

Agent-Based Simulation in Complex Networks

ESSAI 2024. Athens

Miguel Rebollo (@mrebollo)

Session 5. Dynamics

Complex networks display a surprising degree of robustness: although key components malfunction, local failures rarely lead to the loss of the global information.

We'll study why this effect appears.

PERCOLATION THEORY

Impact of node removal

Percolation theory

removal of one link has limited impact, but remove several can break a network into components. How many nodes we have to delete?

Percolation

Which is the expected size of the largest cluster?

What is the average cluster size?

When it is formed?

Percolation

Average cluster size <s>

 $\langle s \rangle \sim |p - p_c|^{-\gamma_p}$

Order parameter P_{∞}

 $P_{\infty} \sim (p-p_c)^{\beta_p}$

Correlation length

 $\xi \sim |p - p_c|^{-\nu}$

γ, β and υ: critical exponents

 $p_c = 0.593$ universal value

ROBUSTNESS

Robust (from oak -roble-) system that resist errors and failures without degrading

Robustness

Inverse percolation: node removal until disconnection

Critical exponents are the same

Fragmentation process is abrupt, not gradual

 $P_{\infty} \sim |f - f_c|^{\beta}$

Efficiency

$$E = \frac{1}{N(N-1)} \sum_{i, j \neq i} \frac{1}{d_{ij}}$$

The bigger the distance, the less efficient the network Networks with short paths are more efficient

Vulnerability

Measures how failures affect to the efficiency (variation of eff when a link/node disappears)

Dependence on the topology

ATTACK TOLERANCE

What happens in the network when s sabotage is intended?

Deliberate Attacks

Random

Hubs play a significant role in failure tolerance

Scale-free

CASCADE FAILURES

Because failures do not arrive isolated

Cascades

Three regimen

Subcritical <k> < 1

Supercritical <k> > 1 Critical <k> = 1

DIFFUSION

Diseases, computer viruses, innovation or memes, all they share the same transmission scheme

Closing credits. Planet of the Apes

EPIDEMIC MODELING

Mathematical models the simulates how a disease evolves

Based on two concetps

compartmentalization: classification of individuals in groups attending to their state (SI / SIS / SIR)

homogenous mixing: all individuals have same prob. to get infected (no contact network)

SI model

susceptible

SI model

Infection increases until all population infected

SIS model

Two regimen

Endemic state ($\gamma < \beta$)

Disease free ($\gamma > \beta$)

$$\tau = \frac{1}{\gamma(R_0 - 1)}$$

Characteristic time

Reproductive number

< 1 extinction

 $R_0 = \frac{\beta \langle k \rangle}{\gamma}$

> 1 propagation

SIR model

susceptible

infected

removed

SIR model

EPIDEMIC IN NETWORKS

Contacts in a network limits the paths a virus takes in a population

Contact networks

Contacts constrained by the network

Real degree instead of average

Differences on random and scale-free topologies

IMMUNIZATION

Can we protect? Immunization strategies. Herd immunization

How to control a pandemic?

- Interventions to reduce transmission (masks, gloves,...)
- Contact-reducing interventions (quarentine)
- Vaccination: remove nodes from network

Who should be first vaccinated?

Robustness and immunization

Strategies

- Random immunization
 - Random selection
- Selective immunization
 - Random selection (G0)
 - Neighbors of G0 (G1)
 - illusion of majority deg(G1) > deg(G0)
 - \rightarrow G1 vacinned