Algorithms for Causal Probabilistic Graphical Models

Class 4: Sampling & Monte Carlo Methods

Athens Summer School on Al July 2024

Prof. Rina Dechter Prof. Alexander Ihler

NE

Outline of Lectures

Class 2: Bounds & Variational Methods

ESSAI 2024

Outline

Monte Carlo: Basics

Importance Sampling

Stratified & Abstraction Sampling

Markov Chain Monte Carlo

Integrating Inference and Sampling

The *combination operator* defines an overall function from the individual factors, e.g., "*" : $P(S, K, R, W) = P(S) \cdot P(K|S) \cdot P(R|S) \cdot P(W|K, S)$

Notation:

Discrete Xi values called "states"

"Tuple" or "configuration": states taken by a set of variables "Scope" of f: set of variables that are arguments to a factor f often index factors by their scope, e.g., $f_{\alpha}(X_{\alpha})$, $X_{\alpha} \subseteq X$

Probabilistic Reasoning Problems

- Exact inference time, space exponential in induced width
- Use randomness to help?

Monte Carlo estimators

- Most basic form: empirical estimate of probability $\mathbb{E}[u(x)] = \int p(x)u(x) \approx U = \frac{1}{m} \sum_{i} u(\tilde{x}^{(i)}) \qquad \tilde{x}^{(i)} \sim p(x)$
- Relevant considerations
 - Able to sample from the target distribution p(x)?
 - Able to evaluate p(x) explicitly, or only up to a constant? $p(x|e) = \frac{p(x,e)}{p(e)}$
- "Any-time" properties
 - Unbiased estimator, $\mathbb{E}[U] = \mathbb{E}[u(x)]$ or asymptotically unbiased, $\mathbb{E}[U] \to \mathbb{E}[u(x)]$ as $m \to \infty$
 - Variance of the estimator decreases with m

Monte Carlo estimators

• Most basic form: empirical estimate of probability

$$\mathbb{E}[u(x)] = \int p(x)u(x) \approx U = \frac{1}{m} \sum_{i} u(\tilde{x}^{(i)}) \qquad \tilde{x}^{(i)} \sim p(x)$$

- Central limit theorem
 - p(U) is asymptotically Gaussian:

- Finite sample confidence intervals
 - If u(x) or its variance are bounded, e.g., $u(x^{(i)}) \in [0, 1]$ probability concentrates rapidly around the expectation: $\Pr[|U - \mathbb{E}[U]| > \epsilon] \leq O(\exp(-m\epsilon^2))$

 $\mathbb{E}[U]$

Example: Alarm network

[Beinlich et al., 1989]

- Estimate p(HR=1)?
 - Implicitly defined by model's other probabilities _____
 - But, easy to estimate p(X) from samples! ____
 - And, samples are easy to generate! ____
 - Draw values for any roots; then their children...

Sampling in Bayes nets [e.g., Henrion 1988]

- No evidence: "causal" form makes sampling easy
 - Follow variable ordering defined by parents
 - Starting from root(s), sample downward
 - When sampling each variable, condition on values of parents

p(A, B, C, D) = p(A) p(B) p(C | A, B) p(D | B, C)

Sample:

$$a \sim p(A)$$

$$b \sim p(B)$$

$$c \sim p(C \mid A = a, B = b)$$

$$d \sim p(D \mid C = c, B = b)$$

Bayes nets with evidence

- Estimating the probability of evidence, P[E=e]: $P[E = e] = \mathbb{E}[\mathbb{1}[E = e]] \approx U = \frac{1}{m} \sum_{i} \mathbb{1}[\tilde{e}^{(i)} = e]$
 - Finite sample bounds: u(x) 2 [0,1] [e.g., Hoeffding] $\Pr\left[|U - \mathbb{E}[U]| > \epsilon\right] \le 2 \exp(-2m\epsilon^2)$

What if the evidence is unlikely? P[E=e]=1e-6) could estimate U = 0!

Relative error bounds

[Dagum & Luby 1997]

$$\Pr\left[\frac{|U - \mathbb{E}[U]|}{\mathbb{E}[U]} > \epsilon\right] \le \delta \quad \text{if} \quad m \ge \frac{4}{\mathbb{E}[U]\epsilon^2} \log \frac{2}{\delta}$$

Algorithm: Forward sampling

• Easy to draw samples from Bayes nets:

Algorithm 1 Forward sampling (no evidence) 1: Order *o* such that if X_j is a child of X_i , then o[i] < o[j]. 2: for $j = 1 \dots m$ do 3: for $i = o[1] \dots o[n]$ do 4: Sample $x_i^{(j)} \sim p(X_i | X_{pa_i} = x_{pa_i}^{(j)})$ 5: Estimate $\hat{p}(X_i = a) = \#\{x_i^{(j)} = a\} / m$

• Samples can be used to estimate any expectation:

$$\mathbb{E}_p[F(x)] = \int p(x)F(x) \approx \frac{1}{m} \sum_j F(x^{(j)}) \qquad x^{(j)} \sim p(x)$$

- Example: Pr(Xi = a) = E[1[Xi=a]]

Bayes nets with evidence

- Estimating the probability of evidence, P[E=e]: $P[E = e] = \mathbb{E}[\mathbb{1}[E = e]] \approx U = \frac{1}{m} \sum_{i} \mathbb{1}[\tilde{e}^{(i)} = e]$
 - Finite sample bounds: u(x) 2 [0,1] [e.g., Hoeffding] $\Pr\left[|U - \mathbb{E}[U]| > \epsilon\right] \le 2 \exp(-2m\epsilon^2)$

What if the evidence is unlikely? P[E=e]=1e-6) could estimate U = 0!

Relative error bounds

[Dagum & Luby 1997]

$$\Pr\left[\frac{|U - \mathbb{E}[U]|}{\mathbb{E}[U]} > \epsilon\right] \le \delta \quad \text{if} \quad m \ge \frac{4}{\mathbb{E}[U]\epsilon^2} \log \frac{2}{\delta}$$

Ex: Burglary Model

What is p(E|W=1)?

- Rejection sampling
 - Discard many samples with W=0
- "Likelihood weighting"
 - Just "set" W=1
 - Now sampling E=0,W=1 too often!
 - Weight samples to adjust
- Want to draw E=1 more often!
 - Exact sampling: use inference(same work as just finding the answer?)

Exact sampling via inference

- Draw samples from P[X|E=e] directly?
 - Model defines un-normalized $p(X_1,...,E=e)$
 - Build (oriented) tree decomposition & sample

$$\begin{split} \tilde{\mathbf{b}} &\sim f(\tilde{a}, b) \cdot f(b, \tilde{c}) \cdot f(b, \tilde{d}) \cdot f(b, \tilde{e}) / \lambda_{B \to C} \\ \tilde{\mathbf{c}} &\sim f(c, \tilde{a}) \cdot f(c, \tilde{e}) \cdot \lambda_{B \to C}(\tilde{a}, c, \tilde{d}, \tilde{e}) / \lambda_{C \to D} \\ \tilde{\mathbf{d}} &\sim f(\tilde{a}, d) \cdot \lambda_{B \to D}(d, \tilde{e}) / \lambda_{D \to E}(\tilde{a}, \tilde{e}) \\ \tilde{\mathbf{e}} &\sim \lambda_{D \to E}(\tilde{a}, e) / \lambda_{E \to A}(\tilde{a}) \\ \tilde{\mathbf{a}} &\sim p(A) = f(a) \cdot \lambda_{E \to A}(a) / Z \end{split}$$

Downward message normalizes bucket; ratio is a conditional distribution

Work: O(exp(w)) to build distribution O(n d) to draw each sample

ESSAI 2024

Outline

Monte Carlo: Basics

Importance Sampling

Stratified & Abstraction Sampling

Markov Chain Monte Carlo

Integrating Inference and Sampling

Importance Sampling

• Basic empirical estimate of probability:

$$\mathbb{E}[u(x)] = \int p(x)u(x) \approx \hat{u} = \frac{1}{m} \sum_{i} u(\tilde{x}^{(i)}) \qquad \tilde{x}^{(i)} \sim p(x)$$

What if we can't sample from p(.) easily?

• Importance sampling:

$$\int p(x)u(x) = \int q(x)\frac{p(x)}{q(x)}u(x) \approx \frac{1}{m}\sum_{i}\frac{p(\tilde{x}^{(i)})}{q(\tilde{x}^{(i)})}u(\tilde{x}^{(i)}) \qquad \tilde{x}^{(i)} \sim q(x)$$

Importance Sampling

Basic empirical estimate of probability:

$$\mathbb{E}[u(x)] = \int p(x)u(x) \approx \hat{u} = \frac{1}{m} \sum_{i} u(\tilde{x}^{(i)}) \qquad \tilde{x}^{(i)} \sim p(x)$$

Importance sampling:

$$\int p(x)u(x) = \int q(x)\frac{p(x)}{q(x)}u(x) \approx \frac{1}{m}\sum_{i}\frac{p(\tilde{x}^{(i)})}{q(\tilde{x}^{(i)})}u(\tilde{x}^{(i)}) \qquad \tilde{x}^{(i)} \sim q(x)$$

IS for common queries

• Partition function / Probability of Evidence

$$Z = \sum_{x} f(x) = \sum_{x} q(x) \frac{f(x)}{q(x)} = \mathbb{E}_q \left[\frac{f(x)}{q(x)} \right] \approx \frac{1}{m} \sum w^{(i)}$$

- Unbiased; only requires evaluating unnormalized function f(x)
- General expectations wrt p(x|E) / p(x,E) = f(x)?
 - E.g., conditional marginal probabilities, etc.

$$\mathbb{E}_p[u(x)] = \sum_x u(x) \frac{f(x)}{Z} = \frac{\mathbb{E}_q[u(x)f(x)/q(x)]}{\mathbb{E}_q[f(x)/q(x)]} \approx \frac{\sum u(\tilde{x}^{(i)})w^{(i)}}{\sum w^{(i)}}$$
Estimate separately

"self-normalized" IS: only asymptotically unbiased...

 $w^{(i)} = \frac{f(\tilde{x}^{(i)})}{q(\tilde{x}^{(i)})}$

Importance Sampling

• Importance sampling:

$$\int p(x)u(x) = \int q(x)\frac{p(x)}{q(x)}u(x) \approx \frac{1}{m}\sum_{i}\frac{p(\tilde{x}^{(i)})}{q(\tilde{x}^{(i)})}u(\tilde{x}^{(i)}) \qquad \tilde{x}^{(i)} \sim q(x)$$

- IS is unbiased and fast if q(.) is easy to sample from
- IS can be lower variance if q(.) is chosen well
 - Ex: q(x) puts more probability mass where u(x) is large
 - Optimal: q(x) / |u(x) p(x)|
- IS can also give poor performance
 - If $q(x) \ll u(x) p(x)$: rare but very high weights!
 - Then, empirical variance is also unreliable!
 - For guarantees, need to analytically bound weights / variance...

Dechter & Ihler

Choosing a proposal

[Liu, Fisher, Ihler 2015]

mini-huckets

• Can use WMB upper bound to define a proposal q(x):

$$\begin{split} \tilde{\mathbf{b}} &\sim w_1 \, q_1(b|\tilde{a}, \tilde{c}) \,+\, w_2 \, q_2(b|\tilde{d}, \tilde{e}) \\ & \text{Weighted mixture:} \\ & \text{use minibucket 1 with probability } w_1 \\ & \text{or, minibucket 2 with probability } w_2 = \mathbf{1} \cdot w_1 \\ & \text{where} \\ & q_1(b|a, c) = \left[\frac{f(a, b) \cdot f(b, c)}{\lambda_{B \to C}(a, c)}\right]^{\frac{1}{w_1}} \\ \vdots \\ \tilde{\mathbf{a}} &\sim q(A) = f(a) \cdot \lambda_{E \to A}(a)/U \end{split}$$

Key insight: provides bounded importance weights!

$$0 \le \frac{F(x)}{q(x)} \le U \qquad \forall x$$

B:
$$\begin{array}{c} w_{1} \\ f(a,b) f(b,c) \\ f(b,d) f(b,e) \\ f(c,a) f(c,e) \lambda_{B \to C}(a,c) \\ f(a,d) \lambda_{B \to D}(d,e) \\ f(a,d) \lambda_{E \to E}(a,e) \\ \lambda_{C \to E}(a,e) \lambda_{E \to E}(a,e) \\ f(a) \lambda_{E \to A}(a) \\ \end{array}$$

U = upper bound

Dechter & Ihler

WMB-IS Bounds

Finite sample bounds on the average $\Pr\left[|\hat{Z} - Z| > \epsilon\right] \le 1 - \delta$

$$= \sqrt{\frac{2\hat{V}\log(4/\delta)}{m}} + \frac{7\,U\,\log(4/\delta)}{3(m-1)}$$
 "Empirical Bernstein" bounds

- Compare to forward sampling
 - Works well if evidence "not too unlikely") not too much less likely than U

 ϵ

[Liu, Fisher, Ihler 2015]

Other choices of proposals

- Belief propagation
 - BP-based proposal [Changhe & Druzdzel 2003]
 - Join-graph BP proposal [Gogate & Dechter 2005]
 - Mean field proposal [Wexler & Geiger 2007]

Join graph:

Other choices of proposals

- Belief propagation
 - BP-based proposal [Changhe & Druzdzel 2003]
 - Join-graph BP proposal [Gogate & Dechter 2005]
 - Mean field proposal [Wexler & Geiger 2007]
- Adaptive importance sampling
 - Use already-drawn samples to update q(x)
 - Rates v_t and $'_t$ adapt estimates, proposal
 - Ex:

. . .

[Cheng & Druzdzel 2000] [Lapeyre & Boyd 2010]

Lose "iid"-ness of samples

ampling ples to update q(x) imates proposal

Adaptive IS	
1: I	nitialize $q_0(x)$
2: f	$\mathbf{pr} \ t = 0 \dots T \ \mathbf{do}$
3:	Draw $\tilde{X}_t = {\tilde{x}^{(i)}} \sim q_t(x)$
4:	$U_t = \frac{1}{m_t} \sum \hat{f}(\tilde{x}^{(i)}) / q_t(\tilde{x}^{(i)})$
5:	$\hat{U} = (1 - v_t)\hat{U} + v_t U_t$
6:	$q_{t+1} = (1 - \eta_t)q_t + \eta_t q^*(X_t)$

Outline

Monte Carlo: Basics

Importance Sampling

Stratified & Abstraction Sampling

Markov Chain Monte Carlo

Integrating Inference and Sampling

Systematic Search vs Sampling

- Enumerate states
- Every stone turned
- No stone turned more than once

Systematic Search vs Sampling

A: 0 1 2 1 B: 0 1 2 1 2 C: 0 1 0 1 0 1 1 2 1 2 1 2 1 2 D: 0 1 0 1 0 1 0 1 1 2 1

Systematic Search

Importance Sampling

- Enumerate states
- Every stone turned
- No stone turned more than once
- Exploit "typicality" via randomization
- Concentration inequalities

Stratified Sampling

- Organize states into groups ("strata")
 - Enumerate over strata
 - Importance sampling within each strata
- Reduces estimate variance
- Intermediate
 - Part search, part sampling
- "Ensemble" Monte Carlo
 - Draw multiple samples together
 - Samples are anti-correlated

[Knuth, 1975; Chen, 1992; Rizzo, 2007]

Abstraction Sampling

- [Broka et al. 2018, Kask et al. 2020, Pezeshki et al. 2024]
- View ensemble of samples as a search sub-tree
 - Draw probe level by level
 - Use stratified sampling at each stage
- Exploit AND/OR search tree structure
 - Probe compactly represents many states
- Abstraction function defines strata
 - An area of ongoing development

AND/OR Abstraction Probe:

Outline

Monte Carlo: Basics

Importance Sampling

Stratified & Abstraction Sampling

Markov Chain Monte Carlo

Integrating Inference and Sampling

MCMC Sampling

• Recall: Basic empirical estimate of probability:

$$\mathbb{E}[u(x)] = \int p(x)u(x) \approx \hat{u} = \frac{1}{m} \sum_{i} u(\tilde{x}^{(i)}) \qquad \tilde{x}^{(i)} \sim p(x)$$

What if we can't sample from p(.) easily?

- Can we design a procedure to sample from p(x) anyway?
- Example: card shuffling
 - Want: a uniform distribution over card deck orders. How?
 - Create a "process" that converges to the right distribution
 - Ex: pick two cards at random & swap them with probability 1/2:
 - How do we know this will converge to the right distribution?

Markov Chains

- Temporal model
 - State at each time t
 - "Markov property": state at time t depends only on state at t-1

X₀

- "Homogeneous" (in time): $p(X_t | X_{t-1}) = T(X_t | X_{t-1})$ does not depend on t
- Example: random walk
 - Time 0: $x_0 = 0$
 - Time t: $x_t = x_{t-1}$ § 1

X₃

х₂

Markov Chains

- Temporal model
 - State at each time t
 - "Markov property": state at time t depends only on state at t-1

Xn

- "Homogeneous" (in time): $p(X_t | X_{t-1}) = T(X_t | X_{t-1})$ does not depend on t

 \mathbf{X}_2

X₃

Example: finite state machine 1/3 **S1** - Time 0: $x_0 = S3$ - Ex: S3 ! S1 ! S3 ! S2 ! ... 1/2 - What is $p(x_t)$? Does it depend on x_0 ? **S**3 S1: S2: S3: $P(x_0)$ $P(x_1)$ $P(x_2)$ $P(x_{100})$ $P(x_3)$

Stationary distributions

- Stationary distribution s(x) : $s(x_{t+1}) = \sum_{x_t} p(x_{t+1} | x_t) s(x_t)$
- p(x_t) becomes independent of p(x₀)?
- Sufficient conditions for s(x) to exist and be unique:
 - (a) p(.|.) is acyclic: $gcd\{t : Pr[x_t = s_i | x_0 = s_i] > 0\} = 1$ (b) p(.|.) is irreducible: $\forall i, j \exists t : Pr[x_t = s_i | x_0 = s_i] > 0$

Without both (a) & (b), long-term probabilities may depend on the initial distribution

Stationary distributions

- Uniqueness of the stationary distribution is powerful
- Recall: simple shuffling

- Irreducible?
 - Yes: there is a path between any two orderings
- Acyclic?
 - Yes: if there is a path of length L, there is also one of length L+1, L+2, ...
- So, the stationary distribution is unique!
 - Now just show that "uniform over orders" is a stationary dist...

Markov Chain Monte Carlo

- Method for generating samples from an intractable p(x)
 - Create a Markov chain whose stationary distribution equals p(x)

- Sample $x^{(1)}...x^{(m)}$; $x^{(m)} \sim p(x)$ if m sufficiently large
- Two common methods:

Metropolis sampling

- Propose a new point x' using q(x' | x); depends on current point x
- Accept with carefully chosen probability, a(x',x)
- Gibbs sampling
 - Sample each variable in turn, given values of all the others

Metropolis-Hastings

- At each step, propose a new value x' ~ q(x' | x)
- Decide whether we should move there
 - If p(x') > p(x), it's a higher probability region (good)
 - If q(x|x') < q(x'|x), it will be hard to move back (bad)
 - Accept move with a carefully chosen probability:

$$a(x',x) = \min\left[1 \ , \ \frac{p(x')q(x|x')}{p(x)q(x'|x)}\right]$$
Ratio p(

Probability of "accepting" the move from x to x'; otherwise, stay at state x.

Ratio p(x') / p(x) means that we can substitute an unnormalized distribution f(x) if needed

- The resulting transition probability T(x'|x) = q(x'|x) a(x', x)has *detailed balance* with p(x), a sufficient condition for stationarity
Detailed balance in Markov chains

- Detailed balance: s(x') T(x|x') = s(x) T(x'|x)
 - Mass moving from i to j at steady-state equals mass moving from j to i
 - A sufficient condition for s(.) to be the stationary dist.

$$\sum_{x} s(x') T(x|x') = s(x') = \sum_{x} s(x) T(x'|x)$$

- Metropolis-Hastings:
 - Transition depends on propose & accept: T(x'|x) = q(x'|x) a(x',x)

$$\Rightarrow p(x') q(x|x') a(x, x') = p(x) q(x'|x) a(x', x)$$

$$\Rightarrow \frac{a(x', x)}{a(x, x')} = \frac{p(x') q(x|x')}{p(x) q(x'|x)} \qquad \text{If less than 1: assign to a(x', x) greater than 1: assign to a(x, x') }$$

$$\Rightarrow a(x', x) = \min \left[1, \frac{p(x')q(x|x')}{p(x)q(x'|x)}\right]$$

Mixing Rate

- How quickly do approach the stationary distribution?
 - Rate to get a sample from p(x)
 - Rate of independent samples (forget previous value)
- Depends on the transitions of the Markov chain

T = 25

Metropolis-Hastings (symmetric proposal)

x = np.zeros((1,2)); % set or sample initial state for t in range(T): % simulate Markov chain:

% define f(x) / p(x), target

f = lambda X: ...

T = 50

Metropolis-Hastings (symmetric proposal)

f = lambda X: ... % define f(x) / p(x), targetx = np.zeros((1,2)); % set or sample initial statefor t in range(T): % simulate Markov chain: $x_ = x + .5*np.random.randn(1,2) % propose move$ $r = min(1,f(x_)/f(x)) % compute acceptance$ $if np.random.rand() < r: x = x_ % sample acceptance$ // sample acceptance// sample acceptance

T = 500

Metropolis-Hastings (symmetric proposal)

f = lambda X: ... % define f(x) / p(x), targetx = np.zeros((1,2)); % set or sample initial statefor t in range(T): % simulate Markov chain: $x_ = x + .5*np.random.randn(1,2) % propose move$ $r = min(1,f(x_)/f(x)) % compute acceptance$ $if np.random.rand() < r: x = x_ % sample acceptance$ // sample acceptance// sample acceptance

T = 10000 (subsampled by 10)

Metropolis-Hastings (symmetric proposal)

f = lambda X: ... % define f(x) / p(x), target x = np.zeros((1,2)); % set or sample initial state for t in range(T): % simulate Markov chain: x = x + .5*np.random.randn(1,2) % propose move $r = \min(1, f(x_{-})/f(x))$ if np.random.rand() < r: x = x_

% compute acceptance % sample acceptance

Asymptotically, samples will represent p(x)

May choose to "decimate" (keep only every kth sample), for memory/storage reasons

Mixing behavior

- What makes MCMC mix slowly?
- Transition proposal is:
 - too small? Can't change the state much!
 - too large? Try states with low probability; reject: same state!

Markov Chain Monte Carlo

- Method for generating samples from an intractable p(x)
 - Create a Markov chain whose stationary distribution equals p(x)

- Sample $x^{(1)}...x^{(m)}$; $x^{(m)} \sim p(x)$ if m sufficiently large
- Two common methods:
- Metropolis sampling
 - Propose a new point x' using q(x' | x); depends on current point x
 - Accept with carefully chosen probability, a(x',x)

Gibbs sampling

- Sample each variable in turn, given values of all the others

Gibbs sampling

- Proceed in rounds
 - Sample each variable in turn given all the others' most recent values:

 $x'_{0} \sim p(X_{0}|x_{1}, x_{2}, x_{3})$ $x'_{1} \sim p(X_{1}|x'_{0}, x_{2}, x_{3})$ $x'_{2} \sim p(X_{2}|x'_{0}, x'_{1}, x_{3})$ \vdots

- Conditional distributions depend only on the Markov blanket
- Easy to see that p(x) is a stationary distribution:

 $\sum_{x_1} p(x_1'|x_2...x_n) p(x_1,...x_n) = p(x_1'|x_2...x_n) p(x_2,...x_n) = p(x_1',x_2...x_n)$

Advantages: No rejections No free parameters (q)

Disadvantages:

"Local" moves May mix slowly if vars strongly correlated (can fail with determinism)

MCMC and Common Queries

- MCMC generates samples (asymptotically) from p(x)
- Estimating expectations is straightforward $\mathbb{E}[u(x)] = \int p(x)u(x) \approx \hat{u} = \frac{1}{m} \sum_{i} u(\tilde{x}^{(i)}) \qquad \{ x^{(i)} \} \sim p(x)$
- Estimating the partition function

$$\frac{1}{Z} = \int_{x} p_0(x) \frac{1}{Z} = \int_{x} p_0(x) \frac{p(x)}{f(x)}$$

MCMC and Common Queries

- MCMC generates samples (asymptotically) from p(x)
- Estimating expectations is straightforward $\mathbb{E}[u(x)] = \int p(x)u(x) \approx \hat{u} = \frac{1}{m} \sum_{i} u(\tilde{x}^{(i)}) \qquad \{x^{(i)}\} \sim p(x)$
- Estimating the partition function

$$\frac{1}{Z} = \int_{x} p_0(x) \frac{1}{Z} = \int_{x} p_0(x) \frac{p(x)}{f(x)} \approx \frac{1}{n} \sum_{i} \frac{p_0(x^{(i)})}{f(x^{(i)})}$$

"Reverse" importance sampling $\hat{Z}_{ris} = \left[\frac{1}{n}\sum_{i}\frac{p_0(x^{(i)})}{f(x^{(i)})}\right]^{-1}$

Ex: Harmonic Mean Estimator [Newton & Raftery 1994; Gelfand & Dey, 1994] $f(x) = p(D|\theta)p(\theta)$ $p_0(x) = p(\theta)$

Dechter & Ihler

ESSAI 2024

MCMC

- Samples from p(x) asymptotically (in time)
 - Samples are not independent
- Rate of convergence ("mixing") depends on
 - Proposal distribution for MH
 - Variable dependence for Gibbs
- Good choices are critical to getting decent performance
- Difficult to measure mixing rate; lots of work on this
- Usually discard initial samples ("burn in")
 - Not necessary in theory, but helps in practice
- Average over rest; asymptotically unbiased estimator $\mathbb{E}[u(x)] = \int p(x)u(x) \approx \hat{u} = \frac{1}{m} \sum_{i} u(\tilde{x}^{(i)}) \qquad \tilde{x}^{(i)} \sim p(x)$

Monte Carlo

Importance sampling

- i.i.d. samples
- Unbiased estimator
- Bounded weights provide finite-sample guarantees
- Samples from Q
- Good proposal: close to p but easy to sample from
- Reject samples with zeroweight

MCMC sampling

- Dependent samples
- Asymptotically unbiased
- Difficult to provide finitesample guarantees
- Samples from ¼ P(X|e)
- Good proposal: move quickly among high-probability x
- May not converge with deterministic constraints

Outline

Monte Carlo: Basics

Importance Sampling

Stratified & Abstraction Sampling

Markov Chain Monte Carlo

Integrating Inference and Sampling

Estimating with samples

- Suppose we want to estimate $p(X_i | E)$
- Method 1: histogram (count samples where X_i=x_i)

$$P(X_i = x_i | E) \approx \frac{1}{m} \sum_t \mathbb{1}[\tilde{x}_i^{(t)} = x_i] \qquad \tilde{x}^{(t)} \sim p(X|E)$$

Method 2: average probabilities

$$P(X_i = x_i | E) \approx \frac{1}{m} \sum_t p(x_i | \tilde{x}_{\neg i}^{(t)}) \qquad \tilde{x}^{(t)} \sim p(X | E$$

Converges faster! (uses all samples)

[e.g., Liu et al. 1995]

Rao-Blackwell Theorem:

Let X = (X_S, X_T), with joint distribution p(X_S, X_T), to estimate $\mathbb{E}[u(X_S)]$ Then, $\operatorname{Var}\left[\mathbb{E}[u(X_S)|X_T]\right] \leq \operatorname{Var}\left[u(X_S)\right]$

Weak statement, but powerful in practice! Improvement depends on X_s,X_T

Cutsets

- Exact inference:
 - Computation is exponential in the graph's induced width
- "w-cutset": set C, such that $p(X_{:C} | X_C)$ has induced width w
 - "cycle cutset": resulting graph is a tree; w=1

Cutset Importance Sampling

[Gogate & Dechter 2005, Bidyuk & Dechter 2006]

- Use cutsets to improve estimator variance
 - Draw a sample for a w-cutset X_c
 - Given X_c, inference is O(exp(w))

(Use weighted sample average for X_c ; weighted average of probabilities for X_{c})

Using Inference in Gibbs sampling

- "Blocked" Gibbs sampler
 - Sample several variables together

- Cost of sampling is exponential in the block's induced width
- Can significantly improve convergence (mixing rate)
- Sample strongly correlated variables together

Using Inference in Gibbs sampling

- "Collapsed" Gibbs sampler
 - Analytically marginalize some variables before / during sampling

Ex: LDA "topic model" for text

Dechter & Ihler

Using Inference in Gibbs Sampling

Faster Convergence

- Standard Gibbs: $p(A \mid b, c) \rightarrow P(B \mid a, c) \rightarrow P(C \mid a, b)$ (1)
- Blocking: $p(A \mid b, c) \rightarrow P(B, C \mid a)$ (2)
- Collapsed: $p(A \mid b) \rightarrow P(B \mid a)$ (3)

Summary: Monte Carlo methods

- Stochastic estimates based on sampling
 - Asymptotically exact, but few guarantees in the short term
- Importance sampling
 - Fast, potentially unbiased
 - Performance depends on a good choice of proposal q
 - Bounded weights can give finite sample, probabilistic bounds
- Stratified & Abstraction Sampling
 - Ensemble of samples drawn together can reduce variance
- MCMC
 - Only asymptotically unbiased
 - Performance depends on a good choice of transition distribution
- Incorporating inference
 - Use exact inference within sampling to reduce variance