
link{Atom, A) : neg body(Rule,A), true (A), explained bv{I,A,), I « Index}
= 1 :- explained by(_, Atom, lack of support); head(Rule, Atom).

link{Atom,A) :- explained_by(_, Atom, (required_to_falsify_beody, Rule));
head(Rule,A).

link{At,A) :- explained byi{_,At,{required to_falsify body, Rule)):
pos_body(Rule,A), A !'= At.

link{Atom,A) :- explained by(_,Atom, (required_to_falsify body, Rule));
neg_body(Rule,A).

The DAG can be materialized by a Datalog program

How? Step 3: Extract the relevant subDAG

Induced subgraph on nodes reachable from the query

Mix of ASP and igraph for better performances
(we don’t really compute the full DAG)

How? Step 4: Interactive Representation

Kﬂg‘? NAVl@Tm Search...

PANEL 37% 1.9x AXIS

assign(e,blue)
explained by required to falsify body

Selected node (press S to lock)

|assign(e, green)

Explained by support

assign(X, green) :- node(X), not assign(X, red}, not
assign(X, blue).

X=e

due to

assign(e, blue)

assign(e,red)

node(e)

Rules

node(Y) :- Llink(X,Y).
X, Y => a,b

node(X) :- Llink(X,Y).
Wy = a,b

node(Y) :- Llink(X,Y).
XN == h.p

node(Y) :- Llink(X,Y).
X, Y => b,e

assign(X, ros
assian(X. b

Everything is in the URL!

click to open

https://xasp-navigator.netlify.app/#eJy1lttuozAQhl8F+aqRvBHmGJC2N32JRNteAHEjtCykHKSNqr77GrBl4zGIauEqkOT7/xnPjO1PVFZX2qD41yfKryi2MSqSlBYoRknT5LfyKcFp0dHDa8neuz/3Nq9KhNFfFDtH9ucHiv2j/YVHmgA6m6NdToeSdgz0raa0NOAexF2JF3n5m8G9b9Pd71XdjlR49AcqkJSnUSmkTpxyJOUDKtMpm1MnSQUalUCK8LyUCENApTrlw7xOkuor/DTLKOWLNCbRmQAyxNag2ZSUUhGiQWDNIw4RBTL1R02vOurCJSQuQClHa/rR5ezRaivrPSma/P1hpdX1MW0YNWEPaKWrtERDuIqWbxi3NVrEMHuBQUuMj3GBPAUODUkJeDkUMYlqWieDGt8HJpEIVpksEhlKxdnlQERDKy3jwO2Mmtck4JHYDH7Dw6CNm2JTdXVGh3lqk/pG28lADs17OVjxD2uYzTO+HI6vJfuwfj5bbFJRH4rQiOY1zms1+nkTIv7aQNj2NBUhUsRbL0KnIo4UgRv/GVt9I/daPEHMHlpL/jzWQf92KHVv2ltms4ZwL9jZkMBW2sPRVRyVHNWKYCn1Il8u7IVpvmBeLRYZzvSKKeru5uLelqGDjvWMbb+RuL9l6MmCerC5eCDFjR06tuBCj/YtvNihyayh4fja2REeDnsYhkqK/1WxITIMtvDQeA5sJq8cVYZzXeT+zfUaF1ks2IIjvB7t7AgvG3sYKme3er35ftH6yDA4SyPjgbyRuqPcGQz3q01GaMERXr73djReRzZxfPv6B67enbA=!

Assessment: Marcello had a program...

420 rules
651 facts

grou nding>

4261 ground rules
4468 ground atoms

Assessment: Marcello had a program...

420 rules
651 facts

grou nding>

4261 ground rules
4468 ground atoms

Number of answer sets

- expected: 1

FFFFFFF
FFFFFFF
FEFFFF
FFFUU
uuuu
Uuuu
uUuuu
Uuuu
UUUU-

- actual: 2

Assessment: Marcello had a program...

420 rules
651 facts

QO

grou nding>

4261 ground rules
4468 ground atoms

Number of answer sets

- expected: 1

FFFFFFF
FFFFFFF
FEFFFF
FFFUU
uuuu
Uuuu
uUuuu
Uuuu
UUUU-

- actual: 2

The two answer sets differ in one atom
 DAG computed in ~15 seconds

87 links, 45 internal nodes

20 leaves (1 assumption)

30 symbolic rules, 11 facts

48 ground rules, 65 ground atoms

Bring me to life!

click to open

https://xasp-navigator.netlify.app/#eJztXetv2zYQ/1cMA0McTC6sp+1gLbAsM7IPyQIn6zasg+DYdCNEkQJJzmNF//eRep5EUmLS6uHY/RLbcXi/O96bJ/ZL33FXyO8f/fOlb636RyOpby+ukd0/6g9vBgHyA8v5bN67/hV+eY4+S7IiH35yFr6/ubsPLNfpS/2n/pHyTpf6z/in8W70VYqWkllLXW68B/Rs5t794t7d2yhAK4ksbTlWYC3s3iOy7d7a3TgrtIqIjGIispYRUTIia8tDq4G19q9ukDMYoKf78AOah0PJQZ+Ln1+4/uGhhN8Mlq6Hfn0KzI2PvI8Lz1pc2+gYLRd36A/n1nEfHfy9SAp8qHIiDzmDqgKo9gY5QTUlyXKQR0hUyGUUERtlxDSK2J3l+4Rf371DKfPxz9+v/UMxWslGTzJSOkWKoTZCiw+VmJNxtrqRrU7pI96zyp0YyuN4UQB5nC3qbWxkXtvu8hYqD1GQKoFVqBFD76r1Zoh1OxKwmqGdZGgDbxPcmD4KzOtnM5apgBpVqyutQdMKqpX6JGojYF/kUQXRVynAhFYAGTinR3djr0z0FCBnNeDsnACVaWLygArwTtfu6tn0F4Hlry20MhdBpmz3HnowGYSJLvF0jPV5pGKiLkyJebIXy9ueu+75m/t71wsK/lwH3Khcbtaee7cd/IDQIQMf6V5jIjZaeAtnicz01RwtkfWAVj+vA+T9TGIeWv3mrNESR76NL2EVRTHVHLXMiqeAHPCTDnokEqzf36iSY9k0vCnDIowW4CncvylATkI/CAzyuAXAsiS0MiVxLRY4TI+AW7ewTnmYAjaoB/Qn5uDcPYto4OWqPS3DKzJC8MTQRiMKmREjg5oKXD9yiK2tBgwt12j/rYyKLsL6DzWgRhRXikwLXJE77b9kIf8F0gKFG11aZ0WAERAmFZWbxHcXP0jsFRBIYuQz1zt3f41SiprUnmvPlKdUKjN04jHwS3OF1jjTWtEBQ6YDhmKI5P1lq44YDmT88rqljMSUQQKm0xZeszSAwz8EbvHmYCCmTOW6RGfd6gjWO6KZPXP5ZM9k4NpVvg8MM9LQ6gQ5AwpbWtVX+bYUJ5C1ys+c8766vsSJqRZTukBVVVafg65QOBYFV9Ig0y5OQh1T0AgYik/FP1XnLs8QAc9YIV5DdEEibEoCjGJfBeZv+abjJmVZ3fvNdwAgTqkTlp9v2L/rMS64sdMqY2nVrMH+alR+CFKWukAKQATC1GQ6GWkRGai/NYVSv9rsoah1SQsFwgF+b7XxFqQZXL9fLk96IDxNqPdSX2Vb6vWhwsG+gOskjdIXuGaFdgkalZyZ7ho703uPk6SJaAEL/DiXEwkrv5Dug16NNmEF2YrDBD6J9CQBlFMa34sWFUaMRe43/7yxbHRpLW9pl0B2orq7UO54U+ZA6NK5jrehfIpjD2Par+jAAfumvXhsPviPYwkCBdSB871BiwaOCkRds0EnKrpop3aLlBnU2zrXtXeNMwG+QO2n69w+yLawA0pNHYQgcsjWnhkDJ6+PqRq+GokA3/A4dAIreMFTMk4gpEoufZqLg4KrF5wunS4Y/PDQRLIkM3HqdFJniLZwm0Uq63TAMAS6s/WeMnMwAmsw+I3XRqGlx88AGvDxNloze4thLcBcMTnUAEHDgN0PdLN4QH5yqmzbz/xJl+I5TiRE4rX/xQtazm00O+O7G2+JoiPfYOF9RkFuloY2qrl0Ll0d9o6Gn5xPQXJ+RT4kMp1hSfUKLZUZ/gib/Az/1btPzgx/cy5d9d5/6DGgK1L7HfQ+kXwqFjUTS8mpeGjEOclkp0hz6RJL4Lz30/vepZT9ipYp65fJwj/KkfiI8C4j8bUuK5WSFjmpSqVVkcs1LC25g9ICJsc/48P8FMRUZDdmNraqjhmQAgxIoYbeAG/hkQbe1l5yckteX314H4QbHSZic9amh2uEnztu0MtNRc07LRgN2AqzQZs/iDuLMFzEJM8PpZNIdD38r/wc/ky6wCZzguV58mGEBXIineH3F0QoUSh66UE9cdW0kPLs6Wz24qBwkTv9wnwIstAUeqMU/XnH0Y9L0Z91HP0EoAfZVOwgCF4y9fSX9Hdk3lcSfhm6eOxEXzcLlac/BR4rV3WdvsZbZY4ufBv2YObSKUF+mmRCgi36xkaE+fJQuymQbrh0cgaeSgoeuofJbxrDi9lxKIWopsfvYrFw5Rnm0KGQhA7ZuQDVAr6DBGACLBt9jqIregoGV+R74dsU1gHBdZBsdMRqGo6H8dIRaPxKEHcp8gkPOeMUYvYS8D8w6quUHeZY7yxdsjbGQUqtvq4wixSLXZix6jIRmHWeLeb5B0myrL+gpEgMiCpTLTspDUJuVamJ3gGXJzjVs9U8wUI53+wDzi/1LTADKfd3kWUOy0yTGBzPPLNvAFVntR8uooEXLlNwGO3NMGW8QZ6UyRtkCj5gst1MgbIXDk1SsamMPUKR0KtybHnKoCJV+BNgYpRpn5inZbAdx/egVayXVFDt5SZ6WXNoxzjRjko+us2AfxdVecfSiXRKKH9r9IhqRE4MyTMx4TCRjatF8LqIHRRIJXOqbXU965yhy8lBg9UFdyjl5f3MhjJNDWTacN6vjU5lUyyDRJQxJBp6i7zBtWpomsqGS03xEdyUr2gXOgh7Kv9kpM7zNRKNleYLgxznxq5yLu8W5yDVUsvHRGflfTHiKemGlGAWBmG0iMJgC6Mw3jpL+jQ8JKLkQDoIZ8LrbNeKT3k1F9pAQgmHfYdizdjI8F7QjBWBWQpSLmL8Pg3Z4Q2jZCv0JcWw0+hB3qvx21h1+LcqqJ2bP8wJTgeJcsm4f8tDJbVOVHPlUfUA3a7Jg34yfQflASszoB+FKftjWTpWDgsNDvAxyfzJ6yj3/yb4Qjm/rrBh58fwU3j5WqtN3KDMKnm4pOUprk54doaugqSf/zjDq4e6OsE1xTPMs7V2OyedlhOoBODTQjHjxPojlzYPWaIYqsHb5vGB0gE+01H3pEc1Xx3fV5DG5x7UqGfuQ+ThCS4+rQCvubGPatilwIvzNFsz9fEavkFltR2H6S/XSThVxq3P3wyL+lYcSn/bLr59Ft+mKRqg3NRLHyb/fn0cAafYeNcaykEtvYVhd+Qgj3dYDqDtUPKgaQfq4GbaMFAeVfcy7Jo8Otama0ceoN/Ff+D5m1ofjZg9nI/sxhNrbbAO644dYx3eALFjrI93lnNYvuwC66BPDW9EC+8smPEeOnh1y0/KqiQw8XCayIbXwUknu3CYiz7JTbXOM9nmLsM/TfLL09LbBjjCise6Wt0S6H33W9KJLTH2VtK1LYG3Be63pBNbAu+b229JJ7YEXk6835JObAm8O3W/JZ3YEn0fS7q2JbAk229JJ7YE/v9j+y1pb0t0dqnIOU2snJQo72/EG/2RbFXvY3iFFBlv+MiRFbmHJ5QLFzK8JHFLIGvl1zB2EXLuaomOQf736/9HiUFv!

Summing up

 Shrink the set of atoms assumed false

— as much as possible
- answer set still reconstructible (with simple inferences)
— computation powered by ASP

 Compute a DAG with ASP (and igraph)
— open it in XASP Navigator

- share it by sending a link
- search in the graph (symbolic rules, substitutions, atoms)

Large Language Models

Computational models achieving

and

other natural language processing tasks.

Large Language Models

Computational models achieving
general-purpose language generation and
other natural language processing tasks.

We have General Al here!

Large Language Models

Computational models achieving
general-purpose language generation and
other natural language processing tasks.

We have General Al here!

False! It is good at NLP

Logical reasoning is still our subject

Answer Set Programming

KRR language, good for combinatorial

search and optimization

Answer Set Programming

KRR language, good for combinatorial

search and optimization

% guess one color for each node
{fassign({X,C) : color(C)} = 1 :- node(X).

% adjacent nodes must have different colors
:- edge(X,Y), assign(X,C), assign(Y,C).

% minimize the number of used colors
:~ assign{_,C). [1@1, C]

Answer Set Programming

KRR language, good for combinatorial

search and optimization

% guess one color for each node
{fassign({X,C) : color(C)} = 1 :- node(X).

% adjacent nodes must have different colors
:- edge(X,Y), assign(X,C), assign(Y,C).

% minimize the number of used colors
:~ assign{_,C). [1@1, C]

Possibly (read it certainly)

there is a (huge) barrier to entry

Computer Programming

Output

Here is & list of their avallability:

- Andrew: 11 am to 3 pm

- Joanne: noon to 2 pm, and 3230 pm to 5 pm

- Hannah: noon to 12230 prm, and 4 pm to & prm

Based on their availability, there is a 30-minule window where all three of them are
available, which is from 4 pm o 4-30 pm. 50, the meeting can be scheduled at 4 pm,

=
=

Output

e

Here is a list of their availability:

- Andrew: T am to 3 pm

- Joanne: noon to 2 pm, and 3230 pm to 5 pm

d - Hannah: noon to 12230 prm, and 4 pm to & prm

o=
=

Based on their avalability, there is a 30-minule window where all three of them are
available, which is from 4 pm to 4-30 pm. So, the meeting can be scheduled at 4 pm,

As we are not a curch...

Idea Overview

Start with natural language

Idea Overview

Start with natural language

E{} Obtain a relational
representation (facts)

Idea Overview

Start with natural language

E{} Obtain a relational
representation (facts)

E:> Combine facts with a KB
(an ASP program)

Idea Overview

Start with natural language

E{} Obtain a relational

representation (facts)

E:> Combine facts with a KB
(an ASP program)

L

Map the answer set to
natural language

Idea Overview

Start with natural language

E{} Obtain a relational

representation (facts)

E:> Combine facts with a KB
(an ASP program)

L

Map the answer set to
natural language

LLMs themselves

A simple PROMPT
asking for facts

ChatGPT v &

Encode as Datalog facts the following sentences:
Tonight I want to go to eat some pizza

with Marco and Alessio. Marco really like the pizza
with onions as toppings.

@ Sure! Here are the sentences encoded as Datalog facts:

data

% Facts about the desire to go eat pizza
wants_to_eat_pizza(tonight, I).

% Facts about the people involved
going_with(I, Marco, tonight).
going_with(I, Alessio, tonight).

% Facts about pizza preferences

likes_pizza with_topping(Marco, onions).

Explanation of the facts:

e “wants_to_eat_pizza(tonight, I). expresses that"I" want to eat pizza
tonight.

s “going with(I, Marco, tonight). and “going with(I, Alessio,
tonight). " express that "I" will go with Marco and Alessio tonight.

¢ “likes pizza with_topping(Marco, onions).” expresses that Marco likes

pizza with onions as toppings.

LLMs themselves

A simple PROMPT
asking for facts

We need more control
on these facts!

ChatGPT v &

Encode as Datalog facts the following sentences:
Tonight I want to go to eat some pizza

with Marco and Alessio. Marco really like the pizza
with onions as toppings.

@ Sure! Here are the sentences encoded as Datalog facts:

data

% Facts about the desire to go eat pizza
wants_to_eat_pizza(tonight, I).

% Facts about the people involved
going_with(I, Marco, tonight).
going_with(I, Alessio, tonight).

% Facts about pizza preferences

likes_pizza with_topping(Marco, onions).

Explanation of the facts:

e “wants_to_eat_pizza(tonight, I). expresses that"I" want to eat pizza
tonight.

s “going with(I, Marco, tonight). and “going with(I, Alessio,
tonight). " express that "I" will go with Marco and Alessio tonight.

“likes pizza with_topping(Marco, onions).” expresses that Marco likes

pizza with onions as toppings.

LLMs themselves

A simple PROMPT
asking for facts

We need more control
on these facts!

And we don’t need
this garbage

ChatGPT v &

Encode as Datalog facts the following sentences:
Tonight I want to go to eat some pizza

with Marco and Alessio. Marco really like the pizza
with onions as toppings.

@ Sure! Here are the sentences encoded as Datalog facts:

datalog

% Facts about the desire to go eat pizza
wants_to_eat_pizza(tonight, I).

% Facts about the people involved
going_with(I, Marco, tonight).
going_with(I, Alessio, tonight).

% Facts about pizza preferences
likes_pizza with_topping(Marco, onions).

Explanation of the facts:
e “wants_to_eat_pizza(tonight, I). expresses that"I" want to eat pizza
tonight.

s “going with(I, Marco, tonight). and “going with(I, Alessio,

tonight). " express that "I" will go with Marco and Alessio tonight.

¢ “likes pizza with_topping(Marco, onions).” expresses that Marco likes

pizza with onions as toppings.

»EC O

Prompt Engineering ChatGPT v

You are a Natural Language to Datalog translator. To

Chat with the LLM... translate your

input to Datalog, you will be asked a sequence of

give instructions questions. The
on the format and answers are inside the user input provided with
task yOU want to achieve [USER_INPUT]input[/USER_INPUT] and the format is

provided with
[ANSWER_FORMAT]predicate(terms).
[/ANSWER_FORMAT]. Predicate is a
lowercase string (possibly including underscores).
Termsis a
comma-separated list of either double quoted
strings or integers.
Be sure to control the number of terms in each
answer!
An answer MUST NOT be answered if it is not present
in the user input.
Remember these instructions and don't say
anything!

® Understood. Please provide the input for translation.

Prompt Engineering ChatGPT v

You are a Natural Language to Datalog translator. To

Chat with the LLM... translate your

input to Datalog, you will be asked a sequence of

give instructions questions. The
on the format and answers are inside the user input provided with
task yOU want to achieve [USER_INPUT]input[/USER_INPUT] and the format is
provided with
[ANSWER_FORMAT]predicate(terms).
[/ANSWER_FORMAT]. Predicate is a
lowercase string (possibly including underscores).

We can start with general e
. . erms is a
Instructions for our task comma-separated list of either double quoted

strings or integers.

Be sure to control the number of terms in each
answer!

An answer MUST NOT be answered if it is not present
in the user input.

Remember these instructions and don't say
anything!

® Understood. Please provide the input for translation.

Here is some context that you MUST analyze and

remember. Something specific of the

The user provides a request to obtain catering application we are Working on
suggestions. The user can mention a day,

other persons, and their cuisine preferences.
Remember this context and don't say anything!

Understood. Please provide the user input for translation.

73 Here is some context that you MUST analyze and

dethatlon: Something specific of the
application we are working on

The user provides a request to obtain catering
suggestions. The user can mention a day,
other persons, and their cuisine preferences.
Remember this context and don't say anything!

® Understood. Please provide the user input for translation.

&2 [USER_INPUT]Tonight I want to go to eat some pizza
with Marco and Alessio. Marco

And we can start really like the pizza with onions as toppings.

extracting facts! [/USER_INPUT]
List all the persons mentioned including me if

indirectly included.
[ANSWER_FORMAT]person("who").
[/ANSWER_FORMAT]

® person("T").
person("Marco”).

person("Alessio").

[USER_INPUT]Tonight I want to go to eat some pizza
with Marco and Alessio. Marco

really like the pizza with onions as toppings.
[/USER_INPUT]

For each person, list any restaurant preferences.
[ANSWER_FORMAT]cuisine_preferences("who",
"country”).[/ANSWER_FORMAT]

mnon

cuisine_preferences("Marco", "pizza").

cuisine_preferences("Alessio”, "pizza").

cuisine_preferences("l", "pizza").

[USER_INPUT]Tonight I want to go to eat some pizza
with Marco and Alessio. Marco

really like the pizza with onions as toppings.
[/USER_INPUT]

For each person, list any restaurant preferences.
[ANSWER_FORMAT]cuisine_preferences("who",
"country”).[/ANSWER_FORMAT]

mnon

® cuisine_preferences("Marco”, "pizza").

cuisine_preferences("Alessio”, "pizza").
[USER_INPUT]Tonight I want to go to eat some pizza
with Marco and Alessio. Marco

really like the pizza with onions as toppings.
[/USER_INPUT]

For each person, list what they want to eat.
[ANSWER_FORMAT]want_food("who", "what").
[/ANSWER_FORMAT]

cuisine_preferences("l", "pizza").

@ want_food("T", "pizza").
want_food("Marco", "pizza with oninns").

want_food("Alessio", "pizza").

Reasoning with ASP

~—— | Extracted facts

person("I"}).

person("Marco").
person("Alessio").

cuisine_preferences("Marco", "pizza").
cuisine_preferences("Alessio", "pizza").
cuisine_preferences("I", "pizza").

want_food("I", "pizza").
want_food("Marco", "pizza with onions").
want_food("Alessio", "pizza").

Reasoning with ASP

~—— | Extracted facts

person("I"}).

person("Marco"). Combine facts
/ i
with a KB

person("Alessio"). .
can_go_together(X,Y,Z) :-

cuisine_preferences("Marco", "pizza"). person(X), person(Y), X <Y,
cuisine_preferences("Alessio", "pizza"). want_food(X,Z), want_food(Y,Z).
cuisine_preferences("I", "pizza").

can_go_together(X,Y,Z) :-
want_food("I", "pizza"). person(X), person(Y), X <Y,
want_food("Marco", "pizza with onions"). cuisine_preferences(X,Z), cuisine_preferences(Y,Z).
want_food("Alessio", "pizza").

#show can_go_together/3.

Reasoning with ASP

~—— | Extracted facts

/ Combine facts
- with a KB
can_go_together(X,Y,Z) :-

person(X), person(Y), X <Y,
want_food(X,Z), want_food(Y,Z).

can_go_together(X,Y,Z) :-
person(X), person(Y), X <Y,
cuisine_preferences(X,Z), cuisine_preferences(Y,Z).

person("I"}). -
person("Marco").
person("Alessio").
cuisine_preferences("Marco", "pizza").
cuisine_preferences("Alessio", "pizza").
cuisine_preferences("I", "pizza").
want_food("I", "pizza").
want_food("Marco", "pizza with onions").
want_food("Alessio", "pizza").
Obtain an
answer set

#show can_go_together/3.

——_

can_go_together("Alessio", "Marco", "pizza").
can_go_together("I", "Marco", "pizza").
can_go_together("Alessio","I", "pizza").

Back to Natural Lanquage

You are now a Datalog to Natural Language
translator.

You will be given relational facts and mapping
instructions.

Relational facts are given in the form
[FACTS]atoms[/FACTS].

Remember these instructions and don't say
anything!

@ Understood. Please provide the relational facts and mapping instructions.

General instructions
on the task

Back to Natural Language

©

You are now a Datalog to Natural Language
translator.

You will be given relational facts and mapping
instructions.

Relational facts are given in the form
[FACTS]atoms[/FACTS].

Remember these instructions and don't say
anything!

Understood. Please provide the relational facts and mapping instructions.

Something specific of the
application we are working
on

General instructions
on the task

Here is some context that you MUST analyze and
remember.

Explain the facts in a human readable way, as a
paragraph.

Remember this context and don't say anything!

® Understood. Please provide the relational facts for translation.

Provide facts and
mapping instructions

m m m mn

[FACTS]can_go_together("me", "marco”,
can_go_together("me", "alessio", "pizza").
can_go_together("marco", "alessio", "pizza"). [/FACTS]
Each fact matching can_go_together("person 1",
"person 2", "cuisine preference") must be

interpreted as follows: Say that "person 1" can go

pizza").

with "person 2" to eat "cuisine preference”.

Collect answers

® Ican go with Marco to eat pizza. I can go with Alessio to eat pizza. Marco can

go with Alessio to eat pizza.

74 Summarize the following responses:
I can go with Marco to eat pizza. I can go with Alessio
to eat pizza. Marco can go with Alessio to eat pizza.

The responses indicate that the speaker (presumably "me") can accompany
Marco and Alessio to eat pizza, and Marco can also accompany Alessio to eat

pizza.

Ask to summarize the
collected responses

This is the output
shown to the user

Let’s Automate IT!

YAML (yet another markup language)

Like JSON... but more readable

Let’s Automate IT!

YAML (yet another markup language)

Like JSON... but more readable

name: Lorenzo
degrees:
- Bachelor

short bio:

I'm Lorenzo. ..

I'm a studen
| e | -] A d bl &

/ Here is an object with properties

~ 1 Ll_]':-.n'l
AL JINLWAL . o

name, degrees and short bio
degrees is a list (of values)

short bio is a string (block notation)

Let’s Automate IT!

YAML (yet another markup language)

Like JSON... but more readable

name: Lorenzo / Here is an object with properties
degrees: name, degrees and short bio
- Bachelor
short bio: degrees is a list (of values)
I'm Lorenzo...
I'm a student at UNICAL... short bio is a string (block notation)

ﬁ We use YAML to

T 7 define an application

- _: The user provides a request to obtain catering suggestions.
The user can mention a day, other persons, and their cuisine preferences.
- person("who"): List all the persons mentioned including me if indirectly included.

- cuisine_preferences("who", "country"): For each person, list any restaurant preferences.
- want_food("who", "what"): For each person, list what they want to eat.

knowledge base: |
can_go_together(X,Y,Z) :-
person(X), person(Y), X <Y,
want_food(X,Z), want_food(Y,Z).

can_go_together(X,Y,Z) :-
person(X), person(Y), X <Y,
cuisine_preferences(X,Z), cuisine_preferences(Y,Z).

#show can_go_together/3.

postprocessing:
- _! Explain the facts in a human readable way, as a paragraph.
- can_go_together("person 1", "person 2", "cuisine preference"): |
Say that "person 1" can go with "person 2" to eat "cuisine preference".

—

preprocessing: //'

We use YAML to
define an application

- _: The user provides a request to obtain catering suggestions.
The user can mention a day, other persons, and their cuisine preferences.
- person("who"): List all the persons mentioned including me if indirectly included.

- cuisine_preferences("who", "country"):

__

knowledge base: |

For each person,
- want_food("who", "what"): For each person, list what they want to eat.

list any restaurant preferences.

can_go_together(X,Y,Z)
person(X), person(Y), X <Y,
want_food(X,Z), want_food(Y,Z).

can_go_together(X,Y,Z) :-
person(X), person(Y), X <Y,
cuisine_preferences(X,Z), cuisine_preferences(Y,Z).
#show

- - + -~ T £ - F
can_go_together/3.

postprocessing:

- _! Explain the facts in a human readable way, as a paragraph.
- can_go_together("person 1", "person 2", "cuisine preference"): |
Say that "person 1" can go with "person 2" to eat "cuisine preference".

Preprocessing includes the context and
the instructions on the atoms to extract
from the input

—

preprocessing: //’

We use YAML to
define an application

- _: The user provides a request to obtain catering suggestions.
The user can mention a day, other persons, and their cuisine preferences.
- person("who"): List all the persons mentioned including me if indirectly included.

- cuisine_preferences("who", "country"):

__

knowledge base: |

For each person,
- want_food("who", "what"): For each person, list what they want to eat.

list any restaurant preferences.

can_go_together(X,Y,Z)
person(X), person(Y), X <Y,
want_food(X,Z), want_food(Y,Z).

can_go_together(X,Y,Z)

Preprocessing includes the context and
the instructions on the atoms to extract
from the input

- |
person(X), person(Y), X <Y, ~"""‘555555555555555-5"““-—

cuisine_preferences(X,Z), cuisine_preferences(Y,Z).
#show can_gc

0_together/3.

postprocessing:

- _! Explain the facts in a human readable way, as a paragraph.
- can_go_together("person 1", "person 2", "cuisine preference"): |
Say that "person 1" can go with "person 2" to eat "cuisine preference".

KB is simply an ASP program

preprocessing:

We use YAML to
define an application

_: The user provides a request to obtain catering suggestions.
The user can mention a day, other persons, and their cuisine preferences.
- person("who"): List all the persons mentioned including me if indirectly included.

- cuisine_preferences("who",
- want_food("who", "what"):

knowledge base: |
can_go_together(X,Y,Z)
person(X), person(Y), X <Y,
want_food(X,Z), want_food(Y,Z).

can_go_together(X,Y,Z)
person(X), person(Y), X <Y,

cuisine_preferences(X,Z), cuisine_preferences(Y,Z).

postprocessing:

- _! Explain the facts in a human readable way, as a paragraph.
"person 2",
Say that "person 1" can go with "person 2" to eat "cuisine preference".

- can_go_together("person 1",

"country"):
For each person,

For each person, list any restaurant preferences.

list what they want to eat.

_;

Preprocessing includes the context and
the instructions on the atoms to extract
from the input

\ |

KB is simply an ASP program

Postprocessing includes the context
and the mapping instructions

d

"cuisine preference"): |

Architecture Overview ﬂ

2. Extract the atoms from the
preprocessed input

6. Convert the ASP result to a Bressrssmnrmsnsneaes

human readable string
(postprocessing)

.....

7. Output the
converted string

1. Preprocess the User Input

sarnrd 3. Get the Extracted Atoms

5. Get the Reason Output

4. Reasoning over
the Extracted Atoms

Input
YAML APPLICATION
Contains:
Preprocessing info,
l:lser In!JUt Knowledge Base (ASP code),
(in English) Postprocessing info
| I
‘)
CORE <
LLMASP ENGINE
1 LLM ENGINE ASP ENGINE
Output for the user
........... 7 (in English)
Output }~

Summing UP

LLMASP combines
NLP capabilities of LLMs
with the deep reasoning of ASP

Summing UP

LLMASP combines
NLP capabilities of LLMs
with the deep reasoning of ASP

Summing UP

LLMASP combines
NLP capabilities of LLMs
with the deep reasoning of ASP

We automated the interaction

with LLM and ASP engines

Still a lot to do!

Why those prompts and not something different?
We have to build a dataset.

We have to try different prompts and measure their quality.

We can start with the preprocessing and then evaluate the
postprocessing by extracting facts from the produced output.

)
C
O

=
0
@
-

O

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 140

