

Agent-Based Simulation in Complex Networks

ESSAI 2024. Athens

Miguel Rebollo (@mrebollo)

Session 2. Complex networks

The Konigsberg bridge problem (Euler, 1736). The problem was to find a walk through the city that would cross each bridge once and only once.

Origin

First application to human beings

Used to study why a group of girls that run away from a college at Hudson (NY St) in 1934 (Jacob Moreno).

The relations among them and the cottages they live in where represented

But we've discovered that networks are different

acebook

Graph representation

$\left(\begin{array}{ccccccccc} 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{array}\right)$

Basic concepts

- Shortest path d_{ij} minimal distance (weight) between nodes i and j
- Average path length l average of d_{ij} between all the nodes
- Diameter D the longest (maximum) of the shortest paths max d_{ij}
- **Degree** d_i number of neighbors of the node i
- Clustering coefficient C number of triangles of all the possible ones

Random graphs. Erdös-Renyi model (1959)

- A new edge is added between two nodes with probability p.
- Emergence of the giant component: when p > 1 / n
- The complete network is connected after n log n edges

two nodes with probability p. **Dent:** when p > 1 / nected after n log n edges

Random graphs. Degree distribution

The degree distribution of the Erdös-Renyi model is a Poisson one

Random networks. Giant component

6 degrees of separation

First reference: Short Story 'Chains' (F. Karinthy, 1929)

Milgram's experiment (1967).

- people at Omaha, Nebraska and Wichita was chosen
- they have to send a letter to one person in Boston or Massachusetts
- if they know the target, they send them the letter
- if not, they send it to an friend who is more likely to know the target
- 64 letters reached the target using between 2 an 10 steps \rightarrow average path length in [5.5, 6]

Samples: Kevin Bacon or Erdös numbers

Small world network

(a)

 $\mathbf{p} = \mathbf{0}$

Increasing randomness

→p = 1

(b)

The Watts-Strogatz model.

It begins with a regular lattice and rewires edges at random. Small-world effect appears due to

- high clustering
- short path lengths

...but it still has a Poisson degree distribution

